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Abstract—Real-Time, Active Database Systems (RTADBSs) have attracted a considerable amount of research attention in the very
recent past and a number of important applications have been identified for such systems, such as telecommunications network
management, automated air traffic control, automated financial trading, process control and military command, and control systems. In
spite of the recognized importance of this area, very little research has been devoted to exploring the dynamics of transaction
processing in RTADBSs. Concurrency Control (CC) constitutes an integral part of any transaction processing strategy and, thus,
deserves special attention. In this paper, we study CC strategies in RTADBSs and postulate a number of CC algorithms. These
algorithms exploit the special needs and features of RTADBSs and are shown to deliver substantially superior performance to

conventional real-time CC algorithms.

Index Terms—Real-time database systems, active database systems, concurrency control, performance evaluation.

1 INTRODUCTION

DATABASE systems that attempt to model and control
external environments have attracted the attention of
researchers in recent times. The application domains for
such databases are numerous—network management,
manufacturing process control, air traffic control, and
intelligent highway systems to name a few [5], [38], [40].
The general system model that has been proposed for such
systems include the following features:

1. The database is the repository of all system informa-
tion that needs to be accessed or manipulated.

2. Monitoring tools (commonly known as sensors) are
distributed throughout the real system being mod-
eled. These sensors monitor the state of the system
and report to the database. Such state reports arrive
at the database at a high frequency (e.g., each sensor
reports every 60 seconds).

3. The correct operation of the system requires the
application of controls, i.e., in the event of semanti-
cally incorrect operation of the system, certain
actions need to be taken.

These actions, that we call control actions, are taken from
within the database by automatic control mechanisms and
are communicated to the real system using database
executors. Such systems have been termed ARCS (Active,
Rapidly Changing data Systems) [15]. The motivation for
designing database management systems (DBMSs) for
these systems arise from the fact that such scenarios tend
to be extremely data intensive (e.g., a typical network
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management center handles several gigabytes of data per
day [10]). Also, the control decisions in these scenarios are
typically data driven, e.g., a control decision in network
management may be to compute retransmission rates at
specific nodes in response to existing and past state
information. In general, it is often necessary to access and
manipulate current as well as historical data in order to
make control decisions.

An important fact to note is that control actions typically
need to be performed within temporal bounds, e.g., if
temperature goes above 80 degrees then reduce pressure within
30 seconds. Such temporally cognizant processing requires
the incorporation of real-time features in ARCS databases.
Furthermore, the aforementioned control actions are envi-
sioned to be “triggered,” reducing human intervention,
requiring the provision of active capabilities in ARCS
databases. Thus, these databases are expected to require
an amalgamation of real-time and active characteristics. In
this paper, we study time cognizant concurrency control
policies in real-time, active databases (RTADB). An RTADB
is a database system where transactions have timing
constraints such as deadlines and where transactions may
trigger other transactions. Due to such triggering, in a
RTADB, dynamic work is generated. Such dynamism is a
major difference between RTADBs which are classical real-
time databases where priority assignment is performed
based on a “known” or “static” amount of work that a
transaction is supposed to perform. We show that this
difference promotes a serious rethinking of transaction
management strategies in active systems.

There has been considerable research on active databases
(ADBSs) as well as real-time databases (RTDBSs). Below,
we briefly summarize the characteristics of ADBSs and
RTDBSs. An RTDBS is a transaction processing system that
is designed to handle workloads where transactions have
completion deadlines. The objective of an RTDBS is to
satisfy these deadlines in addition to standard database
objectives such as maintaining consistency. The real-time
performance of an RTDBS depends on several factors such
as database system architecture and underlying processor
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and disk speeds. For a given system configuration,
scheduling and concurrency control policies impact perfor-
mance. An extensive reference list of RTDBS research is
provided below in Section 1.1.

Active Database Systems (ADBS) is a database system that
is capable of initiation actions. The foundation of an ADBS
is the so called Even-Condition-Action (ECA) rule. The
semantics of the ECA rule is such that, upon detection of the
occurrence of event E and the satisfaction of condition C,
the specified action A is executed. Events are happenings of
interest in the system, e.g., commitment or abortion of
transactions, specified clock tick (temporal event), or the
accessing of a data item. Conditions are often specified as
predicates evaluable on the database state. An action is
often a transaction that is triggered in response to the event E
occurring and the condition C evaluating to true. References
to ADBS literature are provided in Section 1.1.

The work outlined here does not propose research on
these individual areas in isolation; a large and excellent
body of work already exists and we shall borrow exten-
sively from that—the goal is to synthesize these character-
istics. An attempt at such synthesis, as shown in subsequent
sections, exposes new and unique problems providing the
potential for substantially, long term research. In other
words, such databases must amalgamate real-time char-
acteristics and active characteristics. As a consequence,
these databases have been termed real-time, active database
systems (RTADBSs).

1.1 Related Work

Active Database Systems (ADBSs) and Real-Time Database
Systems (RTDBSs) have gained stature as important areas of
research over the last few years, but there is not much
reported on RTADBSs. In spite of the paucity of directly
related work, we do borrow from the large body of work in
two general and one specific area: the two general areas are
ADBSs and RTDBSs, while the specific area is concurrency
control in RTDBSs.

There have been both theoretical as well as experimental
studies of ADBSs. Some notable work includes [9], [16], [17],
[19], [35], [11]. Most of this work has either concentrated on
data modeling issues (e.g., object-oriented features) or on
the specification of ECA rules. In particular, a lot of work
has been done on semantics of event and rule specification
and evaluation, as well as coupling modes between
conditions and actions. None of this work considers a
real-time context.

The pioneering work in RTDBS performance evaluation
was reported in [1], [2], [3], where the authors simulated a
number of CC protocols based on the two-phase locking
algorithm. However, this work was not examined in an
active context. In [26], the problem of assigning deadlines to
subtransactions is studied. This paper, however, does not
study concurrency control. It also assumes that the structure
of complex transactions is known in advance. In this work,
we do not make any such assumption. Furthermore, much
research has also been devoted to designing concurrency
control (CC) mechanisms geared toward improving the
timeliness of transaction processing and their subsequent
performance evaluation [1], [2], [3], [22], [21], [25], [24],
[33], [32], [45], [7], [31]. Again, all this work has been
performed without considering the effects of triggering.
An important result that we draw upon in this paper is

reported in [22], [21]. In this set of important studies,
Haritsa et al. showed that in firm or hard real-time
scenarios (i.e., where late transactions are worthless),
optimistic concurrency control (OCC) [28] outperforms
locking over a large spectrum of system loading and
resource contention conditions. In particular, the broadcast
commit variant (OCC-BC) of optimistic concurrency control
[36] was shown to perform particularly well. The rationale
for this behavior was shown as follows: In OCC-BC,
transactions at the validation stage are guaranteed to
commit. Thus, eventually discarded transactions do not
end up restarting other transactions. In locking mechan-
isms, however, soon-to-be-discarded transactions may
block or restart other transactions, thereby increasing the
likelihood that these transactions may miss their deadlines
as well. Based on the above findings, we start with the basic
assumption that optimistic protocols are well suited to
RTADBS scenarios.

Another exciting and very recent development was the
International Conference on Active and Real-Time database
Systems (ARTDB95) held in Skovde, Sweden in June 1995.
The organization of this workshop is an indication of the
timeliness and emerging importance of this area. Eleven
papers in all at the workshop [43], [30], [37] were primarily
concerned with pure real-time issues, while [14], [13], [44]
were primarily concerned with active database issues. In
particular, [41], [8] concerned themselves with both active
and real-time issues. Especially, [8] set the stage for forming
a comprehensive real-time active systems model. These
papers, however, are of a very high level—they identify
problems and discuss general issues rather than providing
solutions for specific problems. Thus, notwithstanding their
novelty and significance of these papers, research in real-
time, active databases is still in its preliminary stages.

To summarize, it may be stated that there has been some
initial work in synthesizing real-time and active database
systems. However, there is documented evidence of the
necessity of much greater synthesis. In response to this
need, in this paper, we design new CC algorithms for
RTADBSs. Thus, this paper marks a positive initial step in
exploring transaction processing issues in RTADBSs. The
rest of the paper is organized as follows: In Section 2, we
stipulate a model of execution of real-time active transac-
tions, followed by Section 3 where we analyze the
inadequacies of conventional real-time CC algorithms. In
Section 4, we state a number of new algorithms in detail.
Subsequently, we describe our simulation model in
Section 5, show our performance evaluation results in
Section 6, and discuss the strengths and weaknesses of our
algorithms in Section 7. Finally, we conclude in Section 8.

2 A MOoDEL OF TRANSACTION EXECUTION IN
RTADBSs

There is a large variety of features proposed for active
database systems, including the coupling modes that
determine how rules are to be executed relative to the
triggering transaction. The problem is that many of those
features are not fully understood in terms of their temporal
behavior and, hence, they have difficulties being applied
directly to real-time applications. It is hard to believe that a
full range of active capabilities can be meaningfully
supported in real-time, active database systems, at least in
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the near future. In this section, we present a model of the
execution of transactions in RTADBSs. We try to develop an
execution model that can incorporate useful features of
active capabilities, while not overly restricting other
capabilities. For example, we do not restrict the depth of
triggering. One level of triggering may appear to be enough
in certain applications [39], [8], while it may be necessary to
allow multiple levels of triggering in other applications [42].
Hence, in our execution model, we do not limit the depth of
rule triggering.

