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Abstract. High frequency ventilation is a radical departure from conventional lung ventilation,
with frequencies greater than 2 Hz, and volumes per breath much smaller than the anatomical dead-
space. Its use has been shown to benefit premature infants and patients with severe respiratory
distress, but a vital question concerns ventilator induced damage to the lung tissue, and a clear
protocol for the most effective treatment has not been identified. Mathematical modelling can help
in understanding the underlying processes in lung ventilation, and hence in establishing such a
protocol. In this paper we describe the use of homogenisation theory to predict the macroscopic
behaviour of lung tissue based upon the microstructure of respiratory regions. This approach yields
equations for macroscopic air-flow, pressure, and tissue deformation, with parameters which can be
determined from a specification of the tissue microstructure and its material properties.
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1. Introduction. Air leak syndrome is one of the most frequent life threatening
complications resulting from mechanical ventilation, occurring in 11-41% of ventilated
patients [23]. In the premature infant, the most common form of air leak syndrome is
pulmonary interstitial emphysema (PIE), which is the trapping of gas in the intersti-
tium. This trapped air modifies the mechanical properties of the lung by decreasing
lung compliance. To further complicate matters, the lung structure in premature
infants differs from that of adults. During prenatal development, the initial lung
structure consists purely of airways and relatively large terminal units called saccules,
but no alveoli; later the saccules form smaller units by septation which, after a pro-
cess of wall thinning, constitute the final alveoli [24]. It is crucial to consider these
differences when designing a ventilator strategy that minimizes lung injury.

Strategies to reduce the likelihood of air leak or ameliorate existing air leak in-
clude the use of low pressure conventional ventilation and high frequency oscilla-
tion [5]. High frequency oscillation (HFO) is a method of mechanical ventilation
where small volume, high frequency breaths (> 2 Hz.) are administered to the lung.
This small volume rapid rate method is a radical departure from normal respiration
or conventional mechanical ventilation where large tidal volume breaths are given at
low frequencies (< 0.25 Hz.). Despite these differences, HFO has proven beneficial
to facilitating gas transfer in premature infants, children, and adults suffering from
respiratory insufficiency secondary to various lung disease states. However, data as to
the efficacy of HFO in limiting lung damage has been mixed because different stages
of development and different disease states require alterations in ventilator strategies
to reduce the likelihood of iatrogenic injury [17].

Since the breath volumes administered in HFO are much smaller than the volume
necessary to fill the lungs, the question arises as to how HFO can ventilate at all.
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A partial answer is given by Chang [3] and others who have analysed the different
modes of gas transport that occur during HFO. Convective dispersion of gas in the
bronchi due to asymmetric flow profiles during inspiration and expiration and alveolar
ventilation by out-of-phase HFO are thought to be particularly significant. The out-
of-phase HFO arises from differential filling of parallel lung units that have different
time constants. The result is a “sloshing” motion of air between the two neighboring
units during a ventilation cycle (pendelluft).
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Fig. 1.1. (a) Section of the lung showing a small bronchiole and many alveoli. Small
“pores of Kohn” connecting alveoli are visible (image courtesy of Lawrence Berkeley Na-
tional Laboratory LungLab Tour, http://www-itg.lbl.gov/lung tour.html) (b) Mathe-
matical caricature of alveolar lung tissue.

Many current models for ventilation by HFO are based on refinements of the
work of Otis et al. [25], where the lung is caricatured by an analogous electrical cir-
cuit with specified resistance, inductance and capacitance components to describe its
global behavior [18]. More detailed differential equation models based on transmis-
sion line theory have been derived from the properties of viscous fluid flow in elastic
airways [11, 12]. These have been used to study pressure distributions in symmetric
and asymmetric branching lung structures [19]. Numerical models for the transport of
suspended particles or aerosols in the lung use 2 or 3 dimensional fluid flow (governed
by the Navier-Stokes equations) for movement of the air through an open-ended rigid
structure representing the interior of the lung [6]. Other lung models include alveolar
mechanical properties but contain no fluid flow component [8]. However, no models
exist that couple detailed gas-flow modeling with the biomechanical properties of the
lung at the alveolar level to fully describe pressures and flows during ventilation. Such
a model is crucial for determining how to optimize strategies to maximize oxygena-
tion, ventilation, and regional gas transport throughout the lungs while minimizing
pressures and volumes that distend the lungs and potentially cause damage.

In principle, the mathematical description of airflow through lung tissue is com-
plete, in the sense that we can write down equations governing the fluid dynamics of
the air, the mechanics of the airway walls, and the coupling between these motions.
However, the geometric complexity of the lung precludes numerical solution of these
equations for anything but a tiny fraction of the whole lung, such as a few airways
or alveoli—Figure 1.1a illustrates this complexity, even in a very small section of the
lung. In this paper, we describe the application of homogenisation theory to derive



HIGH FREQUENCY VENTILATION 3

equations for air velocities, pressures, and solid displacements, averaged over the basic
repeating microscopic unit of respiratory lung tissue, namely an alveolus. We make
the simplifying assumption that lung tissue at the alveolar level is comprised of an
array of units of similar size and shape, as illustrated in a highly idealised form in
Figure 1.1b. This allows us to move from a microscopic to a macroscopic space scale,
for example from a single alveolus to an acinus (a respiratory unit consisting of thou-
sands of alveoli), where the equations for macroscopic behaviour are determined by the
microscopic geometry. In Section 2 we introduce the governing equations, estimate
parameters, and nondimensionalise. We then briefly describe the homogenisation
technique, and the derivation of macroscopic equations (Section 3, with full details in
Appendix A). In Section 4 we consider the case where lung tissue is assumed to be
isotropic, and in Section 5 we describe some solutions in one dimension, and a further
simplification of the system to a single augmented diffusion equation for the pressure.
We also relate the macroscopic equations to studies of lung tissue behaviour using the
alveolar capsule technique [7], where high frequency pressure oscillations are applied
to the pleural surface of the lung, and the response of the tissue is quantified. We
conclude with a discussion and some ideas for further research (Section 6).

2. Governing equations. Because HFO uses small tidal volumes at relatively
high frequencies, we are interested in small perturbations of the relevant variables
from some rest state determined by the mean airway pressure (MAP). This pressure
maintains the lung at a mean volume, and small oscillations in pressure about the
MAP will give small strains in the solid in relation to this rest state. Fluid velocities
will be small perturbations about zero, since at the rest state there will be no air flow.
Thus we consider linearised Navier–Stokes equations for the flow of air, and linear
viscoelasticity of the solid tissue. This framework also means that all pressures are
measured relative to MAP.

The governing equations for the fluid–solid system are

ρf
∂v
∂t

= ∇ · σ = −∇p + µ̃∆v in Df(2.1)

∇ · v = 0 in Df(2.2)

v =
∂u
∂t

on ∂Df = ∂Ds(2.3)

n · σ = n · T on ∂Df = ∂Ds(2.4)

ρs
∂2u
∂t2

= ∇ · T , in Ds(2.5)

where v(x, t) is the fluid velocity, p(x, t) is pressure, u(x, t) is the displacement of
the solid from its rest state at MAP. We will always use bold face to denote vectors,
and j ≥ 2 underbars indicate a j−tensor—for simplicity and clarity we also use index
notation for some tensor calculations. Thus σ is a 2-tensor describing viscous and
pressure stresses [4] in the fluid:

σ =

Viscous Stress︷ ︸︸ ︷
µ̃(∇v + (∇v)T )−

Pressure Stress︷︸︸︷
pI,(2.6)
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and T is the solid stress tensor describing elastic and viscous stresses [22]:

T =

Elastic Stress︷︸︸︷
2E

3
e +

Viscous Stress︷ ︸︸ ︷
µ1et

.(2.7)

Here e is the strain tensor given by

e =
∇u + (∇u)T

2
,(2.8)

µ̃ is the fluid viscosity, ρf is the fluid density, E is the Young’s modulus for the solid, µ1

is the shear viscosity for the solid and ρs is the solid density. Note that we are assuming
the solid is incompressible, which is reasonable since it is essentially composed of
collagen and elastin fibres, and water. Also note that because we are assuming small
perturbations about a rest state maintained by a mean airway pressure, the Young’s
modulus and shear viscosity for the solid should correspond to measurements made
about the corresponding stretched rest state. This is sometimes referred to as the
incremental Young’s modulus.

2.1. Parameter Estimation. Certain parameters are easy to estimate with
confidence. For example, the fluid viscosity and density—those of air—can be found
in a variety of texts and data–books. We expect the density of the alveolar wall tissue
to be approximately that of water. Thus we use

µ̃ = 2 × 10−5Kg m−1s−1,

ρf = 1Kg m−3,(2.9)
ρs = 103Kg m−3.

