
Formalizing Dynamic Software Updating

Gavin Bierman† Michael Hicks‡ Peter Sewell†∗ Gareth Stoyle†

†University of Cambridge ‡University of Maryland, College Park
{First.Last}@cl.cam.ac.uk mwh@cs.umd.edu

Abstract

Dynamic software updating (DSU) is a process by which a
running program can be updated with new code and data
without interrupting its execution. DSU is critical for sys-
tems such as air-traffic control systems, financial transaction
processors, and networks, which must provide constant ser-
vice but nonetheless be updated to fix bugs and add new
features.

While DSU is widely used in practice, and a number of
language-based approaches have been implemented, there
is little general understanding of how DSU is best used
and/or achieved. A major open issue is how to, in a gen-
eral sense, write programs that can be updated safely in
nearly arbitrary ways. While some informal understand-
ing has been achieved, we believe a formal, mathematical
approach should be developed to set a firm foundation for
both users and implementors of DSU technology.

In this paper, provide a preliminary step in this direction
by presenting the BLAH calculus. This calculus provides
two basic mechanisms for updating programs: an update
primitive that allows bindings in the program to be changed
safely, and way for the programmer to control which parts
of the program will notice this change. This calculus was in-
spired by, and generalizes to an extent, the DSU technology
present in the language Erlang. In addition to presenting
the calculus, we present ways in which we it can be used
to model existing updating implementations, and postulate
how it can be extended prove safety properties of interest.

1. Introduction

Rough intro:
Many systems provide some form of run-time modification

of system functionality. Little understanding of questions of
usage: how to build updateable systems most effectively?

∗Corresponding Author. Computer Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0FD,
UK. Fax: +44 1223 334678.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

How to know when it’s safe to perform an update, so that
the system smoothly transitions from its old version to the
new one? Also, how should updating itself be implemented?
Is there a common mechanism that underlies updating in
different languages, whether functional, object-oriented, or
imperative? What language features complicate or simplify
updating?

We believe that the best way to study these questions
is via a formal system that models updating at its essence.
Unfortunately, there is little formal understanding of update
at this time. There are quite a number of updating imple-
mentations (litany here, sure to include Erlang), and many
ideas as to when updating should be considered safe, but
most are not rigorously defined (Gupta, Bloom, Lee, Hicks,
others?). There are few formalized programming languages
for modeling updating or its aspects—Gupta, Dynamic ML
and Duggan (others?). Of these, Gupta is quite high-level,
and Dynamic ML and Duggan lack generality, so none pro-
vides sufficient answer our queries.

Therefore, we believe that a simple formal system should
be established with the primary goals of understanding the
underlying foundations of update, for the purpose of under-
standing how to best build reliable updateable programs.

2. Related Work

While there have been a variety of implementations of
DSU (XXX cite), comparatively little work has been done
in the two areas we are interested in: analyses as to how to
update programs safely; and formal, language-based models
of DSU. Here we briefly overview past work in these areas.

2.1 Updating Programs Safely

An important question for any dynamic update is whether
that update is valid. Intuitively, we are interested in the
question of whether a change to a system’s code, realized dy-
namically, will properly transform the system to reflect the
new code base. Gupta et. al developed a formal framework
proved that the problem of update validity is, in general,
undecidable. [6, 7]. In their model, a running program P is
a pair (Π, s), where Π is the program code and s is the pro-
gram state, encapsulating the notion of the stack, heap, and
machine registers. An update to P is a pair (Π′, S), where
Π′ is the new program code, and S is a state transformer
function that maps the old state to a new state. Applying
the update yields a new program (Π′, s′) where s′ = S(s).
An update is valid if and only if the new program’s state
s′ eventually becomes reachable. Reachability is defined as
follows. A state s, relative to code Π, is reachable if and
only if a program (Π, sΠ0), where sΠ0 is a legal initial state,

can evaluate to (Π, s) at some time for some inputs. Gupta
et al. show that, in general, determining that a change is
valid is undecidable by relating to the halting problem.