There are primarily three types of transactions in an
RTADBSs: nontriggering, triggering, and triggered. Note that
triggering and triggered transaction types are not mutually
exclusive, ie., a triggered transaction may trigger other
transactions. Our primary concern is to devise an execution
model for triggering and triggered transactions. The first
order of business is to identify a proper coupling mode.

2.1 Coupling Mode

Several coupling modes have been suggested between
triggering and triggered transactions, e.g., immediate, de-
ferred, detached, etc. [17]. In designing transaction models for
RTADBS, it is possible to enforce any of these modes.
However, it has been pointed out by several researchers
(e.g., [8], [6]) that immediate and deferred coupling modes
introduce a number of characteristics that work against the
philosophy of deadline sensitive processing of real-time
transactions. For instance, some degree of predictability of
execution times is a big help in designing scheduling and
concurrency control strategies. However, immediate and
deferred modes introduce additional unpredictability be-
yond that already introduced by intrinsic database proper-
ties such as blocking and restarts. Hence, in this paper, we
only consider the detached coupling mode. The execution
model of this paper supports both the parallel detached
mode with causal dependencies and sequential detached
mode with causal dependencies. In addition, the exclusive
detached mode with causal dependencies can be included
for handling contingency transactions.

When utilizing the parallel causally dependent detached
coupling mode, there are certain restrictions that must be
satisfied as listed below:

1. triggered transactions being serialized after the
triggering transactions,

2. concurrency between triggering and triggered
transactions,

3. commit dependency between triggering and trig-
gered transactions, and

4. abort dependency between triggering and trig-
gered transactions (note that the terms commit and
abort dependency are borrowed from the ACTA
metamodel [12]).

A straightforward implementation of parallel causally
dependent detached coupling mode in a database system
that uses locking could lead to potential deadlocks because
the read and write sets of the triggered rule often intersect
the read and write sets of the triggering transaction. For this
reason, we enforce restriction 1 above. In our model, we use
the optimistic approach. By utilizing the notion of dynamic
adjustment of serialization order to be discussed in the
following section, we reduce the probability of unnecessary
restarts.

A feature of real-time active transactions that sets them
apart from “conventional” transactions is the notion of
transaction chaining. The chaining phenomenon is simple to
describe: An real-time active transaction may trigger one or
more other active real-time transactions, which may, in
turn, trigger others and such triggering may proceed to
arbitrary depths. We analyze the effects of transaction
chaining using two different structures: a) triggering graphs
and b) step diagrams.

2.2 Triggering Graphs

Transaction chaining leads to the generation of triggering
graphs.

Definition. The triggering graph is a directed acyclic graph,
where the nodes represent rule firings and the arcs are
transactions invoked by the rule firings.

The triggering graph is a dynamic structure which captures
transaction triggering information in the system. The nodes
of a triggering graph are labeled by rule identifiers, while
the arc labels are transaction identifiers. If arc T; is incident
upon node R;, it means that transaction 7; was (partially)
responsible for the firing of rule R;. If arc 7} is incident from
node R;, it means that rule R; was responsible for invoking
transaction T;. Since the rule antecedents could be complex,
multiple transactions may be responsible for firing a rule.
Since the corresponding action may also be complex, the
firing of a rule may invoke multiple transactions.

An example triggering subgraph is shown in Fig. 1.

This graph resulted from the initial firing of rule R,
which generated transactions 77 and 5.

An important property of transactions belonging to the
same triggering graph is dependency. To illustrate the
notion of dependency, we use the following scenario: Let
G be a triggering graph. Let T; and T; be two transactions
(i.e., edges) in G. Using graph theoretic terminology, we
will sometimes allude to 7; and 7j as the ordered pairs
(Ri, R;) and (Ry, R;), respectively, where R;, R;, Rj, and
R; denote nodes in G. This signifies that T; is directed

Fig. 1. Triggering graph.



468

\j

Time
Fig. 2. Step diagram.

from R; to R; and Tj is directed from R; to R;. The node
which T; is incident on will be referred to as ON(T;). The
node which T; is incident from will be referred to as
FROM(T;). With respect to Fig. 1, ON(T}) = R, and
FROM(T)) = R;. This lets us formally define the notion
of transaction dependencies.

Definition. Let G be a triggering graph. Let T; and T be two arc
labels in G. T} is said to be dependent on T;, if FROM (T;) is
reachable from ON(T;).

If T} is dependent on T;, then we refer to 1; as a guardian of Tj.
By examining the triggering graph shown in Fig. 1, one can
easily see the dependencies between the various transac-
tions, e.g., Ts is dependent on Tj, as Ry (the node T is
incident from) is reachable from R, (the node T} is incident
on). On the other hand, 7T} is not dependent on 7}, as Rj is
unreachable from R,.

2.3 Step Diagrams

Another way of looking at real-time active transactions is to
observe the precise points at which transactions are
triggered, as well as the transaction deadlines. A convenient
graphical mechanism that captures the above information is
the step diagram. For example, consider the step diagram
shown in Fig. 2, which marks triggering points with black
rectangles.

Transaction T} arrives at ¢y with a deadline of t4. At t;, T}
triggers 15, with a deadline of ¢5. At ty, 15 triggers T3 with
deadline t;. At t3, Tp triggers Ty with deadline t¢;. This
method of representing real-time active transactions
through step diagrams allows us to represent transaction
chaining, as well as deadline information pictorially. We
shall use step diagrams as well as triggering graphs to
analyze CC strategies in this paper.

2.4 Properties of Real-Time Active Transaction
Execution

Based on the preceding discussion, we make the following
observations regarding the execution of real-time active
transactions in our model:

a. If a gquardian transaction aborts (restarts), a chain of
aborts may occur. Clearly, if a guardian transaction
aborts, all its effects are undone, resulting in the
abortion of its triggered transactions. If these
“triggered” transactions had triggered other transac-
tions, these also need to abort, potentially unleashing
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a cascade of aborts. In general, the abortion or restart
of a guardian transaction will lead to the abortion of
all its dependent transactions. For example, in Fig. 2,
if Ty aborts, T3, T5, Ts, and T% need to abort as well. In
general, one may say that the removal of a node NNV in
the triggering graph would lead to the removal of
the subgraph induced by the nodes reachable from
N. Similarly, in Fig. 2, if T} were to abort, 15, T3, and
T, must abort as well. Note that, if a guardian
transaction is restarted, there is no guarantee that its
dependent transactions will be retriggered.

b. A Triggered transaction will have a deadline later than
that of its triggering transaction. It makes little sense to
assign a deadline to a triggered transaction that is
earlier than the deadline on its triggering transac-
tion(s). For example, consider transaction 7T as an
instance of a triggering transaction and 7y as an
instance of a triggered transaction. Let us assume
that 73’s deadline (say Dy) is earlier than that of T’y
(say Dx), i.e.,, Dy < Dx. Now, consider a case when
Ty successfully completes, but, subsequently, T’y is
restarted at ¢,, such that Dy < t, < Dy. In this case,
Ty's effects on the database would have to be
undone, which is clearly an undesirable action to
undertake as it means all the processing done on 7y
is wasted. In our model, we assume that the commit
of a triggered transaction is deferred until its
triggering transaction(s) have committed. Clearly, a
corollary of this property may be stated as follows: A
dependent transaction will have a deadline later than the
deadlines of all its quardian transactions.

Note that certain similar properties have been discussed

in the parallel rule firing literature (see, e.g., [29]). However,
none of this work considers a real-time context.

3 THE NEeD FOR NEw CC ALGORITHMS

In this section, we explain the need for extending conven-
tional OCC mechanisms to handle the RTADBS scenario, by
demonstrating that such protocols, in the RTADBS frame-
work, appear to exhibit erroneous behavior.

The basic OCC protocol [28] lets all transactions proceed
unhindered until a transaction wants to commit, at which
time it must go through a certification or validation stage. In
this stage, it is checked whether it conflicts with any
recently committed transactions. If such conflicts exist, the
transaction is restarted. A variant of the basic OCC known
as OCC-BC (the broadcast commit variant) [36], has been
shown to perform particularly well in RTDBSs [21]. In OCC-
BC, a validating transaction is always guaranteed to
commit. However, all currently running transactions that
conflict with the validating transaction are restarted.
Another variant of OCC, known as OCC-TI (the timestamp
interval variant) has been shown to perform even better than
OCC-BC [32]. OCC-TI dynamically adjusts the serialization
order of transactions to prevent umnecessary restarts (ex-
plained later in the document). Neither OPT-BC, nor OCC-
TI use any priority information in their conflict resolution
strategies. Below, we show two examples to demonstrate
the difficulties of applying conventional OCC protocols to
RTADBSs.
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Fig. 3. Problems with optimistic mechanisms: Example 1.

Example 1. Consider Fig. 3. Transaction T starts at ¢, with a
deadline of t5. At ¢, T triggers transaction 75 with
deadline of ts. At ty, a new transaction T3 starts with
deadline t,. Subsequently, at t¢3, 15 triggers T; with
deadline t;. At t,, T3 enters the validation stage. Assume
that T3 conflicts with 77 and not with T, and T}. Further,
assume that Priorityr, < Priorityy, (as is the case with
an earliest-deadline-first policy with respect to Fig. 3). In
this situation, conventional OCC algorithms (both
priority sensitive as well as priority insensitive ones)
would restart 73, thereby aborting 75 and 7;. One can
easily observe that the restarted 7; (regardless of
whether it triggers any transactions on this run) has
virtually no chance of completing.

