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Preface

Welcome to B-Prolog, a versatile and efficient constraint logic programming (CLP)
system! B-Prolog is being brought to you by Afany Software (New York), KLS
(Tokyo), and NandaSoft (Nanjing).

The birth of CLP is a milestone in the history of programming languages.
CLP combines two declarative programming paradigms: logic programming and
constraint solving. The declarative nature has proven appealing in numerous ap-
plications including computer-aided design and verification, database, software
engineering, optimization, configuration, graphical user interface, and language
processing. It greatly enhances the productivity of software development and soft-
ware maintainability. In addition, because of the availability of efficient constraint-
solving, memory management, and compilation techniques, CLP programs can be
more efficient than their counterparts written in procedural languages.

B-Prolog is a Prolog system with extensions for programming concurrency,
constraints, and interactive graphics. The system is based on a significantly refined
WAM, called ATOAM1, that facilitates software emulation. In addition to an
ATOAM emulator with a garbage collector written in C, the system consists of a
compiler and an interpreter written in Prolog, and a library of built-in predicates
written in C and Prolog. B-Prolog accepts not only standard form Prolog programs
but also matching clauses in which the determinacy and input/output unifications
are denoted explicitly. Matching clauses are compiled into more compact and
faster code than standard-form clauses. The compiler and most of the libraries
are written in matching clauses.

B-Prolog follows the standard of Prolog but also enjoys several features that
are not available in traditional Prolog systems. B-Prolog provides an interac-
tive environment through which users can consult, list, compile, load, debug and
run programs. The command editor in the environment facilitates recalling and
editing old commands. B-Prolog provides a bi-directional interface with C and
Java. This interface makes it possible to mix Prolog with C, C++, and Java.
B-Prolog offers the user a unique construct, called action rules, which is useful for
programming concurrency, implementing constraint propagators, and developing
interactive user interfaces. Action rules have been successfully used to implement
constraint solvers over trees, Boolean, finite-domains, and sets. B-Prolog also pro-
vides a high-level and constraint-based graphics library, called CGLIB. The library
includes primitives for creating and manipulating graphical objects and a set of
constraints that facilitates the specification of the layouts of objects. Action rules
are used to program interactions.

This document describes the B-Prolog system and its usage. It consists of the
following three parts.

Part-I Prolog Programming

1N.F. Zhou: Parameter Passing and Control Stack Management in Prolog Implementation
Revisited, ACM Transactions on Programming Languages and Systems, Vol18, No6, pp.752-779,
November, 1996.
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This part covers the B-Prolog programming environment and all the built-ins
available in B-Prolog. Considerable efforts have been made to make B-Prolog
compliant with the standard. All possible discrepancies are explicitly described in
this manual. In addition to the built-ins in the standard, B-Prolog also supports
the built-ins in Dec-10 Prolog and some new ones such as those on arrays and
hashtables.

This part is kept as compact as possible. The reader is referred to The Prolog
Standard2 for details about the built-ins in the standard, and to textbooks3 or
Web pages4 for the basics of logic programming.

Part-II Agent and Constraint Programming
Prolog adopts a static computation rule that selects subgoals strictly from left to
right. No subgoals can be delayed and no subgoals can be responsive to events.
Prolog-II provides a predicate called freeze. The subgoal freeze(X,p(X)) is logi-
cally equivalent to p(X) but the execution of p(X) is delayed until X is instantiated.
B-Prolog provides a more powerful construct, called action rules, for programming
agents. An agent is a subgoal that can be delayed and can be later activated by an
event. Each time an agent is activated, some actions may be executed. Agents are
a more general notion than freeze in Prolog-II and processes in concurrent logic
programming in the sense that agents can be responsive to various kinds of events
including user-defined ones.

Constraints are relationships among variables over some domain. B-Prolog
supports constraints over trees, finite-domains, Boolean, and integer sets. In B-
Prolog, constraint propagation is used to solve constraints. Each constraint is
compiled into one or more agents, called constraint propagators, that are respon-
sible for maintaining the consistency of the constraint. A constraint propagator is
activated when the domain of any variable in the constraint is updated.

Action rules comprise a powerful and efficient language for programming con-
straint propagators, concurrent agents, event handlers, and interactive user inter-
faces. Action rules are unique to B-Prolog and are thus described in detail in the
manual.

Part-III Graphics Programming
The widespread use of window systems has made a graphics package indispensable
for any programming languages. Prolog and CLP languages in general are not an
exception. It is possible to use the graphics packages in C++ or Java through the
external language interfaces. This approach, however, is not satisfactory for the
following two reasons. First, the programmer has to write code in two languages.
This is especially daunting when there are interactions involved. Second, the
graphics packages are at such a low level that they do not match well with a

2http://www.logic-programming.org/prolog std.html
3W.F. Clocksin and C.S. Mellish, Programming in Prolog, Springer-Verlag, 1994, Ivan Bratko,

Prolog for Artificial Intelligence, Addison-Wesley, 2000, and
L. Sterling and E. Shapiro, The Art of Prolog, The MIT Press, 1997.

4e.g., http://archive.comlab.ox.ac.uk/logic-prog.html and
http://www.cs.unh.edu/ccc/archive/.
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high-level language like CLP.
The CGLIB in B-Prolog is implemented in B-Prolog, Java, and C. CGLIB

enables the user to use the Java graphics package without the need to write any
code in Java. CGLIB, however, is not just another syntax sugar for Java’s graphics
package. It has a significantly higher abstraction level and is much easier to learn
and use than Java’s graphics package.

CGLIB can be used in many areas such as drawing editors, interactive user
interfaces, document authoring, animation, information visualization, intelligent
agents, and games. This part, which is in a separate volume, also gives several
sample applications in addition to the primitives in the library.
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Chapter 1

Getting Started with B-Prolog

1.1 How to enter and quit B-Prolog

Just like most Prolog systems, B-Prolog offers the user an interactive programming
environment for compiling, loading, debugging and running programs. To enter
the system, type the command:

bp

To start the system with the graphics package, use the command:

bpp

After the system is started, it responds with the prompt |?- and is ready to accept
Prolog queries. The command help shows part of the commands that the system
accepts.

help

To quit the system, use the query:

halt

or simply enter ^D (control-D) when the cursor is located at the beginning of an
empty line.

1.2 The command line editor

The command line editor resides at the top-level of the system accepting queries
from the user. A query is a Prolog goal ended with a new line. It is a tradition
that a period is used to terminate a query. In B-Prolog, as no query can expand
over more than one line, the terminating period can be omitted.

The command line editor accepts the following editing commands:
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^F Move the cursor one position forward.
^B Move the cursor one position backward.
^A Move the cursor to the beginning of the line.
^E Move the cursor to the end of the line.
^D Delete the character under the cursor.
^H Delete the character to the left of the cursor.
^K Delete the characters to the right of the cursor.
^U Delete the whole line.
^P Load the previous query in the buffer.
^N Load the next query in the buffer.

Notice that as mentioned above the command ^D will halt the system if the line
is empty and the cursor is located in the beginning of the line.

1.3 How to run programs

A program consists of a set of predicates. A predicate is made up of a sequence (not
necessarily consecutive) of clauses whose heads have the same predicate symbol
and the same arity. Each predicate is defined in one module stored in a file unless
it is declared to be dynamic.

Compiling and loading

A program needs to be first compiled before being loaded into the system for
execution. To compile a program in a file named file-name, type

compile(file-name).

If the file name has the extension pl, then the extension can be omitted. The
compiled byte-code will be stored in a new file with the same primary name and
the extension out. To load a compiled byte-code program, type

load(file-name).

Consulting

Another way to run a program is to consult it directly into the program area
without compilation. It is possible to trace the execution of consulted programs
but not compiled ones. To consult a program in a file into the program area, type

consult(file-name)

or simply

[file-name].

To see the consulted or dynamically asserted clauses in the program area, use

listing

and to see the clauses defining a predicate Atom/Arity, use

listing(Atom/Arity)

2



Running programs

After a program is loaded, the user can query the program. For each query, the
system executes the program and reports yes when the query succeeds or no when
the query fails. When a query that contains variables succeeds, the system also
reports the bindings for the variables. The user can ask the system to find the
next solution by typing ’;’ after a solution.

Example:

?- member(X,[1,2,3]).

X=1;

X=2;

X=3;

no

The call abort stops the current execution and restores the system to the
top-level.

3



Chapter 2

Programs

This chapter describes the syntax of Prolog. Both programs and data are composed
from terms in Prolog.

2.1 Terms

A term is either a constant, a variable, or a compound term. There are two kinds
of constants: atoms and numbers.

Atoms

Atoms are strings of letters, digits, and underscore marks that begin with a
lower-case letter, or strings of any characters enclosed in single quotation marks.
No atom can stretch over one line in a program and no atom can contain more than
1000 characters. The single quotation mark is also used as the escape character.
So, the atom ′a′′b′ contains three characters, namely a, ’, and b.

Numbers

A number is either an integer or a floating-point number. A decimal integer is a
sequence of decimal digits with an optional sign preceding it. The range of integers
is from −227 + 1 = −268435455 to 227 − 1 = 268435455, inclusive.

An integer can be in the radix notation with a base other than 10. In general,
an integer in the radix notation takes the form <base>’<digits> where base is
a decimal integer and digits is a sequence of digits. If the base is zero, then the
notation represents the code of the character following the single quotation mark.

Examples:

• 2’100 : 4 in binary notation.

• 8’73 : 59 in octal notation.
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• 16’f7: 247 in hexadecimal notation.

• 0’a: the code of ’a’, which is 97.

A floating-point number consists of an integer (optional), then a decimal point
and then another integer1. For example, 23.2 and 0.23 are valid floating-point
numbers.

Variables

Variables look like atoms, except they have names beginning with a capital letter
or an underscore mark. A single underscore mark denotes an anonymous variable.

Compound terms

A compound term is a structure that takes the form of f(t1, . . . , tn) where n is
called the arity, and f called the functor, or function symbol, and t1, . . . , tn are
terms. In B-Prolog, the arity must be greater than 0 and less than 32768. The
terms enclosed in the parentheses are called components of the compound term.

Lists are special structures whose functors are ’.’. The special atom ’[]’

denotes an empty list. The list [H|T] denotes the structure ’.’(H,T).
A string is represented as a list of codes of the characters in the string. For

example, the string "abc" is the same as the list [97,98,99]. The double quota-
tion mark is also used as the escape character for strings. So, the string "a""c" is
the same as [97,34,98] where 34 is the code for the double quotation mark.

Arrays and hashtables are also represented as structures. All built-ins on struc-
tures can be also applied to arrays and hashtables. It is suggested, however, that
only primitives on arrays and hashtables be used to manipulate them.

2.2 Programs

A program is a sequence of logical statements, called Horn clauses, of three types:
facts, rules, and directives.

Facts

A fact is an atomic formula of the form p(t1, t2, . . . , tn) where p is an n-ary predicate
symbol and t1, t2, . . . , tn are terms which are called the arguments of the atomic
formula.

1Exponential notation of floating-point numbers is not supported currently.
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Rules

A rule takes the form of

H :- B1,B2,...,Bn. (n>0)

where H, B1, ..., Bn are atomic formulas. H is called the head and the right
hand side of :- is called the body of the rule. A fact can be considered a special
kind of rule whose body is true.

A predicate is an ordered sequence of clauses whose heads have the same pred-
icate symbol and the same arity.

Directives

A directive gives a query that is to be executed when the program is loaded or
tells the system some pragmatic information about the predicates in the program.
A directive takes the form of

:- B1,B2,...,Bn.

where B1, ..., Bn are atomic formulas.

2.3 Control constructs

In Prolog, backtracking is employed to explore the search space for a query against
a program. Goals in the query are executed from left to right, and the clauses in
each predicate are tried sequentially from the top. A query may succeed, may fail,
or may be terminated because of exceptions. When a query succeeds, the variables
in it may be bound to some terms. The call true always succeeds, and the call
fail always fails. There are several control constructs for controlling backtracking,
for specifying conjunction, negation, disjunction, and if-then-else, and for finding
all solutions.

Cut

Prolog provides an operator, called cut, for controlling backtracking. A cut is
written as ! in programs. A cut in the body of a clause has the effect of removing
the choice points, or alternative clauses, of the goals to the left of it.

Example:

The query p(X) against the following program only gives one solution p(1). The
cut removes the choice points for p(X) and q(X), and thus no further solution will
be returned when the user forces backtracking by typing ’;’. Without the cut, the
query p(X) would have three solutions.
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p(X):-q(X),!.

p(3).

q(1).

q(2).

When a failure occurs, the execution will backtrack to the latest choice point,
i.e., the latest subgoal that has alternative clauses. There are two non-standard
built-ins, called savecp/1 and cutto/1, which can make the system backtrack to
a choice point deep in the search tree. The call savecp(Cp) binds Cp to the latest
choice point frame, where Cp must be a variable. The call cutto(Cp) discards
all the choice points created after Cp. In other words, the call lets Cp be the
latest choice point. Notice that Cp must be a reference to a choice point set by
savecp(Cp).

Conjunction, disjunction, negation, and if-then-else

The construct (P,Q) denotes conjunction. It succeeds if both P and Q succeed.
The construct (not P) and \+ P denote negation. It succeeds if and only if P

fails. No negation is transparent to cuts. In other words, the cuts in a negation
are effective only in the negation. No cut in a negation can remove choice points
created for the goals to the left of the negation.

The construct (P;Q) denotes disjunction. It succeeds if either P or Q succeeds.
Q is executed only after P fails. Disjunction is transparent to cuts. A cut in P or Q
will remove not only the choice points created for the goals to the left of the cut in
P or Q but also the choice points created for the goals to the left of the disjunction.

The control construct (If->Then;Else) succeeds if (1) If and Then succeed,
or (2) If fails and Else succeeds. If is not transparent to cuts, but Then and
Else are transparent to cuts. The control construct (If->Then) is equivalent to
(If->Then;fail).

repeat/0

The predicate repeat, which is defined as follows, is a built-in predicate that is
often used to express iterations.

repeat.

repeat:-repeat.

For example, the query

repeat,write(a),fail

repeatedly outputs ’a’s until the user types control-c to stop it.
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call/1 and once/1

The call(Goal) treats Goal as a subgoal. It is equivalent to Goal. The call
once(Goal) is equivalent to Goal but can only succeed at most once. It is imple-
mented as follows:

once(Goal):-call(Goal),!.

All solutions

• findall(Term,Goal,List) Succeeds if List is the list of instances of Term
such that Goal succeeds. Example:

?-findall(X,member(X,[(1,a),(2,b),(3,c)]),Xs)

Xs=[(1,a),(2,b),(3,c)]

• bagof(Term,Goal,List) The same as findall(Term,Goal,List) except
for its treatment of free variables that do not occur in Term but in Goal. It
will first pick the first tuple of values for the free variables and then use this
tuple of values to find the list of solutions List of Goal. Example:

?-bagof(Y,member((X,Y),[(1,a),(2,b),(3,c)]),Xs)

X=1

Y=[a];

X=2

Y=[b];

X=3

Y=[c];

no

• setof(Term,Goal,List) Like bagof(Term,Goal,List) but the elements of
List are sorted into alphabetical order.
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Chapter 3

Data Types and Built-ins

A data type is a set of values and a set of predicates on the values. The following
depicts the containing relationship of the types available in B-Prolog.

