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AERODYNAMIC SHAPE OPTIMIZATION OF WINGS

INCLUDING PLANFORM VARIATIONS

Kasidit Leoviriyakit ∗ and Antony Jameson †

Stanford University, Stanford, CA 94305-4035

This paper describes the formulation of optimization techniques based on control

theory for aerodynamic shape design in inviscid compressible flow modelled by the Euler

equations. The design methodology has been extended to include wing planform opti-

mization. A model for the structure weight has been included in the design cost function

to provide a meaningful design. A practical method to combine the structural weight into

the design cost function has been studied. Results of optimizing a wing-fuselage of a com-

mercial transport aircraft show a sucessful trade of planform design, leading to meaingful

designs. The results also support the necessity of including the structure weight in the

cost function.

INTRODUCTION

W
HILE aerodynamic prediction methods based
on CFD are now well established, and quite

accurate and robust, the ultimate need in the design
process is to find the optimum shape which maximizes
the aerodynamic performance. One way to approach
this objective is to view it as a control problem, in
which the wing is treated as a device which controls the
flow to produce lift with minimum drag, while meet-
ing other requirements such as low structure weight,
sufficient fuel volume, and stability and control con-
strains. Here we apply the theory of optimal control
of systems governed by partial differential equations
with boundary control, in this case through changing
the shape of the boundary. Using this theory, we can
find the Frechet derivative (infinitely dimensional gra-
dient) of the cost function with respect to the shape by
solving an adjoint problem, and then we can make an
improvement by making a modification in a descent
direction. For example, the cost function might be
the drag coefficient at a fixed lift, or the lift to drag
ratio. During the last decade, this method has been
intensively developed, and has proved to be very effec-
tive for improving wing section shapes for fixed wing
planform.1, 2, 7, 8, 11–14

In this work we report on recent improvements in
the adjoint method, and also consider its extension
to planform design. It is well known that the in-
duced drag varies inversely with the square of the span.
Hence the induced drag can be reduced by increasing
the span. Moreover, shock drag in transonic flow might
be reduced by increasing sweep back or increasing the
chord to reduce the thickness to cord ratio.
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Consequencely an optimization which considers only
the pressure drag would lead to a wing with excessive
span and sweep back. In order to produce a meaningful
optimization problem, we therefore include a simple
structure weight model based on the span, sweep back,
and taper.

MATHEMATICAL FORMULATION

In this work the equations of steady flow

∂

∂xi

fi(w) = 0

where w is the solution vector, and fi(w) are the flux
vectors along the xi axis are applied in a fixed compu-
tational domain, with coordinates ξi, so that

R(w, S) =
∂

∂ξi
Fi(w) =

∂

∂ξi
Sijfj(w) = 0

where Sij are the coefficients of the Jacobian matrix of
the transformation. Then geometry changes are rep-
resented by changes δSij in the metric coefficients.
Suppose one wishes to minimize cost function of a
boundary integral

I =

∫

B

M(w, S) dBξ +

∫

B

N (S) dBξ

where the integral of M(w, S) could be an aerody-
namic cost function, e.g. drag coefficient, and the
integral of N (S) could be a structural cost function,
e.g. wing weight. Then one can augment the cost
function through Lagrange multiplier ψ as

I =

∫

B

M(w, S) dBξ+

∫

D

ψTR(w, S) dDξ+

∫

B

N (S) dBξ

A shape variation δS causes a variation

δI =

∫

B

δM dBξ +

∫

D

ψT ∂

∂ξi
δFi dDξ +

∫

B

δN dBξ
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The second term can be integrated by parts to give
∫

B

niψ
T δFidBξ −

∫

D

∂ψT

∂ξi
δFi dDξ .

Now, choosing ψ to satisfy the adjoint equation

(Sij

∂fj

∂w
)T ∂ψ

∂ξi
= 0

with appropriate boundary conditions depending on
the cost function, the explicit dependence on δw is
eliminated, allowing the cost variations to be expressed
in terms of δS and the adjoint solution, and hence
finally in terms of the change δF in a function F(ξ)
defining the shape.

Thus one obtains

δI =

∫

GδF dξ = 〈G, δF〉

where G is the infinite dimensional gradient (Frechet
derivative) at the cost of one flow and one adjoint so-
lution. Then one can make an improvement by setting

δF = −λG

In fact the gradient G is generally of a lower smooth-
ness class than the shape F . Hence it is important to
restore the smoothness. This may be effected by pass-
ing to a weighted Sobolev inner product of the form

〈u, v〉 =

∫

(uv + ε
∂u

∂ξ

∂v

∂ξ
) dξ

This is equivalent to replacing G by Ḡ, where in one
dimension

Ḡ −
∂

∂ξ
Ḡ
∂Ḡ

∂ξ
= G, Ḡ = zero at end points

and making a shape change δF = −λḠ.

