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THE HIGH PERFORMANCE GENERIC GRAPH COMPONENT LIBRARY

Abstract

by

Lie-Quan Lee

In this thesis | present the Generic Graph Component Library (GGCL), a generic pro-
gramming framework for graph data structures and graph algorithms. Following the
theme of the Standard Template Library (STL), the graph algorithms in GGCL do not
depend on the particular data structures upon which they operate, meaning a single algo-
rithm can operate on arbitrary concrete representations of graphs. | describe the principal
abstractions comprising the GGCL, the algorithms and data structures that it provides,
and provide examples that demonstrate the use of GGCL to implement some common
graph algorithms. Performance results are presented which demonstrate that the use of
novel lightweight implementation techniques and static polymorphism in GGCL results

in code which is significantly more efficient than similar libraries written using the object-

oriented paradigm.
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CHAPTER 1

INTRODUCTION

The graph abstraction is widely used to model a large variety of structures and relation-
ships in many areas such as transportation, scheduling, networks, robotics, VLSI design,
compilers, database and software engineering. For example, a weighted graph can model
airline flight schedules, with the airports as vertices and direct flights between two airports
as edges whose weight is the distance between them. In the register allocation phase of a
compiler, by constructing an undirected interference graph whose vertices represent tem-
porary values and whose edges indicate pairs of temporaries that can not be assigned to
the same register, register allocation, a very basic phase of the compiler, can be deduced
as the classic graph coloring problem. Graph theory has been ubiquitous in sparse ma-
trix computation ever since Seymour Parter used undirected graphs to model symmetric
Gaussian elimination more than 30 years ago. Graph models of symmetric matrices and
factorizations and algorithms on non-symmetric matrices, such as fill paths in Gaussian
elimination, strongly connected components in irreducibility, bipartite matching, and al-
ternating paths in linear dependence and structural singularity, not only make it easier to
understand and analyze sparse matrix algorithms, but broaden the area of manipulating
sparse matrices using existing graph algorithms and techniques [8]. Graph algorithms
can be applied directly to various problem domains if the problems are properly modeled.
Consequently, the implementation of graph algorithms is an important enterprise that can

be greatly facilitated by the availability of high-quality software for realizing graph algo-



rithms. (By “high-quality” in this case we take to mean, such attributes as functionality,
reliability, usability, efficiency, maintainability, and portability [18].)

There are several existing general purpose graph libraries, such as LEDA [17], the
Graph Template Library (GTL) [6], Combinatorica [26], and Stanford GraphBase [14].
Sources such as Netlib [1] and [27] represent repositories of graph algorithms. These li-
braries and repositories represent a significant amount of potentially reusable algorithms
and data structures. However, none of these libraries faithfully followgdineric pro-
grammingparadigm [4] (also see Section 1.1) and are therefore far more rigid (and much
less reusable) than necessary.

These libraries are inflexible in several respects. First, the user is restricted to the
graph data structures provided by the library. Second, the graph algorithms often do not
provide explicit mechanisms for extension, making it difficult or impossible for users to
customize vanilla algorithms to meet their needs. Finally, the manner in which these
libraries associate graph properties (such as color or weight) with a graph data structure
is often inflexible and hard coded into the algorithms or data structures. Ultimately, these
(and other) libraries are fundamentally limited in terms of their flexibility by their design

and implementation.

1.1 Generic Programming

Recently, generic programming [4] has emerged as a powerful new paradigm for library
development. The fundamental principle of generic programming is to separate algo-
rithms from the concrete data structures on which they operate based on the underlying
abstract problem domain concepts, allowing the algorithms and data structures to freely
interoperate. That is, in a generic library, algorithms do not manipulate concrete data
structures directly, but instead operate on abstract interfaces defined for entire equiva-

lence classes of data structures. A single generic algorithm can thus be applied to any



particular data structure that conforms to the requirements of its equivalence class. In
the celebrated Standard Template Library (STL) [15], the data structures are containers
such asvector , list , set andmap. Each of these container classes is a template,
and can be instantiated to contain any type of object. Most importantly, each container
has itsiterator interface. Each container class definestarator type and member
functionbegin andend which represent the first element of the container and the one-
beyond-the-last element, respectivdtgrator is a generalization of pointer because

the dereference of aterator object gets the element value as a pointer ddiesators

form the abstract interface between algorithms and containers so that algorithms are able
to be decoupled from containers. Each STL algorithm is written in terms ofetsor
interface and as a result each algorithm can operate with any of the STL containers. The
following is an example algorithm in STL which performs the operation for each iterator

in the provided range.

template  <class Inputlterator, class Outputlterator,
class UnaryOperation >
Outputlterator transform(Inputlterator first, Inputlterator last,
Outputlterator result, UnaryOperation op)

{

for (; first != last; ++first, ++result)

*result = op(*first);
return  result;

}

As shown above, algorithms are parameterized by the tyjterator so that they
are not restricted to a single type of container. In addition, many of the STL algorithms
are parameterized not only on the typeitefator used for traversal, but on the type of
operation that is applied during the traversal. For exampldramsform() algorithm
shown above has a parameter fddmaryOperator  function object (functor). Func-

tion objects as a generalization of functions, allow abstraction not only over the types



of objects, but also over the operations that are being performed. Likewise, some of the
STL containers are parameterized with function objects, such adimpare template

parameter for thetd::map andstd::set classes.

1.1.1 Concepts

The Generic Graph Component Library is expressed using terminology similar to that of
the SGI STL [4]. In the parlance of the SGI STL, the set of requirements on a template
parameter for a generic algorithm or data structure is caltemhaept (Generic program-
ming is sometimes referred to as “programming with concepts.”) For example, the type
of first andlast in the abovdransform() example is required to compare two
objects of that type for equality, to be possible to increment an object of that type, and
to be possible to dereference an object of that type to obtain the object that it points to.
The requirement set for the typefafst  andlast is calledinputlterator in the STL.
Types that fulfill the requirements of a concept are saithtalelthat concept. For ex-
ample, pointer types such ag* meets the requirements of@putlterator and can be
used intransform() . The class typestd::vector<T> andstd::list<T> are
models of theContainer concept. Concepts can extend other concepts, which is referred
to asrefinementWe use @old sans serif font for all concept identifiers.

For proper operation afansform()  , we require that the type of the arguments
first andlast be models of the conceptputiterator. We note that the C++ language
does not provide support for concept checking. That is, although we give the template pa-
rameter taransform() the name ofnputlterator, the name is merely a placeholder.
The C++ language does not enforce that the arguments passadgtorm() actu-
ally be a model ofinputlterator. Naturally, if the arguments do not model (or refine)

Inputlterator, it is likely that an error will occur when compiling that particular instan-



tiation of transform()  , but that is not the same (semantically) as identifying that the

instantiation itself is in error.

1.2 Generic Programming Process

As described by Stepanov, the generic programming process applied to a particular prob-

lem domain consists of the following basic steps:
1. ldentify useful and efficient algorithms and other components.

2. Find their generic representation (i.e., parameterize each algorithm such that it

makes the fewest possible requirements of the data on which it operates)

3. Derive a set of (minimal) requirements that allow these algorithms to run and to run

efficiently

4. Construct a framework based on classifications of requirements

1.3 A Generic Graph Library

The domain of graphs and graph algorithms is a natural one for the application of generic
programming. There are many kinds of graph representations, such as adjacency matrix,
adjacency list, and dynamic pointer-based graphs and there also numerous graph algo-
rithms such as Depth First Search (DFS), Breadth First Search (BFS), topological sort,
connected components, Dijkstra's algorithm for single-soure shortest paths, Prim's algo-
rithm and Kruskal's algorithm for minimum spanning trees, and Find/Union operation.
In a generic graph library, we should be able to write each algorithm only once and use it
with any graph data structure.

In addition, the algorithms should be flexible, so that algorigatiernssuch as Depth
First Search can be reused. For example, one may want to use DFS to traverse a graph

and calculate whether vertices are reachable. In another situation, DFS could be used to

5



record the order of vertices. In yet another situation, one may want to use DFS to calculate
reachabilityand the order of vertices. These requirements are similar to those of most
general purpose libraries, which would perhaps suggest that the generic programming
style of the STL might be directly applicable to the creation of a graph library.

However, there are important (and fundamental) differences between the types of al-
gorithms and data structures in STL and the types of algorithms and data structures in a
generic graph library. In particular, there are numerous ways in which edge and vertex
properties (such as color and weight) are implemented and associated with vertices and
edges. One way is to store properties in an array indexed by vertex ID. Another method,
suitable for graphs with explicit storage for each vertex, is to store the properties inside
the vertex data structure. Rather than imposing one approach over another, a generic
graph library should provide an generic means for accessing the properties of a vertex or
edge, regardless of the manner in which the properties are stored.

To accommodate the unique properties of graphs and graph algorithms, we introduce
several concepts upon which the interface between graphs and graph algorithms will be
built: Vertex, Edge, Visitor, andDecorator. The latter two concepts are similar in spirit
to the “Gang of Four” [7] pattern¥isitor andDecorator but are quite different in terms
of implementation techniques.

In the following chapters we describe the design and implementation of the Generic
Graph Component Library (GGCL) by applying the generic programming process to the
graph domain. This library was designed and implemented from the ground up with
generic programming as its fundamental paradigm. In the next chapter, we define the
abstract graph interface and concepts used by GGCL in more detail. The generic graph
algorithms in GGCL are described in Chapter 3, and Chapter 4 discusses the main imple-
mentation issues. Sparse matrix ordering algorithms as the first application of GGCL are

discussed in the Chapter 5. Experimental results demonstrating the performance of GGCL



(and comparing the performance to several other graph libraries) are given in Chapter 6.
After that, our conclusions are provided in Chapter 7. Finally, the GGCL Programmer's

Guide is included in the Appendices.



CHAPTER 2

ABSTRACT GRAPH INTERFACE

As the first step of applying the process of generic programming to the graph domain, we
identify that we need implement basic graph algorithms described in [3] which are Depth
First Search (DFS), Breadth First Search (BFS), topological sort, connected components,
Dijkstra's algorithm for single-source shortest paths, Prim's algorithm and Kruskal's al-
gorithm for minimum spanning trees, Find/Union disjoint set operations. Let us look at
classical BFS and consider how we can make it generic. Figure 2.1 shows the algorithm
described in [5] by Cormen et al. The algorithm computes the distance of every vertex
from starting vertexs and the predecessor of every vertex in the resulting BFS tree. Dur-
ing the graph traversing, the color of every vertex V' is color[u] and a normal
First-In First-Out queue objeQis used.