It remains to estimate the visco–elastic parameters of the solid. In the simplest case
of a static force, we should have

force
area

=
2E

3
strain.(2.10)

Fukaya et al. [14] carried out a number of experiments on the mechanical properties
of the alveolar wall. Using their figures, we can estimate the force, area, and strain,
and hence get an estimate for E, the Young’s modulus. Fukaya et al. measure the
force in mg, and 1mg of force is 1 × 10−6Kg × 9.81m s−2 ≈ 10−5Kg m s−2. Forces
in mg and strains are estimated visually from the force–strain curves in Figure 2 of
Fukaya et al. [14]. Thus rearranging the above word equation gives

E =
force in mg × 10−5

area in m2 × strain
× 3

2
.(2.11)

The estimate for cross-sectional area is particularly weak, since Fukaya et al. do
not give precise values: “With the aid of a microscope, a smaller piece of tissue
(< 30× 30× 200µ) was separated.”. This leads us to take an estimate for the area to
be 30 × 30 × 10−12m2 = 9 × 10−10m2. For example, a force of 2mg gives a strain of
0.58, so we have

E =
2 × 10−5

9 × 10−10 × 0.58
× 3

2
≈ 5 × 104Kg m−1s−2.(2.12)
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Similarly, a force of 3mg for a strain of 0.75 gives E ≈ 6 × 104Kg m−1s−2; 5mg
for a strain of 0.85 gives E ≈ 10 × 104Kg m−1s−2; and 8mg for a strain of 0.95 gives
E ≈ 14×104Kg m−1s−2. As a representative order of magnitude estimate we therefore
use E = 105Kg m−1s−2.

For the viscous part of solid force generation, we suppose that inertial terms are
negligible, and that

dynamic force − static force
area

= µ1 × rate of change of strain.(2.13)

In the experiments, the tissue is stretched to 90% strain in time T seconds. We use
the previous estimate for the cross–sectional area, and estimate the difference between
dynamic and static forces, ∆Fmg, visually from Figure 4 of Fukaya et al. [14]. Thus
we have

µ1 =
∆F × 10−5 × T

9 × 10−10 × 0.9
Kg m−1s−1.(2.14)

The measurements ∆F = 1.5, T = 30; ∆F = 1.9, T = 14; and ∆F = 3.4, T = 0.5,
give us µ1 ≈ 5×105Kg m−1s−1; µ1 ≈ 3×105Kg m−1s−1; and µ1 ≈ 2×104Kg m−1s−1,
respectively. We take µ1 = 105Kg m−1s−1 as a representative estimate of an appro-
priate order of magnitude.

2.1.1. Structural Damping Hypothesis. The Structural Damping Hypoth-
esis states that the viscosity of the tissue comprising the lung wall is inversely pro-
portional to the frequency of oscillation [13]. This alternative approach is based on
the idea that it is the same biomechanical elements which are responsible for both
the elastic and viscous stresses in the tissue. We would like to deal in this paper with
both standard viscoelasticity and the concept of structural damping, so we introduce
an alternative parameter, µSD, where the subscript SD denotes “structural damp-
ing”. This parameter describes the contribution of viscous stress, where µ1 = µSD/ω.
With the data described above, we approximate ω by 1/2T where T is the duration
of stretching in the experiments of Fukaya et al. [14]—thus we are treating the ex-
periments as one half of a complete cycle of stretching and relaxation. These give
approximations for µSD of 8333, 10714, and 20000—the first two are in particularly
good agreement. For simplicity we use these calculations only as a guideline, and
take µSD = 104Kg m−1s−2. We will see in the next section that nondimensionalis-
ing yields identical governing equations for both cases, with the different approaches
manifesting themselves in the parameter values.

A summary of all our parameter estimates is given in Table 2.1. We remind
the reader that these are based upon measurements taken from Figures 2 and 4 of
Fukaya et al. [14], and incomplete knowledge of the cross-sectional area of tissue under
investigation. We have also made a number of other assumptions and approximations,
and these values only serve as guidelines as to the appropriate order of magnitude.

2.2. Nondimensionalisation. We wish to appropriately nondimensionalise the
system of governing equations (2.1-2.5). We will use the following rescalings, where
L is the macroscopic length scale of interest:

t∗ = ωt, x∗ =
x

L
, v∗ =

v

ωL
, u∗ =

u

L
, p∗ =

p

ρsω2L2
.(2.15)

Which gives

ρ∗
∂v∗

∂t
= ∇ · σ = −∇p∗ + ε2µ∆v∗ in Df(2.16)
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Table 2.1
Parameter estimates for the fluid-solid model (2.1-2.5)

Parameter Description Estimate
µ̃ Air viscosity 2 × 10−5Kg m−1s−1

ρf Air density 1Kgm−3

E Young’s Modulus of the Alveolar Wall 105Kg m−1s−2

µ1 Shear Viscosity of the Alveolar Wall 105Kg m−1s−1

µSD Structural damping viscosity 104Kg m−1s−2

ρs Density of the Alveolar Wall 103Kgm−3

∇ · v∗ = 0 in Df(2.17)

v∗ =
∂u∗

∂t
on ∂Df = ∂Ds(2.18)

n · σ = n · T on ∂Df = ∂Ds(2.19)

∂2u∗

∂t2
= ∇ · T , in Ds,(2.20)

where

ε =
l2

L2
,(2.21)

and l is the microscopic scale, the length of a unit cell (alveolar sac in the case of the
lung). The dimensionless fluid stress tensor is

σ∗ =
σ

ρsω2L2
= ε2µ(∇v∗ + (∇v∗)T ) − p∗I,(2.22)

and the dimensionless solid stress tensor is given by

T ∗ =
T

ρsω2L2
=

2E∗

3
e∗ + µ∗

1e
∗
t
.(2.23)

Here e is the strain tensor, given by e∗ = e (since it is already dimensionless) and

ρ∗ =
ρf

ρs
, µ =

µ̃

ρsωl2
E∗ =

E

ρsω2L2
.(2.24)

µ∗
1 depends on the choice of the standard viscous term, or of that which takes account

of the structural damping coefficient:

µ∗
1 =

µ1

ρsωL2
or µ∗

1 =
µSD

ρsω2L2
(2.25)

Thus the form of the dimensionless system is identical for both cases, with differences
only arising once particular parameters are chosen.

A typical alveolar sac has a length, l, of approximately 200µm = 2× 10−4m, and
the large length scale, for example the length of an acinus, is about L = 1cm = 10−2m.
Using the parameter values estimated in the previous section, we have

ρ∗ = 10−3, µ =
1
2ω

, E∗ =
106

ω2
,(2.26)
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and

Standard viscoelasticity: µ∗
1 =

106

ω
.

Structural damping: µ∗
1 =

105

ω2
.

(2.27)

3. Homogenisation. In this section we give an outline of the procedure for
deriving equations for macroscopic behaviour—we refer the reader to Appendix A for
the details. It would only be feasible to solve (2.16-2.20) on a realistic lung geometry
for a small number of alveoli, certainly not for the thousands which make up even a
single acinus. Our approach is to treat the structure as an array of repeating cells (see
Figure 3.1), representing alveoli, and to consider the average flow and deformation in
a cell, neglecting the microscopic details.

Mathematically we consider the system variables as functions of independent
variables x and y, where y = ε−1x. Here the crucial assumption is that variations
on the small scale (i.e. with y) are independent from those on the large scale x, and
thus we treat x and y as independent variables so that

∇f(x,y) = ∇f(x, ε−1x) = ∇xf + ε−1∇yf.(3.1)

When considering ventilation of the lung we look for time-harmonic solutions (i.e.
solutions proportional to exp(iωt) = exp(it∗)—henceforth we drop the asterisks for
notational simplicity). We then seek solutions which are asymptotic power series in
ε. For example the form for the fluid velocity would be

v(x,y, ε) = v0(x,y) + εv1(x,y) + ε2v2(x,y) + O(ε3).(3.2)

Similar expansions for the pressure p and the material displacement u and substitution
of these series yields a system of linear equations for each successive order of ε.

Df, Fluid
Domain

Ds, Solid
Domain

Fig. 3.1. Basic repeating unit

Analysis of various subsystems leads to the following conclusions, which are listed
according to the relevant section in Appendix A:
Section A.1: p0 and u0 are independent of y

p0 = p0(x) in Df ,(3.3)

u0 = u0(x) in Ds.(3.4)
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Section A.2: Fluid velocity depends on pressure and solid displacement:

v0(x,y) − iu0(x) = W (x,y){∇xp0(x) − ρu0(x)},(3.5)

where W is determined as the solution to the corresponding cell problem:

∇y · W = 0 in Df

∇yΦ − µ∇2
yW + iρW + I = 0 in Df

W = 0 on ∂Df = ∂Ds.