From the simple example, one can identify a glaring
weakness of conventional OCC algorithms when applied
to RTADBS scenarios: One of the guiding principles of
real-time transaction processing is reducing the amount
of wasted work. However, in the scenario depicted in
Fig. 3, by restarting 71, the work done on 75 and 7} is
wasted as well. This happens as conventional real-time
CC protocols ignore the effect of transaction chaining,
i.e., the fact that work is dynamically being generated.
Thus, some mechanism is required to take into account
this dynamic work being generated through triggering.

Example 2. Consider Fig. 4. Here, T} and 73 both start at ¢,
and trigger T, and T}, respectively, at ¢t;. The deadlines
for these transactions are easily observed in Fig. 4.
Assume T, and T} are roughly the same size. At t,, T}
requests validation while conflicting with 77 (but not
with T3). From the figure, it is clear that Priorityy <
Priorityy, due to T3’s earlier deadline. In this case,
conventional OCC algorithm (regardless of priority
sensitivity) would restart 7;, thereby aborting 75. The
problem with this scenario is that the restart decision
ignores the deadlines (i.e., priorities) of 7 and Ti.
However, were the priorities of the transactions taken
into account, a different decision should result in this
case. This is illustrated below:

Even though T3 is a higher priority transaction than
Ty, the deadline of T} (i.e., t5) is much later than that of
T,. Now, consider the two alternatives to resolve this
conflict: 1) T is restarted: in this case, were T5 triggered
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Fig. 4. Problems with optimistic mechanisms: Example 2.

again, it would have trouble completing within ¢, and
2) T3 is restarted: in this case, were T} to be triggered
again, it has a better chance of finishing than 75 as its
deadline is a long way away (the reader is reminded that
T, and T are roughly the same size). Based on the above
discussion, it appears that 2 is a better choice than 1, even
though it is not the choice OCC would make. The basic
point here is that considering transaction priorities takes
on special significance in RTADBSs. This means that it is
even more important (in comparison to real-time
database systems) to provide a mechanism for priority
cognizance in CC algorithms.

3.1 Summary
Based on the two examples above, we have identified two

important drawbacks in using conventional OCC protocols
in ARTDBs:

1. Because conventional conflict resolution strategies
ignore the effect of transaction chaining, there is a
high potential for wasted processing, i.e., work done
on transactions that are subsequently aborted due to
an abort/restart of their guardian transactions. This
was shown in Example 1. Thus, some mechanism is
needed to account for the dynamic work generated
as a result of triggering.

2. Priority cognizance assumes special significance, as
shown in Example 2. However, as evidenced in the
real-time database literature, incorporating priority
cognizance successfully is difficult. This was also
exemplified in both examples above where incorrect
decisions would have been made by even priority
cognizant protocols. Thus, a major rethinking is
required for designing successful priority sensitive
protocols.

4 New CC ALGORITHMS “TUNED” FOR RTADBSSs

In this section, we propose two alternate CC algorithms for
RTADBSs. The algorithms are optimistic and based on the
notion of dynamic adjustment of serialization order [33], [32].
The reason for choosing the notion of optimism is explained
at the outset of Section 3. We choose to apply the technique
of dynamic adjustment of serialization order as it has been
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restart all transactions in CS(T,y)
commit Ty

Fig. 5. Conflict set of T,.

shown to result in substantial performance gains over other
optimistic algorithms. Before stating our algorithms, we
give a brief review of 1) OCC algorithms (for an in-depth
treatment of OCC, see [28], [36], [20]) and 2) the technique
of dynamic adjustment of serialization order (for complete
coverage, see [32]).

4.1 Optimistic Concurrency Control

Optimistic concurrency control (OCC) consists of three
phases: the read phase, validation phase, and write phase. In this
paper, which assumes a firm real-time database system, we
are primarily interested in the broadcast commit variant of
OCC known as OCC-BC [36]. In OCC-BC, a transaction is
validated only against currently active transactions. The
basic assumption in OCC-BC is that the validating transac-
tion is serialized before all other concurrently running
transactions and, hence, it is guaranteed to commit. The
validation protocol for a transaction 7T,, may be succinctly
described by the following procedure, assuming the conflict
set of T, is given by CS(T,) (Fig. 5).

4.1.1 Dynamic Adjustment of Serialization Order

The basic purpose of this technique is to prevent unnecessary
restarts that occur on the restart of transactions which could
have been serialized successfully with respect to the
validating transaction. This can best be explained with the
aid of an example. Below, we present an example.

Example 3. Let r;[z] and w;[z] denote the read and write
operation, respectively, by transaction ¢ on data item z.
Further, assume that v; and ¢; denote the validation and
commit of transaction i, respectively. Consider the
following three transactions:

Ty : rifz],wifz], iyl wily], o

T3 LT3 [y N
Now, consider the following execution history fragment:

H=n [IL wl[x]v TQ['TL Tfﬂ[y]v ’LUQ[.T], 1 [ZJL wl[y]vlv C1.

OCC-BC would restart both 75 and T3 in the process of
validating 7;. However, a careful examination of H
shows that T, clearly needs to restart as it has both

write-write and write-read conflicts with T}. However,
that is not the case with 73 which only has a write-
read conflict on the data item y. Thus, as long as we
can set the serialization order T3 — T, T3 does not
need to restart. The restart of 73 by OCC-BC is referred
to as an unnecessary restart.

The technique of dynamically adjusting the serialization
order eliminates these unnecessary restarts by adjusting
serialization orders of transactions at the validation stage.
The authors in [32] differentiate between two classes of
conflicting transactions: 1) irreconcilably conflicting transac-
tions, which cannot be serialized and, thus, must be
restarted, e.g., T> in the above example and 2) reconciliably
conflicting transactions whose serialization order can be
adjusted and, thus, need not be restarted, e.g., T3 in the
above example. The validation process in this case may be
expressed, as shown in Fig. 6.

In [32], the OCC-TI protocol based on this technique is
shown to perform extremely well as it wastes less effort by
restarting transactions fewer times. In fact, to the best of our
knowledge OCC-TI is one of the best performing CC
algorithms in published literature. In the simulation study
reported later in this paper, OCC-TI is used as the primary
basis of comparison for our algorithms.

The salient point of OCC-TI is that, unlike other
optimistic algorithms, it does not depend on the assumption
of the serialization order of transactions being the same as
the validation order. Rather, it uses the serialization order
that is induced as a transaction progresses and uses restarts
only when necessary. Restarts may occur in OCC-TI under
two circumstances: 1) While validating T, all conflicting
transactions that cannot be successfully serialized (transac-
tions that have bidirectional conflicts with T,,, i.e., both
read-write and write-read) have to restart and 2) while
accessing data in the read phase if an unresolvable conflict
is detected (e.g., trying to read a data item updated by a
transaction serialized after the accessing transaction). The
detection of conflicts is achieved through manipulating
timestamps—basically, each transaction is allocated a time-
stamp interval which keeps getting reduced as serialization
dependencies are induced. If a transaction’s timestamp
interval shuts out, i.e., there is no possible way to serialize
the transaction any more, it must restart. The use of
timestamps to record serialization dependencies is well
documented in the literature (see e.g., [32]).

foreach transaction 7; in CS(T,y) {

restart 71;;
else

}

commit Ty

Validation Algorithm in OCC-TI
if T; irreconciliably conflicts with Ty, then

\* i.e., if 7T; reconciliably conflicts with T, *\
adjust the serialization order of 7; w.r.t. Tyy;

Fig. 6. Validation algorithm in OCC-TI.
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4.2 OCC-APFO

OCC-APFO is an optimistic algorithm that dynamically
adjusts the serialization order of transactions. APFO stands
for Adaptive Priority Fan Out. The specific meanings of these
terms will be clear once we explain the algorithm. OCC-
APFO has two goals, which correspond to the two short-
comings of conventional OCC algorithms identified in
Section 3: 1) to reduce wasted work by being conscious of
how much additional work a transaction has generated
through triggering and 2) to be priority cognizant. We first
discuss how OCC-APFO achieves the two goals separately
and then synthesize the two components. Finally, we
present the procedure descriptions.

4.2.1 Accounting for the Effect of Triggering
OCC-APFO keeps track of the triggering dynamics in
order to factor in the effect of triggering in resolving
conflicts. The basic goal of keeping track of triggering is
to reduce the amount of wasted work. Wasted work is the
processing done on transactions that are restarted or
discarded. In the context of real-time active transactions,
wasted work not only involves the processing done on
the restarted (or discarded) guardian transaction, but also
must include work performed on any transactions that
may depend on this transaction.' The basic idea therefore
is that, as the number of transactions depending on a
guardian transactions increases, the cost of restarting the
guardian transaction goes up proportionally. In other
words, with an increasing number of dependent transac-
tions, a guardian transaction’s candidacy for restart or
abort goes down. We express this fact, i.e., the attractive-
ness of a transaction as a candidate for abort/restart,
through a property called fan-out.

Definition. Let G be a triggering graph and let T be an arc label
(i.e., a transaction label) in G. Then, the fan-out of the
transaction T in G is defined as the number of arcs in the
subgraph of G rooted at ON(T).

Intuitively, fan-out (FO) of a transaction 7" is the number of
transactions that depend on 7. In Fig. 1, FO7p, =4 and
FOrg, =2. FO is used by the OCC-APFO algorithm as a
measure of how much additional work a transaction has
generated by triggering.