To be generic, we would like BFS can traverse any concrete graph data structures
firstly. That can be achieved by parameterizing the type of input graph object. The type
of vertexs is not necessarily parameterized. However, it should be able to know from
the type of graplG somehow. We decide that we use a traits [19] class to get the type
of vertex object. Secondly, the algorithm need to access the properties of a vertex such
as color, distance, and predecessor. Those properties could be stored either in external
arrays or inside the vertex objects. A generic algorithm requires a generic access mech-
anism. In fact, the textual description in Figure 2.1 has indicated a suitable solution. An

STL functor-like mechanism, calledecorator, can be used here. The typeaulor



BFS(G, s)

/initialization
for each vertex v € V(G)
do color[u] +— WHITE
diul + oo
mlu]  « NIL

/Istarting point
color[s] + GRAY
ds] « O

Q<+ s

//main algorithm
while (Q # 0)
/ldiscover vertex u
do u « head[Q]
for each v € Adju]
/lprocess the edge (u
doif (color[v] == WHITE)
then color[v]
d[v]
mlv] <+ u
ENQUEUE(Q, V)
DEQUEUE(Q)
/ffinishing point for vertex u
color[u] + BLACK

—V)

< GRAY
o ody] + 1

Figure 2.1. The Breadth First Search algorithm description in the textlajak. is the

distance of vertex from starting vertexs. 7[u]

is the predecessor of vertax




modelsDecorator, therefore, accessing color property of vertegan be expressed as
colorfu] . So ford andw. We will identify the minimum set of requirements for a
Decorator later. Thirdly, let us review the algorithm by focusing on the functionality to
implement. The algorithm computes the distance and predecessor of every vertex exactly.
It can not be more or less without re-implementing it. If we only want to compute prede-
cessor information, we might use the algorithm but with unnecessary overhead of setting
up the data structure for distance and computing it. On the other hand, if we want to
compute the predecessor of every vertex and assign a level for all the vertices in BFS tree,
we have to modify the algorithm. The modification is to substitute distance computation
part with level assignment. However, the structure of the modified algorithm is the same
as that of the algorithm in Figure 2.1. As we know, functors or function objects are used
to abstract operations in STL so that STL algorithms can delay binding the concrete oper-
ations until instantiating time. A similar approach can be used in this situation except that
we need several separate operations instead of one operpéicator() only. We call

it Visitor , in whichinitialize() ,start() ,discover() ,process() ,and
finish() are defined. For example, we abstract the operation of setting the vertex color
to beBACKat the finishing point in Figure 2.1 as operatfomish() in a Visitor. We

will give a formal definition ofVisitor later. Finally, we parameterize the type of queue
used in the algorithm to make additional reuse possible. Thus, a generic BFS could be

prototyped as follows:

template <class Graph, class QType, class Visitor >
void BFS(Graph& G, graph _traits <Graph >:vertex _type s,
Qtype& Q, Visitor visitor);

The complete implementation of the generic BFS algorithm in GGCL and the exten-

sive reuse of the BFS pattern can be found in Chapter 3.

10



Graph
Data Structures

Iterator Vertex, Edge,

Functor Visitor, Decorator
STL Algorithms Graph Algorithms
@ (b)

Figure 2.2. The analogy between the STL and the GGCL.

The domain of graph data structures and algorithms is in some respects more com-
plicated than that of containers. The abstract iterator interface used by STL is not suffi-
ciently rich to encompass the numerous ways that graph algorithms may traverse a graph.
Instead, we formulate an abstract interface that serves the same purpose for graphs that
iterators do for basic containers (though iterators still play a large role). Figure 2.2 depicts

the analogy between the STL and the GGCL.

2.1 Formal Graph Definition

The appropriate abstract graph interface can be derived directly from the formal definition
of a graph [5]. A graplt is a pair(V,E), whereV is a finite set and is a binary relation

on V.V is called avertex setvhose elements are calledrtices E is called anedge set
whose elements are calledges An edge is an ordered or unordered faiv) whereu,v

€ V. If (u,v)is and edge in grap, then vertex is adjacentto vertexu. Edge(u,v)is
anout-edgeof vertexu and anin-edgeof vertexv. In adirectedgraph edges are ordered
pairs while in aundirectedgraph edges are unordered pairs. liractedgraph an edge

(u,v) leaves from thesourcevertexu to thetargetvertexv.
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2.2 GGCL Concepts

The three main concepts necessary to define our graph interfaGeagpl, Vertex, and
Edge. Each of our concept definitions derives directly from the formal graph definition.
By design we have tried to keep the interface close to that of existing graph libraries and

to the common graph algorithm notations.

2.2.1 Graph

The Graph concept merely contains a set of vertices and a set of edges and a tag to
specify whether it is a directed graph or an undirected graph. Table 2.1 lis&r&pé
requirements, including its associated types. Note that the specific types of the sets are
not specified. The only requirement is thatrtex sebe a model ofContainerRef and

its value _type a model ofVertex. Theedge semust be a model o€ontainerRef

and itsvalue _type a model ofEdge. The ContainerRef concept is very similar to

the Container concept of the STL, except that tiiontainerRef concept lacks the no-

tion of “ownership”, so making a copy of@ontainerRef object merely creates an alias

to the same underlying container. Obviously, a referenceQorgainer object satisfies

this requirements. Notice that all types are not necessary inside modgtpbfbut de-
duced from traits clasgraph _traits . The function requirements are not the member

functions of models but global functions.

2.2.2 \ertex

The Vertex concept provides access to the adjacent vertices, the out-edges of the vertex
and optionally the in-edges. Table 2.2 lists Weartex requirements, including its associ-
ated types. Similar t&raph concept, thé/ertex concept requires that all the types are

deduced from traits clas@rtex _traits  and functions are global.
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Table 2.1. The specification of tli&aph concept.X is a model oiGraph while G is an

instance ofX.
Expression Return Type Description
graph _traits < A model of Vertex
X >uvertex  _type
graph _traits < X >:edge _type A model of Edge
graph _traits < A ContainerRef of vertices
X >:vertices type
graph _traits < A ContainerRef of edges
X >:edges _type
graph _traits < directed or undirected tag
X >:direct  tag
vertices(G) vertices  _type Thevertex sebf graphG
edges(G) edges _type Theedge sebf graphG

Table 2.2. The specification of théertex concept.X is a model ofVertex while u is an

instance ofX.

Expression Return Type Description

vertex _traits < A model ofEdge

X >edge _type

vertex _raits < The type foradj , Con-
X >:vertexlist type tainerRef

vertex _traits < The type forout _edge,
X >:edgelist _type ContainerRef

adj(u) vertexlist type | The adjacent vertices of
out _edges(u) edgelist _type The out edges of vertex
in _edges(u) edgelist  _type The in edges of vertex

13




Table 2.3. The specification of tl&lge conceptX is a model ofEdge. eis an instance
of X.

Expression Return Type Description

edge traits < X >:Ivertex _type A model of Vertex

source(e) vertex _type | Thesourcevertex of edgee

target(e) vertex _type | Thetargetvertex of edgee
2.2.3 Edge

An Edge is an ordered or unordered pair of vertices. The elements comprisifgities
are thesourcevertex and théargetvertex. In the unordered case it is just assumed that the
position of thesourceandtargetvertices are interchangeable (and, correspondingly, that
the Graph is undirected). Table 2.3 lists tl&ge requirements. Similar t&raph con-
cept, theEdge concept requires that the type is deduced from traits eldgs _traits
and functions are global.

The rest of the chapter gives the formal definitions of two concé&pmsprator and
Visitor identified at the beginning of this chapter. They play an important role in the

GGCL algorithms.

2.2.4 Decorator

As we mentioned, we would like to have a generic mechanism for accessing vertex and
edge properties of a graph (e.g., color or weight) from within an algorithm. The generic
access method is necessary to support the numerous ways in which the properties can be
stored as well as the numerous ways in which access to that storage can be implemented.
We give the nam®ecorator to this concept since it is similar to the intent of the “Gang
of Four” Decorator pattern [7], which attaches additional responsibilities to an object
dynamically.

Table 2.4 gives the definition of tH@ecorator concept. ADecorator looks like a

functor, or function object. We use the methoapérator|] instead obperator()
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Table 2.4. The specification of thi#ecorator concept.X is a model ofDecorator. d is
an instance oX.

Expression Return Type | Description
decorator traits < X >:i:value _type A type of object decorated
d[u] value _type | The decorating property

since it is a better match for the commonly used graph algorithm notations. Similar to the
Graph concept, théecorator concept requires that thalue _type be deduced from
thedecorator _traits  class. Notice that there exists a fundamental difference be-
tweenDecorator andRandomAccesslterator in the STL. The latter defines the method

of operator(] with difference_type as the parameter type. However, the parameter
type of the method obperator(] for Decorator is the type of object decorated, i.e.,

a model ofVertex or Edge.

2.2.5 Visitor

As we mentioned before, function objects or functors abstract the basic operations within
algorithms and they can be used to generalize certain algorithms. In the same way that
function objects are used to make STL algorithms more flexible, we use functor-like
objects to make the graph algorithms more flexible. We use the Nasiter for this
concept because the intent is similar to the well known visitor pattern [7]. We want to add
operations to be performed on the graph without changing the source code for the graphs
or for the generic algorithms.

Table 2.5 shows the definition of tMésitor concept. In the table, is a visitor object,
u ands are vertices, andis an edge. As shown in the table, &sitor is somewhat more
complex than a function object, since there are several well defined entry points at which
the user may want to introduce a call-back. For exangeover() is invoked when

an undiscovered vertex is encountered within the algorithm.pfbeess() method is
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Table 2.5. The specification of thésitor concept. Herev, u, or e is an instance of a
model ofVisitor, Vertex, or Edge, respectively.

red.

Expression Return Type | Description

v.initialize(u) void Invoked during initialization.

v.start(u) void Invoked at the beginning of algorithms.
v.discover(u) void Invoked when an undiscovered vertex is encounte
v.finish(u) void Invoked when algorithms finish visiting a vertex.
v.process(e) bool Invoked when an edge is encountered.

invoked when an edge is encountered. Viegtor concept plays an important role in the

GGCL algorithms.