(3.6)

Section A.3: u1 is determined by u0, p0 and the tissue structure:

u1 = Q(y)

{
∇xu0 + (∇xu0)T

2
+

(
2E

3
+ iµ1

)−1

p0I

}
,(3.7)

where

∂

∂yj

{
∂Qjkl

∂yi
+

∂Qikl

∂yj

}
= 0 in Ds

nj

{
∂Qjkl

∂yi
+

∂Qikl

∂yj
+ 2δikδjl

}
= 0 on ∂Ds.

(3.8)

Section A.4: Collecting these results together, and taking volume averages over a
unit cell, we derive the following equations for the mean quantities V, P,U:
We define the volume average as

〈f〉 =
1
|Ω|

∫
Ωη

fdy,(3.9)

where Ω is the unit cell, and Ωη is that part of the cell over which f is defined. Using
this definition together with the above results allows the derivation of the following
equations for the mean quantities V = 〈v0〉,U = u0, and P = p0:

V − iφU = K (∇P − ρU) ,

∇ · (V − iφU) = i

(
α :

∇U + (∇U)T

2
+ βP

)
iρV − U = ∇ ·

(
C
∇U + (∇U)T

2
+ αP

)
.

(3.10)

where A : B indicates the matrix inner product of A and B (i.e. sum of element-wise
products), φ is the fluid volume fraction, often called porosity, and the parameters
are given by

K = 〈W (y)〉 =
1
|Ω|

∫
Ωf

W (y)dy,(3.11)

α = 〈∇y · Q〉 − φI,(3.12)

β =
(

2E

3
+ iµ1

)−1

〈∇y · Q〉 : I =
(

2E

3
+ iµ1

)−1

Trace(〈∇y · Q〉),(3.13)
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C =
(

2E

3
+ iµ1

) 
〈∇yQ + (∇yQ)T

2

〉
+ (1 − φ)I


 .(3.14)

Thus all the parameters in the macroscopic system (3.10) are defined in terms of the
microstructure. Note that the three equations in (3.10) correspond to flow driven
by pressure gradients, conservation of mass, and conservation of momentum, in that
order. We interpret (V −iφU) as fluid velocity relative to the motion of the solid. The
equations indicate that, macroscopically, lung tissue is compressible—for example,
changes in air pressure will allow the tissue as a whole to dilate, even though the
walls themselves cannot.

When ω = 0, that is, in the situation where there are no temporal oscillations,
the system (3.10) reduces to Darcy’s Law for flow through porous media (V = K∇P ,
and ∇ · V = 0) where K is called the permeability tensor. Here K depends only
on the geometry of the porous media, and the fluid density and viscosity. If the
structure is isotropic, then permeability is given by a scalar quantity, K. Permeability
is related to the reciprocal of the resistance to flow, for example the resistance to
the flow of air through respiratory tissue, as estimated by Davey & Bates [7]. The
difference is that lung resistance, R, is measured as a property of the whole of the
tissue region of interest. R increases linearly with the length, LR, of this tissue
region, and scales according to the reciprocal of the cross-sectional area, Ar. This
means that the relationship between R and K should be K = LR/(RAR)—this is
very crude, and does not take account of the shape or structural variations within
the region, etc. Nevertheless, we use it to make an estimate for K which we will
use as a starting point for the calculation of solutions—a representative estimate of
resistance from Davey & Bates [7] is R = 0.1KPa sml−1 = 108Kgm−4s−1, and we
estimate LR = 10−2m and Ar = 10−4m−4, which gives a very rough estimate of
the permeability as K ≈ 10−6m3sKg−1. The corresponding dimensionless value is
K∗ ≈ 10−3/ω—see equation (3.16) for the appropriate rescaling.

If there were no viscous component to the stress in the solid (µ1 = 0), then (3.10)
reduces to Biot’s equations for oscillatory flow through a purely elastic solid, which
were first derived empirically [1]. More recently, homogenisation theory has also been
used to arrive at the same equations [2, 21].

With no fluid flow, and just a constant, homogeneous inflating pressure (e.g. lungs
maintained at constant volume by MAP), we get a macroscopic stress–strain relation
for the solid at that pressure. The parameters of this stress strain relationship, the
fourth rank viscoelasticity tensor Cijkl, can be related to experimental measurements,
particularly if we assume isotropic behaviour—see Section 4.

It is also instructive to include the dimensional macroscopic equations and corre-
sponding parameters. In particular, the dependence on frequency is clear:

V − iωφU = K
(
∇P − ω2ρfU

)
,

∇ · (V − iωφU) = iω
(
α : ∇U+(∇U)T

2 + βP
)

iωρfV − ρsω
2U = ∇ ·

(
C ∇U+(∇U)T

2 + αP

)
,

(3.15)

where the parameter rescalings are

K =
K∗

ρsω
, α = α∗, β =

β∗

ρsω2L2
, C = ρsω

2L2C∗.(3.16)
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4. Assumption of Macroscopic Isotropy. If we assume that the macroscopic
behaviour of lung tissue is isotropic, then the solid stress must take the form

C e =
Ê

1 + ν̂

(
e +

ν̂

1 − 2ν̂
θI

)
+ iµ̂1 e + iµ̂2 θI,(4.1)

where e and θ = Trace (e) are the macroscopic strain tensor and dilation respectively.
This assumption allows us to use experimental data to estimate all these scalars.
The Young’s modulus, Ê, and Poisson ratio, ν̂, for bulk lung tissue have been ex-
perimentally measured and theoretically predicted. The form of the equations means
that µ̂1 and µ̂2 are then determined by the macroscopic properties Ê and ν̂, and the
microscopic elastic and viscous properties of the lung wall. .

In particular, we show in Appendix B how, given E, µ1, Ê, and ν̂, it follows that

µ̂1 = µ1
3Ê

2E(1 + ν̂)
, µ̂2 = µ1

3Êν̂

2E(1 + ν̂)(1 − 2ν̂)
,(4.2)

and

α̂ =
3Ê

2E(1 − 2ν̂)
− 1, β̂ = 3

(
3Ê

2E(1 − 2ν̂)
+ φ − 1

)(
2E

3
+ iµ1

)−1

,(4.3)

so that given an estimate for K, the whole system is specified.
At typical mean airway pressure (≈ 20cmH2O ≈ 2000Kg m−1s−2) for HFO, the

Young’s modulus of lung tissue has been estimated to be about 4 times this pres-
sure [15, 16] (≈ 8000Kg m−1s−2), giving a dimensionless value of Ê ≈ 8×104

ω2 . The
Poisson ratio for bulk lung tissue at this mean airway pressure has been estimated to
be ν̂ ≈ 0.3 [16].

Recall that the dimensionless parameters governing visco-elasticity of the solid are
E ≈ 106/ω2, and µ1 ≈ 106/ω (standard viscoelasticity) or µ1 ≈ 105/ω2 (Structural
Damping). Using the above values for Ê, and ν̂, we have for standard viscoelasticity

µ̂1 ≈ 105

ω
, µ̂2 ≈ 0.75 × 105

ω
, α̂ ≈ −0.7, β̂ ≈ 3 × 10−6ω2

2 + 3iω
,(4.4)

and for Structural Damping

µ̂1 ≈ 104

ω2
, µ̂2 ≈ 0.75 × 104

ω2
, α̂ ≈ −0.7, β̂ ≈ 3 × 10−5ω2

20 + 3i
.(4.5)

We have rounded all these values appropriately, since using more precision would
falsely imply that these estimates are very accurate. To conclude this section as
we began, we rewrite the solid stress with our parameter estimates, for standard
viscoelasticity:

C e =
104

ω2
(6 + 10ωi)

(
e + 0.75 θI

)
,(4.6)

and for Structural Damping:

C e =
104

ω2
(6 + i)

(
e + 0.75 θI

)
,(4.7)

where we have again rounded the values for clarity, e.g. Ê/(1+ν̂) = 6.1538×104/ω2 ≈
6 × 104/ω2. Note that we have clearly indicated how these values change with the
ventilation frequency, ω.
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5. Solutions to the macroscopic equations in 1D. To develop our under-
standing of macroscopic lung tissue behaviour it is useful to study solutions of the
one dimensional equations, where primes indicate spatial derivatives:

V − iφU = −K(P ′ − ρU),(5.1)
V′ − iφU′ = i(αU′ + βP )(5.2)
iρV − U = (CU′′ + αP ′) .(5.3)