• term

– atom

– number

∗ integer

∗ floating-point number

– variable

– compound term

∗ structure

∗ list

∗ array

∗ hashtable

The B-Prolog system provides a set of built-in predicates for each of the types.
Built-ins cannot be redefined.

3.1 Terms

The built-ins described in this section can be applied to any type of terms.

3.1.1 Type checking

• atom(X) The term X is an atom.

• atomic(X) The term X is an atom or a number.

• float(X) The term X is a floating-point number.

• real(X) The same as float(X).
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• integer(X) The term X is an integer.

• number(X) The term X is a number.

• nonvar(X) The term X is not a variable.

• var(X) The term X is a free variable.

• compound(X) The term X is a compound term. It is true if X is either a
structure or a list.

• ground(X) The term X is ground.

3.1.2 Unification

• X = Y The terms X and Y are unified.

• X \= Y The terms X and Y are not unifiable.

• X?=YThe terms X and Y are unifiable. It is logically equivalent to: not(not(X=Y)).

3.1.3 Term comparison and manipulation

• Term1 == Term2 The terms Term1 and Term2 are strictly identical.

• Term1 \== Term2 The terms Term1 and Term2 are not strictly identical.

• Term1 @=< Term2 The term Term1 precedes or is identical to the term Term2

in the standard order.

• Term1 @> Term2 The term Term1 follows the term Term2 in the standard
order.

• Term1 @>= Term2 The term Term1 follows or is identical to the term Term2

in the standard order.

• Term1 @< Term2 The term Term1 precedes the term Term2 in the standard
order.

• compare(Op,Term1,Term2) Op is the result of comparing the terms Term1

and Term2.

• copy term(Term,CopyOfTerm) CopyOfTerm is an independent copy of Term.

• number vars(Term,N0,N)

• numbervars(Term,N0,N) Number the variables in Term by using the in-
tegers starting from N0. N is the next integer available after the term is
numbered. Let N0, N1, ..., N-1 be the sequence of integers. The first variable
is bound to the term $var(N0), the second is bound to $var(N1), and so
on. Different variables receive different numberings and the occurrences of
the same variable all receive the same numbering. (not in ISO).
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• unnumber vars(Term1,Term2) Term2 is a copy of Term1 with all numbered
variables $var(N) being replaced by Prolog variables. Different numbered
variables are replaced by different Prolog variables.

Number the variables in Term by using the integers starting from N0. N is the
next integer available after the term is numbered. Let N0, N1, ..., N-1 be the
sequence of integers. The first variable is bound to the term $var(N0), the
second is bound to $var(N1), and so on. Different variables receive different
numberings and the occurrences of the same variable all receive the same
numbering. (not in ISO).

• vars set(Term,Set) Set is a list of variables that occur in Term.

3.2 Numbers

An arithmetic expression is a term built from numbers, variables, and the arith-
metic functions listed in Table 3.1. An expression must be ground when it is
evaluated.

• Exp1 is Exp2 The term Exp2 must be a ground expression and Exp1 must
be either a variable or a ground expression. If Exp1 is a variable, then the call
binds the variable to the result of Exp2. If Exp1 is a non-variable expression,
then the call is equivalent to Exp1 =:= Exp2.

• X =:= Y The expression X is numerically equal to Y.

• X =\= Y The expression X is not numerically equal to Y.

• X < Y The expression X is less than Y.

• X =< Y The expression X is less than or equal to Y.

• X > Y The expression X is greater than Y.

• X >= Y The expression X is greater than or equal to Y.

3.3 Lists and structures

• Term =.. List The functor and arguments of Term comprise the list List.

• append(L1,L2,L3) True when L3 is the concatenation of L1 and L2. (not in
ISO).

• arg(ArgNo,Term,Arg) The ArgNoth argument of the term Term is Arg.

• functor(Term,Name,Arity) The principal functor of the term Term has the
name Name and arity Arity.
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X + Y addition.
X - Y subtraction.
X * Y multiplication.
X / Y division.
X // Y integer division.
X mod Y modulo.
rem(X,Y) remainder (X-(X//Y)*Y).
X /> Y integer division (ceiling(X/Y)).
X /< Y integer division (floor(X/Y)).
X ** Y power.
-X sign reversal.
X >> Y bit shift right.
X << Y bit shift left.
X /\ Y bit wise and.
X \/ Y bit wise or.
\ X bit wise complement.

abs(X) absolution value.
atan(X) arctangent(argument in radians).
ceiling(X) smallest integer not smaller than X.
cos(X) cosine (argument is radians).
exp(X) natural antilogarithm, eX .
integer(X) convert X to integer.
float(X) convert X to float.
floor(X) largest integer not greater than X.
log(X) natural logarithm, logeX.
max(X,Y) the maximum of X and Y (not in ISO).
min(X,Y) the minimum of X and Y (not in ISO).
pi the constant pi (not in ISO).
random a random number (not in ISO).
random(Seed) a random number generated by using Seed (not in ISO).
round(X) integer nearest to X.
sign(X) sign (-1 for negative, 0 for zero, and 1 for positive).
sin(X) sine (argument in radians).
sqrt(X) square root.
truncate(X) integer part of X.

Figure 3.1: Arithmetic functions.
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• length(List,Length) The length of list List is Length. (not in ISO).

• membchk(X,L) True when X is included in the list L. ’==/2’ is used to test
whether two terms are the same. (not in ISO).

• member(X,L)True when X is a member of the list L. Instantiates X to different
elements in L upon backtracking. (not in ISO).

• reverse(L1,L2) True when L2 is the reverse of L1. (not in ISO).

• setarg(ArgNo,CompoundTerm,NewArg) Replaces destructively the ArgNoth
argument of CompoundTerm with NewArg. The update is undone on back-
tracking. (not in ISO).

• sort(List1,List2) Sorting the list List1 yields List2. (not in ISO).

3.4 Arrays (not in ISO)

An array is a collection of elements. As array elements can be arrays, arrays can be
multi-dimensional. Arrays are created by the built-in predicate new array(X,Ranges)

where X must be an uninstantiated variable and Ranges must be a list of positive
integers. Let Ranges be [N1,...,Nn]. Then, N1 is the size of the first dimen-
sion, N2 is the size of the second dimension, and so on. For example, the call
new array(X,[10,20]) binds X to a two dimensional array where the first dimen-
sion has 10 elements and the second dimension has 20 elements. The 200 array
elements are free variables when the array is created.

The operator @= is provided for initializing and accessing arrays. The call
A^[I] @= Elm unifies the Ith element of A with Elm. The index I must be an
expression whose value is from 1 to the size of the array. A type exception will be
raised if A is not an array. This notation extends to multi-dimensional arrays. In
general, the call A^[I1,...,In] @= Elm is equivalent to:

A^[I1] @= T, T^[I2,...,In] @= Elm

The operator @= can also be used to initialize arrays. For example,

new_array(X,[3]), X @= [1,2,3]

creates a one-dimensional array with three integers 1, 2, and 3, and the following

new_array(X,[2,2]), X @= [[1,2],[3,4]]

creates a two-dimensional array with four integers. Notice that lists or lists of lists
are not treated as arrays in other contexts.

• new array(X,Ranges) X is an array whose dimension sizes are specified by
Ranges.

• X^length @= Length The length of the array X is Length. If X is a multi-
dimensional array, then Length is the size of the first dimension.
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• X^dimension @= Dim Dim is the dimension of X.

• X^rows @= Rows Rows is a list of rows in the array X. The dimension of X
must be no less than 2.

• X^columns @= Cols Cols is a list of columns in the array X. The dimension
of X must be no less than 2.

• is array(A) Succeeds if A is an array.

• X^Indexes @= Elm The element at Indexes of the array X is Elm. Indexes
must be a list of integers [I1,I2,...,In] where Ii must be an integer in
the range from 1 to the size of the corresponding dimension. Notice that
indexes start from 1, which is different from in many other languages.

• X^Indexes @:= Elm Destructively replace the element at Indexes of the
array X by Elm. The update is undone upon backtracking.

• array to list(X,List) The term List is a list of all elements in array X.
Suppose X is an n dimensional array and the sizes of the dimensions are
N1, N2, . . ., and Nn. Then List contains the elements from [1,...,1],
[1,...,2], to [N1,N2,...,Nn].

3.5 Hashtables (not in ISO)

• new hashtable(T) Create a hashtable T with 7 bucket slots.

• new hashtable(T,N) Create a hashtable T with N bucket slots. N must be a
positive integer.

• hashtable put(T,Key,Value) Put Value under the key Key to hashtable T.

• hashtable get(T,Key,Value)Get Value that has the key Key from hashtable
T. Fail if no such a value exists.

• hashtable size(T,Size) The size of hashtable T, i.e., the number of bucket
slots, is Size.

• hash code(Term,Code) The hash code of Term is Code.

• hashtable to list(T,List) List is the list of key and value pairs in hashtable
T.

• hashtable keys to list(T,List) List is the list of keys of the elements in
hashtable T.

• hashtable values to list(T,List) List is the list of values of the ele-
ments in hashtable T.
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3.6 Character-string operations

• atom chars(Atom,Chars) Chars is the list of characters of Atom.

• atom codes(Atom,Codes) Codes is the list of numeric codes of the characters
of Atom.

• atom concat(Atom1,Atom2,Atom3) The concatenation of Atom1 and Atom2

is equal to Atom3. Either both Atom1 and Atom2 are atoms or Atom3 is an
atom.

• atom length(Atom,Length) Length (in characters) of Atom is Length.

• char code(Char,Code) The numeric code of the character Char is Code.

• number chars(Num,Chars) Chars is the list of digits (including ’.’) of the
number Num.

• number codes(Num,Codes) Codes is the list of numeric codes of digits of the
number Num.

• sub atom(Atom,PreLen,Len,PostLen,Sub) The atom Atom is divided into
three parts, Pre, Sub, and Post with respective lengths of PreLen, Len, and
PostLen.

• name(Const,CharList) The name of atom or number Const is the string
CharList. (not in ISO).

• parse atom(Atom,Term,Vars) Convert Atom to Term where Vars is a list
of elements in the form (VarName=Var). It fails if Atom is not syntactically
correct. Examples:

| ?- parse_atom(’X is 1+1’,Term,Vars)

Vars = [X=_8c019c]

Term = _8c019c is 1+1?

| ?- parse_atom(’p(X,Y),q(Y,Z)’,Term,Vars)

Vars = [Z=_8c01d8,Y=_8c01d4,X=_8c01d0]

Term = p(_8c01d0,_8c01d4),q(_8c01d4,_8c01d8)?

| ?- parse_atom(’ a b c’,Term,Vars)

*** syntax error ***

a <<here>> b c

no

(not in ISO).

• parse atom(Atom,Term) Equivalent to parse atom(Atom,Term, )
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• parse string(String,Term,Vars) Similar to parse atom but the first ar-
gument is a list of codes. Example:

| ?- name(’X is 1+1’,String),parse_string(String,Term,Vars)

Vars = [X=_8c0294]

Term = _8c0294 is 1+1

String = [88,32,105,115,32,49,43,49]?

(not in ISO).

• parse string(String,Term)Equivalent to parse string(String,Term, ).

• term2atom(Term,Atom) Atom is an atom that encodes Term. Example:

| ?- term2atom(f(X,Y,X),S),writeq(S),nl.

’f(_9250158,_9250188,_9250158)’

S=f(_9250158,_9250188,_9250158)

(not in ISO).

• term2string(Term,String) Equivalent to:

term2atom(Term,Atom),atom_codes(Atom,String)

(not in ISO).

• write string(String) Write the list of codes String as a readable string.
For example, write string([97,98,99]) outputs "abc". (not in ISO).
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Chapter 4

Exception Handling

4.1 Exceptions

In addition to success and failure, a program may give an exception that is thrown
explicitly by a call of throw/2 or raised by a built-in or caused by the user’s typing
of control-c. An exception raised by a built-in is an one-argument structure where
the functor tells the type and the argument tells the source of the exception. The
following lists some of the exceptions:

• divide by zero(Goal): Goal divides a number by zero.

• file not found(Goal): Goal tries to open a file that does not exist.

• illegal arguments(Goal): Goal has an illegal argument.

• number expected(Goal): Goal evaluates an invalid expression.

• out of range(Goal): Goal tries to access an element of a structure or an
array using an index that is out of range.

The exception caused by the typing of control-c is an atom named interrupt.
An exception that is not caught by the user’s program will be handled by the

system. The system reports the type and the source of the exception, displays the
chain of calls that led to the exception, and aborts execution of the query. For
example, for the query a=:=1, the system will report:

** Error ** number_expected: a=:=1

where number expected is the type and a=:=1 is the source.

4.2 throw/1

A user’s program can throw exceptions too. The call throw(E) raises an exception
E to be caught and handled by some ancestor catcher or handler. If there is no
catcher available in the chain of ancestor calls, the system will handle it.
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4.3 catch/3

All exceptions including those raised by built-ins and interruptions can be caught
by catchers. A catcher is a call in the form:

catch(Goal,ExceptionPattern,Recovergoal)

which is equivalent to Goal except when an exception is raised during the ex-
ecution of Goal that unifies ExceptionPattern. When such an exception is
raised, all the bindings that have been performed on variables in Goal will be
undone and Recovergoal will be executed to handle the exception. Notice that
ExceptionPattern is unified with a renamed copy of the exception before Recovergoal
is executed. Notice also that only exceptions that are raised by a descendant call
of Goal can be caught.

Examples:

• q(X), which is defined in the following, is equivalent to p(X) but all inter-
ruptions are ignored.

q(X):-catch(p(X),interrupt,q(X)).

• The query catch(p(X),undefined predicate( ),fail) fails p(X) if an un-
defined predicate is called during its execution.

• The query catch(q,C,write(hello q)), where q is defined in the following,
succeeds with the unifier C=c and the message hello q.

q :- r(c).

r(X) :- throw(X).

• The query catch(p(X),E,p(X)==E) against the following program fails be-
cause E is unified with a renamed copy of p(X) rather than p(X) itself.

p(X):-throw(p(X)).
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Chapter 5

Directives and Prolog Flags

Directives inform the compiler or interpreter of some information about the pred-
icates in a program1.

5.1 Mode declaration

For Edinburgh style programs, the programmer can provide the compiler with
modes to help it generate efficient code2. The mode of a predicate p indicates how
the arguments of any call to p are instantiated just before the call is evaluated.
The mode of a predicate p of n arguments is declared as

:-mode p(M1,. . .,Mn).

where Mi is c (or +), f (or −), nv, d (or ?), or a structured mode. The mode
c means a closed term that cannot be changed by the predicate; f means a free
variable; nv means a non-variable term; and d means a don’t-know term. The
structured mode l(M1,M2) means a list whose head and tail have modes M1 and
M2 respectively; the structured mode s(M1, . . . Mn) means a compound term
whose arguments have modes M1, . . . , and Mn respectively.

5.2 include/1

The directive

:-include(File).

1The directives multifile/1, discontiguous/1, and char conversion/2 in ISO-Prolog are
not supported currently. If a predicate is defined in multiple files or is discontiguous, it must be
declared dynamic; otherwise, only part of the definition is effective. A clause in the form :-Goal,
where Goal is none of the directives described here, specifies a query to be executed after the
program is loaded or consulted. For example, the clause :-op(Priority,Specifier,Atom) will
invoke the built-in predicate op/3 and change the atom Atom into an operator with properties as
specified by Specifier and Priority.