TheDecorator andVisitor concepts are used in the GGCL graph algorithm interfaces

to allow for maximum flexibility. Below is the prototype for the GGCL depth first search

algorithm, which includes parameters for botbecorator and aVisitor object. There

are two overloaded versions of the interface, the first one in which there is a defdult

orDecorator. The default decorator accesses the color property directly from the graph

vertices. This is analogous to the STL algorithms. For example, there are two overloaded

versions of théower _bound() algorithm. The default uses less-than operator defined

for the element type, while the other version takes an exmiciaryOperator functor

argument for comparison operation.

template

<class Graph,

class

void dfs(Graph& G, Visitor visit);

template

<class Graph,

class

Visitor >

Visitor, class ColorDecorator >

void dfs(Graph& G, Visitor visit, ColorDecorator color);

16



CHAPTER 3

GENERIC GRAPH ALGORITHMS

The generic graph algorithms are written solely in terms of the abstract graph interface
defined in the previous chapter. They do not make assumptions about the actual graph type

or the underlying data structure. This enables a high degree of reuse for the algorithms.

3.1 Breadth First Search Pattern

Our first example is the classic Breadth First Search algorithm. In GGCL we capture
the essence of the Breadth First Search pattern in a generalized BFS algorithm, as shown
in Figure 3.1. Thevisitor parameter provides flexibility in the kinds of actions per-
formed during the BFS. There are several call-back points associated with the visitor,
includingstart() , discover() , process() , andfinish() . TheQ parameter
allows for different kinds of queues to be used. Tigted functor allows algorithms

to perform an action on subsequent encounters with a vertex after it is discovered. The
initialization steps were moved to a separate function to accommodate the need for certain
type-specific initializations.

In thegeneralized _BFS() algorithm we use the expressiont _edges(u) to
access the list of edges leaving vertexlterators of this list are used to access each of
the edges. That is equivalent to traverse the list of adjacent vertices. The algorithm also
inserts each discovered vertex oQar, if the vertex has already been visited, invokes

thevisited  functor. Target vertices are accessed throwaget(e)

17



template <class Vertex, class QType,
class Visitor, class Visited >
void generalized _BFS(Vertex s, QType& Q,
Visitor visitor, Visited visited)

{

typedef typename  vertex _traits <Vertex >:edge _type Edge;
typename vertex _traits <Vertex >:edgelist _type::iterator ei;
visitor.start(s);

Q.push(s);

while (! Q.empty()) {
Vertex u = Q.front();
Q.pop();
visitor.discover(u);
for (ei = out _edges(u).begin();
ei != out _edges(u).end(); ++ei) {
Edge e = *ei;
if  (visitor.process(e))
Q.push(target(e));
else
visited(visitor, Q, ei);
}

visitor.finish(u);
}
}

Figure 3.1. The generalized Breadth First Search algorithm.
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The generalized _BFS() algorithm is ideal for reuse in other algorithms. Fig-
ure 3.2 gives an overview of the algorithms we have constructed so far usiggthe
neralized _BFS. A variation on the UML [13, 21] notation is used to represent the
algorithms, visitor classes, and concepts. A solid box stands for an algorithm or a class.
Dotted boxes are template arguments or concepts. The classes within a concept box
are models of the concept. The notatiar:bind >> indicates the binding of formal
template arguments to concrete types. Unbound template arguments are marked with
underscores, giving a notation for partial specialization.

In Figure 3.2 we can see how particular parameters are chosen in the creation the
different algorithms. First, with regards to the queue type, the BFS algorithm in Figure 3.3
is constructed by using the STueue , while Dijkstra's single-source shortest path and
Prim's minimum spanning tree algorithms are constructed with a mutable priority queue
(a priority queue with a decrease-key operation [5]). A customized queue is used with
BFS in the Reverse Cuthill McKee sparse matrix ordering algorithm [10, 22].

Looking at theVisitor ~ parameter, we see that the normal BFS algorithm uses the
bfs _visitor  which keeps track of the vertex colors. Dijkstra's and Prim's algorithms
both use theveighted _edge _visitor , the only difference between them being the
operator that is bound ®inaryOp parameter. Dijkstra's algorithm is implemented using
aplus functor, and Prim's is implemented using gieject2nd  functor, which is just
a binary operator that returns the 2nd argument. Figure 3.4 shows the GGCL implementa-
tion of Prim's minimum spanning tree algorithm while Figure 3.5 shows the GGCL imple-
mentation of Dijkstra's single source shortest path algorithm. The algorithms consist sim-
ply of some setup declarations, initialization and a cafi¢oeralized _BFS. The only
difference between the two algorithms is the function object used inggighted-

_edge _visitor  whose implementation is shown in Figure 3.6.
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Figure 3.2. The BFS family of algorithms and the predefined set of visitors provided in
GGCL.
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template <class Graph, class Visitor, class ColorDecorator >

void bfs(Graph& G, graph _traits <Graph >:vertex _type s,
Visitor visit, ColorDecorator color)

{

typedef typename graph _traits <Graph >:vertex _type Vertex;
std::queue <Vertex > Q;

bfs _visitor = <ColorDecorator, Visitor > visitor(color, visit);

generalized  _init(G, visitor);
generalized _BFS(s, Q, visitor, null _operation());

Figure 3.3. The BFS algorithm in GGCL.

The Visited  parameter is simply a null operation for the normal BFS algorithm,
while in the Dijkstra's and Prim's algorithms it provides queue update by invoking the

mutable priority queue' decrease-key operation.

3.2 Depth First Search Pattern

The Depth First Search is another fundamental traversal pattern in graph algorithms, and
is a second source for reuse. Figure 3.7 depicts some algorithms that can be either directly
derived from DFS, or that make use of it. The code example in Figure 3.8 gives the
implementation of the topological sort algorithm, a classic example DFS algorithm reuse.
Thetopo _sort _visitor merely outputs the vertex to ti@utputlterator inside the
finish(u) call-back.

The concise implementation of algorithms such as Prim's Minimum Spanning Tree
and Topological Sort is enabled by the genericity of the GGCL algorithms, allowing us to

exploit the reuse that is inherent in these graph algorithms in a concrete fashion.

Currently, the GGCL includes a basic set of algorithms: DFS, BFS, Dijksta's algo-

rithm for the Shortest Path problem, Prim and Kruskal algorithms for Minimum Spanning
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template <class Graph, class Visitor,
class Distance, class Weight, class ID>

void prim(Graph& G, graph  _traits <Graph >:vertex _type s,
Visitor visit, Distance d, Weight w, ID id )

{

typedef typename  graph _traits <Graph >:vertex _type Vertex;
typedef typename decorator _traits <Distance >:value _type D;
typedef functor _less <Distance > Compare;

typedef _project2nd <D,D> Project;

Compare c(d);
mutable _queue <Vertex, std::vector <Vertex >, Compare, ID >
Q(G.num _vertices(), c, id);

weighted _edge _visitor  <Weight, Distance, Visitor, Project >
visitor(w, d, visit);

generalized  _init(G, visitor);
generalized _BFS(s, Q, visitor, queue _update());

}

Figure 3.4. The GGCL implementation of the Prim's Minimum Spanning Tree algorithm
as a call togeneralized _BFS() . The Dijkstra's Single-Source Shortest Path algo-
rithm can be realized in the same way simply by using a different function object in place
of _project2nd<D,D>
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template <class Graph, class Visitor,
class Distance, class Weight, class ID>
void dijkstra(Graph& G, graph _traits <Graph >:vertex _type s,
Visitor visit, Distance d, Weight w, ID id )
{

typedef typename graph _traits <Graph >:vertex _type Vertex;
typedef typename  decorator _traits <Distance >:value _type D;
typedef functor _less <Distance > Compare;

Compare c(d);
mutable _queue <Vertex, std::vector <Vertex >, Compare, ID >
Q(G.num _vertices(), c, id);

weighted _edge _visitor ~ <Weight, Distance, Visitor, plus <D> >
visitor(w, d, visit);

generalized  _init(G, visitor);
generalized _BFS(s, Q, visitor, queue _update());

}

Figure 3.5. The GGCL implementation of the Dijkstra's Single-Source Shortest Path
algorithm as a call tgeneralized _BFS() .
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template <class Weight, class Distance,
class Super, class BinaryOperator >

class weighted _edge _visitor : public  Super {

typedef typename decorator _traits <Distance >:value
public:

//constructors

template <class Edge>
bool process(Edge e) {
typedef typename decorator _traits <Weight >::value
D du = d[source(e)];
D dv = d[target(e)];
bool ret = ( dv == numeric  _limits <D>::max() );
T wuv = wie];
if (dv > op(du, wuv) ) {
dv = op(du, wuv);
d[target(e)] = dv;
need _queue _update = !ret;
Super::process(e);
¥

return  ret;

}

//other members

protected:

Weight w;
Distance d;
BinaryOperator op;
I3

_type D;

_type T;

Figure 3.6. The implementation efeight _edge _visitor used in Dijkstra's algo-

rithm and Prim's algorithm.
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Figure 3.7. The family of DFS algorithms.

Tree, topological sort, and connected components. In addition we have implemented sev-
eral graph algorithms for sparse matrix ordering, including the Reverse Cuthill McKee
and the Minimum Degree algorithms. GGCL is an ongoing project and a number of

generic graph algorithms are in the process of being implemented.
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template <class Graph, class Outputlterator,

class Visitor, class Color >
void topological _sort( Graph& G, Outputlterator result,
Visitor visitor, Color color) {
topo _sort _visitor  <Outputlterator, Visitor >

topo _visit(c, visitor);
dfs(G, topo _visit, color);

}

template <class Outputlterator, class Super >

struct  topo _sort _visitor : public  Super {
//constructors . ..

template <class Vertex >

void finish(Vertex u) {
*result = u; ++result;
Super::finish(u);

}

Outputlterator result;

I3

Figure 3.8. The GGCL implementation of the topological sort algorithm using DFS.
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CHAPTER 4

GGCL IMPLEMENTATION

4.1 Graph Data Structure Implementation

The GGCL graph data structures are constructed in a layered manner to provide maximum
flexibility and reuse. The layered architecture also provides several different points of
customizability. At one end of the spectrum one can use the graphs provided by GGCL
and make small modification with little effort. In the middle of the spectrum are graph
types that can be pieced together from standard components such as lists and vectors. At
the far end of the spectrum the user may already have their own data structure, and they

just need to create a GGTEraph compliant interface to his or her data structure.