We separate the equations into real and imaginary parts, noting that the permeability
and elasticity tensor are now complex scalars, K and C; β is complex, and the other
parameters, ρ, α, φ, are real numbers. We use the subscript r to denote the real part,
and i for imaginary part:

Vr + φUi + KrP
′
r − KrρUr − KiP

′
i + KiρUi = 0(5.4)

Vi − φUr + KrP
′
i − KrρUi + KiP

′
r − KiρUr = 0(5.5)

V′
r + (φ + α)U′

i + βiPr + βrPi = 0(5.6)

V′
i − (φ + α)U′

r − βrPr + βiPi = 0(5.7)

ρVi + Ur + CrU′′
r − CiU′′

i + αP ′
r = 0(5.8)

ρVr − Ui − CiU′′
r − CrU′′

i − αP ′
i = 0(5.9)

Writing Wr = U′
r and Wi = U′

i, solving (5.4) and (5.5) for P ′
r and P ′

i in terms of
Vr,Vi,Ur,Ui, substituing this into (5.8) and (5.9), and solving for W′

r and W′
i:

V′
r = −(φ + α)Wi − βiPr − βrPi(5.10)

V′
i = (φ + α)Wr + βrPr − βiPi(5.11)

U′
r = Wr(5.12)

U′
i = Wi(5.13)

W′
r =

(
α

CrKi + CiKr

|C|2|K|2 − Crρ

|C|2
)

Vr +
(

α
CrKr − CiKi

|C|2|K|2 +
Ciρ

|C|2
)

Vi(5.14)

+
(

αφ
CiKi − CrKr

|C|2|K|2 +
Ciρα

|C|2 +
Ci

|C|2
)

Ur −
(

αφ
CrKi + CiKr

|C|2|K|2 +
Crρα

|C|2 +
Cr

|C|2
)

Ui

W′
i =

(
α

CrKr − CiKi

|C|2|K|2 +
Ciρ

|C|2
)

Vr +
(

α
CrKi + CiKr

|C|2|K|2 − Crρ

|C|2
)

Vi(5.15)

−
(

αφ
CrKi + CiKr

|C|2|K|2 +
Crρα

|C|2 +
Cr

|C|2
)

Ur −
(

αφ
CrKr − CiKi

|C|2|K|2 +
Ciρα

|C|2 +
Ci

|C|2
)

Ui

P ′
r = − Kr

|K|2 Vr −
Ki

|K|2 Vi + φ
Ki

|K|2 Ur + ρUr − φ
Kr

|K|2 Ui(5.16)

P ′
i =

Ki

|K|2 Vr −
Kr

|K|2 Vi + φ
Kr

|K|2 Ur + ρUi + φ
Ki

|K|2 Ui(5.17)
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This is a system of eight ODEs, for which explicit solutions can be found. We
consider two types of boundary conditions, one corresponding to forced ventilation,
and one to the application of the alveolar capsule technique, where small pressure
oscillations are applied at the pleural surface to study flow in the alveolar region [7].

Forced ventilation: Forced ventilation has a specified sinusoidally varying input
pressure, Pa, with arbitrary phase, and zero displacement of the solid at the opening,
x = 0. At the pleural surface, x = L, the pressure is a constant, equal to the mean
airway pressure. We also require that the fluid velocity is equal to the velocity of the
solid (lung tissue), so that no gas actually flows out through the “end” of the lung:

Pr(0) = Pa, Pi(0) = 0, Ur(0) = 0, Ui(0) = 0,

Vr(L) = −φUi(L), Vi(L) = φUr(L), Pr(L) = 0, Pi(L) = 0.(5.18)

Alveolar Capsule: Here a capsule is attached to the pleura, a small hole is made,
and an oscillator in the capsule applies very high frequency pressure oscillations to
the underlying region of tissue [7]. We take the capsule to be located at x = 0, and
x = L to be the position at which the pressure oscillations are assumed to decay to
zero, lung tissue is not displaced, and fluid velocities are zero. This decay will occur
over a short distance relative to the length scale of the whole lung, due to the very
small amplitude oscillations used in this experimental procedure [7]. At x = 0 we
have the pressure forcing Pa, and note that we must allow displacement of the pleural
surface and capsule at this end:

Pr(L) = Pa, Pi(L) = 0.(5.19)
Vr(0) = 0, Vi(0) = 0, Ur(0) = 0, Ui(0) = 0, Pr(0) = 0, Pi(0) = 0.

Note that whilst we have developed the macroscopic equations in dimensionless
form, we illustrate solutions in dimensional variables, which we feel are of real interest
physiologically. This is because the nondimensionalisation used includes a rescaling
of time which depends on frequency, a parameter which we actually would like to
vary, in order to estalish how the response of lung tissue may depend on the forcing
frequency. Dimensional solutions are calculated simply by applying the rescalings in
equation (2.15) to dimensionless values.

5.0.1. Solutions with Standard Viscoelasticity. In Section 2.1.1 we intro-
duced the Structural Damping Hypothesis as an alternative model for viscoelasticity.
We wish to explore the behaviour of the system representing lung tissue, for both
possibilities. We remind the reader that in the dimensionless system this simply cor-
responds to a change in the parameters that depend on µ∗

1. Here we concentrate on
the standard case, and in the next Section we discuss the differences seen when ap-
plying the alternative model. For all solutions we illustrate the magnitude and phase
of oscillation.

An example of the solution for forced ventilation boundary conditions (5.18) is
shown in Figure 5.1. The magnitude of pressure fluctuations decreases monotonically
from the airway opening, but velocities and displacements increase. The displacement
and strain are approximately π radians out of phase with the fluid velocity and pres-
sure oscillations, although there is very little variation in phase with the distance from
the opening. This means that motion is always in the same direction at all locations
in the lung.

The increase of velocity with distance seems counterintuitive, since the pressure
gradient, which drives the flow, is clearly decreasing in magnitude. This can be
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Fig. 5.1. Solution of the 1D system of homogenised equations (5.1–5.3) for the macroscopic
gas velocity, solid displacement, and gas pressure in the lung. The boundary conditions, given by
equation (5.18), correspond to forced ventilation. Frequencies from 5s−1 (solid line) to 20 (dashed
line) in steps of 5. Dimensional solutions are shown using the rescalings in equation (2.15).
Increasing the frequency does not affect absolute gas velocities, but decreases displacements and
strains. Dimensionless parameter values are K = 10−3,L = 50, β = (3 × 10−6ω2)/(2 + 3iω), C =
(1.05 + 1.75iω) × 105/ω2, φ = 0.99, ρf = 10−3, α = −0.7, and the dimensionless amplitude of forced
pressure oscillations is Pa = 5000/ω2, chosen so that the dimensional amplitude is independent of
frequency.
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Fig. 5.2. Plot of |V − iωφU|, the magnitude of the fluid velocity relative to the solid. This
should be very close to that given by KPx, which is indeed the case (not shown, but the curves are
indistinguishable). Increasing the frequency has little effect on relative velocities, at least at this
frequency range (5 − 20s−1). Parameter values are as in Figure 5.1.
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explained by the fact that at x = 0 the displacement is constrained to be zero, but
as the displacement increases away from the opening, this implies a motion of the
solid, which adds to the velocity of the fluid from a stationary frame of reference. The
velocity of air relative to the solid does decrease in line with the pressure gradient,
and in fact a plot of this (Figure 5.2) confirms that the relative velocity satisfies
V − iωφU = −KPx, as expected. Note that for the range of frequencies in these
figures (5−20s−1) changes in frequency do not have very much effect on absolute and
relative gas velocities.

Because our estimate of tissue permeability is quite crude, it is important to
consider how changes in permeability are reflected in model solutions. For K a factor
of 10 smaller (solutions not shown for brevity), oscillations propagate less far into the
tissue, and strains decay to zero before the pleural surface. There is significant spatial
variation in phase for the strain and pressure, but because these are at a depth where
the magnitude is very small, this does not mean there a significant changes in flow
direction. For higher permeabilities, the pressure oscillations propagate further, and
strains decay less before the pleural surface, which has important implications with
regard to tissue damage.