This means that any analysis proving validity must be
conservative. Gupta et. al developed an analysis that com-
pares the old and new versions of C code (but not including
functions, stack allocation, or heap allocation) and identifies,
based on a syntactic analysis, program points that would
preserve update validity. This analysis is quite conservative,
and can only handle restructurings of the same algorithm,
not changes to program functionality.

Lee [9] describes a way to decompose a valid update into a
set of smaller valid updates. A directed graph is constructed
such that each node in the graph represents a function to
be replaced, and an edge from f to g implies that g should
be updated before or with f . The strongly connected com-
ponents of the graph then represent functions that must be
updated together. Lee does not formalize why one proce-
dure should be updated before another; in some cases this
is easy to determine (e.g. if the types of functions change),
but in others it is not straightforward. Furthermore, a valid
update must be known before it can be deconstructed, but
no guidance is provided in finding such an update. Bloom
et al develop a similar, but more complicated, model for
Argus [2, 3]. XXX say more here

A number of researchers have observed that dynamic up-
dates can become invalid if they are applied at an inoppor-
tune time. Assuming that an update can become available at
any time, rather than perform the update at that moment,
the update can be delayed until certain conditions are sat-
isfied. For example, in Lee’s DYMOS [9], the programmer
specifies when-conditions along with the patches to update
as in

update P, Q when P, M, S idle

This specifies that procedures P and Q should be updated
only when procedures P, M, and S do not have activations
in any thread stack. As a degenerate version of this idea,
many systems simply impose the restriction that updates
may only occur to inactive code (e.g. [5]). However, in none
of these systems is there any well developed evidence as to
what conditions are needed to guarantee validity.

An alternative to dynamically specified conditions are stat-
ically guaranteed ones. In particular, we have proposed in
prior work [8] (XXX also cite the rebinding paper, maybe
PLDI paper too) that programs should designate their own
update points, perhaps indirectly by calling an updating
mechanism directly, such as a class loader or dynamic linker.
This trades flexibility for predictability, perhaps by formal
analysis, and forms part of the BLAH calculus presented in
Section 3.

XXX Dmetriev, and other USE02 papers ...

2.2 Language-based Formal Systems

XXX need to shorten this stuff a bunch
As mentioned, Gupta defines a language-inspecific model

of computation that has an abstract notion of program code
and state, and shows update validity is undecidable in gen-
eral. For this reason, language-specific models are needed
to show what updating properties are tractable. We briefly
review related formalisms in this area.

Dynamic ML [5] is a proposed implementation of ML with
a formalized abstract machine [10] that enables replacement

of modules at runtime. User-defined types in replaced mod-
ules can be changed so long as they are abstract, meaning
their representation is hidden from users. Thus a dynamic
change of a module’s type implementation need not require
a dynamic change of that module’s users. To ensure sound-
ness, existing instances of the abstract type will be converted
to the new representation during a garbage collection phase
at update-time. Different versions of modules may not co-
exist, and a module must be inactive (e.g. not on the run-
time stack) before it can be replaced. The abstract machine
is used to define how replacement takes place via garbage
collection, and to show that evaluation in the context of
replacement is sound.1

Duggan [4] defines a formal language that relaxes two of
Dynamic ML’s restrictions with one change: module types
may be converted lazily during program execution, rather
than at once during garbage collection. As a result, differ-
ent versions of a type/module may coexist during program
execution, and must be convertible from the old to new ver-
sion and vice versa. A novel type-system is presented and
type soundness is proved.

While past work on formalization is instructive, prior for-
malizations are either too language- or implementation-specific
to draw broad conclusions. Dynamic ML’s abstract machine
is intimately tied to SML, and it fixes the implementation
strategy as a form of garbage collection for changed types.
Duggan’s framework is less tied to a particular language,
but otherwise suffers the same limitations. Both calculi lack
machinery for understanding when and how code can and
should be updated, focusing only on the problem of convert-
ing instances of changed types following an update.

XXX more criticisms? Are these bogus? what are we
really trying to say?