4.1.1 Interfacing With External Graph Types

To demonstrate the ease of creating a GGCL interface for non-GGCL graph types, we
constructed &raph interface for LEDA graphs. The interface code is about 1 1/2 pages
and it took approximately 1 man-hour to develop. Another testing case is to create an
interface for a pointer-based graph data structure written in C-style. The code excerpt in
Figure 4.1 is a typical pointer-based graph data structure in language af@ie\in this

graph has a list of adjacent nodes and several properties. Funwkenode serves to
create a newmode . The functionadd _adj is used to make a direct edge between two

nodes .
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/* Below possible pointer-based graph data structures in C. *
struct  adj _list;

struct node {

adj _list* adj _head;
int color;
int flag;
int distance;

%

struct adj _list {
node* cur;

adj _list* next;

I3

node* make _node( int color, int flag) {
node* X = new node;
x—>color = color;
x—>flag = flag;
x—>adj _head = 0;

return = x;

}

/fx- >a?

void add_adj(node* a, node* x) {
adj _list* | = new adj _list;
| —>cur = a;

| —>next = x —>adj _head,
x—>adj _head = I;

}

void connect(node* x, node* y) {
add _adj(y, x);
add _adj(x, y);

}

Figure 4.1. An example of pointer-based graph data structures in C.
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Figure 4.2 is the brief implementation of a class¥ertex. Constructors are omitted.
The implementation lackgertexlist _type class which will be similar teedge-
list _type . Therefore, it is easy to creatertexlist _type class.

| also provide the a class confirmiigfige concept in Figure 4.3. The template tech-
nigue is not necessarily used here. However, it can deal with the problem of include
dependency.

Finally, a simplified version of graph class is shown in Figure 4.4. Several required

types are defined inside the class.

4.1.2 Composing Graphs From Standard Containers

The GGCL provides a framework for composing graphs out of standard containers such
as STLstd::vector , std::list , and matrices from the Matrix Template Library
(MTL) [24], another generic component library we have developed. Of course, the com-
position mechanism will work for any STContainer compliant components, so this
provides another avenue for extensibility by the user.

The set of graph configurations currently provided by GGCL are listed in Figure 4.5.
Again, a solid box stands for a class. Dotted boxes are template arguments or concepts.
The classes within a concept box are models of the concept.

Below is an example of defining an adjacency-list graph type whose vertices have an
associated color and whose edges have an associated weight.

typedef graph <adjacency _list <vecT >, undirected,

color _plugin <>, weight _plugin <int > > myGraph;

4.1.3 Graph Representation

The implementation framework centers around the ngaaph interface class and the
GraphRepresentation concept. Thegraph interface class constructs the full graph

interface based on the minimized interface exported byataphRepresentation con-
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template < class Node >
struct  pointwise _vertex {
typedef pointwise _vertex <Node> self;
typedef Node plugin _type;
typedef pointwise _edge <self > edge _type;
struct edgelist _type {
struct  iterator {
iterator(Node* _s, adj _list* _d) :s( _s), adj( _d) {}
iterator& operator ++() { adj = adj —>next; return *this ; }
bool operator I= (iterator x) const
{return s !=xs || adj != x.adj; }
bool operator == (iterator Xx) const
{ return s == x.s && adj == x.ad;; }
edge _type operator *() { return edge_type(s, adj —>cur); }
Node* s;
adj _list* adj;
i
iterator begin() { return iterator( _node, _node —>adj _head);
iterator end() { return iterator( _node, 0); }
Node* _node;
¥
Node& plugin() { return  *_node; }
protected:
Node* _node;
b
template <class Node>
vertex _traits <pointwise _vertex <Node> >:edgelist _type
out _edges(pointwise  _vertex <Node> u)
{7%..% }

}

Figure 4.2. The sample implementation of vertex class for the pointer-based graph data

structures.
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Vertex source(pointwise
return  Vertex(e.s);

}

template < class Vertex
Vertex target(pointwise
return  Vertex(e.d);

}

template < class Vertex >

struct  pointwise _edge {

typedef typename  Vertex::plugin _type Node;
typedef Vertex vertex  _type;

pointwise _edge() : s( 0), d( 0) {}

pointwise _edge(Node* _s, Node* _d) : s( _s), d(
Node* s;

Node* d;

¥

template < class Vertex >

_edge <Vertex > e) {

>
_edge <Vertex > e) {

-d) {}

Figure 4.3. The sample implementation of edge class for the pointer-based graph data

structures.
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template < class Node, class Direct >
class pointwise _graph {

public:
typedef pointwise _vertex <Node> vertex _type;
typedef pointwise _edge <vertex _type > edge _type;
typedef ggcl::dynamic <> rep _tag;
typedef Direct direct _tag;
pointwise _graph(Node* h) : head(h) {}
vertex _type root() { return  vertex _type(head); }
protected:

Node* head;
%

Figure 4.4. The sample implementation of graph class for the pointer-based graph data
structures.

cept. This allows full fledge GGCGraphs to be constructed out of standard container
components with very little work.

The GraphRepresentation concept is basically a 2@ontainer (a Container of
Containers) coupled with four helper functions:

Iter2D get _target(lter2D b, IterlD i);
stored _edge& get _edge(lterlD i);

bool add(EdgelList& elist, size _type vertex _num,
const stored _edge& e);
void remove(EdgelList& elist, size _type vertex _num);

A 1D Container within aGraphRepresentation corresponds to the out-edge list for
a particular vertex. In a model of 10ontainer every element has a corresponding index
conceptually. The elements do not have to be sorted by their index, and the indices do
not necessarily have to start@t The indices do not have to form a contiguous range. In
actual implementation, the indices do not necessarily have to be stored.

In addition, there is a one-to-one correspondence between tHeeddor and the

vertices of the graph.
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Figure 4.5. The Graph Components Provided By GGCL.
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Theget _target()  helper function is necessitated because the GG@ph must
be able to derive the target vertex from an edge object, through the information pro-
vided by theGraphRepresentation. The get _edge() function provides a generic
access method to the extra edge properties stored within an edge list, auid (he and
remove() methods provide a generic interface for adding and removing edges from a
vertex.

The GraphRepresentation is further refined into three sub concepts, Awacen-
cylList, AdjacencyMatrix, andDynamicGraphRep.

The AdjacencyList concept corresponds to a “sparse” or “compressed” representa-
tion of a graph. As such, further requirements are added to th€@mainer of the
GraphRepresentation. For a model ofAdjacencyList the inner container must be a
variable-sizedContainer whosevalue _type is thesize _type for a vertex if the
graph has no extra edge-associated datastul: gair<size _type,stored  _edge>
where thestored _edge is the type of an object containing any extra edge-associated
data such as weight.

Technically, the edge information of a&djacencyList graph can be stored in order
by vertices or a nature order which is the order by adding edges on creating a graph. This
is not an part of concept but it is convenient to allow users do both as they may want
to. We implement it by providing a template argumés®rdered in selector class
adjacency _list as shownin Figure 4.5.

The AdjacencyMatrix concept corresponds to a “dense” representation of a graph,
with boolean values for all vertex pairs, to mark them as connected or not. Thus, adding
or removing an edge is simply by marking the corresponding boolean true or false.

The DynamicGraphRep concept requires its models to have a head pointer and ex-
plicitly stored vertex objects. Through the stored vertex it is able to access adjacent

vertices.
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4.1.4 Custom Graph Representations

As an example of constructing customized model&aiphRepresentation, we show

how one can build aAdjacencyList usingstd::vector andstd::list . The var-

ious parts of theGraphRepresentation are injected into the GGChraph class by
constructing a graph representation class. This is a class that defines the four helper func-
tions mentioned above (as static member functions), and also dgfm@srep _type ,

which is the 2DContainer of the GraphRepresentation. Figure 4.6 lists the imple-
mentation. One merely has to compose a couple of container types and fill in a few
short functions. Thadd() andremove() methods are not depicted, but they are each

approximately 5 lines.

4.2 Decorator Implementation

In some situations the particular property of vertices or edges is strongly associated with
the graph and exists for the lifetime of the graph. For instance, the distance property
could fall into this category. In other situations the property is only needed for a particu-
lar algorithm. Typically one would want to store a color property externally, since it may
only be needed for a particular algorithm invocation. Thus there are two categories of
decoratorsinterior decoratorsandexterior decoratorsFor exterior decorators, the dec-
orating properties are stored outside of the graph object (they are passed directly to the
GGCL algorithm) and the decorator will access the externally stored data indexed by the
vertex or edge ID. On the other hand, if the decorating properties are stored inside of the
graph object, the decorator consults the vertex or the edge objects to obtain the decorating
property. Figure 4.7 shows the predefined mo@sdsorator in GGCL.

The interface of a decorator as defined in the previous chapter, is very concise. One is
the typevalue _type forthe property and the other is the member metbperator(]

to access the property. For example, The weight of an edgeuld be accessed by a
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//Define a tag for the custom graph representation.
struct  my_graphrep _tag { };

template < class StoredEdge >
class graph _representation _gen< StoredEdge, my _graphrep _tag > {
typedef  std::list <pair <size _t, StoredEdge > > Edgelist;
typedef Edgelist::iterator IterlD;
typedef  std::vector <Edgelist >:iterator Iter2D;
public:
typedef adjacency _list <mygraphrep _tag > rep _tag;
typedef  std::vector <EdgeList > graphrep _type;

static  Iter2D get _target(lter2D b, IterlD i)

{ return b + (*i).first; }
static  StoredEdge* get _edge(lterlD i)
{ return  &((*i).second); }
static bool add(EdgelList& elist, size _t vertex _num,
const StoredEdgeé& e);
static void remove(EdgeList& elist, size _t vertex _num);

%

//Use the above representation to create a graph type.
typedef graph < adjacency _list < my_graphrep _tag > > MyGraph;

Figure 4.6. An example of constructing a GGCL Graph.

model ofWeightDecorator wasw[e] Other properties such as color and distance prop-

erties could be accessed as a similar way.

4.2.1 Internally Stored Properties: Vertex and Edge Plugins

For internal properties, the graph class provides optional parameterized storage plugins
for both vertices and edges. This allows the user to plug in storage for an arbitrary set of

decorating properties. For example, a graph with internally stored edge weights and color
and distance properties for vertices could be defined as follow:

typedef color _plugin <distance _plugin <> > VPlugins;
typedef graph <adjacency _list <>, undirected,
VPIlugins, weight _plugin <int > > myGraph;
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Decorator

‘ col or _decor at or ‘

‘Wei ght _decor at or ‘

‘ di st ance_decor at or ‘

‘fi ni shti ne_decor at or‘

‘predecessor_decorator ‘ :

‘ di scoverti ne_decor at or‘ :

Figure 4.7. The predefined models@écorator in GGCL.