IMPLEMENTATION

COST FUNCTION FOR PLANFORM

DESIGN

In order to design a high performance transonic
wing, which will lead to a desired pressure distribu-
tion, and still maintain a realistic shape, the natural
choice is to set

I = α1CD + α2

1

2

∫

B

(p− pd)
2dS + α3CW (1)

with

CW =
Wwing

q∞Sref

(2)

where
CD = drag coefficient,
CW = normalized wing structure weight,
p = current surface pressure,
pd = desired pressure,
q∞ = dynamic pressure,
Sref = reference area,
Wwing = wing structure weight, and
α1, α2, α3 = weighting constants.

A practical way to estimate Wwing is to use the
so-called Statistical Group Weights Method, which
applies statistical equations based on sophisticated re-
gression analysis. For a cargo/transport wing weight,
one can use3

Wweight = 0.0051(WdgNz)
0.557S0.649

w A0.5

(t/c)−0.4
root (1 + λ)0.1cos(Λ)−1.0S0.1

csw (3)

where
A = aspect ratio,
Nz = ultimate load factor; = 1.5 x limit load factor,
Scsw = control surface area (wing-mounted),
Sw = trapezoidal wing area,
t/c = thickness to chord ratio,
Wdg = flight design gross weight,
Λ = wing sweep, and
λ = taper ratio at 25 % MAC.
In addition, if the wing of interest is modeled by five

planform variables such as root chord (c1), mid-span
chord (c2), tip chord (c3), span (b), and sweepback(Λ),
as shown in Figure 1, it can be seen from the wing
weight formula (3) that the weight is estimated to vary
inversely with cos(Λ), where Λ is the wing sweep.

C3

C1

C2
b

Fig. 1 Modeled wing governed by five planform
variables; root chord (c1), mid-span chord (c2), tip
chord (c3), span (b), and sweepback(Λ).

Here if the sweepback is allowed to vary and α3 is
chosen to be sufficiently large in the cost function (1),
we should expect the optimization to decrease the
sweep back angle at the cost of an increase in shock
drag.

A change of span effects the wing weight of the
wing weight formula (3) through changes of the trape-
zoidal wing area (Sw), the aspect ratio (A),and the
wing-mounted area (Scsw). From the wing weight
formula (3), an increase of span will cause Sw, A,
and Scsw to increase, resulting in an increase of wing
weight. Since induced drag varies inversely with the
square of span, if the span is allowed to vary and α3 is
chosen to be sufficiently large, it is expected the opti-
mizer to reduce the span at the cost of an increase in
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drag.

Variations of c1, c2, and c3 effect the wing weight
of the wing weight formula (3) via variations of aspect
ratio (A), wing-mounted wing area (Scsw), trapezoidal
wing area (Sw), and thickness to chord ratio (t/c). The
effect of an individual chord change on the wing weight
is plotted in Figure 2. Figure 2 shows that the wing
weight of the Statistical Group Weights Method is a
linear function of chord length. And because the slope
varies along the span location, the change of chord
at different span location will effect the wing weight
differently. With the same change in chord length, the
decrease of the mid-span chord (c2) tends to give more
weight reduction than the others.
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Fig. 2 Effect of sweepback(Λ), span (b), root
chord(c1), mid-span chord(c2), and tip chord(c3) on
the Statistical Group Weights Method

If either c1, c2, or c3 is allowed to vary, and again
α3 is chosen to be sufficiently large in the cost func-
tion (1), the optimizer would be expected to reduce
the chord length with a consequent increase in shock
drag.

In these ways the inclusion of a weight estimate in
the cost function should prevent the optimization from
leading to an unrealistic wing planform, and lead to a
good overall performance.

AERODYNAMIC GRADIENT

CALCULATION FOR PLANFORM

VARIABLES

Gradient information can be computed using a vari-
ety of approaches such as the finite-difference method,
the complex step method,10 and the automatic differ-
entiation.4 Unfortunately, their computational cost is
still proportional to the number of design variables in
the problem. In an optimum transonic wing design,
suppose one chooses mesh points on a wing surface
as the design variables, which is an order of 1000 or
more, it is impractical to calculate the gradient us-
ing the methods mentioned earlier. In our planform

optimization, the design variables are points on the
wing surface plus the planform variables. To evaluate
the aerodynamic gradient with respect to the plan-
form variables, since the number of planform variables
(five in this study) is far less than that of the surface
optimization, one could calculate the gradient by the
finite-difference method, the complex step method or
the automatic differentiation. However, the cost for
the gradient calculation will be five times higher. A
more efficient approach is to follow the adjoint formu-
lation.