Figure 5.3 shows how solutions for a fixed frequency vary as the solid viscosity
changes. Increasing the viscosity by a factor of 10 slightly extends the propagation of
the forcing pressure into the lung, but the pressure gradient which drives fluid flow
is decreased, resulting in decreased velocities, displacements, and strains. For a lower
viscosity we see indications of oscillations in opposite directions at different depths in
the lung, which suggests more complex gas mixing that would otherwise be expected.
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Fig. 5.3. Variation of solutions with solid viscosity, with viscous terms 0.1, 1.0, and 10 times
those in Figure 5.1, so that β = (3× 10−6)ω2/(2+0.3iω), C = (1.05+0.175iω)× 105/ω2, solid line;
β = (3 × 10−6)ω2/(2 + 3iω), C = (1.05 + 1.75iω) × 105/ω2, dotted line; and β = (3 × 10−6)ω2/(2 +
30iω), C = (1.05 + 17.5iω) × 105/ω2, dashed line. The frequency is ω = 20s−1, and the other
parameters are as in Figure 5.1.
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Figure 5.4 illustrates solutions for the alveolar capsule boundary conditions (5.19),
for frequencies of 100, 150, and 200Hz, appropriate for the higher frequencies used in
the alveolar capsule experiments of Davey & Bates [7]. The magnitude of pressure
oscillations decreases with distance from the capsule, and the permeability and elastic
coefficients will determine how far into the lung tissue significant perturbations persist.
For example, decreasing the permeability will decrease this distance. Changing the
frequency, at least in the range illustrated, gives very similar solutions, with apparently
identical velocity and pressure magnitudes.
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Fig. 5.4. Solution of the 1D system, with the same parameters as in Figure 5.1, but with the
amended boundary conditions for alveolar capsule oscillation, given by equations (5.19). Frequencies
from 100s−1 (solid line) to 200 (dashed line) in steps of 50, appropriate for the higher frequencies
used in the alveolar capsule experiments we have described [7]. Smaller permeabilities give similar
behaviour, with oscillations in pressure, fluid velocity and solid displacement decaying to zero in a
shorter distance from the source of pressure oscillations on the pleural surface.

5.0.2. Solutions with the Structural Damping Hypothesis. With stan-
dard viscoelasticity and forced ventilation—see Figure 5.1—velocity and displacement
increase monotonically, and strain and pressure decrease monotonically from the air-
way opening (x = 0); penetration into the lung of displacements and strains decrease
with increasing frequency, although the velocity and pressure remain the same. Cal-
culations for the 1d system with structural damping and forced ventilation boundary
conditions, given by equation (5.18), show some interesting differences from the stan-
dard case—see Figure 5.5. Magnitudes no longer vary monotonically, and there are
significant phase differences which mean that the solutions give motion in opposite
directions within the tissue. In addition, the fluid velocity and pressure now have a
significant dependence on the frequency of oscillation. Figure 5.6 illustrates that with
alveolar capsule boundary conditions, the higher frequencies (100− 200Hz) which are
appropriate mean that the propagation of oscillations is much reduced, but that the
phase depends strongly on the distance from the capsule.
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Fig. 5.5. With viscoelastic terms according to the Structural Damping Hypothesis, forced ven-
tilation boundary conditions (5.18) give solutions to (5.1–5.3) whose magnitudes and phases in-
dicate motion in opposite directions at different depths in the lung. Frequencies are from 5s−1

(solid line) to 20 (dashed line) in steps of 5. Parameter values are as in Figure 5.1, except for
β = (3 × 10−5ω2)/(20 + 3i), C = (1.05 + 0.175i) × 104/ω2.
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Fig. 5.6. At the higher frequencies of alveolar capsule oscillation, the Structural Damping
Hypothesis makes a significant difference—propagation is markedly reduced, and there are large
phase variations. Frequencies are 100Hz (solid line), 150Hz (dotted line), and 200Hz (dashed line).
The other parameters are as in Figure 5.5.
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5.1. Simplification to pressure diffusion. We have seen that |β̂| � 1 and
ρ � 1, so an interesting simplification is to set β̂ = ρ = 0, which gives, in one
dimension,

V − iφU = −KPx,(5.20)
Vx − iφUx = iαUx(5.21)

−U = (CUxx + αPx) .(5.22)

Taking the divergence of equation (5.20), and substituting into equation (5.21):

iα̂
∂U
∂x

= −K̂
∂2P

∂x2
.(5.23)

In the interests of further simplifying the system, we now take the inertial term on
the left of (5.22) to be negligible. We will see that this allows us to derive a single
equation for the augmented diffusion of the pressure. With the above simplification,
equation (5.22) becomes

0 = (E + iµ)
∂2U
∂x2

+ α̂
∂P

∂x
,(5.24)

where

E =
Ê

1 + ν̂

(
1 +

ν̂

1 − 2ν̂

)
; µ = µ̂1 + µ̂2.(5.25)

If we then integrate (5.24) with respect to x,

0 = (E + iµ)
∂U
∂x

+ α̂P + P 0,(5.26)

and since we have assumed that pressures are measured with reference to some airway
opening pressure, and strains are measured with reference to the resting lung volume
at that pressure, we have that P 0 = 0, and therefore

∂U
∂x

= − α̂P

E + iµ
.(5.27)

Substituting into equation (5.23) then gives

iα̂
∂U
∂x

= − iα̂2P

E + iµ
= −K̂

∂2P

∂x2
.(5.28)

This then gives us a single diffusion-like equation for the complex pressure P :

iP =
(E + iµ)K̂

α̂2

∂2P

∂x2
.(5.29)

It is interesting to revert to time derivatives to see more clearly how this system relates
to the standard diffusion equation:

Pt =
EK̂

α̂2
Pxx +

µK̂

α̂2
Pxxt.(5.30)
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In essence there is straightforward diffusion of the pressure, augmented by an addi-
tional viscous term. In the frequency domain this is an easy system to solve. We
begin by setting P = Pr + iPi and substituting into (5.29) gives:

P ′′
r =

( µ

E
Pr − Pi

) α2E

K(E2 + µ2)
(5.31)

P ′′
i =

(
Pr +

µ

E
Pi

) α2E

K(E2 + µ2)
.(5.32)

Setting Qr = P ′
r and Qi = P ′

i , we generate a fourth order system,

X′ =




0 0 1 0

0 0 0 1

α2µ

K(E2 + µ2)
− α2E

K(E2 + µ2)
0 0

α2E

K(E2 + µ2)
α2µ

K(E2 + µ2)
0 0




X,(5.33)

where X = (Pr, Pi, P
′
r, P

′
i )

T .
As with the full 1D system, we would like to study solutions with standard vis-

coelasticity and the Structural Damping hypothesis. However, we do not need two
types of boundary conditions, since with this simpler system those for forced ventila-
tion and alveolar capsule oscillations are the same. We consider sinusoidally oscillating
input pressure of amplitude Pa at one end (x = 0), and at the other end (x = L) the
pressure measured with reference to MAP should be zero:

Pr(0) = Pa, Pi(0) = 0, Pr(L) = 0, Pi(L) = 0.(5.34)

5.1.1. Solutions with the Standard Viscoelasticity. An example of the
solution for these boundary conditions is shown in Figure 5.7. The pressure oscillations
decay with distance from the airway opening, in a similar fashion to the pressure in
the full system (see Figure 5.1); this decay has virtually no dependence on frequency,
and there is very little change in phase across the domain.

5.1.2. Solutions with the Structural Damping Hypothesis. As with the
full 1D system, applying the Structural Damping Hypothesis gives significantly dif-
ferent behaviour, as illustrated in Figure 5.8. The solutions are far more frequency
dependent, so that with the same amplitude of forcing, iuncreasing the frequency de-
creases the penetration of pressure oscillations into the lung; there is also a significant
dependence of phase on the depth into the lung. However, these solutions do illustrate
the limitations of this reduced model, in that they fail to capture the more complex
dynamics indicated for the full system in Figure 5.5.

6. Discussion. In this paper we have described how homogenisation theory can
be used to derive macroscopic equations for average air flows and solid tissue displace-
ments in respiratory lung tissue. This is an important step because the vast number
of alveoli in the lung means that it is not feasible to study such flows in a realistic
computational model of the lung. Our hope is that such a macroscopic description
can be tied to computational and analytical studies of the larger scale flows seen in
the conducting airways of the lung.
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Fig. 5.7. Solution of the reduced 1D system (5.29), for pressure in the lung, with boundary
conditions, given by equation (5.34), corresponding to forced ventilation. These results are very
similar to those for the pressure in the full system (see Figure 5.1). Frequencies from 5s−1 (solid
line) to 20 (dashed line) in steps of 5. Parameter values are the same as for the relevant values in
Figure 5.1.
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Fig. 5.8. With the Structural Damping Hypothesis, the reduced model (5.29) gives decreaed pen-
etration with increasing frequency, and strong phase dependence on depth into the lung. Parameter
values the same as the relevant values in Figure 5.5.
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A study of air flow in the lung is very interesting of itself, but perhaps more
importantly has many practical applications. One such application is to the venti-
lation of premature neonates, whose lungs are particularly susceptible to ventilator
induced tissue damage. High frequency ventilation is often used because the smaller
breath volumes required reduce large swings in lung volume seen with conventional
techniques. This in turn can reduce the distension of the alveolar walls, and hence
alleviate stretch induced damage.