3. The BLAH calculus

XXX Introduction to calculus: not quite sure it says what
I want it to say yet XXX In this section we introduce
the BLAH calculus as a simple formal model of dynamic up-
date. The calculus is roughly equivalent to Erlang [1] with
respect to its updating power and the nature of the update
mechanism. However, this is where the resemblance ends as
our language is based on the simply typed lambda calculus
and Erlang is dynamically typed. It might be argued that
the static type system we employ makes our system too rigid
in what is essentially a dynamic world – we are performing
dynamic update. However dynamic update is often used in a
mission critical environment, where the added safety offered
by a static type system outweighs the convenience intro-
duced by dynamic types. Add to this that the static type
system presented here can easily be made more flexible by
introducing parametric polymorphism and subtyping, and
one has a strong argument for static typing in this dynamic
context.

3.1 The Formalism

Figure 1 and 2 present the syntax and dynamics of the

1Interestingly, I could not locate the restriction in the for-
malization in Walton’s thesis that module’s that are active
may not be updated. The end of Dynamic Replacement
chapter indicates they don’t consider how updating is initi-
ated, which is fine, but it seems like this is important in or-
der to show soundness. That is, “appropriate update points”
affect their proof. Perhaps we can contact Chris about this?

GPS:This is unsound at the moment

Integers n
Identifiers x , y , z (from a set of strings)
Module names M

Simple Types T ::= int | unit | A ∗A
Function Types F ::= A → T
All types A ::= T | F
Module types σ ::= {z1:An, ..., zn:An}

Values v ::= n | () | (v , v) | λx :A.e
Expressions e ::= n | () | (e, e ′) | πre | ee | x | M .x | Mn.x | let x :A = e in e ′ | λx :A.e

Module expressions m ::= letrec {z1:A1 = v1and ...and zn:An = vn}
Program p ::= module Mn = m in p | e

Atomic expr. context A1 ::= (, e) | (v ,) | e | (λx :A.e) | πr

Atomic module context A2 ::= module M = m in
Expression contexts E1 ::= | A1.E1

Module contexts E2 ::= | A2.E2

Prefix context E3 ::= E2.E1

Figure 1: BLAH calculus syntax

GPS:This is unsound at the moment

(ver) E2.module Mn = m in E3.(M
n.z) −→ E2.module Mn = m in E3.v

(z , v) ∈ exports(m)

(unver) E2.module Mn = m in E3.(M .z) −→ E2.module Mn = m in E3.v
(z , v) ∈ exports(m) and ¬∃k > n.Mk ∈ modules(E2)

(update)
env(E2) ` m ′ n = max {k | Mk ∈ modules(E2,E

′
2)} n ′ = succ(n)

E2.module Mn = m in E ′
2.E1.update

M=m′
−−−−→

E2.module Mn = m in E ′
2.module Mn′ = {Mn′/M }m ′ in E1.()

(let) E3.let x = v in e −→ E3.{v/x}e

(proj) E3.πr(v1, v2) −→ E2.vr

(app) E3.(λx :A.e)v −→ E3.{v/x}e

(cong)
e −→ e ′

E3.e −→ E3.e
′

Figure 2: BLAH calculus reduction rules

GPS:This is unsound at the moment

Σ;Γ ` p:T
Σ;Γ ` m:σ
Mn /∈ modules(p)

Σ; Γ ` module = m in p:T

Σ, Mn:{z1:A1, ..., zn:An}; Γ ` e1:A1

...
Σ, Mn:{z1:A1, ..., zn:An}; Γ ` en:An

Σ;Γ ` letrec z1 = e1and ...and zn = en:{z1:A1, ..., zn:An}

Σ;Γ, z :A ` e ′:A′

Σ;Γ ` A:T

Σ;Γ ` let z = e in e ′:A

Σ;Γ, x :T ` e:T ′

Σ;Γ ` λx :T .e:T → T ′

Mn ∈ Σ (x = A) ∈ Σ(Mn)
n = max {k | Mk ∈ Σ}

Σ;Γ ` M .x :A

Mn ∈ Σ (x = A) ∈ Σ(Mn)