The mixin technique [23] of parameterized inheritance is used to implement the layer-
ing of vertex and edge plugins. Normally, superclasses are defined at subclass definition
time. However, mixins are opposite they are classes without specific superclass definition.
With the template techniques, the implementation of mixin is very simple. For example,

the definition of the above classlor _plugin looks like:

template < class Super >
class color _plugin : public Super {
/...

b
The advantage of static ploymorphism makes plugin classes extremely easy to extend.
Figure 4.7 shows the decorators that are provided in GGCL. We have also created
a mechanism so that users can easily create new custom storage plugins for decorating
properties with user-defined names.

4.2.2 RandomAccesslterator Issue

| mentioned in the Chapter 2 that the concepRaindomAccesslterator is different

from that of Decorator. However, they are similar in the following matter: They both
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providesvalue _type . and they both provide access method to memory but they do not
own the memory. With a very simple wrapper class for a mod&afdomAccessilt-
erator, it can be a model oDecorator. Thus, | provide a traits mechanism [19] to let
users be able to use modelsRdéndomAccessilterator directly where aDecorator is
required in the GGCL algorithms.

The specific mechanism is as follows. First, a tgpgegory is defined folDecora-
tor throughdecorator _traits  class. Namely, letlecorator _traits <Compo-
nent >:.category  bedecorator _tag orrandom _access _iterator _tag ,re-
spectively, if theComponent is a model ofDecorator or RandomAccesslterator.
Second, define the following class:

template < class Component,

class Category = decorator _traits <Component >::category >
struct  IglueD {
typedef Component type;

¥

//specialization for Decorator

template < class Component >

struct IglueD <Component, decorator  _tag > {
typedef Component type;

¥

//specialization for RandomAccesslterator

template < class Component >

struct IglueD <Component, std::random _access _iterator  _tag > {
typedef random _access _iterator  _decorator <Component > type;

|9
Here the partial specialization is used to distinguish the two cases. In the first case,
Component is a model ofDecorator. The the other cas€omponent is a model of
RandomAccesslteraor and a wrapper class tgpedef ed to betype to promise that
thetype is a model ofDecorator. Finally, IglueD <Component >::itype should
be a model oDecorator always as long aomponent is either a model obecorator

or a model ofRandomAccesslterator.
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4.3 Visitor Implementation

To implement a model dfisitor one defines a class conforming to #isitor concept and
fills in the call-back methodgl{scover() , process() , etc.). Figure 4.8 shows the
model ofVisitor used to create the normal BFS algorithm fromgleeeralized _BFS.
This class is responsible for keeping track of the vertex colors.

As in the decorator plugins, the mixin technique [23] is used to make visitors more
extensible. This is the reason for tBase template argument, which allows visitors to
be layered through inheritance, giving an arbitrary number of visitors a chance to perform
actions during the algorithm (each call-back method must invoke in inherited call-back
in addition to performing its own actions). If one wished to recreate the textbook BFS
algorithm shown previously, which calculates distances and predecessors, one would call
bfs with a distance and predecessor visitor. The GGCL has helper functions defined for
creating the standard visitors. (They are likake_pair()  function which creates a

std::pair objectin the STL.)

bfs(G, s, visit_distance(d, visit_predecessor(p)));

whereGis a graph objects the starting vertexg an instance of distance decorator, and

p an instance of predecessor decorator.
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template < class Color, class Base = null _visitor >

class bfs _visitor : public Base {
typedef decorator _traits <Color >:value _type color _type;
public:

// constructors ...
template <class Vertex >

void initialize(Vertex u) {
color[u] = color _traits  <color _type >::white();
Base::initialize(u);

¥

template <class Vertex >

void start(Vertex u) {
color[u] = color _traits <color _type >:gray();
Base::start(u);

¥

template <class Vertex >

void finish(Vertex u) {
color[u] = color _traits  <color _type >:black();
Base::finish(u);

¥

template <class Edge>
bool process(Edge e) {
if (is _undiscovered(target(e)) ) {
color[target(e)] = color _traits <color _type >:gray();
Base::process(e);
return true

}
return false :
}
template <class Vertex >
bool is _undiscovered(Vertex u) {
return  (color[u] == color _traits  <color _type >::white());
}
protected:
Color color;

%

Figure 4.8. An example model of thésitor concept.
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CHAPTER 5

SPARSE MATRIX ORDERING ALGORITHMS

As mentioned in the introduction, graph theory is an ideal tool in sparse matrix tech-
niques. As the first application of GGCL to sparse matrix ordering, | implemented several
sparse matrix ordering algorithms. This also serves to examine how well GGCL abstract

interface behaves in the “real world” applications.

5.1 Graphs and Sparse Matrices

As a graph is a way of representing a binary relation between objects , the nonzero pattern
of a sparse matrix of a linear system can be modeled with a @3é&ylk) whosen vertices

in V represent the unknowns. its edges represent the binary relations established by the
eqguations in the following manner. There is an edge from veti@xertexj whenA;j is
nonzero. Thus, when a matrix has a symmetric nonzero pattern, the corresponding graph
is undirected.

A row permutation of sparse matrik is to change the order of equations while a
column permutation is to relabel (reorder) the unknowns. A symmetric permutation cor-
responds to applying the same permutation to both row and column. This operation is
typical because the diagonal elements often are large. From the point view of graph
theory, finding permutation matrix the in first step of solving a symmetric linear system
mentioned above corresponds to relabeling the vertices of the graph without altering the

edges.
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5.2 Sparse Matrix Ordering Algorithms

The process for solving a sparse symmetric positive definite linear sydterm, b, can

be divided into four stages as follows:

Ordering: Find a permutatior® of matrix A,

Symbolic factorization: Set up a data structure for Cholesky factoof P AP,
Numerical factorization: Decompose® APT into LLT,

Triangular system solution: Solve LL” Pz = Pb for z.

Because the choice of permutatiéhwill directly determine the number of fill-in ele-
ments (elements present in the non-zero structufetbét are not present in the non-zero
structure ofd), the ordering has a significant impact on the memory and computational re-
guirements for the latter stages. However, finding the optimal ordering {orthe sense
of minimizing fill-in) has been proven to be NP-complete [29] requiring that heuristics be
used for all but simple (or specially structured) cases.

An widely used but rather simple ordering algorithm is a variant of the Cuthill-McKee
orderings. It also can be used as a preordering method to improve ordering in more

sophisticated methods such as minimum degree algorithms [11].

5.2.1 Reverse Cuthill-McKee Ordering Algorithm

The original Cuthill-McKee ordering algorithm is primarily designed to reduce the pro-
file of a matrix [10]. George discovered that the reverse ordering often turned out to
be superior to the original ordering in 1971. | described RCM algorithms in the graph

language:

1. Finding a starting vertexDetermine a starting vertaxand assigm; < r.
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2. Main part Fori=1,..., N, find all the unnumbered neighbors of the verteand

number them in increasing order of degree.

3. Reversing ordering The reverse Cuthill-McKee ordering is given By, ..., yx

wherey; isXy ;41 fori=1,...,N.

At the first step, a good starting vertex needs to be determined. the study by George
and Liu [10] showed that a pair of vertices which are at maximum or near maximum
"distance” apart are good ones. They also proposed an algorithm to find such a starting
vertex in [10].

My implementation of RCM is quite concise because many components from GGCL
can be reused. The key part of step one is a custom queue type with BFS as shown in
Figure 5.1. The main algorithm has a simple BFS-like structure although | can not reuse
BFS directly because the algorithm is required a local priority (increasing order of degree

of all unnumbered neighbors).

5.2.2 Minimum Degree Ordering Algorithm

Developing algorithms for high-quality orderings has been an active research topic for
many years. The pattern of ordering algorithms in wide use are based on a greedy ap-
proach such that the ordering is chosen to minimize some quantity at each step of a
simulatedn-step symmetric Gaussian elimination process. The algorithms using such
an approach are typically distinguished by their greedy minimization criteria [20].

In graph terms, the basic ordering process used by most greedy algorithms is as fol-

lows:
1. Start: Construct undirected grag’ corresponding to matrix
2. lterate: Fork = 1,2,..., until G* = 0 do:

e Choose a vertex* from G* according to some criterion

43



template  <class
int

pseudo _peripheral

Graph,

Color ¢, Degree d)
typedef typename IglueD <Degree >::
rcm_queue <Vertex, DegreeDecorator
bfs(G, u, Q, null _visitor(), c¢);

w = Q.spouse();
return  Q.eccentricity();

}

template <class Graph, class Color,

typename graph _traits <Graph >::vertex

find _starting _node(Graph& G, Color c,
typedef typename  graph _traits
Vertex r = *(vertices(G).begin());
Vertex X, V;

int eccentricity
eccentricity _r
eccentricity X

_r, eccentricity
pseudo _peripheral
pseudo _peripheral

while  (eccentricity _X > eccentricity
r=x;
eccentricity _r = eccentricity _X;
X =y,
eccentricity _X = pseudo _peripheral
}
return ;

}

class Vertex,

_pair(Graph& G, Vertex u, Vertex& w,

<Graph >::vertex

X;

class Color, class Degree >

{

type DegreeDecorator;

> Q(d);

class

_type
Degree d)

Degree >

{

_type Vertex;

_pair(G, r, x, ¢, d);
_pair(G, x, vy, ¢, d);

o

_pair(G, x, vy, c, d);

Figure 5.1. The GGCL implementation @ihd
pseudo _peripheral  _pair
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e Eliminatev* from G* to form G¥+!

The resulting ordering is the sequence of vertiggs v!, ...} selected by the algorithm.

One of the most important examples of such an algorithm isMi@mum Degree
algorithm. At each step the minimum degree algorithm chooses the vertex with mini-
mum degree in the corresponding graph/asA number of enhancements to the basic
minimum degree algorithm have been developed, such as the use of a quotient graph
representation, mass elimination, incomplete degree update, multiple elimination, and
external degree. See [11] for a historical survey of the minimum degree algorithm.

The GGCL implementation of the Minimum Degree algorithm closely follows the
algorithmic descriptions of the one in [11, 16]. The implementation presently includes
the enhancements for mass elimination, incomplete degree update, multiple elimination,
and external degree.

In particular, | create a graph representation to improve the performance of the al-
gorithm. It is based on a templated “vector of vectors.” The vector container used is an
adaptor class built on top the STector class. Particular characteristics of this adaptor

class include the following:

e Erasing elements does not shrink the associated memory. Adding new elements

after erasing will not need to allocate additional memory.

e Additional memory is allocated efficiently on demand when new elements are added
(doubling the capacity every time it is increased). This property comes from STL

vector.