2In version 6.0, mode declarations are ignored by the compiler since wrong mode declarations
can cause vague bugs.
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will be replaced by the directives and clauses in File which must be a valid Prolog
text file. The extension name can be omitted if it is pl.

5.3 Initialization

The directive

:-initialization(Goal).

is equivalent to:

:-Goal.

unless Goal is a directive. It specifies that as soon as the program is loaded or
consulted, the goal Goal is to be executed.

5.4 Dynamic declaration

A predicate is either static or dynamic. Static predicates cannot be updated during
execution. Dynamic predicates are stored in consulted form, and can be updated
during execution. Predicates are assumed to be static unless they are explicitly
declared to be dynamic. To declare predicates to be dynamic, use the following
declaration:

:-dynamic Atom/Arity,...,Atom/Arity.

5.5 Table declaration

A tabled predicate is a predicate for which answers will be memorized in a table
and variant calls of the predicate will be resolved by using the answers. The
declaration,

:-table P1/N1, ..., Pk/Nk.

declares that the predicates Pi/Ni (i=1,. . .,k) are tabled predicates.

5.6 Prolog flags

A flag is an atom with an associated value. There are five flags being supported
currently:

• unknownThe value is either fail, meaning that calls to undefined predicates
will be treated as failure, or error, meaning that an exception will be raised.
The default value for the flag is error.
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• singleton This flag governs whether warning messages about singleton vari-
ables will be emitted or not. The value is either on or off, and the default
value is on.

• redefined This flag governs whether warning messages about redefined
predicates are emitted or not. The value is either on or off, and the de-
fault value is on.

• gc Turn on or off the garbage collector (see Garbage collection).

• gc threshold Set a new threshold constant (see Garbage collection).

• action warning Issue a warning message when the action of an action rule
fails. The default value is on.

The user can change the value of a flag to affect the behavior of the system
and access the current value of a flag.

• set prolog flag(Flag,Value) Set value of Flag to be Value.

• current prolog flag(Flag,Value) Value is the current value of Flag.
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Chapter 6

Debugging

6.1 Execution modes

There are two execution modes: usual mode and debugging mode. The query

trace

switches the execution mode to the debugging mode, and the query

notrace

switches the execution mode back to the usual mode. In debugging mode, the
execution of asserted and consulted clauses can be traced. To trace part of the
execution of a program, use spy to set spy points.

spy(Atom/Arity).

The spy points can be removed by

nospy

To remove only one spy point, use

nospy(Atom/Arity)

6.2 Debugging commands

In debugging mode, the system displays a message when a predicate is entered
(Call), exited (Exit), reentered (Redo) or has failed (Fail). After a predicate is
entered or reentered, the system waits for a command from the user. A command
is a single letter followed by a carriage-return, or may simply be a carriage-return.
The following commands are available:

• RET - This command causes the system to display a message at each step.

• c(reep) - the same as a carriage-return RET.
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• l(eap) - causes the system to run in usual mode until a spy-point is reached.

• s(kip) - causes the system to run in usual mode until the predicate is finished
(Exit or Fail).

• r(epeat creep) - causes the system to creep without asking for further com-
mands from the user.

• a(bort) - causes the system to abort execution.

• h(elp) or ? - causes the system to display available commands and their
meaning.
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Chapter 7

Input and Output

There are two groups of file manipulation predicates in B-Prolog. One group
includes all input/output predicates described in the ISO draft for Prolog and the
other group is inherited from DEC-10 Prolog. The latter is implemented by using
the predicates in the former group.

7.1 Stream

A stream is a connection to a file. The user’s terminal is treated as a special file.
A stream can be referred to by a stream identifier or its aliases. By default, the
streams user input and user output are already open, referring to the standard
input (keyboard) and the standard output (screen) respectively.

• open(FileName,Mode,Stream,Options)

• open(FileName,Mode,Stream)

Opens a file for input or output as indicated by I/O mode Mode and the
list of stream-options Options. If it succeeds in opening the file, it unifies
Stream with the stream identifier of the associated stream. If FileName

is already opened, this predicate unifies Stream with the stream identifier
already associated with the opened stream, but does not affect the contents
of the file.

An I/O mode is one of the following atoms:

– read - Input. FileName must be the name of a file that already exists.

– write - Output. If the file identified by FileName already exists, then
the file is emptied; otherwise, a file with the name FileName is created.

– append - Output. Similar to write except that the contents of a file
will not be lost if it already exists.

The list of stream-options is optional and can be empty or a list that includes1:

1The option reposition(true) in ISO-Prolog is not supported currently.
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– type(text) or type(binary). The default is type(text). This option
does not have any effect on file manipulations.

– alias(Atom). Gives the stream the name Atom. A stream-alias can
appear anywhere a stream can occur. A stream can be given multiple
names, but an atom cannot be used as the name of more than one
stream.

– eof action(Atom). Specifies what to do upon repeated attempts to
read past the end of the file. Atom can be2:

∗ error - raises an error condition.

∗ eof code (the default)- makes each attempt return the same code
that the first one did (-1 or end of file).

• close(Stream,Options)

• close(Stream)

Closes a stream identified by Stream, a stream identifier or a stream alias.
The Options can include:

– force(false) - raises an error condition if an error occurs while closing
the stream.

– force(true) - succeeds in any case.

• stream property(Stream,Property) It is true if the stream identified by
the stream identifier or stream alias Stream has a stream property Property.
Property may be one of the following3:

– file name(Name) - the file name.

– mode(M) - input or output.

– alias(A) - A is the stream’s alias if any.

– end of stream(E) - where E is at, past or no, indicating whether read-
ing has just reached the end of file, has gone past it or has not reached
it.

– eof action(A) - action taken upon reading past the end of file.

– type(T) - T is the type of the file.

• current input(Stream) It is true if the stream identifier or stream alias
Stream identifies the current input stream.

• current output(Stream) It is true if the stream identifier or stream alias
Stream identifies the current output stream.

• set input(Stream) Sets the stream identified by Stream to be the current
input stream.

2the option eof action(reset) in ISO-Prolog is not supported currently.
3position(P) and reposition(B) in ISO-Prolog are not supported currently.
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• set output(Stream) Sets the stream identified by Stream to be the current
output stream.

• flush output Sends any output which is buffered for the current output
stream to that stream.

• flush output(Stream) Sends any output which is buffered for the stream
identified by Stream to the stream.

• at end of stream It is true if reading the current input stream has reached
the end of file or is past the end of file.

• at end of stream(Stream) It is true if reading the input stream Stream has
reached the end of file or is past the end of file.

7.2 Character input/output

• get char(Stream,Char) Inputs a character (if Stream is a text stream) or
a byte (if Stream is a binary stream) from the stream Stream and unifies it
with Char. After reaching the end of file, it unifies Char with end of file.

• get char(Char) The same as the previous one except that the current input
stream is used.

• peek char(Stream,Char) The current character in Stream is Char. The
position pointer of Stream remains the same after this operation.

• peek char(Char) The same as peek char(Stream,Char) except that the
current input stream is used.

• put char(Stream,Char) Outputs the character Char to the stream Stream.

• put char(Char) Outputs the character Char to the current output stream.

• nl(Stream) Outputs the new line character to the stream Stream.

• nl Outputs the new line character to the current output stream.

7.3 Character code input/output

• get code(Stream,Code) Inputs a byte from Stream and unifies Code with
the byte. After reaching the end of file, it unifies Code with -1.

• get code(Code) The same as the previous one except that the current input
stream is used.

• peek code(Stream,Code) The current code in Stream is Code. The postion
pointer of Stream remains the same after this operation.
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• peek code(Code) The same as

• peek code(Stream,Code) except that the current input stream is used.

• put code(Stream,Code) Outputs a byte Code to the stream Stream.

• put code(Code) Outputs a byte Code to the current output stream.

7.4 Byte input/output

• get byte(Stream,Byte) Inputs a byte from Stream and unifies Byte with
the byte. After reaching the end of file, it unifies Byte with -1.

• get byte(Byte) The same as the previous one except that the current input
stream is used.

• peek byte(Stream,Byte) The current byte in Stream is Byte. The postion
pointer of Stream remains the same after this operation.

• peek byte(Byte) The same as

• peek byte(Stream,Byte) except that the current input stream is used.

• put byte(Stream,Byte) Outputs a byte Byte to the stream Stream.

• put byte(Byte) Outputs a byte Byte to the current output stream.

7.5 Term input/output

These predicates4 enable a Prolog term to be input from, or to be output to a
stream. A term to be input must be followed by a period and then by white space.

• read term(Stream,Term,Options) Inputs a term Term from the stream
Stream using options Options. After reaching the end of file, it unifies
Term with end of file. The Options is a list of options that can include:

– variables(V list) After reading a term, V list will be unified with
the list of variables that occur in the term.

– variable names(VN list) After reading a term, VN list will be uni-
fied with a list of elements in the form of N = V where V is a variable
occurring in the term and N is the name of V.

– singletons(VS list) After reading a term, VS list will be unified
with a list of elements in the form N = V where V is a singleton variable
in Term and N is its name.

4The predicates char conversion/2 and current char conversion/2 in ISO-Prolog are not
provided currently.
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• read term(Term,Options) The same as the previous one except that the
current input stream is used.

• read(Stream,Term) Equivalent to: read term(Stream,Term),[]).

• read(Term) Equivalent to: read term(Term,[]).

• write term(Stream,Term,Options) Outputs a term Term into a stream
Stream using the option list Options. The list of options Options can
include5:

– quoted(Bool) - When Bool is true each atom and functor is quoted
such that the term can be read by read/1.

– ignore ops(Bool) - When Bool is true each compound term is output
in functional notation, i.e., in the form of f(A1,. . .,An) where f is the
functor and Ai (i=1,...,n) are arguments.

• write term(Term,Options) The same as the previous one except that the
current output stream is used.

• write(Stream,Term) Equivalent to: write term(Stream,Term,[]).

• write(Term) Equivalent to:

current_output(Stream),write(Stream,Term).

• write canonical(Stream,Term) Equivalent to:

write_term(Stream,Term,[quoted(true),ignore_ops(true)]).

• write canonical(Term) Equivalent to:

current_output(Stream),write_canonical(Stream,Term).

• writeq(Stream,Term) Equivalent to:

write_term(Stream,Term,[quoted(true)]).

• writeq(Term) Equivalent to:

current_output(Stream),writeq(Stream,Term).

• op(Priority,Specifier,Name)Makes atom Name an operator of type Specifier
and priority Priority6. Specifier specifies the class (prefix, infix or

postfix) and the associativity, which can be:

5The option numbervars(Bool) in ISO-Prolog is not supported currently.
6The predefined operator ’,’ can not be altered.
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– fx - prefix, non-associative.

– fy - prefix, right-associative.

– xfx - infix, non-associative.

– xfy - infix, right-associative.

– yfx - infix, left-associative.

– xf - postfix, non-associative.

– yf - postfix, left-associative.

The priority of an operator is an integer greater than 0 and less than 1201.
The lower the priority, the stronger the operator binds its operands.

• current op(Priority,Specifier,Operator) It is true if Operator is an
operator with properties defined by a specifier Specifier and precedence
Priority.

7.6 Input/output of DEC-10 Prolog (not in ISO)

This section describes the built-in predicates for file manipulation inherited from
DEC-10 Prolog. These predicates refer to streams by file names. The atom user

is a reference to both the standard input and standard output streams.

• see(FileName) Makes the file FileName the current input stream. It is
equivalent to:

open(FileName,read,Stream),set_input(Stream).

• seeing(File) The current input stream is named FileName. It is equivalent
to:

current_input(Stream),stream_property(Stream,file_name(FileName)).

• seen Closes the current input stream. It is equivalent to:

current_input(Stream),close(Stream).

• tell(FileName) Makes the file FileName the current output stream. It is
equivalent to:

open(FileName,write,Stream),set_output(Stream).

• telling(FileName) The current output stream is named FileName. It is
equivalent to:

current_output(Stream),

stream_property(Stream,file_name(FileName).
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• told Closes the current output stream. It is equivalent to:

current_output(Stream),close(Stream).

• get(Code) Code is the next printable byte code in the current input stream.

• get0(Code) Code is the next byte code in the current input stream.

• put(Code) Output the character to the current output stream, whose code
is Code.

• tab(N) Outputs N spaces to the current output stream.

• exists(F) Succeeds if the file F exists.

7.7 Formatted output of terms

The predicate format(Format,L), which mimics the printf function in C, prints
the elements in the list L under the control of Format, a string of characters. There
are two kinds of characters in Format: normal characters are output verbatim, and
control characters formats the elements in L. Control characters all start with ~.
For example,

format("~thello~t world~t~a~t~4c~t~4d~t~7f",[atom,0’x,123,12.3])

give the following output:

hello world atom xxxx 123 12.300000

The control characters ~a, ~4c,~4d, and ~7f control the output of the atom atom,
character 0’x, integer 123, and float 12.3, respectively. The control characters ~t
put the data into different columns.

• format(Format,L): Output the arguments in the list L under the control of
Format.

• format(Stream,Format,L): The same as format(Format,L) but it sends
output to Stream.

The following control characters are supported:

• ~~: Print ~.

• ~N|: Specifies a new position for the next argument.

• ~N+: The same as ~N|.

• ~a: print the atom without quoting. Exception is raised if the argument is
not an atom.
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• ~Nc: The argument must be a character code. Output the argument N times.
Output the argument once if N is missing.

• ~Nf,~Ne, ~Ng: The argument must be a number. The C function printf is
called to print the argument with the format "%.Nf", "%.Ne", and "%.Ng",
respectively. ".N’’ does not occur in the format for the C function if N is
not specified in the Prolog format.

• ~Nd: The argument must be a number. N specifies the width of the argument.
If the argument occupies more than N spaces, then enough spaces are filled
to the left of the number.

• ~Ns: The argument must be a list of character codes. Exactly N characters
will be printed. Spaces are filled to the right of the string if the length of the
string is less than N.

• ~k: Pass the argument to write canonical/1.

• ~p: Pass the argument to print/1.

• ~q: Pass the argument to writeq/1.

• ~w: Pass the argument to write/1.

• ~Nn: Print N new lines.

• ~t: Move the position to the next column. Each column is assumed to be 8
characters long.
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Chapter 8

Dynamic Clauses and Global
Variables

This chapter describes predicates for manipulating dynamic clauses.

8.1 Predicates of ISO-Prolog

• asserta(Clause) Asserts Clause as the first clause in its predicate.

• assertz(Clause) Asserts Clause as the last clause in its predicate.

• assert(Clause) The same as assertz(Clause)

• retract(Clause) Removes from the predicate a clause that unifies Clause.
Upon backtracking, removes the next unifiable clause.

• abolish(Functor/Arity) Completely removes the dynamic predicate iden-
tified by Functor/Arity from the program area.

• clause(Head,Body) It is true if Head and Body unify with the head and the
body of a dynamically asserted (or consulted) clause. The body of a fact is
true. Gives multiple solutions upon backtracking.

• current predicate(Functor/Arity) It is true if Functor/Arity identifies
a defined predicate, whether static or dynamic, in the program area. Gives
multiple solutions upon backtracking.