Consider the aerodynamic contribution of the cost
function (1)

δI =

∫

B

δM dBξ +

∫

D

ψT δR dDξ

This can be split as

δI = [Iw]I δw + δIII

with

δM = [Mw]Iδw + δMII

where the subscripts I and II are used to distinguish
between the contributions associated with variation of
the flow solution δw and those associated with the met-
ric variations δS. Thus [Mw]I represents ∂M

∂w
with the

metrics fixed. Note that δR is intentionally kept un-
split for programming purposes. If one chooses ψ as
ψ∗, where ψ∗ satisfies

(Sij

∂fj

∂w
)T ∂ψ

∗

∂ξi
= 0,

then

δI(w, S) = δI(S)

=

∫

B

δMII dBξ +

∫

D

ψ∗T

δR dDξ

≈
∑

B

δMII∆B +
∑

D

ψ∗T

∆R̄

≈
∑

B

δMII∆B +
∑

D

ψ∗T (

R̄|S+δS − R̄|S
)

,

where R̄|S and R̄|S+δS are volume weighted residuals
calculated at the original mesh and at the mesh per-
turbed in the design direction.

Provided that ψ∗ has already been calculated and R̄
can be easily calculated, the gradient of the planform
variables can be computed effectively by first perturb-
ing all the mesh points along the direction of interest.
For example, to calculate the gradient with respect to
the sweepback, move all the points on the wing surface
as if the wing is pushed backward and also move all
other associated points in the computational domain
to match the new location of points on the wing. Then
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re-calculate the residual value and subtract the previ-
ous residual value from the new value to form ∆R̄.
Finally, to calculate the planform gradient, multiply
∆R̄ by the costate vector and add the contribution
from the boundary terms.

This way of calculating the planform gradient ex-
ploits full benefit of knowing the value of adjoint
variables ψ∗ with no extra cost of flow or adjoint cal-
culations.

CHOICE OF WEIGHTING CONSTANTS

The choice of α1 and α3 greatly effects the optimum
shape. An intuitive choice of α1 and α3 can be cho-
sen by considering the problem of maximizing range
of an aircraft. The simplified range equation can be
expressed as

R =
V

C

L

D
log

W1

W2

where
C = Specific Fuel Consumption,
D = Drag,
L = Lift,
R = Range,
V = Aircraft velocity,
W1 = Take off weight, and
W2 = Landing weight.

If one takes

W1 = We +Wf = fixed

W2 = We

where
We = Gross weight of the airplane without fuel,
Wf = Fuel weight,

then the variation of the weight can be expressed as

δW2 = δWe.

With fixed V
C

, W1, and L, the variation of R can be
stated as

δR =
V

C

(

δ

(

L

D

)

log
W1

W2

+
L

D
δ

(

log
W1

W2

))

=
V

C

(

−
δD

D

L

D
log

W1

W2

−
L

D

δW2

W2

)

= −
V

C

L

D
log

W1

W2

(

δD

D
+

1

logW1

W2

δW2

W2

)

and

δR

R
= −

(

δCD

CD

+
1

logW1

W2

δW2

W2

)

= −





δCD

CD

+
1

log
CW1

CW2

δCW2

CW2



 .

If we minimize the cost function defined as

I = CD + αCW ,

where α is the weighting multiplication, then choosing

α =
CD

CW2
log

CW1

CW2

, (4)

corresponds to maximizing the range of the aircraft.

DESIGN CYCLE

The design cycle starts by first solving the flow field
until at least 4 orders of magnitude drop in the resid-
ual. The flow solution is then passed to the adjoint
solver. Second, the adjoint solver is run to calculate
the costate vector. Iteration continues until at least 4
orders of magnitude drop in the residual. The costate
vector is passed to the gradient module to evaluate the
aerodynamic gradient. Then, the structural gradient
is calculated and added to the aerodynamic gradient
to form the overall gradient. The steepest descent
method is used with a small step size to guarantee
that the solution will converge to the optimum point.
The design cycle is shown in Figure 3.