Note that this representation is similar to that used in Liu's implementation, with some
important differences due to dynamic memory allocation. With the dynamic memory al-
location we do not need to over-write portions of the graph that have been eliminated,

allowing for a more efficient graph traversal. More importantly, information about the
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elimination graph is preserved allowing for trivial symbolic factorization. Since sym-
bolic factorization can be an expensive part of the entire solution process, improving its
performance can result in significant computational savings.

The overhead of dynamic memory allocation could conceivably compromise perfor-
mance in some cases. However, in practice, memory allocation overhead does not con-
tribute significantly to run-time for our implementation as shown in the next chapter be-

cause it is not done very often and the cost gets amortized.
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CHAPTER 6

PERFORMANCE

Efficiency is typically advertised as yet another advantage of generic programming —
and these claims are not simply hype. The efficiency that can be gained through the
use of generic programming and high-level performance optimization techniques (which
themselves can be expressed in a generic fashion) is astonishing. For example, the Matrix
Template Library, a generic linear algebra library written completely in C++, is able to
achieve performance as good as or better than vendor-tuned math libraries [24].

For many of the efficient graph data structures in GGCL, vertex and edge objects
that model the GGCL interface concepts are not explicitly stored. Rather, only partial
information is stored. The GGCL interface layer constructs full vertex and edge objects
on the fly from this information. These objects are extremely light-weight, and have been
designed so that a modern C++ compiler will optimize the small objects away altogether.
We call a light-weight object such as thid/myfly because of its very short lifetime. We
discussed th#ayfly as a design pattern for high performance computing in [25].

Additionally, the flexibility within the GGCL is derived exclusively from static poly-
morphism, not from dynamic polymorphism. As a result, all dispatch decisions are made
at compile time, allowing the compiler to inline every function in the GGCL graph inter-
face. Hence the “abstraction penalty” of the GGCL interface is completely eliminated.
The machine instructions produced by the compiler are equivalent to what would be pro-

duced from hand-coded graph algorithms in C or Fortran.
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6.1 Comparison to General Purpose Libraries

Using a concise predefined implementation of adjacency list graph representation in GGCL
following the concepts we described in Section 4, we compare the performahte of

dfs , anddijkstra algorithms with those in LEDA(version 3.8), a popular object-ori-
ented graph library [17], and those in GTL [6]. We did not perform comparison between
GGCL and Combinatorica [26] we mentioned previously since it is written in Mathemat-
ica.

Our experiments compare the performance of three algorithfas; dfs , anddijkstra
Thebfs algorithm calculates the distance and the predecessor for every reachable vertex
from a starting vertex. Thdfs algorithm calculates the discovery time and finishing
time of vertices. Thalijkstra algorithm calculates the distance and the predecessor
of every vertex from a starting vertex.

Figure A.1, Figure 6.2 and Figure 6.3 show the results for those algorithms applied
to randomly generated graphs having a varying number of edges and a varying num-
ber of vertices. Because GTL does not have a Dikstra's algorithm to compare to, it is
not in Figure 6.3. All results were obtained on a Sun Microsystems Ultra 30 with the
UltraSPARC-II 296MHz microprocessor. For these experiments, GGCL is 5 to 7 times

faster than LEDA.

6.2 Comparison to Special Purpose Library

In addition, we demonstrate the performance of a GGCL-based implementation of the
multiple minimum degree algorithm [16] using selected matrices from the Harwell-Boeing
collection [12] and the University of Florida's sparse matrix collection [2]. Our tests com-
pare the execution time of our implementation against that of the equivalent SPARSPAK
Fortran algorithm (GENMMD) [9]. For each case, our implementation and GENMMD

produced identical orderings. Note that the performance of our implementation is essen-

48



10" ¢

10;

10;

500 vertices (GTL)
1000 vertices (GTL)
2000 vertices (GTL)
500 vertices (LEDA)
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Figure 6.1. Performance comparison of bife algorithm in GGCL with that in LEDA

and in GTL. Every curve represents a graph with fixed number of vertices and with varied

number of edges.
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Figure 6.2. Performance comparison of ttie algorithm in GGCL with that in LEDA
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Table 6.1. Performance comparison of minimum degree algorithms. Test matrices and
ordering time in seconds, for GENMMD (Fortran) and GGCL (C++) implementations
of minimum degree ordering. Also shown are the matrix order (n) and the number of

off-diagonal non-zero elements (nnz).

| Matrix [ n | nnz | GENMMD | GGCL |
BCSPWRO09 1723 | 2394 0.00728841] 0.007807
BCSPWR10 5300 | 8271 0.0306503 | 0.033222
BCSSTK15 3948 | 56934 0.13866 0.142741
BCSSTK18 11948| 68571 0.251257 | 0.258589
BCSSTK?21 3600 | 11500 0.0339959 | 0.039638
BCSSTK?23 3134 | 21022 0.150273 | 0.146198
BCSSTK?24 3562 | 78174 0.0305037 | 0.031361
BCSSTK?26 1922 | 14207 0.0262676 | 0.026178
BCSSTK?27 1224 | 27451 0.00987525 0.010078
BCSSTK?28 4410 | 107307 || 0.0435296 | 0.044423
BCSSTK?29 13992| 302748 || 0.344164 | 0.352947
BCSSTK31 35588| 572914 || 0.842505 | 0.884734
BCSSTK35 30237| 709963 || 0.532725 | 0.580499
BCSSTK36 23052| 560044 || 0.302156 | 0.333226
BCSSTK37 25503| 557737 || 0.347472 | 0.369738
CRYSTKO02 13965| 477309 || 0.239564 | 0.250633
CRYSTKO03 24696| 863241 || 0.455818 | 0.480006
CRYSTMO3 24696| 279537 || 0.293619 | 0.366581
CT20STIF 52329 1323067|| 1.59866 1.59809
PWT 36519 144794 || 0.312136 | 0.383882
SHUTTLE.EDDY || 10429| 46585 0.0546211 | 0.066164
NASASRB 54870| 1311227| 1.34424 1.30256

tially equal to that of the Fortran implementation and even surpasses the Fortran imple-

mentation in a few cases.

6.3 Template Issues

There are several issues that often come up in libraries that make heavy use of C++ tem-
plates and advanced language features, such as code size, compile times, ease of debug-
ging, and compiler portability. For template libraries such as GGCL, code size is very

much dependent on how the library is used. If a particular code only uses a few GGCL
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Table 6.2. Comparison of executable sizestffs , dfs , anddijkstra implemented
in GTL, LEDA and GGCL.

Executable Size (KBytes
Package Namebfs dfs dijkstra

N—r

GTL 151 | 151 /
LEDA 842 | 841 857
GGCL 33 | 30 30

algorithms and graph types, then the executable size will actually be much smaller than
it would be using typical libraries. With a template library, only the functions that are
actually used are included. On the other hand, with a traditional library, the whole ob-
ject module will be linked in even though only one function in the module may be used.
To demonstrate these effects, we compare the size of sample executdbiles dfs ,
anddijkstra algorithms in GTL, LEDA, and GGCL in Table 6.2. All are compiled

by egcs-1.1.2 using the same compilation options. (Similar results are obtained for other
compilers and architectures.) Of course, with a template library like GGCL it is very easy
to instantiate redundant functionality which may unnecessarily increase the executable
size, so users with large projects should be cognizant of this issue. There are techniques
one can use to reduce this effect by explicity instantiating template functions in object
files that can be shared.

Long compilation times are often cited as a drawback to template libraries, especially
those that use expression templates [28]. Since GGCL does not use expression templates,
and the overall code size of GGCL is moderate, we have not experienced severe problems
in this regard. In addition, many compilers provide precompiled header mechanisms to
improve compile times for template libraries.

Another concern for users of template libraries are the almost impenetrable error mes-
sages that occur when the library is misused (e.g., when a template parameter type does

not model the appropriate concept). We have recently addressed this problem with some
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template techniques that cause the arguments to a library call to be checked up front with
regards to the type requirements. With this mechanism the resulting error messages are
much more informative.

Lastly, compiler portability is currently an issue for libraries that use the more ad-
vanced features of C++. GGCL currently compiles with egcs, Metrowerks CodeWarrior,
Intel C++, SGI MIPSpro, KAI C++, and other Edison Design Group based compilers.
We foresee some difficulty porting to Visual C++ because of its lack of standards con-
formance. Since the C++ standard has been finalized, we fully expect that language

conformance problems will cease to be a significant issue in the near future.
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CHAPTER 7

CONCLUSION AND AVAILABILITY

7.1 Conclusion

In this thesis, | applied the emerging paradigm of generic programming to the important
problem domain of graphs and graph algorithms. Our resulting framework, the Generic
Graph Component Library, is a collection of generic algorithms and data structures that
interoperate through the abstract graph interface comprisagméx, Edge, Visitor,
andDecorator concepts. The generic GGCL algorithms allow basic algorithm patterns
to be applied in different ways to build up more complicated graph algorithms, resulting
in significant code reuse. Similarly, since GGCL algorithms are independent of the un-
derlying graph representation, custom graph representation implementation can be mixed
and matched with GGCL graph algorithms. Since our C++ implementation of the generic
programming paradigm makes heavy use of static (compile-time) polymorphism, there is
no run-time overhead associated with the powerful abstractions provided by GGCL. Ex-
perimental results demonstrate that the GGCL executes significantly faster than LEDA, a
well-known object-oriented graph library, and can even compete with high performance

Fortran code.

7.2 Availability

The source code and complete documentation for the GGCL can be downloaded from the

GGCL home page at
http://lsc.nd.edu/research/ggcl

55



BIBLIOGRAPHY

[1] Netlib repository. http://www.netlib.org/.

[2] University of Florida sparse matrix collection. http://www-
pub.cise.ufl.edu/davis/sparse/.

[3] M. J. Atallah, editorAlgorithms and Theory of Computation HandboGIRC Press
LLC, 1999.

[4] M. H. Austern.Generic Programming and the STAddison Wesley Longman, Inc,
October 1998.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivesttroduction to Algorithms The
MIT Press, 1990.

[6] M. Forster, A. Pick, and M. RaitneGraph Template Libraryhttp://www.fmi.uni-
passau.de/Graphlet/GTL/.

[7] E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign Patterns: Elements of
Reusable Object-Oriented Softwafaldiaon Wesley Publishing Company, October
1994,

[8] A. George, J. R. Gilbert, and J. W. Liu, editor&raph Theory and Sparse Matrix
Computation Springer-Verlag New York, Inc, 1993.