4.2.2 Priority Cognizance

This section explains how OCC-APFO attempts to factor
transaction priority information into the conflict resolution
process. In this algorithm, we only consider the priority of
the conflicting transactions, and do not consider the
priorities of their dependents. In a later algorithm (OCC-
APFS), we will consider priority of the entire dependent set.

To discuss how we consider priority, we first show a
simple example to illustrate the advantages and disadvan-
tages of priority cognizance. Note that, since we do not
consider the priorities of dependent transactions in OCC-
APFO, the following example only portrays the conflicting
transactions and not their dependents.

Example 4. Consider the situation depicted in Fig. 7. This
figure portrays the execution profiles of two concurrently

1. Recall that, when a guardian transaction is restarted, its dependent
transactions must be aborted.

nnaY——

ty oty t, 13 ty

Time —»

Fig. 7. Using priority information at validation.

active transactions T, and T;. T, arrived at time ¢, with a
deadline of ¢,, while T}’s arrival time and deadline are ¢;
and t3, respectively. At time ¢,, T, reaches the validation
stage. Note that T}’s priority is higher than T,’s, due to
Ty's earlier deadline. However, in the process of
validating 7, T; would be restarted using a priority
incognizant protocol such as OCC-BC. One can easily see
from Fig. 7 that T}, has virtually no chance of finishing
again. On the other hand, T;, if restarted, has a better
chance of completing successfully. This fact is not
recognized by a priority incognizant algorithm. How-
ever, if a protocol could be designed that recognizes that
Ty's priority is higher and restarted 7, instead, one can
see from the figure that 7, would have a fair chance of
finishing. Thus, while a priority incognizant protocol
would give Tj virtually no chance of finishing, a priority
cognizant one gives both transactions a chance to commit.

The same example can be used to illustrate the
weakness of priority cognizant protocols. Clearly, as
we have already argued, a priority cognizant protocol
will provide both T, and T} an opportunity to commit.
However, it will not guarantee that either of them does
commit. It is easily seen that even if T, was restarted and
Ty, allowed to continue, several events could occur (e.g.,
T, may be restarted by some other transaction, the
system load may suddenly increase, and 7, may miss its
deadline on its restarted run) that could cause both T,
and 7; to be lost. On the other hand, OCC-BC (or any
other priority incognizant protocol) will guarantee that Tj,
(i.e., the validating transaction) will commit. Thus, a
priority cognizant protocol may create a situation that
causes more misses than that allowed by priority
insensitive algorithms.

The simple example above helps us identify a few key
points that need to be considered while designing good
priority cognizant CC algorithms. Basically, it has been
repeatedly shown that it is the number of restarts that
determines the performance of real-time CC algorithms. For
example, the reason that OCC-TI performs better than OCC-
BC is that it reduces the number of restarts by not restarting
reconciliably conflicting transactions [32]. It is reasonable to
assume therefore that we can expect a priority cognizant
protocol to perform better if it can reduce restarts even
further. Using the example above, we see that there are
situations where a priority conscious protocol may offer the
potential for reducing restarts. However, the same protocol,
as we argued in the previous paragraph, may result in
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larger number of restarts. Therefore, our goal is as follows:
Design an algorithm that offers opportunities of reducing
restarts while making sure that chances of increasing
restarts are minimal.

OCC-APFO attempts to satisfy this goal by restarting
validating transactions only when it feels that the restarted
transaction is very likely to commit eventually. The
question is whether it is possible to guarantee the eventual
successful completion of restarted validating transactions.
Clearly, the answer is no, as system dynamics are
unpredictable. The next logical question then is whether it
is possible to make it very likely that a restarted validating
transaction will successfully complete. The answer to this is
yes. One easy way to do that is to see how much time is left
before its deadline expires and decide to restart it if
sufficient time is left for the transaction to complete. The
problem is the determination of sufficient time. Clearly, if the
system dynamics represent high contention for data and
resources, more time is required than if the system
dynamics represent very little contention. In other words,
the notion of sufficient time should be dictated by the
condition of the system.

Thus, the basic ideas behind the priority cognizant
component of OCC-APFO are:

1. Start out with an estimate of sufficient time required
to restart validating transactions. As we show later,
we make this estimate without making any unrea-
listic assumptions such as a priori knowledge
regarding either transaction or system characteris-
tics.

2. Based on feedback obtained by monitoring system
performance, revise estimate of sufficient time.

In OCC-APFO, the feedback is in the form of the Miss Ratio
of restarted Validating transactions (MRV). Based on this
feedback, the revision of the sufficient time estimate is
performed in an adaptive fashion.

4.2.3 How Things are Put Together:
Details of OCC-APFO

In this section, we provide the details of the OCC-APFO
algorithm. As described before, OCC-APFO is an optimistic,
priority cognizant protocol based on the dynamic adjust-
ment of serialization order. Like OCC-TT [32], OCC-APFO
uses the notion of timestamp intervals to record and
represent serialization orders induced by concurrency
dynamics. Timestamps are associated with both transac-
tions and data items, but in different ways.

Data Items and Timestamps. Each data item has a read
and a write timestamp, in addition to their usual meanings,
i.e., the read and the write time stamps are the largest
timestamp of transactions that have read or written the data
item, respectively.

Transactions and Timestamps. OCC-APFO associates
with each active transaction a timestamp interval expressed
as a [lower bound (Ib), upper bound (ub)] pair. The timestamp
interval denotes the wvalidity interval of a transaction. The
timestamp intervals are also used to denote serialization
order between transactions. For example, if T; (with
timestamp interval [Ib;, ub;]) is serialized before T; (with
timestamp interval [Ib;, ub;]), i.e., T; — T}, then the following
relation must hold: ub; < lb;. Each transaction at the start of

execution is assigned a timestamp interval of [0, o0}, i.e., the
entire timestamp space. As the transaction proceeds
through its lifetime in the system, its timestamp interval is
adjusted to reflect serialization dependencies as they are
induced.” Serialization dependencies may be induced in
two ways:

1. by accessing data items in the read phase. In this
case, the timestamp interval is adjusted with regard
to the read and write timestamps of the data item
read or updated and

2. by being in the conflict set of a different validating
transaction. In this case, the timestamp interval is
modified to dynamically adjust the serialization
order.

In the process of adjusting, the timestamp interval may shut
out, i.e., become null. In that case, the transaction cannot be
successfully serialized and needs to be restarted. Note that
this is one of the major differences between conventional
protocols and protocols based on dynamic adjustment of
serialization order. In conventional OCC algorithms, re-
starts can only occur at validation times. In our case,
however (as well as in OCC-TI), transactions can restart at
other times if a timestamp interval shut out is detected. The
exact mechanics for these adjustments are shown in the
procedures given later on in Section 4.2.4.

In this paper, we use the notation T/(7;) to denote the
timestamp interval of transaction 7; and RTS(D;) and
WTS(D;) to denote the read and write stamps of data item
D;, respectively. As a transaction successfully validates, a
final timestamp is assigned to it. We assume that this
timestamp is equal to the lower bound of its final timestamp
interval. The notation T'S(T,.) is used to denote the final
timestamp of T, after its validation.

Next, we turn our attention to the adaptive priority
cognizance of OCC-APFO, which is one of the strengths of
this and distinguishes it from other CC algorithms. The
reader is reminded that the goal of priority cognizance is to
smartly decide when to sacrifice validating transactions in
favor of its usually large conflict set. Priority cognizance in
OCC-APFO is designed around a property of real-time
active transactions that we define. We call this property the
Concurrency Priority Index (CPI).

The CPI of a transaction is a measure of its candidacy for
restart, i.e., a measure of a transaction’s attractiveness for
restart. In priority conscious OCC algorithms, a transactions
priority determines its candidacy for restart. For example, if
there was a choice between restarting transaction T’x (with
priority Px) and transaction 7y (with priority Py > Px), a
priority conscious OCC would restart T’x, owing to its lower
priority. In RTADBSs, however, simple priority is not
enough as we have to account for dependent transactions as
well. In response to this inadequacy, we came up with the
notion of CPI to be the determinant of which transaction to
restart rather than simple priority. In OCC-APFO, the CPI
of a transaction is defined as: where CPI;, Pr, and FOr
denote the CPI, priority, and fan out of transaction T,
respectively.

2. Note that the notion of using timestamp intervals to record
dependencies is an established one (see e.g., [32]). It is just used in this
paper as a convenient tool and is not a research contribution of this paper.
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restart Tyu

if lower CPI irreconciliably conflicting transaction in CS(T,,) then
if Tyq likely to complete if restarted then

Fig. 8. Restart rule.

Intuitively, we view CPI as a measure of a transac-
tion’s candidacy for restart. In other words, a transaction
with a higher CPI is more attractive as a candidate for
restart than one with a lower CPI. We illustrate this with
the following simple example: Assume there are two
conflicting transactions, say Tr and 7§, with fan outs
FOpr and FOg, respectively. Assume, for simplicity, that
the transactions have identical priorities. Further assume
that FOr > FOg. Then, CPIrp < CPIg (using the CPI
expression above), signifying that the transaction manager
would rather restart S than R, owing to S’s higher CPL
One can easily see this makes sense intuitively: Both R
and S have similar priorities. However, FOp > FOg,
indicating R has triggered more transactions than S.
Thus, restarting R has a higher likelihood of wasting
more work than that by restarting S. Intuitively, there-
fore, it makes sense to restart S.

The basic idea of OCC-APFO is to restart validating
transactions when the following two conditions are
satisfied:

1. transactions with a lower CPI exist in the irreconcil-

ably conflicting set and

2. itis likely that, if restarted, the validating transaction

will eventually commit.