8.2 Predicates of DEC-10 Prolog (not in ISO)

• abolish Removes all the dynamic predicates from the program area.

• recorda(Key,Term,Ref) Makes the term Term the first record under the
key Key with a unique identifier Ref.
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• recorded(Key,Term,Ref) The term Term is currently recorded under the
key Key with a unique identifier Ref.

• recordz(Key,Term,Ref)Makes the term Term the last record under the key
Key with a unique identifier Ref.

• erase(Ref) Erases the record whose unique identifier is Ref.

8.3 Global variables (not in ISO)

A global variable has a name F/N and a value associated with it. A name cannot
be used at the same time as both a global variable name and a predicate name.

• global set(F,N,Value) Set the value of the global variable F/N to Value.
After this call, the name F/N becomes a global variable. If the name F/N was
used as a predicate name, then all the information about the predicate will
be erased.

• global set(F,Value) Equivalent to global set(F,0,Value).

• global get(F,N,Value) The value associated with the global variable F/N

is Value. If F/N is not a global variable, then the call fails.

• global get(F,Value) Equivalent to global get(F,0,Value).
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Chapter 9

Memory Management and
Garbage Collection

In the ATOAM, there are five data areas: program area, heap, control stack, trail
stack, and table area. The program area contains, besides programs, a symbol
table that stores information about the atoms, functions and predicate symbols in
the programs. The heap stores terms created during execution. The control stack
stores activation frames associated with predicate calls. The trail stack stores
updates of those words that must be unbound upon backtracking. The tail area is
used to store tabled subgoals and their answers.

9.1 Memory allocation

The shell file bp specifies the sizes (number of words) for the data areas. Initially,
the following values are given:

set PAREA=2000000

set STACK=2000000

set TRAIL=1000000

set TABLE=20000

The PAREA is the size for the program area, STACK is the total size for the control
stack and the heap, TRAIL is the size for the trail stack, and TABLE is the size for
the table area. The user can freely update these values. The user can check the
current memory consumption by using statistics/0 or statistics/2.

The user can modify the shell script file to increase or decrease the amounts.
The user can also specify the amount of space allocated to a stack when starting
the system. For example,

bp -s 4000000

allocates 4 mega words, i.e., 16 mega bytes, to the control stack. You can use
the parameter ’-b’ to specify the amount allocated to the trail stack, ’-p’ to the
program area, and ’-t’ to the table area.
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9.2 Garbage collection

B-Prolog incorporates an incremental garbage collector for the control stack and
the heap. The garbage collector is active by default. It can be disabled by setting
the Prolog flag gc to be off:

set_prolog_flag(gc,off)

The garbage collector is invoked automatically to reclaim the space taken by
garbage in the top-most segment when the following condition is met:

Htop > C ×
Havail

Hmax − Havail

where Htop is the amount of memory in the heap top-segment, Havail is the amount
of available heap space, Hmax is the total amount of space allocated to the heap,
and C is a constant. GC will be invoked more frequently with the amount of heap
space becoming less and less compared with the amount of consumed space. The
threshold constant C is set to be 1000 bytes as a default. The user can reset the
value by using the following primitive.

set_prolog_flag(gc_threshold,Value)

After the call, Value will become the new threshold constant.
The user can start the garbage collector explicitly by calling the following

built-in predicate:

garbage_collect

and can check the number of garbage collections that have been performed since
the system was started by using statistics/0 or statistics/2.
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Chapter 10

Matching Clauses

Matching clauses comprise a language for writing determinate Prolog programs.
A matching clause takes the following form:

H, G => B

where H is an atomic formula, G and B are two sequences of atomic formulas. H is
called the head, G the guard, and B the body of the clause. No call in G can bind
variables in H and all calls in G must be in-line. In orther words, the guard must
be flat. The following types of predicates can occur in G:

• Type checking

– integer(X), real(X), float(X), number(X), var(X), nonvar(X), atom(X),
atomic(X): X must be a variable that occurs before in either the head
or some other call in the guard.

• Matching

– X=Y: One of the arguments must be a non-variable term and the other
must be a variable that occurs before. The non-variable term serves as
a pattern and the variable refers to an object to be matched against the
pattern. This call succeeds when the pattern and the object become
identical after a substitution is applied to the pattern. For instance, the
call f(X)=Y in a guard succeeds when Y is a structure whose functor is
f/1.

• Term inspection

– functor(T,F,N): T must be a variable that occurs before. The call
succeeds if the T’s functor is F/N. F can be either an atom or a variable.
If F is not a first-occurrence variable, then the call is equivalent to
functor(T,F1,N),F1==F. Similarly, N can be either an integer or a
variable. If N is not a first-occurrence variable, then the call is equivalent
to functor(T,F,N1),N1==N.
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– arg(N,T,A): T must be a variable that occurs before and N must be
an integer that is in the range of 1 and the arity of T, inclusive. If
A is a first-occurrence variable, the call succeeds and binds A to the
Nth argument of T. If A is a variable that occurs before, the call is
equivalent to arg(N,T,A1),A1==A. If A is a non-variable term, then the
call is equivalent to arg(N,T,A1),A1=A where A is a pattern and A1 is
an object to be matched against A.

– T1 == T2: T1 and T2 are identical terms.

– T1 \== T2: T1 and T2 are not identical terms.

• Arithmetic comparisons

– E1 =:= E2,E1 =\= E2, E1 > E2, E1 >= E2, E1 < E2, E1 =< E2: E1

and E2 must be ground expressions.

For a call C, matching rather than unification is used to select a matching clause
in its predicate. The matching clause H, G => B is applicable to C if C matches H
(i.e., C and H become identical after a substitution is applied to H) and G succeeds.
When applying the matching clause to C, the system rewrites C into B.

Example:

membchk(X,[X|_]) => true.

membchk(X,[_|Ys]) => membchk(X,Ys).

This predicate checks whether or not an element given as the first argument
occurs in a list given as the second argument. The head of the first clause
membchk(X,[X| ]) matches any call whose first argument is identical to the first el-
ement of the list. For instances, the calls membchk(a,[a]) and membchk(X,[X,Y])

succeed, and the calls membchk(a,Xs), membchk(a,[X]) and membchk(X,[a]) fail.

Example:

append([],Ys,Zs) => Zs=Xs.

append([X|Xs],Ys,Zs) => Zs=[X|Zs1],append(Xs,Ys,Zs1).

This predicate concatenates two lists given as the first two arguments and re-
turns the concatenated list through the third argument. Notice that all output
unifications that bind variables in heads must be moved to the right hand sides
of clauses. In comparison with the counterpart in standard Prolog clauses, this
predicate cannot be used to split a list given as the third argument. In fact,
the call append(Xs,Ys,[a,b]) fails since it matches neither head of the clauses.
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Matching clauses are determinate and employ one-directional matching rather
than unification in the execution. The compiler takes advantage of these facts to
generate more compact and faster code for matching clauses. While the compiler
generates indexing code for Prolog clauses on at most one argument, it generates
indexing code on as many arguments as possible. A program in matching clauses
can be significantly faster than its counterpart in standard clauses if multi-level
indexing is effective.

When consulted into the program code area, matching clauses are transformed
into Prolog clauses that preserve the semantics of the original clauses. For example,
after being consulted the membchk predicate becomes:

membchk(X,Ys):- $internal_match([Y|_],Ys),X==Y,!.

membchk(X,Ys):-$internal_match([_|Ys1],Ys),membchk(X,Ys1).

Where the predicate $internal match(P,O) matches the object O against the
pattern P.
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Chapter 11

Action Rules and Events

Action rules comprise a programming construct that facilitates the description of
reactive agents. An action rule specifies a pattern for agents, an action that the
agents can carry out, and an event pattern for events that can activate the agents.
An agent is a call or subgoal that is reactive to events. Agents are a more general
notion than freeze in Prolog-II and processes in concurrent logic programming in
the sense that the agents can be responsive to various kinds of events including
user-defined ones. This chapter describes the syntax and semantics of action rules.
Examples will be given in later chapters on the use of action rules to program
constraint propagators and interactive user interfaces.

11.1 Syntax

An action rule, which extends a matching clause, takes the following form:

H, G, {E} => B

The difference between an action rule and a matching clause is that an action rule
has an event pattern E enclosed in a pair of braces after the guard.

There are a set of built-in events provided for programming constraint propaga-
tors, time-related behavior, and interactive graphical user interfaces. For example:

• ins(X) posted when the variable X is instantiated.

• minmax(X) posted when the bound of the domain variable X is updated.

• dom(X,E) posted when an inner element E is excluded from the domain of X.

• time(T) posted by the timer T every time a time interval elapses1.

A user can create and post his/her own events and define agents to handle them.
A user-defined event takes the form of event(X,T) where X is a variable, called a
suspension variable, that connects the event with its handling agents, and T is a

1Timers work on Windows only now
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Prolog term that contains the information to be transmitted to the agents. If the
event poster does not have any information to be transmitted to the agents, then
the second argument T can be omitted.

For example, the following defines an agent that echoes the messages sent to
it by event posters.

echo_agent(X), {event(X,Message)} => write(Message).

Events are posted in most cases by built-ins, but a user’s program can also post
events by using the primitive post(Event).

• post(event(X,T)) Post an event event(X,T) to activate the agents on the
suspension variable X. T carries some extra information to be transmitted to
the agents.

• post(event(X)) Equivalent to post(event(X,[])).

For instance, the following query,

echo_agent(X), post(event(X,hello))

outputs the message hello. Notice that the event event(X,hello)will be ignored
if no agent is waiting for it. Therefore, for the following query,

post(event(X,hello)), echo_agent(X)

no output will be given since the event is posted before the agent is created.
A predicate definition that contains at least one action rule is called an agent

definition. Action rules and matching clauses can be mixed in agent definitions,
but no standard Prolog clause is allowed.

11.2 Operational semantics

An action rule H,G,{E} => B is said to be applicable to an agent C if C matches H
and the guard G succeeds. For an agent, the system searches for an applicable rule
in its definition sequentially from the top. If no applicable rule is found, the agent
fails; if a matching clause is found, then the agent is rewritten to the body of the
clause as described before; if an action rule is found, then the agent is suspended,
waiting until an event E is posted. When an event E is posted, the conditions in
the guard are tested again. If they are satisfied, then the body B is executed. B

is determinate in the sense that it cannot succeed more than once. When B fails,
the original agent fails as well. After B is executed, the agent does not vanish but
instead turns to wait until next event is posted.

Agents behave in an event-driven fashion. At the entry and exit points of every
predicate, the system checks to see whether there is an event that has been posted.
If so, then the current predicate is interrupted and control is moved to the lists
of agents associated with the event. After the agents finish their execution, the
interrupted predicate will resume. So, for the following query:
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echo_agent(X),post(event(X,ping)),write(pong)

the output message will be ping followed by pong. The execution of write(pong)
is interrupted after the event event(X,ping) is posted. The execution of agents
can be further interrupted by other postings of events.

Agents are determinate in the sense that they can never succeed more than
once. The system enforces this by removing all choice points created by the bodies
of the rules in agent definitions. Consider the following program,

p(X,Y), var(X), {ins(X)} => true.

p(X,Y) => q(Y),write(Y).

q(1).

q(2).

and the query p(a,Y),fail. The action rule is not applicable to the agent p(a,Y)
since a is not a variable. Therefore, the second rule is applied. Since no body can
succeed more than once, the alternative clause q(2) will be cut off after the body
succeeds with the output 1. Notice that if the action rule is missing, then both 1

and 2 will appear in the output.
At a point during execution, there may be multiple events posted that are

expected by an agent. If this is the case, then the agent has to be activated once
for each of the events. The posting of an event may activate multiple agents. In
the implementation, the agents that are created earlier are executed before those
that are created later. Consider, for example, the following definition,

echo_agent(N,X), {event(X,Message)} => write(m(N,Message)).

and the query

echo_agent(1,X), acho_agent(2,X), post(event(X,hello)).

The output will be m(1,hello)m(2,hello).
There is no primitive for killing agents explicitly. As described above, an agent

never disappears as long as action rules are applied to it. An agent vanishes only
when a matching clause is applied to it. Consider the following example.

echo_agent(X,Flag), var(Flag), {event(X,Message)} =>

write(Message),Falg=1.

echo_agent(X,Flag) => true.

An echo agent defined here can only handle one event posting. After it handles
an event, it binds the variable Flag. So, when a second event is posted, the action
rule is no longer applicable and thus the matching clause after it will be selected.
Notice that the matching clause is necessary here. Without it, an agent would fail
after a second event is posted.
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11.3 Timers

In some applications, agents are activated regularly at a predefined rate. For
example, a clock animator is activated every second and the scheduler in a time-
sharing system switches control to the next process after a certain time quata
elapeses. To facilitate the description of time-related behavior of agents, B-Prolog
provides timers2. To create a timer, use the predicate

timer(T,Interval)

where T is a variable and Interval is an integer that specifies the rate of the
timer. A timer runs as a separate thread. The call timer(T,Interval) binds T to
a Prolog term that represents the thread. A timer must be started first before use.
To start a timer, use the call timer start(T). After started, the timer T posts
an event time(T) in every Interval milliseconds. A timer stops posting events
after the call timer stop(T). A stopped timer can be started again. A timer is
destroyed after the call timer kill(T) is executed.

• timer(T,Interval): T is a timer with the rate being set to Interval.

• timer(T): Equivalent to timer(T,200).

• timer start(T): Start the timer T.

• timer stop(T): Stop the timer.

• timer kill(T): Kill the timer.

• timer set interval(T,Interval): Set the interval of the timer T to Interval.
The update is destructive and the old value is not restored upon backtrack-
ing.

Example:

The following example shows two agents that behave in accordance with two
timers.

go:-

timer(T1,100), timer_start(T1),

timer(T2,1000),timer_start(T2),

ping(T1),

pong(T2),

repeat,fail.

ping(T),{time(T)} => write(ping),nl.

pong(T),{time(T)} => write(pong),nl.

2In the current implementation, timers work on Windows only.
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Notice that the two calls repeat,fail are needed after the two agents are created.
Without them, the query go would succeed before any time event is posted and
thus neither of the agent could get a chance to be activated.

11.4 Suspension and attribute variables

A suspension variable is a variable to which there are suspended agents and some
other information attached. It is possible to attach any term to a suspension
variable. Suspension variables are similar to attribute variables in some CLP
systems and are useful for implementing user-defined domains such as rational
numbers, sets, and floating-point intervals.

• susp attach term(X,T) Attach the term T to the variable X, where X must
be a variable. The formerly attached term to X, if any, will be lost after this
operation. This operation is undone automatically upon backtracking. In
other words, the originally attached term will be restored upon backtracking.

• susp attached term(X,T) The currently attached term to the variable X is
T.

• frozen(L) The list of all suspended agents is L.

• frozen(V,L) The list of suspended agents on the suspension variable V is L.

• constraints number(X,N) N is the number of agents attached to the sus-
pension variable X.

Example:

The following example shows how to attach a finite-domain to a variable:

create_fd_variable(X,D):-

susp_attach_term(X,D),

check_value(X,D).

check_value(X,D),var(X),{ins(X)} => true.

check_value(X,D) => member(X,D).