[9] A. George and J. W. H. Liu. User's guide for SPARSPAK: Waterloo sparse linear
equations packages. Technical report, Department of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada, 1980.

[10] A. George and J. W.-H. LiuComputer Solution of Large Sparse Positive Definite
SystemsComputational Mathematics. Prentice-Hall, 1981.

[11] A. George and J. W. H. Liu. The evolution of the minimum degree ordering algo-
rithm. SIAM Review31(1):1-19, March 1989.

[12] R. G. Grimes, J. G. Lewis, and I. S. Duff. User's guide for the harwell-boeing sparse
matrix collection. User's Manual Release 1, Boeing Computer Services, Seattle,
WA, October 1992.

[13] I. Jacobson, G. Booch, and J. Rumbaughified Software Development Process
Addison-Wesley, 1999.

[14] D. E. Knuth. Stanford GraphBase: a platform for combinatorial computidgCM
Press, 1994.

56



[15] M. Lee and A. Stepanov. The standard template library. Technical report, HP Lab-
oratories, February 1995.

[16] J. W. H. Liu. Modification of the minimum-degree algorithm by multiple elimina-
tion. ACM Transaction on Mathematical Softwafel (2):141-153, 1985.

[17] K. Mehlhorn and S. NaeheLEDA. http://www.mpi-sb.mpg.de/LEDA/leda.html.
[18] B. Meyer. Object-Oriented Software ConstructioRrentice Hall, 1997.
[19] N. C. Myers. Traits: a new and useful template technidqtiet Report June 1995.

[20] E. G. Ng and P. Raghavan. Performance of greedy ordering heuristics for sparse
Cholesky factorization. SIAM Journal on Matrix Analysis and Applicatign§o
appear.

[21] Object Management GroupJML Notation Guide version 1.1 edition, September
1997. http://www.rational.com/uml/.

[22] Y. Saad. Iterative Methods for Sparse Minear SysteRWS Publishing Company,
1996.

[23] Y. Samaragdakis and D. Batory. Implementing layered designs with mixin layers.
In The Europe Conference on Object-Oriented Programpii®g8.

[24] J. G. Siek and A. Lumsdaine. The matrix template library: A generic programming
approach to high performance numerical linear algebritérnational Symposium
on Computing in Object-Oriented Parallel Environmerit898.

[25] J. G. Siek and A. Lumsdaine. Mayfly: A pattern for light-weight generic interfaces.
In PLOP99 1999. Accepted.

[26] S. Skienalmplementing Discrete mathematigsddion-Wesley, 1990.
[27] S. S. SkienaThe Algorithm Design ManuaBpringer-Verlag New York, Inc, 1998.

[28] T. L. Veldhuizen. Expression templatesC++ Report 7(5):26-31, June 1995.
Reprinted in C++ Gems, ed. Stanley Lippman.

[29] M. Yannanakis. Computing the minimum fill-in is NP-comple®AM Journal of
Algebraic and Discrete Method$981.

57



APPENDIX A

GRAPHS

A.1 Concepts
A.1.1 Graph

Description

The Graph concept merely contains a set of vertices and a set of edges and a tag to

specify whether it is a directed graph or an undirected graph.

Notations
X Atype thatis a model of Edge
G An object of theX

Table A.1: Expression semantics of conc&paph

Expression Description
graph _traits < X > :vertex _type Vertex type
graph _traits < X > uedge _type Edge type

graph _traits < X > :vertices _type The return type oVertices()

graph _traits < X > edges _type The return type oédges()

vertices(G) To return a ContainerRef object held a

vertices in the graph.
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Expression Description

edges(G) To return a ContainerRef object held a

edges in the graph.

Table A.2: Function specification of conceéptaph

Prototype Description

vertices _type vertices(G) To return a ContainerRef object held a

vertices in the graph.

edges _type edges(G) To return a ContainerRef object held a

edges in the graph.

Models
e graph
e LEDA graph

Notes

Global functions instead of member functions are chosen to make the concept more gen-
eral. ContainerRef is similartotheContainer concept except that the former lacks

the notion of “ownership”, so making a copy o€CantainerRef  object merely creates

an alias to the same underlying container. Obviously, a referencEdatainer object

satisfies this requirements
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A.2 Graph type selectors
A.2.1 adjacencyist

Description

To choose a graph type whose representation is the adjacency list. See GraphRepresen-
tation for details about the concept of a graph representation. The concrete graph repre-

sentation is selected by the template argue@uoricreteRep . The data stored in OneD

part can be ordered or unorder with respect to the vertex. The second template argument

is used to choose ordered or unordered. Here are several examples of adjacency lists and

the example code to use them.

typedef adjacency _list < listT, ordered > GraphRep;
typedef adjacency _list < slistT, ordered > GraphRep2;
typedef adjacency _list < flistT, unordered > GraphReps3;

typedef adjacency _list < vecT, unordered > GraphRep4;
typedef adjacency _list < mapT > GraphRep5;

typedef adjacency _list < hash_mapT > GraphRep6;

typedef adjacency _list < ggcl _vecT, ordered > GraphRep7,
typedef graph < GraphRepl > Graphl;

typedef graph < GraphRep2, undirected > Graph2,;

typedef graph < GraphRep3, directed > Graphs3;

The Table A.3 describes the concrete graph representation associated with the prede-
fined selectors.

Although the concrete graph representations selectd by the predefined selectors are
indeed two-dimensional, users are able to use those concrete graph representations other

than those predefined ones. For example, users have a model of twod container which is
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Table A.3. Concrete graph representations

selector | ordered/unorderedconcrete graph rep to selegt
listT both ggclvec<std::list>

slistT both ggclvec <std::slist>

flistT both ggclvec <flist >

vecT both ggclvec<std::vector>
mapT ordered only ggclvec<std::map>
hashmapT| ordered only ggclvec <std::hashmap>
ggclvecT | both ggclvec<ggclvec >

calledcompressed2D . The following will create a custom adjaceligt graph type and

it is able to be used in GGCL.

struct compT {}; //define a custom selector

template < class StoredEdge, class IsOrdered >
class graph _representation _gen < adjacency _list
< compT, IsOrdered > > {
typedef compressed2D < StoredEdge > graphrep _type;

template <class lIter >
static  StoredEdge* get _edge(lter i);

template < class RandomAccesslter, class Forwardlter >
static  RandomAccesslter
get _target(RandomAccesslter b, Forwarditer i);

template < class OneD, class size _type >
static bool add(OneD& c, size _type |,
const StoredEdgeé& val);

template < class OneD, class size _type >
static bool remove(OneD& c, size _type ));

%

typedef graph < adjacency _list < compT, unordered >,
undirected > Graph;
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Definition

tags.h
Table A.4: Template parameters of clasacency _list

Parameter Default Description

ConcreteRep the concrete representation
type selector

IsOrdered ordered or unordered

ConcreteRep ggcl _vecT concrete representation type
selector

IsOrdered ordered to store edges in order or not see
ordered and unordered

Table A.5: Members ofdjacency _list
Declaration Description Where Defined

enum type = ADJACENCY.LIST,
isOrdered = IsOrdered::type

concrete _rep _type

concrete representatia

type selector

=]

is _ordered _type

type of graph representa
tion for ordered or un-

ordered storage.

=
1
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A.2.2 adjacencymatrix

Description

To choose a graph type whose representation is adjacency matrix. The adjacency matrix
graph is ordered implicitly. Adding or removing an edge takes constant time. However,

the traversing an adjacency matrix graph is not so efficient as traversing an adjacency list

graph.

Currently, the selected OneD container is required to be a model of RandomAccess-
Container. See sgi stl documentation for the concept of RandomAccessContainer. Thus,

vecT and ggclecT are the only two predefined selectors now althrough users could pro-

vides their own ones.

Table A.6: Template parameters of clasacency _matrix
Parameter Default Description
ConcreteRep vecT concrete representation type §
lector
Table A.7: Members ohdjacency _matrix
Declaration Description Where Defined

isOrdered = ORDERED

enum type = ADJACENCYMATRIX,

concrete _rep _type

is _ordered _type

A.2.3 directed

Description

The tag for directed graph
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A.2.4 dynamic

Description

To choose a graph type whose representation is dynamic. Thudheatly of a graph is

directly available from the graph class througlot() method.

Table A.8: Template parameters of clalysmamic

Parameter Default Description
ConcreteRep vecT OneD part selector
IsOrdered ordered OneD part selector

Table A.9: Members oflynamic

Declaration Description Where Defined

enum type = DYNAMIC, isOrdered =
IsOrdered::type

concrete _rep _type

is _ordered _type

A.2.5 undirected

Description

The tag for undirected graph

64



A.3 Graph classes
A.3.1 LEDA Graph

Description

GGCL algorithms are truely generic. Users are able to use it as long as the data structures
used meet the cooresponded concepts. This is one of three classes to meet the graph

concept for LEDA's graph data structure. Here is a brief example to use them:

GRAPH< int , int > _G; //This is the LEDA's graph object.
/...

//luse GGCL algorithms

typedef LEDA Graph < GRAPH< int , int > > Graph;
Graph G( _G);

bfs(G, ...);

Example
In bfs_leda.cc:

GRAPKint ,int > _G;

//LEDA graph data

typedef LEDA Graph < GRAPKint ,int > > Graph;
Graph G( _G);

typedef Graph:.vertex  _type Vertex;
Vertex s = *(G.vertices().begin());

ggcl _vec <Vertex > p(G.num _vertices());
ggcl _vec <Graph::size _type > d(G.num _vertices());
ggcl _vec <default _color _type > color(G.num _vertices());

bfs(G, s, visit _distance(mapfun(d),
visit _predecessor(mapfun(p))), mapfun(color));

Definition

LEDA.h
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Table A.10: Members dtEDA Graph

Declaration Description Where Defined
vertex _type Graph

edge _type Graph

size _type

rep _tag Graph

struct vertices _type Graph
LEDAGraph (LEDAG& _G)

vertices  _type vertices () Graph

size _type num _vertices () const

See also

LEDA Vertex, LEDA Edge

A.3.2 graph

Description

This is the GGCL implemention of GGCL Graph concept. The adjacéistand adja-
cencymatrix representations are referred to this class. Dynamic represetnation graphs is
refered to another class which is the specialization. A graph object with any graph rep-
resentation is able to remove edges, add edges, remove vertices, and add vertices. The
following pictures give you an overview of a graph with adjacelisyor adjacency

matrix represetation. Specially, The two dimensional structurBaafD andOneD are
conceptual in the pictures. The implementation could be in a segment of contigous mem-
ory depend on the concrete graph representation data structure.