The first condition is easily verified by examining the
conflict set in the validation phase and comparing the CPIs
of the conflicting transaction to that of the validating
transaction. The second condition is checked by estimating
how long the transaction will take to execute, if restarted.
However, it is well known that this is a nontrivial problem
that researchers often tackle by assuming prior knowledge
of system dynamics. Our goal is to make no assumptions
that are even remotely unrealistic.

On the first run of a transaction through the system, we
record its data access behavior. Thus, if a transaction
reaches validation, we are aware of its complete read and
write sets. We denote the read and write sets of a
transaction 7, by RS(T) and WS(T), respectively. From
this information, we can make a worst-case estimate (i.e.,
assuming each access request results in a page fault) of the
isolated running time of this transaction, i.e., assuming it is
running by itself in the system. Denoting isolated runtime
(i.e., runtime assuming 7" is alone in the system) of T as
IRT(T), and assuming WS(T') C RS(T), we can say: where
ProcCPU and ProcDisk are the times needed to process a
page at the CPU and disk, respectively, and are system
parameters.

Let us now denote the concurrent run time (i.e., the run
time when 7' is not alone in the system) of 7" as CRT(T).
Then, we can say:

CRT(T) = F(IRT(T), system dynamics).

The above expression says that the concurrent running time
of T depends on the isolated running time of 7" and the state

of the system. We approximate this function by the
following expression:

CRT(T) = o x IRT(T),

where « is a control variable of the algorithm, o > 1.0. Note
that, strictly speaking, o < 1.0 is feasible, as IRT(T) denotes
the worst-case isolated runtime. In all our experiments,
however, we enforce the greater than 1 inequality.

The dynamic variable o represents the state of the
system, i.e., the system dynamics. It is easily seen that a
smaller o indicates a less contention-oriented system than
does a larger a. We can also say:

lim CRT(T) = IRT(T).

The OCC-APFO algorithm uses a feedback mechanism to
monitor the performance of the system, and then adjusts the
value of o accordingly (« is initialized to 3.0 at system
startup). The feedback is in the form of the miss ratio of
restarted validating transaction denoted by MRV. MRV is
given by:

Aiji#tmnsarrwns estarted in val, phase and

ly missed
Firansactions restarted in validation phase .

Recall that the goal of OCC-APFO is to miss as few
restarted validating transactions as possible. A high MRV
indicates that we are underestimating the runtimes (i.e., the
CRTs), and, consequently, missing too many restarted
validating transactions. On the other hand, a low value of
MRYV indicates that « is doing a better job in representing
system dynamics.

The value of « is dynamically adjusted with the goal of
keeping MRV below 5 percent. MRV is recomputed after
every SampleReq transactions request validation, where
SampleReq is a parameter of the system. If MRV is greater
than or equal to 5 percent, we are underestimating «, and its
value is increased by 5 percent. On the other hand, if MRV
is less than 5 percent, then we have the opportunity to relax
the restart condition and possibly extract better perfor-
mance from the system. Therefore, in this case, « is reduced
by 5 percent.

Based on the above description of estimating the runtime
of transactions, we are now in a position to state our restart
condition for validating transactions. Assuming 7,, re-
quests validation and priority and deadline of transaction 7'
are denoted by P(T) and D(T), respectively, the restart rule
may be stated as Fig. 8.

4.2.4 The OCC-APFO Algorithm

OCC-APFO basically has three procedures of importance:
1) validation (V.AL) which is run at validation, 2) timestamp-
interval adjustment at validation (7 .AV), which adjusts the
timestamp intervals of conflicting transactions during a
validation process, and 3) timestamp-interval adjustment by
data access (T ADA), which adjusts the timestamp intervals
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TABLE 1
Notations used in this Paper

l Notation | Description [

TI(T) Timestamp Interval of T
TS(T) Timestamp of T, awarded after validation,
= lower bound of TI(T)
RS(T) Read set of T
WS(T) | Write set of T
CPI Concurrency Priority Index

CPI[T) | CPLof T

D(T) Deadline of T

Cs(T) Contflict set of T
CRT(T) | Concurrent run time of T'
RTS(D) | Read time stamp for data item D
WTS(D) | Write time stamp of data item D

of the transactions in their read phase as they access data
items. The notation used is summarized in Table 1.

The first thing procedure VAL (Fig. 9) does is to check
that the validating transaction has no uncommited guardian
transactions in the system. Recall from Section 2 that our
execution model requires dependent transactions to be
serialized after guardian transactions. This requirement
cannot be guaranteed if a dependent transaction is allowed
to validate while some guardian transaction is still running.
In that case, the transaction is made to wait a random
amount of time before requesting validation again. If it is
decided that the validating transaction has to wait, the
procedure terminates.

Once a transaction has been cleared to go through
validation, there are essentially two things that can happen
to it: 1) it can be restarted, allowing its conflict set to carry
on or 2) it can be committed at the expense of some

transactions in its conflict set (i.e., the irreconcilably
conflicting transactions). This is achieved as follows: First,
we go through the conflict set of T,,, adjusting the
timestamps of the conflicting transactions by invoking
procedure 7.AV. Whenever an irreconcilably conflicting
transaction is detected by virtue of the fact that its
timestamp interval shuts out, we perform the restart test.
If this test succeeds, T, is restarted and procedure VAL
terminates. This situation is somewhat tricky to handle,
because, by this time, the procedure may have already
adjusted the timestamp intervals of several conflicting
transactions. However, if T, is to restart, then these prior
adjustments are unnecessary. To remedy this situation, we
call the RESET procedure, which unmarks all transactions
marked for restart and resets the timestamp intervals of all
transactions in the original C'S(T,q) to the values before the
invocation of the procedure. This is very easily implemen-
ted by keeping an image of the original C'S(T,y) until VAL
terminates. This is also the reason why we only mark
transactions for restart in 7.4V instead of actually restarting
them. If the transactions were restarted in 7 .4V, and later
RESET needed to be run, it would be impossible to undo
the restarts at that stage. Finally, if T,, restarts, VAL
terminates. If the entire conflict set is traversed without the
restart test succeeding, T,y is guaranteed to commit, the
necessary data timestamp adjustments are done, and all
marked transactions are restarted.

Next, we turn our attention to the 7.4V procedure
(Fig. 10). This procedure checks the type of conflict between
the validating and the conflicting transaction and accord-
ingly adjusts the timestamp interval of the conflicting
transaction. Below, we provide the details of this adjust-
ment for each of the three different kinds of conflict:

{
exit;
}
foreach Tj € CS(Tyq) do

TAV(T;); \*
if TI(T;) =[] then

if CPI(Tyq) > CPI(T};) then
restart Ty ;
exit;

foreach D; € RS(Tyu)
if RTS(D;) < TS(T,u) then
RTS(D,) = TS(TUH[);
foreach D; € WS(T,ar)
if WTS(D;) < TS(Tyu) then
WTS(D;) = TS(Tyut);

commit Tyar;
exit;

Fig. 9. Procedure VAL(T,qu).

Procedure VAL(T,q)

This procedure is invoked when a transaction, Tyer, requests validation

if any guardian transaction of 7,4 is not committed then

wait random amount of time before attempting to validate again;

adjust timestamp interval of T =\

\*Tj shuts out, i.e., it is irreconciliably
conflicting with Ty *\

if CRT(Tya) < (Dr,,, — Current_Time) then

RESET(CS(Tvar))

restart all transactions marked for restart; \* recall that this marking

was done in procedure T4V *\
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foreach D; € RS(Tyar)

TI(T;) « TI(T;) N [TS(Tyar),0];
if TI(T;) =] then
mark 7; for restart;

}

foreach D; € WS (Tyar)

if Ty is a guardian of 7} then
mark T; for restart;
else TI(T;) « TI(T;) N[0, TS(Tpur) — 1];

TI(T)) « TI(T}) N [TSTu),
if TI(T;) =] then

mark T; for restart;

Fig. 10. Procedure T AV(T}).

Procedure T AV(T})

This procedure is called from inside the VAL procedure, whenever a transaction T; requires adjust-
ment of timestamp intervals by virtue of being in Tyyr's conflict set

if D; € WS(T;) then /* read-write conflict */

if D; € RS(T;) then /* write-read conflict =*/

if D; € WS(T;) then /* write-write conflict */

read(D;);
TI(T;) « TI(T;) N [WTS(D;), ];
if TI(T;) =[] then

restart T};

}
{

write D; in local buffer;

TI(Ty) « TI(T;) N [WTS(D;), 00l N [RTS(D;), o0l

if TI(T;) =[] then
restart T};

Fig. 11. Procedure 7T ADA.

Read-Write Conflict. This type of conflict occurs
when there is some data item in the read set of
the validating transaction T, that also exists in
the write set of the conflicting transaction Tj, i.e.,
RS(Tyu) "NWS(T;) # 0. In this case, we adjust T}’s
timestamp to induce the serialization order
Ty — 1. This is known as forward ordering [32].
The logic behind this ordering is that the writes
of T; should not affect the read phase of Tyq.
Write-Read Conflict. This type of conflict occurs
when there is some data item in the write set of
the validating transaction 7T, that also exists in the
read set of the conflicting transaction 7j, i.e.,
WS(Tyu) NRS(T;) #0. In this case, the only
possible adjustment is to induce the serialization
order T; — T,. This is known as backward ordering
[32] and signifies that the writes of T,, have not
affected the read phase of 7;. In RTADBSs, this
ordering is tricky and must be considered in
context of the relationship between the validating
and the conflicting transaction:

Procedure T ADA

if transaction wants to execute a read access on data item D; then

if transaction wants to execute a write operation on data item D; then

e Case 1—T,, is a guardian of 7). In this case,
backward ordering is invalid as guardian
transactions must be serialized before depen-
dent transactions. Thus, T; must be restarted.

e Case2—T,, is not a guardian of T}. In this case,
we simply perform the backward ordering and
set the serialization order as T — Tq.