Effective ventilation with HFO requires tuning of both the frequency of ventila-
tion and the pressure and volume administered with each breath to minimize damage
to already diseased lungs and maximize the transfer of gas across the alveolar mem-
brane. With a well defined model, optimal methods of ventilation control can be
designed and evaluated for different levels of prenatal development and also for many
different disease states. Since these issues have different impacts on the characteris-
tics of gas flow and transport in the neonatal lung, a well defined model will allow
assessment under a number of developmental and pathophysiologic conditions. This
can ultimately lead to better clinical use of currently available ventilator technology,
more optimal administration of aerosolized medications for treating disease states, and
determination of new ventilation strategies for implementation in future technology.

We have shown how the macroscopic properties of respiratory tissue depend on
microstructural details, and also how we can use experimental data to estimate the
governing parameters. In Section 5 we described the calculation of solutions in one
dimension using these parameter estimates, and illustrated the significant differences
in solution behaviour when the alveolar wall is assumed to obey the structural damp-
ing hypothesis [13], as opposed to standard linear viscoelasticity. This alternative
hypothesis is based upon the idea that it is the same microstructural elements which
are responsible for both the elastic and viscous response to deformation. These me-
chanical interactions operate at a far smaller scale even than that of a single cell of the
alveolar wall. Comparing Figures 5.1 and 5.5, we see that there are not just significant
differences in the spatial profile of solutions, but also in the magnitude of oscillations.
Thus, with the structural damping hypothesis we see larger strains within the tissue,
indicating an increased risk of tissue damage in this regime.

Despite the progress described here, it remains of great interest to explicitly solve
the cell problems for specified alveolar geometries. A particular case of interest is that
where the unit cell is a dodecahedron. Such a polyhedron is ideal because real alveolar
sacs have a similar shape, and dodecahedra are nearly space filling and have suitable
properties of periodicity [20]. In fact, previous work on the purely elastic properties
of such polyhedra may be applicable [20]. Although the lung wall is isotropic, local
structure can make the macroscopic properties anisotropic. An extension of the above
would be to consider how anisotropies in the cell structure translate to anisotropies in
the macroscopic behaviour. If the load bearing parts of a dodecahedral alveolus are in
the eges of the faces, but some faces allow more fluid flow than others, we may find a
situation where the viscoelastic properties of the tissue in the absence of fluid flow are
isotropic, whereas the pressue driven flow is biased by anisotropies in the permeability
tensor. It will be of fundamental importance to compare “homogenised” behaviour
with experimental and computational results wherever possible. Explicit solution
of the cell problems would give theoretical estimates for the parameters governing
macroscopic lung behaviour. For example, the Young’s modulus of the lung would
be estimated, and this could be compared with experimental measurements and also
estimates based on different theoretical approaches.
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One possible approach to simulating ventilation of the whole lung is to specify
macroscopic coefficients according to their location within a region corresponding to
the whole lung. Close to the “trachea” we would specify high permeability, but little
elastic deformation, with a high degree of anisotropy to bias the flow down a “tube”.
With increasing distance one could allow increased elastic deformation, and more
isotropic permeability to fluid flow.

Another approach is to use the immersed boundary method to simulate air flow
in the large airways or bronchioles, and to couple the flow in these airways with that
for regions which obey the homogenised equations. Thus we would solve the Navier–
Stokes equations in certain regions of a domain, coupled via appropriate boundary
conditions to regions where the flow and deformation obeys the homogenised equa-
tions. We note that a number of the tools necessary to do this are available [9]. The
immersed boundary method has been used extensively in the study of blood flow in
the heart [26] and in blood vessels [10]. It allows the simulation of the flow of fluids
and their interaction with immersed elastic objects. Clearly the flow will stretch and
distort such objects, which themselves exert a force on the fluid in response to their
deformation. An additional strength of the immersed boundary method is the ease
with which it can cope with complex geometries, such as are seen in the lung. In future
work we intend to apply this technique to couple flows in the main airways to that
in the respiratory tissue, whose properties will be determined using the techniques
described in this paper.

Appendix A. Homogenisation details.
Here we describe the derivation of macroscopic equations from the dimensionless

governing equations (2.16-2.20). The derivation is related to that by Burridge and
Keller [2], and Lévy [21], for a purely elastic solid. We provide extensive details
for this viscoelastic case, since we found the existing literature to be rather brief.
Mathematically we consider the system variables as functions of independent variables
x and y, where y = ε−1x. Here the crucial assumption is that variations on the small
scale (i.e. with y) are independent from those on the large scale x and thus we treat
x and y as independent variables so that

∇f(x,y) = ∇f(x, ε−1x) = ∇xf + ε−1∇yf.(A.1)

When considering ventilation of the lung we look for time-harmonic solutions (i.e.
solutions proportional to exp(iωt) = exp(it∗)).

The second step in the homogenization process is to seek solutions to (2.16-2.20)
which are asymptotic power series in ε. For example the form for the fluid velocity
would be

v(x,y, ε) = v0(x,y) + εv1(x,y) + ε2v2(x,y) + O(ε3).(A.2)

Similar expansions for the pressure p and the material displacement u and substitution
of these series into (2.16-2.20) yields a system of linear equations for each successive
order of ε.

Applying the assumptions of independent length scales and time harmonic solu-
tions to the solid stress tensor T , and the strain tensor e, it is clear that they will
consist of terms of different orders in ε. Thus, we define the following quantities to aid
in the correct decomposition of each term of the full governing equations into power
series in ε:

en
ξ =

∇ξun + (∇ξun)T

2
for ξ = x,y, n = 0, 1, 2, · · ·(A.3)
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and

T n
ξ =

(
2E

3
+ iµ1

)
en
ξ for ξ = x,y, n = 0, 1, 2, · · ·(A.4)

So for example it follows from (A.1) that

e = ε−1(e0
y) + (e0

x + e1
y) + ε(e1

x + e2
y) + ε2(e2

x + e3
y) + · · ·(A.5)

T = ε−1(T 0
y ) + (T 0

x + T 1
y ) + ε(T 1

x + T 2
y ) + ε2(T 2

x + T 3
y ) + · · ·(A.6)

and furthermore that

∇ · T = ∇x · T + ε−1∇y · T(A.7)

= ε−2(∇y · T 0
y ) + ε−1(∇x · T 0

y + ∇y · T 0
x + ∇y · T 1

y )

+(∇x · T 0
x + ∇x · T 1

y + ∇y · T 1
x + ∇y · T 2

y )

+ε(∇x · T 1
x + ∇x · T 2

y + ∇y · T 2
x + ∇y · T 3

y ) + · · ·

(In general, take the superscript numeral and subtract the number of y’s to get the
appropriate power of ε.) (2.16-2.20) then yields, to order ε0,

∇yp0 = 0 in Df(A.8)

∇y · v0 = 0 in Df(A.9)

v0 = iu0 on ∂Df = ∂Ds(A.10)

n · T 0
y = 0 on ∂Df = ∂Ds(A.11)

∇y · T 0
y = 0 in Ds;(A.12)

and to order ε1, we have

∇yp1 − µ∇2
yv

0 + ∇xp0 + iρv0 = 0 in Df(A.13)

∇y · v1 + ∇x · v0 = 0 in Df(A.14)

v1 = iu1 on ∂Df = ∂Ds(A.15)

n · T 1
y + T 0

x + p0I) = 0 on ∂Df = ∂Ds(A.16)

∇y · T 1
y + ∇y · T 0

x + ∇x · T 0
y = 0 in Ds.(A.17)

A.1. p0 and u0 are independent of y. From (A.8) it follows that p0 is inde-
pendent of y, so that

p0 = p0(x) in Df .(A.18)
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Now consider equations (A.12,A.11), which written in full give

∇y ·
{(

2E

3
+ iµ1

) ∇yu0 + (∇yu0)T

2

}
= 0 in Ds(A.19)

n ·
{(

2E

3
+ iµ1

) ∇yu0 + (∇yu0)T

2

}
= 0 on ∂Ds.(A.20)

Now let us take the dot product of the first equation with u0, and integrate over the
solid domain Ds:(

2E

3
+ iµ1

) ∫
Ds

(
∇ ·

{∇yu0 + (∇yu0)T

2

})
· u0 dy = 0.(A.21)

Then by the chain rule∫
Ds

∇ ·
({∇yu0 + (∇yu0)T

2

}
u0

)
dy(A.22)

−
∫

Ds

{∇yu0 + (∇yu0)T

2

}
: (∇u0) dy = 0.