Σ; Γ ` Mn.x :A

(x = A) ∈ Γ

Σ; Γ ` x :A

Σ; Γ ` e:A Σ; Γ ` e ′:A′

Σ, Γ ` (e, e ′):A ∗A′
Σ; Γ, z :A ` e:A′

Σ; Γ ` λz :A.e:A → A′

Σ;Γ ` e:A1 ∗A2

Σ;Γ ` πre:Ar

Σ;Γ ` e:T → T ′ Σ; Γ ` e:T

Σ;Γ ` ee ′:T ′

Figure 3: BLAH calculus typing rules

calculus. It can be seen that (let), (app) and (proj) are
standard call-by-value (CBV) reduction rules, with the re-
maining three rules being the interesting ones for this sys-
tem. They deal with accessing the module bindings and
updating module definitions.

A program consists of a sequence of module declarations
followed by an expresion, which is where execution begins.
We say that bindings in the module declarations are global,
whereas bindings introduced by lets and lambdas are local.
The two classes of binding do not have the same semantics,
differing most notably in how eagerly the symbols are re-
solved. It is interesting to note however, that the calculus
is still call-by-value as the instantiation of a variable always
results in a value.

We should first ask why the treatment of instantiation of
module definitions needs to be different to other variables.
The reason for this is that bound variables in the lambda cal-
culus are discharged during reduction by substitution. The
problem is that if we resolve module names in a similar way,
then we also dismiss the possibility of updating the module
in the future. Consider:

module M = letrec f = λx :T .x in (M .f 2,M .f 3) −→ ((λx :T .x)2, (λx :T .x)3)

the definition of the module has been distributed throughout
the program and its associated name has been irretrievably
lost

3.1.1 Update

The unit of update is the module, which in this language
is a sequence of bindings that bind values to identifiers, these
binding groups being mutually recursive.

XXX Why is our calculus better than just coding it up in
a STLC with refs XXX

3.2 Examples

processing old transactions with old code (only update
toplevel variable); changing things directly (as in our other
Update calc); Optimizing the first using parts of the second

4. Future Work

4.1 Proving a Consistency Property

Talk about assertions idea

4.2 Understanding the Effect of Language Features

abstract types; references; threads; closures; object-orientation

5. Conclusions

6. REFERENCES

[1] J. L. Armstrong and R. Virding. Erlang — An
Experimental Telephony Switching Language. In XIII
International Switching Symposium, Stockholm, Sweden,
May 27 – June 1, 1991.

[2] T. Bloom. Dynamic Module Replacement in a Distributed
Programming System. PhD thesis, Laboratory for
Computer Science, The Massachussets Institute of
Technology, March 1983.

[3] T. Bloom and M. Day. Reconfiguration and module
replacement in Argus: theory and practice. Software
Engineering Journal, 8(2):102–108, March 1993.

[4] D. Duggan. Type-based hot swapping of running modules.
In International Conference on Functional Programming,
pages 62–73, 2001.

[5] S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without
dynamic types. Technical Report ECS-LFCS-97-378,
Laboratory for the Foundations of Computer Science, The
University of Edinburgh, December 1997.

[6] D. Gupta. On-line Software Version Change. PhD thesis,
Department of Computer Science and Engineering, Indian
Institute of Technology, Kanpur, November 1994.

[7] D. Gupta, P. Jalote, and G. Barua. A formal framework for
on-line software version change. Transactions on Software
Engineering, 22(2):120–131, Feb. 1996.

[8] M. W. Hicks. Dynamic Software Updating. PhD thesis,
Department of Computer and Information Science, The
University of Pennsylvania, August 2001.

[9] I. Lee. DYMOS: A Dynamic Modification System. PhD
thesis, Department of Computer Science, University of
Wisconsin, Madison, April 1983.

[10] C. Walton, D. Kirli, and S. Gilmore. An abstract machine
for module replacement. Technical report, Laboratory for
the Foundations of Computer Science, The University of
Edinburgh, June 1998.