−sections
−planform

Shape & Grid
Modification

repeated until
Convergence

Design Cycle

Flow Solver

Adjoint Solver

Gradient Calculation
−Aerodynamics

−Structure

Fig. 3 Design cycle

FLOW SOLVER AND ADJOINT SOLVER

The flow solver and the adjoint solver chosen in this
work are codes developed by Jameson.5–7, 11 The flow
solver solves the three dimensional Euler equations,
by employing the JST scheme, together with a multi-
step time stepping scheme. Rapid convergence to a
steady state is achieved via variable local time steps,
residual averaging, and a full approximation multi-grid
scheme. The adjoint solver solves the corresponding
adjoint equations using similar techniques to those of
the flow solver. In fact much of the software is shared
by the flow solver and adjoint solver.

RESULTS

VALIDATION OF AERODYNAMIC

GRADIENT WITH RESPECT TO

PLANFORM VARIABLES

To verify the accuracy of the aerodynamic gradient
with respect to planform variables calculated by em-
ploying the adjoint method, we compare the planform
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gradients using adjoint and finite-difference methods.
For the purpose of comparison, calculations are done
at a fixed angle of attack to eliminate the effect of pitch
variation on the gradient. The case chosen is the Boe-
ing 747-200 wing fuselage combination at Mach 0.87,
and wing angle of attack 2.3 degrees. The computa-
tional mesh is shown in Figure 6.

The aerodynamic gradient with respect to the plan-
form variables is calculated using both the adjoint and
the finite-difference methods. A forward differencing
technique is used for the finite-difference method with
a moderate step size of 0.1% of planform variables to
achieve both small discretization error and small can-
cellation error. The flow and adjoint solvers are run
until both solutions are fully converged.

To verify the result more generally, different geome-
tries are used in this comparison. Each new geometry
is generated sequentially by allowing section changes
of the current geometry. Figure 4 shows the planform
gradient comparison. It can be seen that the results
from both methods match each other very well, inde-
pendent of the geometry. This result indicates that the
adjoint method provides an accurate planform gradi-
ent while reducing the computational cost by a factor
of five.

Figure 5 shows the effect of the step size used in
the gradient calculation. The results indicate that the
step size almost has no effect on the adjoint gradi-
ent, showing an additional advantage of the adjoint
gradient over the finite difference gradient. It is not
surprising that the finite-difference gradient is depen-
dent on the step size, since it depends on recalculating
the flow for each shape perturbation.9

REDESIGN OF THE BOEING 747 WING

We present a result to show that the optimization
can successfully trade planform parameters. The case
chosen is the Boeing 747-200 wing fuselage combina-
tion at Mach 0.87 and a lift coefficient CL = 0.42. The
computational mesh is shown in Figure 6.

In this test case, the Mach Number is moderlately
higher than the current normal cruising Mach number
of 0.85. We allowed section changes together with vari-
ations of sweepback, span, root chord, mid-span chord,
and tip chord. Figure 7 shows a baseline calculation
with the planform fixed. Here the drag was reduced
from 101.3 counts to 88.8 counts (12.3% reduction) in
8 design iterations with relatively small changes in the
section shape.

Figure 8 shows the effect of allowing changes in
sweepback, span, root chord, mid-span chord, and tip
chord. The parameter α3 was chosen according to
formula 4 such that the cost function corresponds to
maximizing the range of the aircraft. Here in 8 de-
sign iterations the drag was reduced from 101.3 counts
to 88.4 counts (12.7% reduction), while the normalize
structure weight was slightly reduced from 0.03215 to

0.03211 (0.1% reduction). This test case shows a good
trade off among the planform variables to achieve an
optimal performance for a realistic design. The opti-
mizer reduces the sweepback to get a reduciton in the
structure weight, while increases the length of span
and chords to achieve a reduction in drag. Though the
reduction of sweepback causes drag to increase, the re-
duction of drag from the increase in span and chord
length is superior, resulting an overall drag reduction.
This is also true for the improvement of the overall
structure weight; the weight reduction from decreas-
ing of sweepback is more than the increase of weight
due to the increase of span and chord length.

We present another test case to show the trade off
between the aerodynamic cost function and the struc-
ture cost function. In this test case, the parameter
α3 was chosen to be large enough that the cost func-
tion is optimized by reducing the structure weight of
the aircraft. Here in 30 design iterations the drag was
reduced from 101.3 counts to 90.2 counts (11.0% re-
duction), while the normalized structure weight was
reduced from 0.03215 to 0.03042, (5.4% reduction).
As a result of the trade between wing weight reduc-
tions and increased drag, the overall drag reduction
was less than in the previous figures. These results ver-
ify the feasibility of including planform effects in the
optimization. Figure 10 shows the optimized shape of
B747-200 obtained from the planform optimizor.

It should be noted that in the presence of viscous ef-
fects, an optimal design may be significantly different.
The steep adverse pressure gradient in the outboard
region of the wing in Figure 9 could cause a separa-
tion and bufflet. In a more realistic design, viscous
effects certainly need to be considered.