Note that A : B indicates the matrix inner product of A and B (i.e. sum of element-
wise products). Applying the divergence theorem to the first integral, and using the
second equation, means that it is zero, so that we have∫

Ds

{∇yu0 + (∇yu0)T

2

}
: (∇yu0) dy(A.23)

=
∫

Ds

{∇yu0 + (∇yu0)T

2

}
:
{∇yu0 + (∇yu0)T

2

}
= 0.

Hence {∇yu0 + (∇yu0)T }/2 = 0 ∀ y ∈ Ds. Solutions to this equation are rigid body
motions, and rotations are not bounded as a function of y, so the only admissible
solutions are translations, u0 constant. This translation may depend on x, so we have

u0(x,y) = u0(x) in Ds.(A.24)

Thus p0 and u0 are functions of x only.

A.2. Determination of v0. We introduce w, the velocity of the fluid relative
to the solid, defined by

v0(x,y) = w(x,y) + iu0(x) in Df .(A.25)

Then equations (A.9,A.10) and (A.13) give the following set of inhomogeneous linear
equations for w and p1:

∇y · w = 0 in Df(A.26)

∇yp1 − µ∇2
yw + iρw + ∇xp0 − ρu0 = 0 in Df(A.27)

w = 0 on ∂Df = ∂Ds.(A.28)
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The solutions to this problem are unique up to an additive scalar function of x in p1

(since this would disappear upon taking its gradient). We therefore look for solutions
which depend linearly on the inhomogeneous term ∇xp0 − ρu0:

w(x,y) = W (x,y){∇xp0 − ρu0}(A.29)

p1(x,y) = Φ(x,y){∇xp0 − ρu0} + f(x).(A.30)

W and Φ are then determined as the solution to the corresponding cell problem:

∇y · W = 0 in Df

∇yΦ − µ∇2
yW + iρW + I = 0 in Df

W = 0 on ∂Df = ∂Ds.

(A.31)

Thus we have:

v0(x,y) − iu0(x) = W (x,y){∇xp0(x) − ρu0(x)}(A.32)

A.3. Determination of u1. Writing equations (A.17,A.16) in full, and noting
that the 2nd and 3rd terms in (A.17) are zero:

∇y ·
((

2E

3
+ iµ1

) ∇yu1 + (∇yu1)T

2

)
= 0 in Ds(A.33)

(A.34)

n ·
((

2E

3
+ iµ1

) (∇yu1 + (∇yu1)T

2
+

∇xu0 + (∇xu0)T

2

)
+ p0I

)
= 0 on ∂Ds

Now we introduce the Hilbert space V of Ω-periodic vectors, defined in Ds, with∫
Ds

vdy = 0 (so that v has zero mean value), and the scalar product

(u,v)V =
∫

Ds

(∇yu + (∇yu)T

2

)
:
(∇yv̄ + (∇yv̄)T

2

)
dy.(A.35)

Note that v̄ indicates the complex conjugate of v.
Taking the dot product of equation (A.33) with v̄, and integrating over Ds with

respect to y, ∫
Ds

(
∇y ·

((
2E

3
+ iµ1

) ∇yu1 + (∇yu1)T

2

))
· v̄dy = 0,(A.36)

and it follows from the chain rule that∫
Ds

∇y ·
((

2E

3
+ iµ1

) ∇yu1 + (∇yu1)T

2
v̄
)

dy

−
∫

Ds

((
2E

3
+ iµ1

) ∇yu1 + (∇yu1)T

2

)
: (∇yv̄)dy = 0.

(A.37)

We treat the first term of (A.37) by applying the divergence theorem and using equa-
tion (A.34), which applies on the boundary of the solid region:∫

Ds

∇y ·
((

2E

3
+ iµ1

) ∇yu1 + (∇yu1)T

2
v̄
)

dy
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=
∫

∂Ds

n ·
((

2E

3
+ iµ1

) ∇yu1 + (∇yu1)T

2
v̄
)

dy

= −
∫

∂Ds

n ·
{((

2E

3
+ iµ1

) ∇xu0 + (∇xu0)T

2
+ p0I

)
v̄
}

dy(A.38)

= −
∫

∂Ds

n · (Av̄)dy

= −
∫

∂Ds

(An) · v̄dy,

where the last step follows from the symmetry of A, the matrix of the inhomogeneous
terms in equations (A.33,A.34):

A =
(

2E

3
+ iµ1

) ∇xu0 + (∇xu0)T

2
+ p0I.(A.39)

The second term of (A.37) is just a constant times the scalar product:

−
∫

Ds

((
2E

3
+ iµ1

) ∇yu1 + (∇yu1)T

2

)
: (∇yv̄)dy

= −
(

2E

3
+ iµ1

) ∫
Ds

(∇yu1 + (∇yu1)T

2

)
:
(∇yv̄ + (∇yv̄)T

2

)
dy(A.40)

= −
(

2E

3
+ iµ1

)
(u,v)V ,

so that equation (A.37) becomes

−
∫

∂Ds

(An) · v̄dy −
(

2E

3
+ iµ1

)
(u1,v)V = 0,(A.41)

and hence the variational form of the original problem may be written(
2E

3
+ iµ1

)
(u1,v)V = −

∫
∂Ds

(An) · v̄dy ∀v ∈ V.(A.42)

The left hand side is simply a complex constant times the scalar product defined
above, and by the trace theorem, the right hand side is a continuous form on V ,
which is clearly antilinear, so that by the Lax-Milgram Theorem [27], there exists a
unique solution u1 ∈ V to the above variational problem. The only restriction that
we have placed on u1 in developing the variational formulation is that it has zero
mean value, but this just means that the solution is unique up to the addition of
a constant term (i.e some function of x). In our derivation of equations governing
macroscopic averaged variables, we will only require information on ∇yu1, which is
uniquely determined. At this point it is interesting to note that this in turns specifies
T 1
y , which corresponds to an order ε0 stress in the macroscopic equations, itself due

to an order ε1 strain. The above uniqueness argument extends to this quantity.
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It is important to remember that we require solutions for u1 to be y-periodic, so
that the seemingly obvious solution T 1

y = −T 0
x − p0I, is in fact inadmissible. In order

to determine the unique admissible solution, we look for one which depends linearly
on the inhomogeneous terms, A. Thus we look for solutions of the form

u1
i =

(
2E

3
+ iµ1

)−1

QiklAkl,(A.43)

where

Akl =
(

2E

3
+ iµ1

)
1
2

(
∂u0

l

∂xk
+

∂u0
k

∂xl

)
+ p0δkl.(A.44)

We use index notation, whereby we sum over repeated indices—Qikl(y) is a third
rank tensor, because each component of the solution u1 can depend on each element
of Akl. We have included the scaling of (2E/3 + iµ1)−1 to simplify the calculations
that follow. Substituting this form for the solution, and equating coefficients in Akl,
gives cell problems which determine Qikl, and hence u1.

Recall that we are seeking solutions to equations (A.33) and (A.34), which we
rewrite in index notation:

∂

∂yj

{(
2E

3
+ iµ1

) (
∂u1

j

∂yi
+

∂u1
i

∂yj

)}
= 0 in Ds

nj

{(
2E

3
+ iµ1

) (
∂u1

j

∂yi
+

∂u1
i

∂yj
+

)
+ 2Aij

}
= 0 on ∂Ds.

(A.45)

Subsititution of the proposed solution gives

∂

∂yj

{
∂

∂yi
(QjklAkl) +

∂

∂yj
(QiklAkl)

}
= 0 in Ds

nj

{
∂

∂yi
(QjklAkl) +

∂

∂yj
(QiklAkl) + 2δikδjlAkl

}
= 0 on ∂Ds,

(A.46)

where the tensor δikδjl is the identity operator on 2×2 matrices. Notice that this gives
the factor Akl in each term, which is independent of yi, and so we can interchange
the order of multiplication and differentiation, and factorise:

∂

∂yj

{
∂Qjkl

∂yi
+

∂Qikl

∂yj

}
Akl = 0 in Ds

nj

{
∂Qjkl

∂yi
+

∂Qikl

∂yj
+ 2δikδjl

}
Akl = 0 on ∂Ds.

(A.47)

The form of the cell problem for the 3−tensor Qikl is then

∂

∂yj

{
∂Qjkl

∂yi
+

∂Qikl

∂yj

}
= 0 in Ds

nj

{
∂Qjkl

∂yi
+

∂Qikl

∂yj
+ 2δikδjl

}
= 0 on ∂Ds.