The agent check value(X,D) is activated to check whether the value is in the
domain when X is instantiated.
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Chapter 12

Constraints

B-Prolog supports constraints over four different domains: finite-domains, Boolean,
trees, and finite sets. The symbol #= is used to represent equality and #\= is used
to represent inequality for all the three domains. The system decides what solver
to call at run-time based on the type of the arguments.

12.1 CLP(Tree)

• freeze(X,Goal) Equivalent to once(Goal) but the evaluation is delayed
until X becomes a non-variable term. The predicate is defined as follows:

freeze(X,Goal),var(X),{ins(X)} => true.

freeze(X,Goal) => call(Goal).

If X is a variable, the agent freeze(X,Goal) is delayed. When X is bound, an
event ins(X) is posted automatically, which will in turn activate the agent
freeze(X,Goal). If X is not a variable, then the second rule will rewrite
freeze(X,Goal) into call(Goal). Notice that since agents can never suc-
ceed more than once, Goal in freeze(X,Goal) cannot return multiple solu-
tions. This is a big difference from the freeze predicate in Prolog-II.

• dif(T1,T2) The two terms T1 and T2 are different. If T1 and T2 are not
arithmetic expressions, the constraint can be written as T1 #\= T2.

12.2 CLP(FD)

CLP(FD) is an extension of Prolog that supports built-ins for specifying domain
variables, constraints, and strategies for instantiating variables. In general, a
CLP(FD) program is made of three parts: the first part, called variable gen-
eration, generates variables and specifies their domains; the second part, called
constraint generation, specifies constraints over the variables; and the final part,
called labeling, instantiates the variables by doing enumeration.
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Consider the well-known SEND MORE MONEY puzzle. Given eight letters
S, E, N, D, M, O, R and Y, one is required to assign a digit between 1 and 9 to
each letter such that different letters are assigned unique different digits and the
equation SEND + MORE = MONEY holds. The following program specifies the
problem.

sendmory(Vars):-

Vars=[S,E,N,D,M,O,R,Y], % variable generation

Vars :: 0..9,

alldifferent(Vars), % constraint generation

S #\= 0,

M #\= 0,

1000*S+100*E+10*N+D

+ 1000*M+100*O+10*R+E

#= 10000*M+1000*O+100*N+10*E+Y,

labeling(Vars). % labeling

The call alldifferent(Vars) ensures that variables in the list Vars take different
values, and labeling(Vars) instantiates the list of variables Vars in the given
order from left to right.

12.2.1 Finite-domain variables

A finite domain is a list of different ground terms in the form: [e1,e2,...,en]. The
special notation L..U denotes a set of integers between L and U, inclusive.

A Prolog variable Var becomes a finite-domain variable after its domain is
declared by:

Var :: D

or

Var in D

where D is a finite-domain. For example, the call

X :: 1..3

says that X is an integer between 1 and 3 and the call

X :: [a,b,c]

says that X can be a, b, or c.
Let Vars be a list of variables that share the same domain D. The domain of

the variables can be declared as follows:

Vars :: D

If the domain is the set of integers between L and U, then the domain can also
be declared as
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domain(Var,L,U)

for one variable Var and as

domain(Vars,L,U)

for a list of variables Vars.
The following primitives restrict the domains of variables.

• domain(Var,L,U): The domain of the variable Var is the set of integers
between L and U. L and U must be integers. If Var is an integer, the call is
equivalent to

Var>=L,Var=<U

If Var is neither a variable nor an integer, this call raises the illegal argument

exception.

• domain([V1,...,Vn],L,U): Equivalent to:

domain(V1,L,U),...,domain(Vn,L,U)

• Var :: D: The domain of the variable Var is D, where D is either an integer
interval L..U or a list of ground terms. If D is a list that contains non-integer
terms, then the call is equivalent to member(Var,D).

• [V1,...,Vn] :: D: Equivalent to:

V1 :: D,...,Vn :: D

• Var notin D: Var does not reside in D.

• [V1,...,Vn] notin D: Equivalent to:

V1 noin D,...,Vn noin D

The following primitives are available on integer domain variables. As domain
variables are also suspension variables, primitives on suspension variables such as
frozen/1 can be applied to domain variables as well.

• fd var(V) V is a domain variable.

• fd max(V,N) The maximum element in the domain of V is N. V must be an
integer domain variable or an integer.

• fd min(V,N) The minimum element in the domain of V is N. V must be an
integer domain variable or an integer.
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• fd min max(V,Min,Max) The minimum and maximum elements in the do-
main of V are Min and Max, respectively. V must be an integer domain variable
or an integer.

• fd size(V,N) The size of the domain of V is N.

• fd dom(V,L) L is the list of elements in the domain of V.

• fd true(V,E) E is an element in the domain of V.

• fd next(V,E,NextE) NextE is the next element following E in V’s domain.

• fd prev(V,E,PrevE) PrevE is the element preceding E in V’s domain.

• fd include(V1,V2) Succeeds if V1’s domain includes V2’s domain as a set.

• fd vector min max(Min,Max) Specifies the range of bit vectors. Domain
variables, when being created, are usually represented internally by using
intervals. An interval turns to a bit vector when a hole occurs in it. The
default values for Min and Max are -320 and 320, respectively.

12.2.2 Arithmetic constraints

An arithmetic constraint is a call in the form,

E1 R E2

where E1 and E2 are two arithmetic expressions and R is one of the following
constraint symbols #=, #\=, #>=, #>, #=<, and #<. An arithmetic expression is made
of integers, variables, domain variables, and the following arithmetic functions: +
(addition), - (subtraction), * (multiplication), / (division), ** (power), abs, min,
max, and sum. The ** operator has the highest priority, followed by * and /, then
followed by unary minus sign -, and finally followed + and -.

Let E be an expression, and L be a list of expressions [E1,E2,...,En]. The
following are valid expressions.

• abs(E) The absolute of E.

• min(L) The minimum element of L.

• max(L) The maximum element of L.

• sum(L) The sum of the elements of L.
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12.2.3 Global constraints

• alldifferent(Vars)

• all different(Vars) The elements in Vars are mutually different, where
Vars is a list of terms.

• alldistinct(Vars)

• all distinct(Vars) This is equivalent to alldifferent(Vars), but it uses
a stronger consistency checking algorithm to exclude inconsistent values from
domains of variables. See the next chapter for the implementation of this
constraint.

• fd element(I,L,V)

• element(I,L,V) Succeeds if the Ith element of L is V, where I must be an
integer or an integer domain variable, V a term, and L a list of terms.

• fd atmost(N,L,V)

• atmost(N,L,V) Succeeds if there are at most N elements in L that are equal
to V, where N must be an integer, V a term, and L a list of terms.

• cumulative(Starts,Durations,Resources,Limit) This constraint is use-
ful for describing and solving scheduling problems. The arguments Starts,
Durations, and Resources are lists of integer domain variables of the same
length and Limit is an integer domain varialable. Let Starts be [S1,S2,...,Sn],
Durations be [D1,D2,...,Dn] and Resources be [R1,R2,...,Rn]. For
each job i, Si represents the start time, Di the duration, and Ri the units
of resources needed. Limit is the units of resources available at any time.

• diffn(L) This constraint ensures that no two rectangles in L overlap with
each other. A rectangle in a n-dimensional space is represented by a list
of 2 × n elements [X1,X2,...,Xn,S1,S2,...,Sn] where Xi is the starting
coordinate of the edge in the ith dimension and Si is the size of the edge.

12.2.4 Labeling and variable ordering

Several predicates are provided for choosing variables and assigning values to vari-
ables.

• indomain(V) V is instantiated to a value in the domain. On backtracking,
the domain variable is instantiated to the next value in the domain.

• deleteff(V,Vars,Rest) Chooses first a domain variable V from Vars with
the minimum domain. Rest is a list of domain variables without V.

• deleteffc(V,Vars,Rest) Chooses first a variable that has the smallest do-
main and that participates in the largest number of constraints.
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• labeling(Vars)

• fd labeling(Vars) Instantiates the variables in Vars one by one.

• labeling ff(Vars)

• labelingff(Vars)

• fd labeling ff(Vars) Instantiates the variables in Vars by using deleteff/3
to choose variables.

• labeling ffc(Vars)

• labelingffc(Vars)

• fd labeling ffc(Vars) Instantiates the variables in Vars by using deleteffc/3
to choose variables.

12.2.5 Optimization

• fd minimize(Goal,Exp) This primitive finds a satisfiable instance of Goal
such that Exp has the minimum value. Here, Goal is used as a generator
(e.g., labeling(L)), and Exp is an expression. All satisfiable instances of
Goal must be ground, and for every such instance, Exp must be an integer
expression.

• fd maximize(Goal,Exp) This primitive finds a satisfiable instance of Goal
such that Exp has the maximum optimal value. It is equivalent to fd minimize(Goal,-Exp).

12.3 CLP(Boolean)

CLP(Boolean) can be considered as a special case of CLP(FD) where each variable
has a domain of two values: 0 denotes false, and 1 denotes true. A Boolean expres-
sion is made from constants (0 or 1), Boolean domain variables, basic relational
constraints, and operators as follows:

<BooleanExpression> ::=

0 | /* false */

1 | /* true */

variable |

<Expression> #= <Expression> |

<Expression> #\= <Expression> |

<Expression> #> <Expression> |

<Expression> #>= <Expression> |

<Expression> #< <Expression> |

<Expression> #=< <Expression> |

#\ <BooleanExpression> | /* not */
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<BooleanExpression> #/\ <BooleanExpression> | /* and */

<BooleanExpression> #\/ <BooleanExpression> | /* or */

<BooleanExpression> #=> <BooleanExpression> | /* imply */

<BooleanExpression> #<=> <BooleanExpression> | /* equivalent */

<BooleanExpression> #\ <BooleanExpression> /* not equal */

A Boolean constraint is made of a constraint symbol and one or two Boolean
expressions.

• E1 #= E2 True if E1 and E2 are equivalent. For example, (X #= 3) #= (Y #= 5)

means that the finite-domain constraints (X #= 3) and (Y #= 5) have the
same satisfibility. In other words, they are either both true or both false.

• E1 #\= E2True if E1 and E2 are different. For example, (X #= 3) #\= (Y #= 5)

means that the finite-domain constraints (X #= 3) and (Y #= 5) are mutu-
ally exclusive. In other words, if (X #= 3) is satisfied then (Y #= 5) cannot
be satisfied, and similarly if (X #= 3) is not satisfied then (Y #= 5) must
be satisfied.

• #\ E Equivalent to E#=0.

• E1 #/\ E2 Both E1 and E2 are 1.

• E1 #\/ E2 Either E1 or E2 is 1.

• E1 #=> E2 If E1 is 1, then E2 must be also 1.

• E1 #<=> E2 E1 and E2 are equivalent.

• E1 #\ E2 Exactly one of E1 and E2 is 1.

The following constraints restrict the values of Boolean variables.

• fd at least one(L)

• at least one(L) Succeeds if at least one element in L is equal to 1, where
L is a list of Boolean variables or constants.

• fd at most one(L)

• at most one(L) Succeeds if at most one element in L is equal to 1, where L
is a list of Boolean variables or constants.

• fd only one(L)

• only one(L) Succeeds if exactly one element in L is equal to 1, where L is a
list of Boolean variables or constants.
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12.4 CLP(Set)

CLP(Set) is a member in the CLP family where each variable can have a set as
its value. Although a number of languages are named CLP(Set), they are quite
different. Some languages allow intentional and infinite sets, and some languages
allows user-defined function symbols in set constraints. The CLP(Set) language
in B-Prolog allows finite sets of ground terms only. A set constant is either the
empty set {} or {T1,T2,...,Tn} where each Ti (i=1,2,...,n) is a ground term.

We reuse some of the operators in Prolog and CLP(FD) (e.g., /\, \/, \, #=, and
#\=) and introduce several new operators to the language to denote set operations
and set constraints. Since most of the operators are generic and their interpretation
depends on the types of constraint expressions, the users have to provide necessary
information for the system to infer the types of expressions.

The type of a variable can be known from its domain declaration or can be
inferred from its context. The domain of a set variable is declared by a call as
follows:

V :: L..U

where V is a variable, and L and U are two set constants indicating respectively
the lower and upper bounds of the domain. The lower bound contains all definite
elements that are known to be in V and the upper bound contains all possible
elements that may be in V. All definite elements must be possible. In other words,
L must be a subset of U. If this is not the case, then the declaration fails. The
special set constant {I1..I2} represents the set of integers in the range from I1

to I2, inclusive. For example:

• V :: {}..{a,b,c} : V is subset of {a,b,c} including the empty set.

• V :: {1}..{1..3} : V is one of the sets of {1},{1,2}, {1,3}, and {1,2,3}.
The set {2,3} is not a candidate value for V.

• V :: {1}..{2,3} : Fails since {1} is not a subset of {2,3}.

We extend the notation such that V can be a list of variables. So the call

[X,Y,Z] :: {}..{1..3}

declares three set variables.
The following primitives are provided to test and access set variables:

• clpset var(V): V is a set variable.

• clpset low(V,Low): The current lower bound of V is Low.

• clpset up(V,Up): The current upper bound of V is Up.

• clpset added(E,V): E is a definite element, i.e., an element included in the
lower bound.
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• clpset excluded(E,V): E has been forbidden for V. In other words, E has
been excluded from the upper bound of V.

The followint two predicates are provided for converting sets into and from
lists:

• set to list(S,L) : Convert the set S into a list. For example,

• list to set(L,S) : Convert the list L into a set.

A set expression is defined recursively as follows: (1) a constant set; (2) a
variable; (3) a composite expression in the form of S1 \/ S2, S1 /\ S2, S1 \ S2,
or \ S1, where S1 and S2 are set expressions. The operators \/ and /\ represent
union and intersection, respectively. The binary operator \ represents difference
and the unary operator \ represents complement. The complement of a set \ S1

is equivalent to U \ S1 where U is the universal set. Since the universal set of a
constant is unknown, S1 in the expression \ S1 must be a variable whose universal
set has been declared.

We extend the syntax for finite-domain constraint expressions to allow the
expression #S which denotes the cardinality of the set represented by the set ex-
pression S.

Let S, S1 and S2 be set expressions, and E be a term. A set constraint takes
one of the following forms:

• S1 #= S2: S1 and S2 are two equivalent sets (S1=S2).

• S1 #\= S2: S1 and S2 are two different sets (S1 6=S2).

• S1 subset S2: S1 is a subset of S2 (S1⊆S2). The proper subset relation
S1 ⊂ S2 can be represented as S1 subset S2 and #S1 #< #S2 where #<

represents the less-than constraint on integers.

• S1 #<> S2: S1 and S2 are disjoint (S1∩S2=∅).

• E #<- S: E is a member of S (E∈S).

• E #<\- S: E is a not member of S (E/∈S).

Boolean constraint expressions are extended to allow set constraints. For ex-
ample, the constraint

(E #<- S1) #=> (E #<- S2)

says that if E is a member of S1 then E must also be a member of S2.
Just as for finite and Boolean constraints, constraint propagation is used to

maintain the consistency of constraints. Constraint propagation alone, however,
is inadequate for finding solutions for many problems. We need to use the divide-
and-conquer or relaxation method to find solutions to a system of constraints. The
call

• indomain(V)

finds a value for V either by enumerating the values in V’s domain or by splitting the
domain. Instantiating variables usually triggers related constraint propagators.
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Chapter 13

Programming Constraint
Propagators

Action rules form a powerful implementation language for programming constraint
propagators. We will show in this chapter how to program constraint propagators
for various constraints.