3. Write-Write Conflict. This type of conflict occurs
when there is some data item in the write set of
the validating transaction 7, that also exists in the
write set of the conflicting transaction 7}, i.e.,
WS(To) "WS(T;) # 0. In this case, we forward
the order by adjusting Tj’s timestamp to induce
the serialization order Ti, — Tj. The logic behind
this ordering is that the writes of T, should not
overwrite the writes of 7).

Finally, we state our third procedure 7ADA (Fig. 11).
This procedure simply adjusts the timestamp intervals with
each data access to ensure consistency is not violated. The
reader should have no problems understanding the logic
behind the adjustments.
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4.2.5 Correctness of OCC-APFO

To prove that OCC-APFO is correct, we show that it can
only produce serializable histories. This is shown using the
notion of precedence graphs [27]. We use the term H to denote
history and the term PG¥ to denote the precedence graph
corresponding to the history H. By definition, if an edge
(T, Ty) exits in PG, then T} precedes T3 in logical order.

Lemma 1. If an edge (11, T3) exists in PGH  where T\ and T are
two committed transactions, then T'S(Ty) < T'S(T).

Proof. By definition, there can be three kinds of conflicts
between T and T5:

1. wi(Q) precedes 7(Q). This means T5’s read has
seen the effect of T}’s write, i.e., T} committed and
executed its write phase before T5 executed r2(Q)
in its read phase. Clearly, during 7}’s write phase,
the write timestamp of data item @ is updated,
using procedure VAL as follows:

WTS(Q) =TS(Th). (1)

Subsequently, when T, executes r5(Q) in its read
phase, the lower bound of TI(T)) is set to
WTS(Q) + 1, using procedure 7 ADA. After this,
whatever the final timestamp of 7, turns out to
be, the following is always true:

TS(T3) > WTS(Q). (2)

Using (1) and (2) above, T'S(T1) < T'S(Ty).
2. r1(Q) precedes wy(QR). Using similar arguments as
in the previous case, it can be shown that
3. wi(Q) precedes wy(Q). Using similar arguments
as in (1), it can be shown that T'S(T1) < T'S(1%).0

Theorem. OCC-APFO exclusively generates serializable histories.

Proof. Assume that in the PG of some history H generated
by OCC-APFO, there exists a cycle (11,13, T3, ..., Ty, T1).
Using the results of Lemma 1, this implies

TS(T) < TS(Th) <...<TS(T,) < TS(T).

This results in an unresolvable contradiction. Thus,
PGH must be acyclic, implying the history must be
serializable. O

4.3 OCC-APFS

OCC-APFS (Adaptive Priority Fan-out Sum) is a second
algorithm that we stipulate. OCC-APFS is exactly the same
as OCC-APFO, with one critical difference. Recall that CPI
in OCC-APFO (which we will refer to as CPI(FO)) was
defined as follows:

1

CP](FO)T:m7

where FOr attempted to quantify the amount of work
generated by T. We felt that one possible refinement of this
quantifying measure was to account for the priorities of
dependent transactions (instead of simply their number as
given by FOr). Thus, we defined a new measure called Fan-
out Sum (FS).

Definition. The Fan-out Sum of a transaction T, denoted by
FSr, is the sum of the priorities of all dependent
transactions of T.

Thus, while FOr denotes the number of dependent
transactions of 1, F'Sr denotes the cumulative importance
of these dependent transactions. The idea was that F'Sy
would be able to capture nuances of subtransaction
priorities that would otherwise escape F'Or. The new CPI
value in OCC-APFS (called CPI(FS)) is defined as:

1

The reason why OCC-APFS appears to improve on OCC-
APFO is easily seen by examining Example 2 and Fig. 4 in
Section 3. First, we assign the following priority values to
the four transactions depicted in the figure (P; refers to
the priority of transaction 7}, the earliest-deadline principle
is used to assign priorities, and larger priority values
denote higher priorities): P, =3, P, =2, P;=4, and
P, =1. OCC-APFO first computes the fan-out values of
the conflicting transactions FOp = FOp, =1 This implies
that CPI(FO);, =37 =33 and CPI(FO); = 77 = .25.
This makes T} a more attractive cand1date for restart
than 73 owing to its larger CPI value. This decision, as
argued in Example 2, is undesirable.

Now, let us consider the effect of using FS, instead of FO.
It is easily seen that F'Sp; =3 and FST3 =1. Thus,
CPI(FS);, = 555 =17 and CPI(FO);, = {4, = .25. This
makes T3 a more attractive candidate for restart than T
owing to its larger CPI value. This decision, as argued in
Example 2, is correct.

Aside from this important difference, the OCC-APFS
algorithm is the same as OCC-APFO in other respects.

4.4 An Important Implementation Issue

With regard to both OCC-APFO and OCC-APFS, a question
that will need to be answered frequently is: “Given two
transactions 7; and T}, is T; a guardian of 7;?” We hasten to
add that this is not particular to our algorithms. Any
algorithm (such as OCC-BC, OCC-TI) that allows concur-
rency between guardian and dependent transaction will
need to answer the above question in order to serialize
dependent transactions after their guardians. In other
words, we feel that the above question represents a very
general problem that will need to be addressed in
RTADBSs. Below, we provide an efficient implementation
scheme in order to address this problem.

Basically, the above problem reduces to designing an
efficient storage and access mechanism for the triggering
graph structure defined in Section 2. Then, the above
question reduces to the following alternate question: “Is
FROM (Tj) reachable from ON (7;)?” One basic assumption
that we make is that triggering graphs are sparse. This seems
reasonable as 1) the triggering graph is acyclic, 2) the
triggering graph is directed, and 3) one would expect the
number of transactions in the system to be of the order of
the number of parent-child relationships. Then, we propose
representing the triggering graph with an adjacency list. For
a triggering graph with V' nodes, its adjacency list consists
of an array of V lists, l1,ls,...,ly, where [; represents the
adjacency structure of vertex v;. Fig. 12a shows a simple
triggering graph and Fig. 12b shows its corresponding
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Fig. 12. Implementation of triggering graphs.

adjacency list. Clearly, reachability questions can be very
easily answered efficiently from the adjacency list by
performing a depth first search (DFS). It is well-known that
the worst-case time complexity of DFS is O(V + E), where
V and E are the number of vertices and edges, respectively.

5 ReAL-TIME AcTIVE DATABASE SYSTEM MODEL

In this section, we present a synopsis of our ARTDB model
to aid readers in better understanding the performance
analysis results. This model was simulated in SIMPACK
[18], a C-based simulation toolkit.

The system consists of shared-memory multiprocessors
that operate on disk-resident data. We model the database
as a collection of pages. A transaction is nothing but a
sequence of read and write page accesses. A read request
submits a data access request to the concurrency control
(CC) manager, on the approval of which, a disk I/0 is
performed to fetch the page into memory followed by
CPU wusage to process the page. Similar treatment is
accorded to write requests with the exception that write
I/Os are deferred until commit time. Until this point, our
model is similar to that in [4]. The rest of this model is our
contribution.

An important aspect of our model is the handling of
triggered transactions. We partition the data items in the
database into two mutually exclusive sets: reactive and
nonreactive. We also maintain a set of condition-action
(CA) rules (ie., rules of the form: if condition then
action). Each rule subscribes to one or more reactive data
items. The update of a reactive attribute X immediately
raises events, which result in the evaluation of the
condition of the rule(s) which subscribe to X. Finally,
upon the satisfaction of the condition part, the action (A)
part is triggered as a transaction. Our RTDBS model is
shown in Fig. 13. There are four major components:

1. An arrival generator that generates the real-time
workload with deadlines.

2. A transaction manager that models transaction execu-
tion and implements the earliest-deadline (ED) [34]
algorithm.

3. A concurrency controller that implements the
CC algorithm.

4. A resource manager that models system resources, i.e.,
CPUs and disks and the associated queues.

5. A rule manager that models the rule base as well as
the subscription information. The rule manager is
responsible for triggering the active workload.
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Fig. 13. The RTDBS model.

5.1 Resource Model

Our resource model considers multiple CPUs and disks as
the physical resources. For our simulations, we assumed the
data items are uniformly distributed across all disks. The
NumCPU and NumbDisk parameters specify the system
composition, i.e., the number of each type of system
resource. There is a single queue for the CPUs and the
service discipline is assumed to be preemptive-resume
based on the transaction priorities. Each individual disk has
its own queue with a nonpreemptive, transaction priority-
based service discipline. The parameters ProcCPU and
ProcDisk denote the CPU and disk processing time per
page, respectively. The total processing time per page is
denoted as Procy = ProcCPU + ProcDisk. These para-
meters are summarized in Table 2.

Buffers are not modeled explicitly. However, a reason-
able buffer management policy is simulated as follows: At
any time, all the pages accessed by active transactions are
assumed to be available. As soon as a transaction leaves the
system, its pages, unless accessed by some other active
transaction, are assumed to have left the buffer.