CONCLUSION

An aerodynamic design methodology for planform
optimization has been developed and validated. To
realize meaningful designs, a model for the strucutral
weight is included in the design cost function. The
results of optimizing a wing-fuselage of a commercial
transonic transport aircraft has highlighted the impor-
tant of the structural weight model. It is the trade
between the structural cost function and the aerody-
namic cost funtion that prevents an unrealistic result
and leads to a useful design. Hence a good structure
model can be critical in an aerodynamic planform op-
timization.

Currently, the structural model is a function of the
planform variables but does not depend on the aero-
dynamic loading. A more realistic model to estimate
the structure weight should be used for more practi-
cal designs. Also, in the current study, viscous effects
have been neglected. It is easy to envision that viscous
effects can greatly alter flow phenomena over the wing,
leading to different optimum designs. Hence, to realize
a practical optimization tool, the Navier-Stokes equa-
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tions with an appropriate turbulence model should be
used. In order to produce a design that works well
over a range of operating conditions, the optimization
procedure should also allow for multiple design points.
The necessary extensions to the software are currently
in process, and the results will be presented in a future
conference.
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Effect of perturbation step size on the gradient     
of the aerodynamic cost function with respect to span
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Adjoint              DSPAN=0.001
Finite Different DSPAN=0.001

Fig. 5 Effect of purterbation step size on the aerodynamic span gradient. Test case: Boeing 747-200,
wing-body configuration, M∞=.87, fixed α=2.3 degrees.

BOEING 747 WING-BODY                                                            
 GRID  192 X   32 X   32

  K   =    1

Fig. 6 Computational Grid of the B747-200 Wing Fuselage
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BOEING 747 WING-BODY                                                            
Mach: 0.870    Alpha: 2.043                                                     
CL:  0.420    CD: 0.00888    CM:-0.1414                                         
Design:   8                                                                     
Grid: 193X 33X 33                                                               
Sweep: 42.1005   Span(ft):  191.45                                              
C1(ft):  48.11   C2:  30.58   C3:  10.78                                        
CW:  0.03216  I:  0.00888                                                       

Cl:  0.362    Cd: 0.04445    Cm:-0.1438                                         
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.598    Cd: 0.00334    Cm:-0.2222                                         
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.432    Cd:-0.02584    Cm:-0.1850                                         
Tip Section:  88.1% Semi-Span

Cp = -2.0

Fig. 7 Redesign of Boeing 747-200, fixed planform
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BOEING 747 WING-BODY                                                            
Mach: 0.870    Alpha: 1.934                                                     
CL:  0.420    CD: 0.00884    CM:-0.1318                                         
Design:   8    Residual:  0.1324E-01                                            
Grid: 193X 33X 33                                                               
Sweep: 41.3377   Span(ft):  192.29                                              
C1(ft):  48.40   C2:  30.87   C3:  11.07                                        
CW:  0.03211  I:  0.01776                                                       

Cl:  0.357    Cd: 0.04352    Cm:-0.1417                                         
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.589    Cd: 0.00340    Cm:-0.2205                                         
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.421    Cd:-0.02498    Cm:-0.1817                                         
Tip Section:  88.1% Semi-Span

Cp = -2.0

Fig. 8 Redesign of Boeing 747-200, variable planform and maximizing range
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BOEING 747 WING-BODY                                                            
Mach: 0.870    Alpha: 1.805                                                     
CL:  0.420    CD: 0.00902    CM:-0.0566                                         
Design:  30    Residual:  0.1584E-01                                            
Grid: 193X 33X 33                                                               
Sweep: 36.9925   Span(ft):  195.83                                              
C1(ft):  48.08   C2:  29.88   C3:  11.06                                        
CW:  0.03042  I:  0.01510                                                       

Cl:  0.363    Cd: 0.04443    Cm:-0.1389                                         
Root Section:  16.1% Semi-Span

Cp = -2.0

Cl:  0.602    Cd: 0.00178    Cm:-0.2398                                         
Mid Section:  50.4% Semi-Span

Cp = -2.0

Cl:  0.400    Cd:-0.02154    Cm:-0.2183                                         
Tip Section:  88.1% Semi-Span

Cp = -2.0

Fig. 9 Redesign of Boeing 747-200, variable planform and optimizing structure weight
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a) Top view b) Isoplane

c) Front view d) Side view

Fig. 10 Superposition of the baseline geometry and the weight optimized geometry of Boeing 747-200,
The baseline geometry is represented by a solid plot. The optimixed geometry is represented by a mesh
plot.
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