The following set of event types are provided for programming constraint prop-
agators:

• ins(X): X or any variable in X is instantiated.

• minmax(X): The low or upper bound of any variable in X is updated.

• dom(X): An inner element has been excluded from the domain of X.

• dom(X,E): An inner element E has been excluded from the domain of X.

Except for the last event type that has two arguments, all the events do not have
extra information to be transmitted to their handlers. For these types of events,
we extend action rules to enable them to carry multiple events. An agent defined
by this type of rule is activated when one of the events is posted. For example, for
the following rule,

p(X),{ins(X),minmax(X)} => q(X).

p(X) is activated when X is instantiated, or either bound of X’s domain is updated.
We also introduce the following two types of conditions that can occur in the

guards of rules:

• dvar(X): X is an integer domain variable.

• no vars gt(m,n): The number of variables in the last m arguments of the
agent is greater than n. Notice that the condition does not take the argu-
ments whose variables are to be counted. The system can always fetch that
information from its parent call. This condition cannot be used in matching
clauses.
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13.1 A constraint interpreter

It is very easy to write a constraint interpreter by using action rules. The following
shows such an interpreter:

interp_constr(Constr), no_vars_gt(1,0),

{ins(Constr),minmax(Constr)}

=>

reduce_domains(Constr).

interp_constr(Constr) => test_constr(Constr).

For a constraint Constr, if there is at least one variable in it, the interpreter delays
the constraint and invokes the procedure reduce domains(Constr) to exclude
no-good values from the variables in Constr. The two kinds of events, namely
ins(Constr) and minmax(Constr) ensure that the constraint will be reconsidered
whenever either a bound of a variable in Constr is updated or a variable is bound
to any value.

13.2 Indexicals

Indexicals, which are adopted by many CLP(FD) compilers for compiling con-
straints, can be implemented easily by using action rules. Consider the indexical

X in min(Y)+min(Z)..max(Y)+max(Z).

which ensures that the constraint X #= Y+Z is interval-consistent on X. The index-
ical is activated whenever a bound of Y or Z is updated. The following shows the
implementation in action rules:

’V in V+V’(X,Y,Z),{ins(Y),minmax(Y),ins(Z),minmax(Z)} =>

reduce_domain(X,Y,Z).

reduce_domain(X,Y,Z) =>

fd_min_max(Y,MinY,MaxY),

fd_min_max(Z,MinZ,MaxZ),

L is MinY+MinZ, U is MaxY+MaxZ,

X in L..U.

The action reduce domain(X,Y,Z) is executed whenever a variable is instantiated
or a bound of a variable is updated. The original indexical is equivalent to the
following two calls:

’V in V+V’(X,Y,Z),reduce_domain(X,Y,Z)

Interval-consistency is also enforced on X when the constraint is generated.
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13.3 Reification

One well used technique in finite-domain constraint programming is called reifi-
cation, which uses a new Boolean variable B to indicate the satisfiability of a
constraint C. C must be satisfied if and only if B is equal to 1. This relationship is
denoted as:

C #<=> (B #= 1)

It is possible to use Boolean constraints to represent the relationship, but it is
more efficient to implement specialized propagators to maintain the relationship.
Consider, as an example, the reification:

(X #= Y) #<=> (B #= 1)

where X and Y are domain variables, and B is a Boolean variable. The following
describes a propagator that maintains the relationship:

reification(X,Y,B),dvar(B),dvar(X),X\==Y,

{ins(X),ins(Y),ins(B)} => true.

reification(X,Y,B),dvar(B),dvar(Y),X\==Y,

{ins(Y),ins(B)} => true.

reification(X,Y,B),dvar(B),X==Y => B=1.

reification(X,Y,B),dvar(B) => B=0.

reification(X,Y,B) => (B==0 -> X #\= Y; X #= Y).

Curious readers might have noticed that ins(Y) is in the event sequence of the
first rule but ins(X) is not specified in the second one. The reason for this is that
X can never be a variable after the condition of the first rule fails and that of the
second rule succeeds.

13.4 Propagators for binary constraints

There are different levels of consistency for constraints. A unary constraint p(X) is
said to be domain-consistency if for any element x in the domain of X the constraint
p(x) is satisfied. The propagation rule that maintains domain-consistency is called
forward checking. A constraint is said to be interval-consistent if for any bound of
the domain of any variable there are supporting elements in the domains of the all
other variables such that the constraint is satisfied. Propagators for maintaining
interval consistency are activated whenever a bound of a variable is updated or
whenever a variable is instantiated. A constraint is said to be arc-consistent if for
any element in the domain of any variable there are supporting elements in the
domains of all the other variables such that the constraint is satisfied. Propagators
for maintaining domain consistency are triggered when whatever changes occur to
the domain of a variable. We consider how to implement various propagators for
the binary constraint A*X #= B*Y+C, where X and Y are domain variables, A and
B are positive integers, and C is an integer of any kind.
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Forward checking

The following shows a propagator that performs forward checking for the binary
constraint.

’aX=bY+c’(A,X,B,Y,C) =>

’aX=bY+c_forward’(A,X,B,Y,C).

’aX=bY+c_forward’(A,X,B,Y,C),var(X),var(Y),{ins(X),ins(Y)} => true.

’aX=bY+c_forward’(A,X,B,Y,C),var(X) =>

T is B*Y+C, Ex is T//A, (A*Ex=:=T->X = Ex; true).

’aX=bY+c_forward’(A,X,B,Y,C) =>

T is A*X-C, Ey is T//B, (B*Ey=:=T->Y is Ey;true).

When both X and Y are variables, the propagator is suspended. When either
variable is instantiated, the propagator computes the value for the other variable.

Interval-consistency

The following propagator, which extends the forward-checking propagator, main-
tains interval-consistency for the constraint.

’aX=bY+c’(A,X,B,Y,C) =>

’aX=bY+c_reduce_domain’(A,X,B,Y,C),

’aX=bY+c_forward’(A,X,B,Y,C),

’aX=bY+c_interval’(A,X,B,Y,C).

The call ’aX=bY+c reduce domain’(A,X,B,Y,C) preprocess the constraint to
make it interval-consistent when the constraint is generated.

’aX=bY+c_reduce_domain’(A,X,B,Y,C) =>

’aX in bY+c_reduce_domain’(A,X,B,Y,C),

MC is -C,

’aX in bY+c_reduce_domain’(B,Y,A,X,MC).

’aX in bY+c_reduce_domain’(A,X,B,Y,C) =>

L is (B*min(Y)+C) /> A,

U is (B*max(Y)+C) /< A,

X in L..U.

The operation op1 /> op2 returns the lowest integer that is greater than or equal
to the quotient of op1 by op2 and the operation op1 /< op2 returns the greatest
integer that is less than or equal to the quotient. The arithmetic operations must
be sound to make sure that no solution is lost. For example, the minimum times
any positive integer remains the minimum.

The call ’aX=bY+c interval’(A,X,B,Y,C) maintains interval-consistency for
the constraint.
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’aX=bY+c_interval’(A,X,B,Y,C) =>

’aX in bY+c_interval’(A,X,B,Y,C), % reduce X when Y changes

MC is -C,

’aX in bY+c_interval’(B,Y,A,X,MC). % reduce Y when X changes

’aX in bY+c_interval’(A,X,B,Y,C),var(X),var(Y),{minmax(Y)} =>

’aX in bY+c_reduce_domain’(A,X,B,Y,C).

’aX in bY+c_interval’(A,X,B,Y,C) => true.

Notice that the action ’aX=bY+c reduce domain’(A,X,B,Y,C) is executed only
when both variables are free. If either one turns to be instantiated, then the
forward-checking rule will take care of that situation.

Arc-consistency

The following propagator, which extends the one shown above, maintains arc-
consistency for the constraint.

’aX=bY+c’(A,X,B,Y,C) =>

’aX=bY+c_reduce_domain’(A,X,B,Y,C),

’aX=bY+c_forward’(A,X,B,Y,C),

’aX=bY+c_interval’(A,X,B,Y,C),

’aX=bY+c_arc’(A,X,B,Y,C).

’aX=bY+c_arc’(A,X,B,Y,C) =>

’aX in bY+c_arc’(A,X,B,Y,C), % reduce X when Y changes

MC is -C,

’aX in bY+c_arc’(B,Y,A,X,MC). % reduce Y when X changes

’aX in bY+c_arc’(A,X,B,Y,C),var(X),var(Y),{dom(Y,Ey)} =>

T is B*Ey+C,

Ex is T//A,

(A*Ex=:=T -> exclude(X,Ex);true).

’aX in bY+c_arc’(A,X,B,Y,C) => true.

Whenever an element Ey is excluded from the domain of Y, the propagator ’aX in

bY+c arc’(A,X,B,Y,C) is activated. If both X and Y are variables, the propagator
will exclude Ex, the counterpart of Ey, from the domain of X. Again, if either X

or Y becomes an integer, the propagator does nothing. The forward checking rule
will take care of that situation.

13.5 all different(L)

The constraint all different(L) holds if the variables in L are pair-wisely dif-
ferent. One naive implementation method for this constraint is to generate binary
disequality constraints between all pairs of variables in L. This implementation has
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two problems: First, the space required to store the constraints is quadratic in the
number of variables in L; Second, splitting the constraint into small granularity
ones may lose possible propagation opportunities.

To solve the space problem, we define all different(L) in the following way:

all_different(L) => all_different(L,[]).

all_different([],Left) => true.

all_different([X|Right],Left) =>

outof(X,Left,Right),

all_different(Right,[X|Left]).

outof(X,Left,Right), var(X), {ins(X)} => true.

outof(X,Left,Right) =>

exclude_list(X,Left),exclude_list(X,Right).

For each variable X, let Left be the list of variables to the left of X and Right be the
list of variables to the right of X. The call outof(X,Left,Right) holds if X appears
in neither Left nor Right. Instead of generating disequality constraints between
X and all the variables in Left and Right, the call outof(X,Left,Right) suspends
until X is instantiated. After X becomes an integer, the calls exclude list(X,Left)

and exclude list(X,Right) to exclude X from the domains of the variables in
Left and Right, respectively.

There is a propagator outof(X,Left,Right) for each element X in the list,
which takes constant space. Therefore, all different(L) takes linear space in
the size of L. Notice that the two lists Left and Right are not merged into one
bigger list. Or, the constraint still takes quadratic space.
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Chapter 14

External Language Interface
with C

B-Prolog has a bi-directional interface with C through which Prolog programs
can call functions written in C and C programs can call Prolog as well. C pro-
grams that use this interface must include the file "bprolog.h" in the directory
$BPDIR/Emulator.

The functions are renamed in Version 6.0 such that all function names start
with ‘‘bp ’’. Old functions except for build LIST and build STRUCTURE are still
supported but they are not documented here. The user is encouraged to use the
new functions.

14.1 Calling C from Prolog

14.1.1 Term representation

A term is represented by a word containing a value and a tag. The tag distinguishes
the type of the term. Floating-point numbers are represented as special structures
in the form of $float(I1,I2,I3) where I1, I2 and I3 are integers.

The value of a term is an address except when the term is an integer (in this
case, the value represents the integer itself). The address points to a different
location depending on the type of the term. The address in a reference points
to the referenced term. An unbound variable is represented by a self-referencing
pointer. The address in an atom points to the record for the atom symbol in the
symbol table. The address in a structure f(t1, . . . , tn) points to a block of n + 1
consecutive words where the first word points to the record for the functor f/n in
the symbol table and the remaining n words store the components of the structure.
The address in a list [H|T ] points to a block of two consecutive words where the
first word stores the car H and the second word stores the cdr T .
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14.1.2 Fetching arguments of Prolog calls

Every C function that defines a Prolog predicate should not take any argument.
The function bp get call arg(i,arity) is used to get the arguments in the cur-
rent Prolog call:

• TERM bp get call arg(int i, int arity)

Fetch the ith argument, where arity is the arity of the predicate, and i

must be an integer between 1 and arity. The validness of the arguments
are not checked and an invalid argument may cause fatal errors.

14.1.3 Testing Prolog terms

The following functions are provided for testing Prolog terms. They return BP TRUE

when succeed and BP FALSE when fail.

• int bp is atom(TERM t) Term t is an atom.

• int bp is integer(TERM t) Term t is an integer.

• int bp is float(TERM t) Term t is a floating-point number.

• int bp is nil(TERM t) Term t is a nil.

• int bp is list(TERM t) Term t is a list.

• int bp is structure(TERM t) Term t is a structure (but not a list).

• int bp is compound(TERM t) True if either bp is list(t) or bp is structure(t)

is true.

• int bp is unifiable(TERM t1, TERM t2) t1 and t2 are unifiable. This is
equivalent to the Prolog call not(not(t1=t2)).

• int bp is identical(TERM t1, TERM t2) t1 and t2 are identical. This
function is equivalent to the Prolog call t1==t2.

14.1.4 Converting Prolog terms into C

The following functions convert Prolog terms to C. If a Prolog term is not of the
expected type, then the global C variable exception is set. A C program that
uses these functions must check whether exception is set to see whether data are
converted correctly. The converted data are correct only when exception is NULL.

• int bp get integer(TERM t) Convert the Prolog integer t into C. bp is integer(t)

must be true; otherwise exception is set to integer expected and 0 is re-
turned.

• double bp get float(TERM t) Convert the Prolog float t into C. bp is float(t)

must be true; otherwise exception is set to number expected and 0.0 is re-
turned. This function must be declared before any use.
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• (char *) bp get name(TERM t) Return a pointer to the string that is the
name of term t. Either bp is atom(t) or bp is structure(t)must be true;
otherwise, exception is set to illegal arguments and NULL is returned.
This function must be declared before any use.

• int bp get arity(TERM t) Return the arity of term t. Either bp is atom(t)

or bp is structure(t)must be true; otherwise, exception is set to illegal arguments

and 0 is returned.

14.1.5 Manipulating and writing Prolog terms

• int bp unify(TERM t1,TERM t2) Unify two Prolog terms t1 and t2. The
result is BP TRUE if the unification succeeds and BP FALSE if fails.

• TERM bp get arg(int i,TERM t) Return the ith argument of term t. bp is compound(t)

must be true and i must be an integer that is greater than 0 and no greater
than t’s arity; otherwise, exception is set to illegal arguments and the
Prolog integer 0 is returned.

• TERM bp get car(TERM t) Return the car of the list t. bp is list(t) must
be true; or exception is set to list expected and the Prolog integer 0 is
returned.

• TERM get cdr(TERM t) Return the cdr of the list t. bp is list(t) must
be true; or exception is set to list expected and the Prolog integer 0 is
returned.

• void bp write(TERM t) Send term t to the current output stream.

14.1.6 Building Prolog terms

• TERM bp build var() Return an free Prolog variable.

• TERM bp build integer(int i) Return a Prolog integer whose value is i.

• TERM bp build float(double f) Return a Prolog float whose value is f.

• TERM bp build atom(char *name) Return a Prolog atom whose name is
name.

• TERM bp build nil() Return a Prolog empty list.

• TERM bp build list() Return a Prolog list whose car and cdr are free vari-
ables.