5.2 Workload Model

Our workload model consists of modeling the character-
istics of transactions that arrive and are processed in the
system as well as their arrival rate. In ARCS databases, the
workload is mixed, i.e., it consists of triggered transactions
and transactions that arrive from outside the system. We
refer to the triggered transactions as active workload and the
external transactions as nonactive workload. Below, we

TABLE 2
Input Parameters to our RTDBS Model

‘ Parameter Type Notation Description
Resource Parameter | NumCPU Number of CPUs
Num Disk Number of disks
ProcCP i) CPU time /data page
ProcDisk Disk time/dala page
Workload Parameter | ArrivRate Arrival Rate of External Transactions

DBSize
NumltemsPerPage

Number of pages in the database
Number of data items per page

ReacFrac Fraction of data ilems thal are reaclive
TrigProb Probability that a transaction will be triggered
following the writing of a reactive attribute
WriteProb Write probability/accessed page
SizeInterval Range ol the number of pages
accessed por transaction
SRInterval Range of slack ratio
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describe how we generate the characteristics of the two
different workload types mentioned above.

5.2.1 Nonactive Workload

We consider two broad classes of transaction characteristics:
1) Sizer, which denotes the number of pages accessed by T
and 2) Dr, the deadline of T. The service demand of T is
denoted as SDp = Sizer x Procy (recall that Procr is the
time required to process a page). The arrival generator
module assigns a deadline to each transaction using the
following expression: Dy = SDr x SRy + Ar, where Dr,
SRr, and Ar denote the deadline, slack ratio, and arrival
time of transaction 7', respectively. Thus, the time constraint
of transaction T, Cr = Dy — Ay = SRy x SDp. In other
words, SRy determines the tightness of the deadline of T

5.2.2 Active Workload

Our active workload consists of triggered transactions.
These transactions are triggered with the update of a
reactive attribute. The basic characteristics of active work-
load are the same as those of the nonactive workload with
two differences.

First, the deadline assignment policy is somewhat
different. Consider a transaction T' with deadline Dy that
triggers transaction 7}.;,. We first compute the deadline of
T}rig the same way as it is done for an external transaction, as
shown in Section 5.2.1, i.e., Dr,,, = SDr,,, X SRy, + Ar,,,-
However, in the case of active workload, we must ensure
that the deadline of a triggered transaction is no earlier than
that of any of its guardian transactions (recall the discussion
in item 2, Section 2.4). In order to ensure this after we have
computed Dr,, the usual way, we check the following
condition: Dr,, > Dr (recall Dr is the deadline of the
transaction that triggered T}, ). If this condition is satisfied,
then we do nothing. If this condition is not satisfied,
however, a new deadline is assigned to 7T, as follows:
Dr,,, = Dr + A, where A is a uniform random variable
drawn from the range [A~, A™].

The second difference between nonactive and active
workloads is the respective arrival patterns. Nonactive
workload, ie., external transactions, arrive according to
some predefined distribution pattern. On the other hand,
active workloads are generated as follows: Following the
update of a reactive attribute, a transaction is triggered
probabilistically. This models the fact that every time a
reactive attribute is updated (i.e., an event is raised), the
condition of the rule which subscribes to this attribute may
not be satisfied. The relevant parameters that we use to
model this scenario are ReacFrac and TrigProb. ReacFrac is
the fraction of data items in the database that are reactive. In
other words, whenever a transaction performs a write
operation, the data item written is taken to be a reactive
data item with probability ReacFrac. The parameter TrigProb
denotes the probability that given an event, the correspond-
ing rule condition will be satisfied. In other words, given
that a reactive attribute has been modified, a triggered
transaction will be generated with probability TrigProb.

Our workload parameters are summarized in Table 2.
Table 2 contains some parameters not discussed thus far.
The ArrivRate and DBSize parameters are self explanatory.
The value of the WriteProb parameter denotes the prob-
ability with which each page that is read will be updated.
Sizelnterval denotes the range within which transaction

TABLE 3
Parameter Settings for Baseline Experiments
| Parameter | Value |
NumCPU 4
NumDisk 8
ProcCPU 10ms
ProcDisk 20ms
DBSize 1000 pages
NumltemsPerPage | 4
ReacFrac 1.0
TrigProb 0.03
WriteProb 0.3
SizeInterval [1,30]
SRInterval [2,6]

sizes will uniformly belong. In other words, the arrival
generator module generates transaction sizes by drawing
from a uniform distribution whose range is specified by
Sizelnterval. Similarly, transaction slacks are generated by
drawing from the uniform distribution whose range is
specified by SRInterval.

6 PERFORMANCE ANALYSIS
6.1 Performance Metrics

The primary performance metric used is miss ratio, or
the fraction of transactions that miss their deadlines,
calculated as:

miss ratio (MR) =

number of transactions missing deadline

total number of transactions arriving into the system '

In addition to MR, we also measure Average Restart Count
(ARC). ARC is defined to be the average number of restarts
incurred by a transaction before it leaves the system. Note
that a transaction could leave the system both for having
completed successfully or for having missed its deadline.

All the MR curves presented in this paper exhibit mean
values that have relative half-widths about the mean of less
than 10 percent at the 90 percent confidence level. Each
simulation experiment was run until at least 50,000
transactions were processed by the system. We only discuss
statistically significant differences in the ensuing perfor-
mance reporting section.

6.2 Baseline Experiments

We first did a baseline experiment and, subsequently,
studied the effects of changing system characteristics by
varying one characteristic at a time. The values of input
parameters for the baseline experiments are shown in
Table 3. The value of the parameter SampleReq was set to 100
for all experiments. Note that in all experiments reported,
we compare five algorithms: WAIT-50, 2PL-HP (the high
priority variant of the two phase locking protocol [23]),
OCC-TI, OCC-APFO, and OCC-APFS. OCC-BC was not
considered as it has been conclusively shown in [32] that
OCC-TI is superior to OCC-BC. Note: An important point to
note is that WAIT-50, 2PL-HP, and OCC-TI were tuned to
our RTADBS execution model, i.e., dependent transactions
were serialized after as well as abort and commit dependent



DATTA AND SON: A STUDY OF CONCURRENCY CONTROL IN REAL-TIME, ACTIVE DATABASE SYSTEMS

100 T T T T T

OECAPES
W

gl

80

60

Miss Ratios (%)

40

OGC-APEQ gt

479

2 T T T T T
OCC-APFO ~—

WAIT-50 -8-- 7

14 B

Average Restart Count

100 - 2 . . T T \
OCC-APFO —— OCC-APFO ——
OCC-APFS | OCC-APFS |
WAIT-50 -7 18| WAIT-50 -7+
OCC-TI OCC-TI -»
PL o opL o

80 |- 1 16 | g

14| 1

L 1 8 12} g
& b=t
ke g

& B ot i
o @
@ i=2
2 g

S wf 1 8L g

g %85

<C

0.6 Tl E

201 1 04| Ty e g

o V’Eér}il‘:. \‘\A\\
TR,
02;,//\\‘.‘.\,_3\ &\ﬂ\ i
o . . ) . . o . A - .
5 36 5 36

15 20 25
Anival Rate of External Transactions (transactions/second}

(@)

0 15 20 25
Arrival Rate of External Transactions (transactions/second)

(b)

Fig. 15. Miss ratios and average restart counts with high resource contention (two CPUs, four disks).

on guardian transactions. Basically, we are interested in the
effect of three specific system features: resource contention,
data contention, and degree of triggering. The parameter
settings in Table 3 represent moderate conditions in each of
these three features. Fig. 14a and 14b, plot the two
performance metrics at different system loads. System
loading is varied by changing the value of the parameter
ArrivRate. Note that ArrivRate is the arrival rate of external
(i.e., nontriggered) transactions. Thus, the total system load
is actually a function of both ArrivRate and TrigProb. Fig. 14a
plots miss ratio versus transaction arrival rates. This graph
shows that OCC-APFO and OCC-APFS (which we collec-
tively refer to as OCC-APF* in the rest of the paper) perform
virtually identically but clearly outperform the other two
algorithms. 2PL-HP is clearly the worst performer followed
by WAIT-50. OCC-TI and OCC-APF* are close at low
system loads (arrival rate around five transactions/sec).
However, at higher arrival rates, OCC-APF* performs
progressively better, as evidenced by the OCC-APF* curve
suffering the least degradation in performance with
increasing load. At very high loads, however, the system
gets saturated and the curves come close again. Note that

the OCC-APF* curve remains below the other
throughout the entire system loading range.

A very interesting and counterintuitive fact that
emerges from Fig. 14a is that OCC-APFS performs the
same as OCC-APFO. Recall that in Section 4.3, we argued
through an example that OCC-APFS, by virtue of being
cognizant of the priorities of dependent transactions,
should perform better. On closer scrutiny, however, the
reason for this apparent anomaly becomes clear. Even
though OCC-APFS encodes more information than OCC-
APFO, this information may actually mislead the algo-
rithm. For example, consider a case where T’y with priority
Px has two low priority dependents T,, and T,;, with
priorities P,, and P,;, respectively. Also, consider 7y with
priority Py and a high priority dependent T}, with priority
P,,. Assume Px = Py and Py, > P,, + Py. Further, assume
that W, units of work has been performed on each of Tx
and Ty, and W, units of work has been done on each of T},
Ty, and T,,. Under these situations, if Tx and 7y were to
conflict and one of these were to request validation, OCC-
APFO would restart Ty while OCC-APFS would restart T'y.
Note that the decision taken by OCC-APFS (i.e., to restart
Tx and, consequently, abort its dependents) results in

curves
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Fig. 16. Miss ratios and average restart counts with low resource contention (eight CPUs, 16 Disks).

greater wasted work. Thus, while in some cases OCC-APFS
does make better decisions than OCC-APFO (as shown in
Section 4.3), in certain cases, its extra information acts as a
disadvantage. For this reason, OCC-APFS does not uni-
laterally outperform OCC-APFO. It is also easily seen that
OCC-APFO has lower cost than OCC-APFS, as the fan-out
sum need not be computed in OCC-APFO.