(A.48)

We only need to find n(n + 1)/2 entries of Qikl (where n is the number of spatial
dimensions), since the symmetry of the strain tensor, and of Akl, means that Qikl =
Qilk.
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All this calculation leads us to a form for the contribution of the order ε1 dis-
placement to the order ε0 stress in the solid:

T 1
y =

∇yQ + (∇yQ)T

2

((
2E

3
+ iµ1

) ∇xu0 + (∇xu0)T

2
+ p0I

)
.(A.49)

A.4. Averaging and the derivation of macroscopic equations. We define
the volume average of a quantity as

〈f〉 =
1
|Ω|

∫
Ωη

fdy,(A.50)

where Ω is the unit cell, and Ωη is that part of the cell over which f is defined.

A.4.1. Pressure driven flow. Equation (A.32) describes the flow through the
solid, driven by the pressure gradient—it applies to the fluid domain, so that Ωη = Ωf ,
and averaging gives:

1
|Ω|

∫
Ωf

v0(x,y)dy− 1
|Ω|

∫
Ωf

iu0(x)dy =
1
|Ω|

∫
Ωf

W (x,y){∇xp0(x)−ρu0(x)}dy.(A.51)

Because u0 does not depend on y, the second term is

1
|Ω|

∫
Ωf

iu0(x)dy = iu0(x)
1
|Ω|

∫
Ωf

dy = iu0(x)
|Ωf |
|Ω| ,(A.52)

which leads us to introduce the porosity φ = |Ωf |
|Ω| . p0 also does not depend on y, and

so we have

〈v0〉(x) − i
|Ωf |
|Ω| u0(x) = 〈W 〉(x){∇xp0(x) − ρu0(x)}.(A.53)

A.4.2. Mass conservation. Using the fact that v1 = iu1 on ∂Df = ∂Ds

(equation (A.15)), the divergence theorem, and noting that outward pointing normals
for the fluid and solid part point in opposite directions:

〈∇y · v1〉 =
1
|Ω|

∫
Ωf

∇y · v1dy(A.54)

=
1
|Ω|

∫
∂Ωf

n · v1dy

=
i

|Ω|

∫
∂Ωs

n · u1dy

= − i

|Ω|

∫
Ωs

∇y · u1dy

= −i〈∇y · u1〉

The key step now is to average equation (A.14):

〈∇x · v0〉 + 〈∇y · v1〉 = 0(A.55)
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⇒ 〈∇x · v0〉 − i〈∇y · u1〉 = 0

⇒ ∇x · 〈v0〉 − i

〈(
2E

3
+ iµ1

)−1 (
∇y · Q(y)

)
: A

〉
= 0

⇒ ∇x · 〈v0〉 − i

〈
∇y · Q(y)

〉
:

(
∇xu0 + (∇xu0)T

2
+

(
2E

3
+ iµ1

)−1

p0I

)
= 0.

A.4.3. Balance of Momentum. Finally, we derive a balance of momentum
equation, using the fact that the total momentum due to the fluid and solid acceler-
ation must equal the divergence of the total stress, at first order:

iρ〈v0〉 − u0 = ∇x · 〈(Ty
1 + Tx

0)〉 − ∇x · (φpoI),(A.56)

so that

iρ〈v0〉 − u0 =∇x ·




(
2E

3
+ iµ1

) 〈∇yQ + (∇yQ)T

2
+ I

〉
∇xu0 + (∇xu0)T

2




+


〈∇yQ + (∇yQ)T

2
I

〉
− φI


∇x · (p0I).(A.57)

Note that here the fluid stress is averaged over the fluid domain and the solid stress
is averaged over the solid domain.

A.4.4. Macroscopic equations. Collecting these results together, we get the
following equations for the mean quantities V, P,U, whose dependence on the macro-
scopic spatial scale, x, is implicit:

V − iφU = K (∇P − ρU) ,

∇ · (V − iφU) = i
(
α : ∇U+(∇U)T

2 + βP
)

iρV − U = ∇ ·
(

C ∇U+(∇U)T

2 + αP

)
.

(A.58)

The parameters for this system are given by

K = 〈W (y)〉 =
1
|Ω|

∫
Ωf

W (y)dy,(A.59)

α = 〈∇y · Q〉 − φI,(A.60)

β =
(

2E

3
+ iµ1

)−1

Trace(〈∇y · Q〉),(A.61)
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and

C =
(

2E

3
+ iµ1

) 
〈∇yQ + (∇yQ)T

2

〉
+ (1 − φ)I


(A.62)

This completes the derivation of the macroscopic equations.

Appendix B. Assumption of Macroscopic Isotropy.
Here we show how if we assume the macrosopic properties of lung tissue are

isotropic, we may estimate all the tissue parameters given experimental measurements
of Youngs’ modulus and Poisson ratio. For isotropic lung tissue, tensors become
scalars, and the macroscopic equations are

V − iφU = K̂ (∇P − ρU)(B.1)

∇ · (V − iφU) = i
(
α̂θ + β̂P

)
(B.2)

iρV − U = ∇ ·
{
T + α̂IP

}
,(B.3)

where the solid stress is now

T = C e =
Ê

1 + ν̂

(
e +

ν̂

1 − 2ν̂
θI

)
+ iµ̂1 e + iµ̂2 θI.(B.4)

e and θ = Trace (e) are the macroscopic strain tensor and dilation respectively. Ê
and ν̂ are the macroscopic Young’s modulus and Poisson ratio, which have been
experimentally measured and theoretically predicted for lung tissue [15, 16, 20]; µ̂1

and µ̂2 are macrosopic shear and bulk viscosities, which we will show can be expressed
in terms of Ê, ν̂, E, and µ1—also enabling us to determine α̂ and β̂. This is because
we must be able to decompose Cijkl into a linear combination of identity and trace
operators on the space of 2×2 matrices. We begin by expressing this in index notation:

Cijkl =
(

2E

3
+ iµ1

)
a

Identity︷ ︸︸ ︷
δikδjl +

(
2E

3
+ iµ1

)
b

Trace︷ ︸︸ ︷
δijδkl

=

(
Ê

1 + ν̂
+ iµ̂1

)
δikδjl +

(
Ê

1 + ν̂

ν̂

1 − 2ν̂
+ iµ̂2

)
δijδkl.(B.5)

Taking the real parts, equating the coefficients of the identity and trace operators,
and assuming that E, Ê, and ν̂ are known, gives

a =
Ê

1 + ν̂

3
2E

, b =
Ê

1 + ν̂

ν̂

1 − 2ν̂

3
2E

.(B.6)

Then similarly, by equating the imaginary parts, and assuming that µ1 is known, we
must have

µ̂1 = µ1a = µ1
3Ê

2E(1 + ν̂)
, µ̂2 = µ1b = µ1

3Êν̂

2E(1 + ν̂)(1 − 2ν̂)
.(B.7)



30 M. R. OWEN AND M. A. LEWIS

Now to find α̂ and β̂ we need information about 〈∇y ·Q〉. From the definition of

Cijkl we know that

Cijkl =
(

2E

3
+ iµ1

)
(aδikδjl + bδijδkl)

=
(

2E

3
+ iµ1

) (
1
2

〈
∂Qjkl

∂yi
+

∂Qikl

∂yj

〉
+ (1 − φ)δikδjl

)
,(B.8)

and hence that

1
2

〈
∂Qjkl

∂yi
+

∂Qikl

∂yj

〉
= (a + φ − 1)δikδjl + bδijδkl.(B.9)

So now we can calculate 〈∇y · Q〉, which will in turn give α̂ and β̂:

〈∇y · Q〉ij =
〈

∂Qkij

∂yk

〉

=
1
2

〈
∂Qkij

∂yk
+

∂Qkij

∂yk

〉
= (a + φ − 1)δkiδkj + bδkkδij

= (a + φ − 1)δij + 3bδij

= (a + 3b + φ − 1)δij ,(B.10)

so that

α̂ = a + 3b − 1 =
3Ê

2E(1 − 2ν̂)
− 1,(B.11)

and

β̂ =
(

2E

3
+ iµ1

)−1

Trace(〈∇y · Q〉)

=
(

2E

3
+ iµ1

)−1

3(a + 3b + φ − 1)

= 3
(

2E

3
+ iµ1

)−1
(

3Ê

2E(1 − 2ν̂)
+ φ − 1

)
.(B.12)

This completes the derivation of all the tissue parameters in terms of those quantities
for which we have reasonable estimates, namely the Young’s modulus and shear vis-
cosity of the alveolar wall, the Young’s modulus and Poisson ratio of bulk lung tissue,
and the lung porosity.
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