• TERM bp build structure(char *name, int arity)Return a Prolog struc-
ture whose functor is name, arity is arity, and the arguments are all free
variables.
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14.1.7 Registering predicates defined in C

The following function registers a predicate defined by a C function.

insert_cpred(char *name, int arity, int (*func)())

The first argument is the predicate name, the second is the arity, and the third is
the name of the function that defines the predicate. The function cannot take any
argument. As described before, the function bp get call arg(i,arity) is used
to fetch arguments from the Prolog call.

For example, the following registers a predicate whose name is "p" and whose
arity is 2.

extern int p();

insert_cpred("p", 2, p)

the C function’s name does not need to be the same as the predicate name.
Predicates defined in C should be registered after the Prolog engine is initialized

and before any call is executed. One good place for registering predicates is the
Cboot() function in the file cpreds.c, which registers all the built-ins of B-Prolog.

Example:

Consider the Prolog predicate:

:-mode p(+,?).

p(a,f(1)).

p(b,[1]).

p(c,1.2).

where the first argument is given and the second is unknown. The following steps
show how to define this predicate in C and make it callable from Prolog.

Step 1 . Write a C function to implement the predicate. The following shows a
sample:

#include "bprolog.h"

p(){

TERM a1,a2,a,b,c,f1,l1,f12;

char *name_ptr;

/* prepare Prolog terms */

a1 = bp_get_call_arg(1,2); /* first argument */

a2 = bp_get_call_arg(2,2); /* second argument */

a = bp_build_atom("a");

b = bp_build_atom("b");
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c = bp_build_atom("c");

f1 = bp_build_structure("f",1); /* f(1) */

bp_unify(bp_get_arg(1,f1),bp_build_integer(1));

l1 = bp_build_list(); /* [1] */

bp_unify(bp_get_car(l1),bp_build_integer(1));

bp_unify(bp_get_cdr(l1),bp_build_nil());

f12 = bp_build_float(1.2); /* 1.2 */

/* code for the clauses */

if (!bp_is_atom(a1)) return BP_FALSE;

name_ptr = bp_get_name(a1);

switch (*name_ptr){

case ’a’:

return (bp_unify(a1,a) ? bp_unify(a2,f1) : BP_FALSE);

case ’b’:

return (bp_unify(a1,b) ? bp_unify(a2,l1) : BP_FALSE);

case ’c’:

return (bp_unify(a1,c) ? bp_unify(a2,f12) : BP_FALSE);

default: return BP_FALSE;

}

}

Step 2 Insert the folloiwng two lines into Cboot() in cpreds.c:

extern int p();

insert_cpred("p",2,p);

Step 3 Recompile the system. Now, p/2 is in the group of built-ins in B-Prolog.

14.2 Calling Prolog from C

To make Prolog predicates callable from C, one has to replace the main.c file in
the emulator with a new file that starts his/her own application. The following
function must be executed before any call to Prolog predicates is executed:

initialize_bprolog(int argc, char *argv[])

In addition, the environment variable BPDIR must be set correctly to the home
directory where B-Prolog was installed. The function initialize bprolog() al-
locates all the stacks used in B-Prolog, initializes them, and loads the byte code
file bp.out into the program area. BP ERROR is returned if the system cannot be
initialized.

A query can be a string or a Prolog term, and a query can return one solution
and multiple solutions as well.
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• int bp call string(char *goal) This function executes the Prolog call
as represented by the string goal. The return value is BP TRUE if the call
succeeds, BP FALSE if the call fails, and BP ERROR if an exception occurs.
Examples:

bp_call_string("load(myprog)")

bp_call_string("X is 1+1")

bp_call_string("p(X,Y),q(Y,Z)")

• bp call term(TERM goal) This function is similar to the previous one, but
executes the Prolog call as represented by the term goal. While bp call string

cannot return any bindings for variables, this function can return results
through the Prolog variables in goal. Example:

TERM call = bp_build_structure("p",2);

bp_call_term(call);

• bp mount query string(char *goal) Mount goal as the next Prolog goal
to be executed.

• bp mount query string(TERM goal) Mount goal as the next Prolog goal
to be executed.

• bp next solution()Retrieve the next solution of the current goal. If no goal
is mounted before this function, then the exception illegal predicate will
be raised and BP ERROR will be returned as the result. If no further solution
is available, the function returns BP FALSE. Otherwise, the next solution is
found.

Example:

This example program retrieves all the solutions of the query member(X,[1,2,3]).

#include "bprolog.h"

main(argc,argv)

int argc;

char *argv[];

{

TERM query;

TERM list0,list;

int res;

initialize_bprolog(argc,argv);

/* build the list [1,2,3] */

list = list0 = bp_build_list();

64



bp_unify(bp_get_car(list),bp_build_integer(1));

bp_unify(bp_get_cdr(list),bp_build_list());

list = bp_get_cdr(list);

bp_unify(bp_get_car(list),bp_build_integer(2));

bp_unify(bp_get_cdr(list),bp_build_list());

list = bp_get_cdr(list);

bp_unify(bp_get_car(list),bp_build_integer(3));

bp_unify(bp_get_cdr(list),bp_build_nil());

/* build the call member(X,list) */

query = bp_build_structure("member",2);

bp_unify(bp_get_arg(2,query),list0);

/* invoke member/2 */

bp_mount_query_term(query);

res = bp_next_solution();

while (res==BP_TRUE){

bp_write(query); printf("\n");

res = bp_next_solution();

}

}

To run the program, we need to first replace the content of the file main.c in
$BPDIR/Emulator with this program and recompile the system. The newly com-
piled system will give the following outputs when started.

member(1,[1,2,3])

member(2,[1,2,3])

member(3,[1,2,3])
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Chapter 15

External Language Interface
with Java

As the popularity of Java grows, an interface that bridges Prolog and Java becomes
more and more important. On the one hand, Prolog applications can have access
to resources in Java, such as the Abstract Window Toolkit(AWT) and networking.
On the other hand, Java programs can have access to the functionality such as
constraint solving available in Prolog. B-Prolog has a bi-directional interface with
Java, which is based on JIPL developed by Nobukuni Kino.

An application that uses the Java interface usually works as follows: The Java
part invokes a Prolog predicate and passes it a Java object together with other
arguments; the Prolog predicate performs necessary computation and invokes the
methods or directly manipulates the fields of the Java object. The readers are rec-
ommended to see the examples at the directory $BPDIR/Examples/java interface

before writing their own applications.

15.1 Installation

To use the Java interface, one has to ensure that the environment variables BPDIR,
CLASSPATH, and PATH (Windows) or LD LIBRARY PATH (Solaris) are set correctly.
For a Windows PC, add the following settings to autoexec.bat:

set BPDIR=c:\BProlog

set PATH=%BPDIR%;%PATH%

set classpath=.;%BPDIR%\plc.jar

and for a Solaris or Linux machine, add the following settings to .cshrc.

set BPDIR=$HOME/BProlog

set LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$BPDIR

set CLASSPATH=.:$BPDIR/plc.jar

The environment variables must be properly set. The archive file plc.jar in the
directory $BPDIR (or %BPDIR%) stores the byte code for the class bprolog.plc.Plc
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that implements the Java interface, and the file libbp.so (bp.dll) in the same
directory is a dynamic link file for B-Prolog’s emulator.

15.2 Data conversion between Java and B-Prolog

The following table converts data from Java to Prolog:

Java Prolog

Integer integer

Double real

Long integer

BigInteger integer

String string (list of integers)

Object array list

Object $addr(I1,I2)

Notice that no primitive data type can be converted into Prolog. Data conversion
from Prolog to Java follows the same protocol but a string is converted to an array
of Integers rather than a String, and a Prolog atom is converted to a Java String.

Prolog Java

integer Integer

real Double

atom String

string Object array

list Object array

structure Object

The conversion between arrays and lists needs further explanation. A Java
array of some type is converted into a list of elements of the corresponding con-
verted type. For instance, an Integer array is converted into a list of integers.
In contrast, a Prolog list, whatever type whose elements is, is converted into an
array of Object type. When an array element is used as a specific type, it must
be casted to that type.

15.3 Calling Prolog from Java

A Prolog call is an instance of the class bprolog.plc.Plc. It is convenient to import
the class first:

import bprolog.plc.Plc;

The class Plc contains the following constructor and methods:

• public Plc(String functor, Object args[]) It constructs a prolog call
where functor is the predicate name, and args is the sequence of arguments
of the call. If a call does not carry any argument, then just give the second
argument an empty array new Object[] .
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• public static void startPlc(String args[]) Initialize the B-Prolog
emulator, where args are parameter-value pairs given to B-Prolog. Possible
parameter-value pairs include:

"-b" TRAIL words allocated to the trail stack
"-s" STACK words allocated to the local and the heap
"-p" PAREA words allocated to the program code area
"-t" TABLE words allocated to the table area

where TRAIL, STACK, PAREA and TABLE must all be strings of integers. After
the B-Prolog emulator is initialized, it will be waiting for calls from Java.
Initialization needs to be done only once. Further calls to startPlc have no
effect at all.

• public static native boolean exec(String command) Execute a Pro-
log call as represented by the string command. This method is static, and
thus can be executed without creating any Plc object. To call a predicate
in a file, say xxx.pl, it is necessary to first have the Prolog program loaded
into the system. To do so, just execute the method exec("load(xxx)") or
exec("consult(xxx)").

• public boolean call() Execute the Prolog call as represented by the Plc

object that owns this method. The return value is true if the Prolog call
succeeds or false if the call fails.

15.4 Calling Java from Prolog

The following built-ins are available for calling Java methods or setting fields of a
Java object. The exception java exception(Goal) is raised if the Java method
or field does not exist, or if the Java method throws any exception.

• javaMethod(ClassOrInstance, Method, Return) Invoke a Java method,
where

– ClassOrInstance is either an atom that represents a Java class’s name,
or a term $addr(I1,I2) that represents a Java object. Java objects are
passed to Prolog from Java . It is meaningless to construct an object
term by any other means.

– Method: is an atom or a structure in the form f(t1,...,tn) where f

is the method name, and t1,...,tn are arguments.

– Return: is a variable that will be bound to the returned object by the
method.

• javaMethod(ClassOrInstance, Method) The same as javeMethod/3 but
does not require a return value.

• javaGetField(ClassOrInstance, Field, Value) Get the value of Field
of ClassOrInstance and bind it to Value. A field must be an atom.
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• javaSetField(ClassOrInstance, Field, Value) Set Field of ClassOrIn-
stance to be Value.

69



Chapter 16

Interface with Operating
Systems

16.1 Building standalone applications

A standalone application is a program that can be executed without the need to
start the B-Prolog system. You do not have to use the external language interface
to build standalone applications. The first predicate that the B-Prolog interpreter
executes is called main/0. To build a Prolog program as a standalone applica-
tion, you only need to re-define the main/0 predicate. The following definition is
recommended1:

main:-

get_main_args(L),

call_your_program(L).

where get main args(L) fetches the command line arguments as a list of atoms,
and call your program(L) starts your program. If the program does not need
the command line arguments, then the call get main args(L) can be omitted.

The second thing you need to do is to compile the program and let your main/0
predicate overwrite the existing one in the system. Assume the compiled program
is named myprog.out. To let the system execute main/0 in myprog.out instead of
the one in the system, you need to either add myprog.out into the command line
in the shell script bp (bp.bat for Windows) or start the system with myprog.out

as an argument of the command line as in the following:

bp myprog.out

For example, assume call your program(L) only prints out L, then the com-
mand

bp myprog.out a b c

gives the following output:

[a,b,c]

1To use the graphics package CGLIB, you have to use the command bpp.
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16.2 Commands

• system(Command) Send Command to the OS.

• system(Command,Status) Send Command to the OS and bind Status to the
status returned from the OS.

• chdir(Atom)

• cd(Atom) Change the current working directory to Atom.

• date(Y,M,D) The current date is Y year, M month, and D day.

• date(Date) Assume the current date is Y year, M month, and D day. Then
Date is unified with the term date(Y,M,D).

• time(H,M,S) The current time is H hour, M minute, and S second.

• time(Time) Assume the current time is H hour, M minute, and S second.
Then Time is unified with the term time(H,M,S).

• environ(EVar,EValue)The environment variable EVar has the value EValue.
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Chapter 17

Tabling

The need to extend Prolog to narrow the gap between declarative and procedural
reading of programs has been urged long before. Tabling in Prolog is a technique
that can get rid of infinite loops for execution of Prolog programs. With tabling,
Prolog becomes more friendly to beginners and professional programmers alike.
Tabling can alleviate their burden to cure infinite loops and redundant computa-
tions. Consider the following example:

reach(X,Y):-edge(X,Y).

reach(X,Y):-reach(X,Z),edge(Z,Y).

where the predicate edge defines a relation and reach defines the transitive closure
of the relation. Without tabling, a query like reach(X,Y)would fall into an infinite
loop. Consider another example:

fib(0, 1).

fib(1, 1).

fib(N,F):-

N1 is N-1,

N2 is N-2,

fib(N1,F1),

fib(N2,F2),

F is F1+F2.

A query fib(N,X), where N is an integer, will not fall into an infinite loop, but
will spawn 2N calls, many of which are variants.

The main idea of tabling is to memorize the answers to some calls, called tabled
calls, and use the answers to resolve subsequent variant calls. In B-Prolog, tabled
predicates are declared explicitly by declarations in the following form:

:-table P1/N1,...,Pk/Nk

where each Pi/Ni (i=1,. . .,k) is a predicate symbol and Ni is an integer that
denotes the arity of Pi. To declare all the predicates in a Program as tabled, add
the following line to the beginning of the program:
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:-auto_table.

B-Prolog employs linear tabling which relies on iterative computation rather
than suspension to compute fixpoints. A significant difference between linear
tabling and suspension-based methods such as OLDT lies in the handling of vari-
ant descendents of a subgoal. In linear tabling, after a descendent consumes all
the answers, it fails. A subgoal is called a looping subgoal if a variant occurs as a
descendent in its evaluation. The evaluation of looping subgoals must be iterated
to ensure the completeness of evaluation.

A data area, called table area, is used to store tabled calls and their answers.
The following predicate initializes the table area.

initialize_table

The table area is initialized automatically in the beginning of each top-level query.

Tabled calls are stored in a hashtable, called subgoal table, and for each
tabled call and its variants, a hashtable, called answer table, is used to store the
answers for the call. The bucket size for the subgoal table is initialized to 9991.
To change or access this size, use the following built-in predicate:

subgoal_table_size(SubgoalTableSize)

which sets the size if SubgoalTableSize is an integer and gets the current size if
SubgoalTableSize is a variable.

The following two built-ins are provided for fetching answers from the table.

• table find one(Call) If there is a subgoal in the subgoal table that is a
variant of Call and that has answers, then Call is unified with the first
answer. The built-in fails if there is no variant subgoal in the table or there
is no answer available.

• table find all(Call,Answers) Answers is a list of answers of the subgoals
that are subsumed by Call. For example, the table find one( ,Answers)

fetches all the answers in the table since any subgoal is subsumed by the
anonymous variable.
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Chapter 18

Profiling

18.1 Statistics

The predicates statistics/0 and statistics/2 are useful for obtaining statistics
of the system, e.g., how much space or time has been consumed and how much
space is left.