Fig. 14a is explained by Fig. 14b, which plots the average
restart count at different system loads. As mentioned
previously, restart count is a major determinant of the
performance of real-time CC algorithms. It is seen from this
graph that the OCC-APF* curves are consistently below the
other curves, signifying that OCC-APF* causes fewer
restarts than the other protocols. 2PL-HP has the highest
restart count followed by WAIT-50. 2PL-HP’s high restart
counts are a result of the well-known phenomenon of wasted
restarts [23], i.e., a transaction which is later discarded ends
up restarting other transactions. Also, as mentioned earlier,
WAIT-50’s performance degradation is caused by both
wasted restarts as well as unnecessary restarts. OCC-TI has
higher restarts than OCC-APF* as it restarts a larger number
of transactions on average at each validation.

Another interesting thing regarding Fig. 14b is the bell
shaped nature of the restart count curves. This means that
restart count goes up to a certain level and then goes down.
This happens as a result of the data contention-resource
contention trade-off. Up to a certain system loading level (in
our case, in the range 10-15 transactions/second), data
contention dominates resource contention. As a result,
restart counts rise. After this point, resource bottlenecks
dominate. This results in transactions spending time in
resource queues as a consequence of which, fewer transac-
tions can go through their entire working sets. This means
that a lot of transactions miss their deadlines even before
reaching the first validation phase. This reduces the restart
count. As we shall see further on in this section, when
resource contention is decreased by increasing resource
levels, this problem is ameliorated and the restart count
curves flatten out.

6.3 Effect of Varying Resource Contention

The effect of resource contention is studied by varying the
NumCPU and NumDisk parameters. Fig. 15 reports the
result of setting NumCPU and NumDisk to 2 and 4,

respectively, and, consequently, increasing resource con-
tention. Fig. 16 reports the result of relaxing resource
contention by setting NumCPU and NumDisk to 8 and 16,
respectively. These figures simply reinforce the results
already reported. The relative performances on the various
algorithms remain the same, with OCC-APF* performing
singularly better than the other protocols. Note that, with
high resource contention (Fig. 15), while the miss ratios
predictably increase with respect to the baseline experi-
ments, the average number of restarts decrease for all
algorithms compared to the baseline results. This may seem
counterintuitive. However, note that the effect of increased
resource contention is to make jobs wait longer at resource
queues, which means that jobs have less time to actually
execute. This means that jobs get killed even before they can
reach the point of being restarted. This reduces restart
counts.

With increased resources (Fig. 16), resource contention
dominates at much higher system loads. This explains
why the restart count curves display less of a bell shape
than the baseline curves. If one compares Fig. 16b with
Fig. 14b, this fact is clearly evident. In fact, under low
resource contention, as shown in Fig. 16b, the curve
flattens out significantly.

6.4 The Effect of Varying Data Contention

Data contention levels are varied by changing the value of
the WriteProb parameter. Below, we report the results of two
experiments. Fig. 17 depicts the effects of reducing data
contention from baseline levels by setting WriteProb to 0.1.
Fig. 18 depicts the effects of increasing data contention from
baseline levels by setting WriteProb to 0.5. In this figure, we
note that the performance difference of 2PL and WAIT-50
undergoes a marked change from that reported so far.
Unlike in all previous experiments, there is a performance
crossover between these two algorithms. This is due to the
fact that the number of restarts of WAIT-50 increases
dramatically due to the high data contention levels, while
2PL is relatively immune to the same effects. A similar
relative trend was observed in [23]. Aside from the
abovementioned phenomenon, the other curves follow a
similar relative trend as the previous experiments.
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6.5 Effect of Varying Transaction Load Through
Triggering

In this experiment, we study the effects of varying the
parameter TrigProb, which results in increasing or decreas-
ing system load even more than that achieved by simply
varying ArrivRate. Fig. 19 depicts the effects of reducing
overall system load from baseline levels by setting TrigProb
to 0.01. Fig. 20 depicts the effects of increasing system
loading from baseline levels by setting TrigProb to 0.05. We
do not expand on these results, as they are expected for
brevity as well. Finally, since a number of examples in the
literature assume single-level triggering, we ran an experi-
ment to examine how our algorithms perform under this
assumption. This was achieved by setting TrigProb to .2 and
enforcing the rule that nontriggered transactions could
further trigger other transactions. The results of this
experiment are reported in Fig. 20. Note that since
triggering is restricted to a single level, we had to
substantially increase the trigger probability to get an
appreciable active load in the system. While the relative
trends of the curves remain the same, the interesting feature
of this experiment was that OCC-TI performs almost

identically to the OCC-APF* algorithms at high loads. We
ran some additional experiments to examine why this
was the case. While we do not report the results of these
experiments here, the reason for this phenomenon was
that, at high loads, the number of dependent transactions
were virtually the same for single-level triggering with
TrigProb of 0.2 and multilevel triggering with a TrigProb
of 0.03. Thus, OCC-TI and OCC-APF* performed virtually
identically patterns.

7 DISCUSSION

In this section, we discuss the strengths and weaknesses of
the OCC-APF* class of algorithms. OCC-APF* possesses all
the advantages of OCC-BC such as the high degree of
concurrency, freedom from deadlock, early detection and
resolution of conflicts, and avoidance of wasted restarts. To
the advantages of OCC-BC, it adds the major advantage of
OCC-TI, i.e., the reduction of restarts by dynamically
adjusting the serialization order. This results in the
opportunity of not having to restart all transactions in the
conflict set. In addition to all these advantages, OCC-APF*
has two other unique characteristics: 1) it attempts to
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account for the effect of triggering and 2) it attempts to
reduce restarts even further by restarting the validating
transaction (and thereby not restarting the members of the
usually large conflict set) when it feels that the validating
transaction would have a high likelihood of making it on its
restarted run. This likelihood is judged by using a system
state parameter «, which is dynamically adjusted based on
feedback from the system regarding its state. As we show in
Section 6, these two unique characteristics have a sub-
stantial effect on the performance of OCC-APFO.

Aside from the two clear advantages mentioned in the
previous paragraph, OCC-APF* enjoys one more subtle
advantage over OCC-TL As the authors themselves discuss
in [32], OCC-TI remains effective as long as data contention
is low (i.e., write probabilities are low). This happens
because at low data contention levels, reconciliable conflicts
outnumber irreconcilable conflicts. At high data contention
levels, most conflicts turn out to be irreconcilable, eroding the
effectiveness of OCC-TI. OCC-APF*, on the other hand, is
much more immune to this problem. As data contention
goes up, OCC-APF* is disadvantaged the same way as
OCC-TT is, but this disadvantage is offset by the advantage

reaped from larger conflict sets. It is easily seen that, at
higher data contention levels, the size of the conflict set
grows. Thus, for each restart of the validating transaction, a
proportionally larger number of conflicting transactions are
given an opportunity to survive. This advantage masks, to a
large degree, the reduction in effectiveness by more
irreconcilable conflicts.

Another very attractive feature of OCC-APF* is that it is
not any more expensive than its closest competitor, i.e.,
OCC-TI, in terms of time cost per successful transaction. To
see this consider the following argument: The only
difference between the two is in the validation stage.’
OCC-TJ, in its validation stage, goes through each transac-
tion in the conflict set and adjusts corresponding timestamp
intervals. In other words, OCC-TI mandates that the entire
conflict set be traversed for each validation. OCC-APFO, on
the other hand, will only go through the set until the first
lower CPI irreconcilably conflicting transaction is found. In

3. In the ensuing overhead comparison, we exclude the cost of traversing
the triggering graph as this cost is common to all algorithms.
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many cases, such transactions will exist and the validating
transaction will be restarted. In such cases, the entire
conflict set will not need to be traversed (unless there is only
one irreconcilably conflicting lower CPI transaction and it is
the last item in the conflict set). Thus, computation per
validation will be expected to be less in OCC-APF*.
However, there will be more validations in OCC-APF* than
OCC-TI. Taking these two facts in conjunction, our estimate
is that the total validation stage work turns out approxi-
mately the same assuming the first higher priority
irreconcilable transaction is randomly distributed in the
conflict set. However, since OCC-APF* commits signifi-
cantly more transactions than OCC-TI (as shown in
Section 6), the per transaction time cost is less. There is,
however, more additional space overhead in OCC-APF*
than in OCC-TI. This overhead is in terms of the image of
CS(Tyq) that needs to be maintained during validation to
perform RESET if necessary. This overhead, however, is
not significant as all that needs to be stored is a set of
transaction ids with their timestamp intervals.

8 CONCLUSION

In this paper, we explored execution dynamics of real-time,
active transactions and suggested new ways of controlling
concurrency in RTADBSs. The new mechanisms were
motivated by the fact that existing real-time CC algorithms
appear to be lacking when applied to RTADBSs. We also
reported about a thorough performance evaluation of our
suggested algorithms and they performed substantially
better than conventional protocols. The contribution of this
paper is a small but positive step toward understanding
transaction processing in real-time, active database systems.
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