• statistics This predicate displays the number of bytes allocated to each
data area and the number of bytes already in use. The output looks like:

Control stack + Heap: 4000000 bytes

Control stack in use: 32 bytes

Heap stack in use: 200 bytes

Program area: 4000000 bytes

Program area in use: 482984 bytes

Trail stack: 2000000 bytes

Trail stack in use: 92 bytes

Table area: 2000000 bytes

Table area in use: 1324 bytes

Number of GC calls: 0

• statistics(Key,Value) The statistics concerning Key are Value. This
predicate gives multiple solutions on backtracking. The following shows the
output the system displays after receiving the query statistics(Key,Value).

| ?- statistics(Key,Value).

Key = runtime

Value = [633,633]?;
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Key = program

Value = [483064,3516936]?;

Key = heap

Value = [364,3999604]?;

Key = control

Value = [32,3999604]?;

Key = trail

Value = [108,1999892]?;

Key = table

Value = [1324,1998676]?;

key = gc

Value = 0?;

no

The values for all keys are lists of two elements. For runtime, the first
element denotes the amount of time in milliseconds elapsed since the start of
Prolog and the second element denotes the amount of time elapsed since the
previous call to statistics/2 was executed. For the key gc, the number
indicates the number of times the garbage collector has been invoked since
B-Prolog was started. For all other keys, the first element denotes the size
of memory in use and the second element denotes the size of memory still
available in the corresponding data area.

• cputime(T) The current cpu time is T. It is implemented as follows:

cputime(T):-statistics(runtime,[T|_]).

18.2 Profile programs

The source program profiler analyzes source Prolog programs and reports the
following information about the programs:

• What predicates are defined?

• What predicates are used but not defined?

• What predicates are defined but not used?

• What kinds of built-ins are used?

To use the profiler, type
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profile_src(F)

or

profile_src([F1,...,Fn])

where F and F1,...,Fn are file names of the source programs.

18.3 Profile program executions

The execution profiler counts the number of times each predicate is called in exe-
cution. This profiler is helpful for identifying which portion of predicates are most
frequently executed.

To gauge the execution of a program, follow the following steps:

1. profile consult(File) or profile compile(File),load(File). The
program will be loaded into the system with gauging calls and predicates
inserted.

2. init profile. Initialize the counters.

3. Execute a goal.

4. profile. Report the results.

18.4 More statistics

Sometimes we want to know how much memory space is consumed at the peak
time. To obtain this kind of information, one needs to recompile the emulator
with the definition of variable ToamProfile in toam.h. There is a counter for each
stack and the emulator updates the counters each time an instruction is executed.
To print the counters, use the predicate

print_counters

and to initialize the counters use the predicate

start_click
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Chapter 19

Frequently Asked Questions

How can I get rid of the warnings on singleton variables?

Typos are in most cases singleton variables. The compiler reports singleton vari-
ables to help the user detect typos. You can set the Prolog flag singleton to off
to get rid of the warnings.

set_prolog_flag(singleton,off)

A better way to get rid of the warnings is to rename singleton variables such that
they all start with the underscore .

How can I deal with stack overflows?

The system does not enlarge a stack when it overflows. You can specify the amount
of space allocated to a stack when you start the system. For example,

bp -s 4000000

allocates 4 mega words, i.e., 16 mega bytes, to the control stack. You can use
the parameter ’-b’ to specify the amount allocated to the trail stack, ’-p’ to the
program area, and ’-t’ to the table area. See 9.1 for the details.

Is it possible to set break points in the debugger?

Yes. Break points are also called spy points. You can use spy(F/N) to set a spy
point and nospy(F/N) to remove a spy point. You can control the debugger and
let it display only calls of spy points. See 6 for the details.

Is it possible to debug compiled code?

No, debugging of compiled code is not supported. In order to trace the execution
of a program, you have to consult the program. Consulted programs are much
slower and consume much more space than their compiled code. If your program
is big, you may have to split your program into several files and consult only the
ones you want to debug.
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I have a predicate defined in two different files. Why is the defini-
tion in the first file still used even after the second file is loaded?

When a program in a file is compiled, calls of the predicates that are defined in the
same file are translated into jump instructions for the sake of efficiency. Therefore,
even if new definitions are loaded, the predicates in the first file will continue to
use the old definitions unless the predicates themselves are also overwritten.

How can I build standalone applications?

You can use the external language interface with C or Java to make your program
standalone. You can also make your program standalone without using the inter-
face. You only need to redefine the main/0 predicate, which is the first predicate
executed by the B-Prolog interpreter. See Section 16.1 for the details.

How can I disable the garbage collector?

Set the Prolog flag gc to off as follows: set prolog flag(gc,off).

Why do I get the error message when I compile a Java program
that imports bprolog.plc.Plc?

You have to make sure the environment variable classpath is set correctly. Add
the following setting to autoexec.bat on Windows,

set classpath=.;%BPDIR%\plc.jar

and add the following line to .cshrc on Unix,

set classpath=.:$BPDIR\plc.jar

In this way, classpath will be set automatically every time when your computer
starts.

Can I have a Prolog variable passed to a Java method and let the
Java method instantiate the variable?

No, no Prolog variable can be passed to a Java method. You should have the Java
method return a value and have your Prolog program instantiate the variable. If
you want a Java method to return multiple values, you should let the Java method
store the values in the member variables of the enclosing object and let Prolog to
use javaGetField to get the values.

Is it possible for one language to know about exceptions raised by
a different language?

A call to a C function raises an exception if the function returns BP ERROR. The
global C variable exception tells the type of the exception. The exception can be
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caught by an ancestor catcher just like any exceptions raised by built-ins. The call
java method throws java exception(Goal) if the Java method is not defined or
the Java method throws some exception. The exception java exception(Goal)

can also be caught by an ancestor catcher in Prolog.
The C function initialize bprolog returns BP ERROR if the B-Prolog system

cannot be initialized, e.g., the environment variable BPDIR is not set. The C
functions bp call string, bp call term, and bp next solution return BP ERROR

if any exception is raised by the Prolog program.
In the current version of JIPL, the methods Plc.exec and Plc.call returns

boolean and thus cannot tell whether or not an exception has occurred in the
Prolog execution. The users’ program must take the responsibility to inform Java
of any exceptions raised in Prolog. To do so, the Prolog program should catch all
exceptions and set appropriate member variables of the Java object that started
the Prolog program. After Plc.exec or Plc.call returns, the Java program can
check the member variables to see whether exceptions have occurred.

Is it possible to write CGI scripts in B-Prolog

Because of the availability of the interfaces with C and Java, everything that can
be done in C, C++ or Java can be done in B-Prolog. So the answer to the question
is yes. B-Prolog, however, does not provide special primitives for retrieving forms
and sending html documents to browsers. The interface of your CGI scripts with
the browser must be written in C or Java.
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Chapter 20

Predefined Operators

op(1200,xfx,[:-, -->]).

op(1200,fx,[?-, :-]).

op(1198,xfx,::-).

op(1150,xfy,[?, :]).

op(1150,fy,[public,mode,dynamic]).

op(1100,xfy,;).

op(1050,xfy,->).

op(1000,xfy,’,’).

op(900,fy,[spy, not, nospy, \+]).

op(760,yfx,[#<=>]).

op(750,yfx,[#=>]).

op(740,yfx,[#\/]).

op(730,yfx,[#\]).

op(720,yfx,[#/\]).

op(710,fy,[#\]).

op(700,xfx,[is, in, \==, \=, @=, @:=, @>=, @>, @=<, @<, ?=, >=, >, =\=, ==,

=<, =:=, =.., =, <, #>=, #>, #=<, #=, #:=, #<,#\=]).

op(661,xfy,.).

op(500,yfx,[\/, /\, -, +, .., \]).

op(500,fx,[-, +]).

op(400,yfx,[>>, <<, //, /, />, /<, *]).

op(400,xfx,mod).

op(300,xfx,**).

op(200,yfx,^).
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Index of Keywords

action rule,39
agent,40
array,5
atom,4
attribute variable,43
Boolean constraint,50
bp,1
bpp,1
compound term,5
conjunction,7
constraint,44
cut,6
debugging,22
debugging,22
dimension,14
directive,19
disjunction,7
dynamic clause,32
dynamic declaration,20
environment variable,71
event handling,39
event,39
event,40
exception,17
fact,5
finite-domain constraint,44
floating-point number,5
garbage collection,21
garbage collection,35
gc,35
global variable,32
hashtable,5
if-then-else,7
initialization,20
input,24

integer,5
interruption,17
length,13
list,5
matching clause,36
mode declaration,19
mode,19
negation,7
number,5
output,24
program,5
rows,14
rule,6
spy point,22
standalone application,70
stream,24
string,5
structure,5
suspension variable,43
term,4
timer,40
timer,41
tree constraint,44
variable,5

Index of Built-ins
#/\ / 2,50
#,52
#<-/2,52
#<=> /2 ,50
#<>/2,52
#<\-/2,52
#=/2,52
#=> / 2,50
#\ / 1,50
#\ / 2,50
#\/ / 2,50
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#\=/2,52
::/2,45
-,11
-,47
**,11
**,47
*,11
*,47
//,11
/,11
/,47
?=/2,10
@</2,10
@=</2,10
@>/2,10
@>=/2,10
+,11
+,47
<,11
<<,11
=../2,11
=/2,10
=</2,11
==/2,10
>/2,11
>=/2,11
>>,11
#</2,47
#=/2,47
#=</2,47
#>/2,47
#>=/2,47
abs,47
max,47
min,47
sum,47
\+/1,7
#\=/2,47

/\,11
@:=/2,14
@=/2,13
@=/2,14
=:=/2,11
=\=/2,11
\/,11

\,11
\=/2,10
\==/2,10
’->’/2,7
’,’/2,7
!/0,6
;/2,7
[]/1,2
abolish/0,32
abolish/2,32
abort/0,3
abs,11
all different/1,48
all distinct/1,48
alldifferent/1,48
alldistinct/1,48
append/3,11
arg/3,11
array to list(X,List),14
assert/1,32
asserta/1,32
assertz/1,32
at end of stream/0,26
at end of stream/1,26
at least one/1,50
at most one/1,50
atan,11
atmost/2,48
atom/1,9
atom chars/2,15
atom codes/2,15
atom concat/2,15
atom length/2,15
atomic/1,9
auto table/0,73
bagof/3,8
bp build atom,61
bp build float,61
bp build integer,61
bp build list,61
bp build nil,61
bp build structure,61
bp build var,61
bp call string,64
bp call term,64
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bp get arg,61
bp get arity,61
bp get call arg,60
bp get car,61
bp get cdr,61
bp get float,60
bp get integer,60
bp get name,61
bp is atom,60
bp is compound,60
bp is float,60
bp is identical,60
bp is integer,60
bp is list,60
bp is nil,60
bp is structure,60
bp is unifiable,60
bp unify,61
bp write,61
call/1,8
catch/3,18
cd/1,71
ceiling,11
char code/2,15
chdir/1,71
clause/2,32
close/1,25
close/2,25
clpset added/2,51
clpset excluded/2,52
clpset low/2,51
clpset up/2,51
clpset var/1,51
compare/3,10
compile/1,2
compound/1,10
constraints number(X,N),43
consult/1,2
copy term/2,10
cos,11
cputime/1,75
cumulative/4,48
current input/1,25
current op/3,29
current output/1,25

current predicate/1,32
current prolog flag/2,21
cutto/1,7
date/1,71
date/3,71
deleteff/3,48
deleteffc/3,48
dif/2,44
diffn/1,48
dom(X,E),40
domain/3,46
dynamic/1,20
element/3,48
environ/2,71
erase/1,33
exists/1,30
exp,11
fail/0,6
fd atmost/2,48
fd dom/2,47
fd include/2,47
fd labeling ff/1,49
fd labeling ffc/1,49
fd max/2,46
fd maximize/2,49
fd min/2,46
fd min max/3,47
fd minimize/2,49
fd next/3,47
fd prev/3,47
fd size/2,47
fd true/2,47
fd var/1,46
fd vector min max/3,47
findall/3,8
float/1,9
float,11
floor,11
flush output/0,26
flush output/1,26
format/2,30
format/3,30
freeze/2,44
frozen/1,43
frozen/2,43
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functor/3,11
gc threshold,35
get/1,30
get byte/1,27
get byte/2,27
get char/1,26
get char/2,26
get code/1,26
get code/2,26
get main args/1,70
get0/1,30
global get/2,33
global get/3,33
global set/2,33
global set/3,33
ground/1,10
halt/0,1
hashtable get/3,14
hashtable keys to list/2,14
hashtable put/3,14
hashtable size/2,14
hashtable to list/2,14
hashtable values to list/2,14
help/0,1
in/2,46
include/1,20
indomain/1,48
init profile/0,76
initialize bprolog,63
initialize table/1,73
ins(X),40
integer/1,10
interrupt,17
is/2,11
javaGetField/3,68
javaMethod/2,68
javaMethod/3,68
javaSetField/3,69
labeling/1,49
labeling ff/1,49
labeling ffc/1,49
length/2,13
list to set/2,52
listing/0,2
listing/1,2

load/1,2
log,11
max,11
membchk/2,13
member/2,13
min,11
minmax(X),40
mod,11
name/2,15
new array/2,13
new hashtable/1,14
new hashtable/2,14
nl/0,26
nl/1,26
nonvar/1,10
nospy/0,22
nospy/1,22
not/1,7
notin/2,46
notrace/0,22
number/1,10
number chars/2,15
number codes/2,15
number vars/3,10
numbervars/3,10
once/1,8
only one/1,50
op/3,28
open/3,24
open/4,24
parse atom/2,15
parse atom/3,15
parse string/2,16
parse string/3,16
peek byte/1,27
peek byte/2,27
peek char/1,26
peek char/2,26
peek code/1,27
peek code/2,26
pi,11
profile/0,76
profile compile/1,76
profile consult/1,76
profile src/1,76
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put/1,30
put byte/1,27
put byte/2,27
put char/1,26
put char/2,26
put code/1,27
put code/2,27
random,11
read/1,28
read/2,28
read term/2,28
read term/3,27
real/1,9
recorda/3,32
recorded/3,33
recordz/3,33
repeat/0,7
retract/1,32
reverse/2,13
round,11
savecp/1,7
see/1,29
seeing/1,29
seen/0,29
set input/1,25
set output/1,26
set prolog flag(Flag,Value),21
set to list/2,52
setarg/3,13
setof/3,8
sign,11
sin,11
sort/2,13
spy/1,22
sqrt,11
statistics/0,74
statistics/2,74
stream property/2,25
sub atom/5,15
subgoal table size/1,73
table find one/1,73
table find all/2,73
subset/2,52
susp attach term(X,T),43
susp attached term(X,T),43

system/1,71
system/2,71
tab/1,30
table/1,73
tell/1,29
telling/1,29
term2atom/2,16
term2string/2,16
throw/1,17
time(T),40
time/1,71
time/3,71
timer/1,42
timer/2,42
timer kill/1,42
timer set interval/2,42
timer start/1,42
timer stop/1,42
told/0,30
trace/0,22
true/0,6
truncate,11
unnumber vars/2,11
var/1,10
vars set/2,11
write/1,28
write/2,28
write canonical/1,28
write canonical/2,28
write string/1,16
write term/2,28
write term/3,28
writeq/1,28
writeq/2,28
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