Here are several simple examples of defining graphs:
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Table A.11. Overview of adjacency list and adjacency matrix graphs

adjacencylist adjacencymatrix
Adjacency_list Representation Adjacency_list Representation
OneD - OneD

\ \
- ]

| O | | O |
N || |
‘ StoredVertex array 1 ‘ ‘ StoredVertex array 1
‘ StoredVertex array 2 ‘ ‘ StoredVertex array 2 ‘
‘ ° : ‘ °

° °
,,,,,,,,,,,,,,, e AR SRR
I StoredEdge I StoredEdge

typedef graph <> Graphl;
typedef graph < adjacency _matrix <> > Graph2;
typedef on_vertex _color _plugin
< on_vertex _distance _plugin < id _plugin <> > >

VertexPlugin;

typedef graph < dynamic <>,
directed, VertexPlugin > Graph3;

typedef graph < adjacency _list < vectT, unordered >,

undireted, color _plugin <>,
Weight < double > > Graph4;
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Example
In bfs_1.cc:

using namespace

typedef graph

Graph G( 5);

G.add _edge( 0O,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 3,
G.add _edge( 3,
G.add _edge( 4,
G.add _edge( 4,

typedef  Graph

ggcl;
< adjacency
directed, color

2);
1);
3);
4);
1);
3);
4);
1);
4);
0);
1);

vertex

_list

< ggcl _vecT >,

_plugin <> > Graph;

_type Vertex;

/* Array to store predecessor (parent) of each vertex */

std::vector

<Vertex > p(G.num _vertices());

/* Array to store distances from the source to each vertex */

std::vector

<Graph::size

/* The source vertex */
Vertex s = *vertices(G).begin();

bfs(G, s, visit _distance(mapfun(d),
visit
Definition
graph.h

_type > d(G.num _vertices());

_predecessor(mapfun(p))));

Table A.12: Template parameters of clasaph

Parameter

Default

Description

rep _t

adjacency

list

<>

graph representation selectg

68

=



Parameter Default Description

direct _t directed graph type selector. Two po

sible types: directed and undi

rected
StoredVertexPlugin off _vertex _- Stored Vertex type
default _plugin <>
StoredEdgePlugin no_plugin Stored edge type

Table A.13: Members ajraph

Declaration Description Where Defined

StoredEdge

edgeplugin  _type

storedvertex  _type

direct _tag

graphrep _gen

vertex _type vertex type

const _vertex _type constant vertex type
edge _type edge type

const _edge type constant edge type
size _type

vertices _type

const _vertices _type

edges _type

const _edges _type

graph ()
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Declaration

Description

Where Defined

graph (size _type n)

n is number of vertices in

the graph

graph (std::pair <size _type, size
type >* edges, size _type numedges,
size _type n, const edgeplugin -
type& ep = edgeplugin  _type() )

numyv (n)

bool add _edge (size _type i, size
type j, const edgeplugin _type&
ep=edgeplugin _type())

add an edge i> j for di-
rected graph or an edge i

j for undirected graph

bool add _directed _edge (size _type
i, size _type j, const edgeplugin
type& ep=edgeplugin  _type())

int remove _edge (size _type i,
size _type )

void remove _all _edges (size _type

i)

void remove _vertex (size  _type i)

remove vertex whose id i

void add _vertex ()

add a new vertex

vertices _type vertices ()

const _vertices _type vertices ()
const

const size _type num _vertices ()
const

edges _type edges ()

const _edges _type edges () const

void print () const

get a vertex type from
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A.3.3 graph

Description

This is the partial specialization of graph class for dynamic representation. The following
picture gives you an overview of a graph with a dynamic representation. This class does
not take care emory managemnet of dynamoce. Thus add a new vertex without any
new edges will not affect the class. This is the reason why there agldavertex()

method here.

Dynamic Representation _
dynamic_node

head

dynamic_node . dynamic_node

Q StoredVertex (O pointer to dynamic_node

| StoredEdge OneD

Figure A.1. Overview of the dynamic graph

Unlike the adjacencyist graph, here th8toredvertex  is stored inside thdynamic _-

node . Here is an example to define a dynamic graph:
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typedef on_vertex _color _plugin
< on_vertex _distance _plugin < id _plugin <> > >
VertexPlugin;
typedef graph < dynamic < vecT, unordered >, directed,
VertexPlugin, no _plugin > Graph;

See examples for how to create a wraper for a pointwise graph data structure so that

GGCL algorithms can be applied.
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Example

In dynamic.cc:

typedef on_vertex _color _plugin < on_vertex _distance _plugin
< id _plugin <> > > VertexPlugin;

typedef graph <dynamic <listT, unordered >,
directed, VertexPlugin > Graph;
typedef  Graph::storedvertex _type DynamicVertex;

typedef Graph:vertex  _type Vertex;
DynamicVertex* head = new DynamicVertex();

Graph G(head);

DynamicVertex* v1
DynamicVertex* v2

new DynamicVertex();
new DynamicVertex();

G.add _edge(head, vl);
G.add _edge(head, v2);

DynamicVertex* v3
DynamicVertex* v4

new DynamicVertex();
new DynamicVertex();

G.add _edge(vz2, v3);
G.add _edge(v2, v4);

DynamicVertex* v5 = new DynamicVertex();

G.remove _edge(v2, v3);
G.add _edge(vl, v3);
G.add _edge(v1, v5);

bfs(G, G.root(), visit _distance( distance _decorator <Vertex >() ),
color _decorator <Vertex >() );

non

cout << head—>distance() << """ << vl—>distance() <<
<< v2 —>distance() << """ << v3—>distance() << "t
<< v4 —distance() << """ << vb—>distance() << endl

More examples can be found in pointwise.cc
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Definition

dynamic.h
Table A.14: Members ajraph
Declaration Description Where Defined
rep _tag representation tag.

graphrep _gen

graphrep _type

graph representation type

storedvertex  _type stored vertex type.
vertex _type vertex type

const _vertex _type

edge _type edge type

const _edge _type

direct _tag direct tag
edgeplugin _type stored edge type
graph ()

graph (storedvertex type* _h)

bool add _edge (storedvertex

u, storedvertex _type* v, const
edgeplugin  _type& ep=edgeplugin
type())

_type*

add an edge from vertax

to vertexv.

void remove _edge (storedvertex
type* i, storedvertex _type* |)

remove the edge from ve

texu to vertexv.

void remove _vertex (storedvertex
type* u)

remove vertexi, currently
only the function works

only for undircted graph.

vertex _type root ()

the root of the graph
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Declaration Description Where Defined

const _vertex _type root () const

A.4 Graph functions

A.4.1 vertices

Prototype

template  <class Graph >
graph _traits <Graph >::vertices type vertices(Graph& G) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

vertices in graplt. it is a part of graph concept.
Definition
graph.h

A.4.2 vertices

Prototype

template  <class Graph >
graph _traits <Graph >::iconst _vertices _type vertices(const Graph& G)

Description

This is a global function to return an instance of a model of ContainerRef which holds all

vertices in grapl@. it is a part of graph concept. This is for a constant graph object.
Definition

graph.h
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A.4.3 edges
Prototype

template  <class Graph >
graph _traits <Graph >:edges _type edges(Graph& G) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all
edges in grapks. it is a part of graph concept.

Definition

graph.h

A.4.4 edges
Prototype

template  <class Graph >
graph _traits <Graph >:const _edges type edges(const Graph& G) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

edges in grapks. it is a part of graph concept. This is for a constant graph object.

Definition

graph.h

76



APPENDIX B

GRAPH REPRESENTATIONS

B.1 Concepts
B.1.1 GraphRepresentation

Description

A graph can be represented in several ways. The way how to representate a graph is called
the graph representation. GGCL graphs can be three categories of graph representations:
adjacency matrix, adjacency list, and dynamic pointer based representation.

The GraphRepresentation concept is basically a TwoD Container (conceptually it
is a Container of Containers although it is not necessary to implement it as a Container
of Containers such agector < vector < int > >.) coupled with four helper
functions. we often refer the TwoD Container as concrete graph representation. A OneD
Container within a GraphRepresentation corresponds to the out-edge list for a particular
vertex. In addition, there is a one-to-one correspondence between the TwoD Iterator and

the vertices of the graph.

Table B.1: Expression semantics of concépaphRepresentation

Expression Description

get _target(b, i) To deduce a TwoDlterator from a TwoDIt:

erator and a OneDlterator. Used for der|v-

ing thetarget(e)  from an edges.

77



Expression

Description

get _edge(i)

An access method to the extra edge inf

mation stored within an edge list

add(elist, v, storededge)

To add an edge

remove(elist, v)

To remove an edge

Table B.2: Function specification of concéptaphRepresentation

Prototype

Description

TwoDlterator get -
target(TwoDlterator b,
OneDlterator i)

To deduce a TwoDlterator from a TwoDI
erator and a OneDlterator. Used for der

ing thetarget(e)  from an edgee.

[

stored _edge* get _-
edge(OneDlterator i)

An access method to the extra edge inf

mation stored within an edge list

bool add(EdgeList& elist,
size _type vertex, const
stored _edge& e)

To add an edge

void remove(EdgeList&
elist, size _type vertex)

To remove an edge

Models

e adjacencylist
e adjacencymatrix

e dynamic
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B.2 Graph representation type selectors

B.2.1 flistT

Description

flist(Fortran list) is chosen as the OneD part of the graph representation

B.2.2 ggclvecT

Description

ggclvec, a model of random access container, is chosen as the OneD part of the graph

representation

B.2.3 hashmapT

Description

std::hashmap(sgi stl extension) is chosen as the OneD part of the graph representation.
Thus, it is always ordered. If tHfetoredEdge type isno_plugin in the graph, which
indicates no extera stored edge information, std::lset{sgi stl extension) is chosen as

the OneD part.

B.2.4 listT

Description

std::list is chosen as the OneD part of the graph representation

B.2.5 mapT

Description

std::map is chosen as the OneD part of the graph representation. Thus, it is always or-
dered. If theStoredEdge type isno_plugin in the graph, which indicates no extera

stored edge information, std::set is chosen as the OneD part.
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B.2.6 ordered

Description

The tag for the graph representation. The adjacent vertices of any vertex are in order
with respect to the vertex. Mulitple edges between two vertices are not allowed. Thus,

if adding an edge which is already there, the edge is overwitten. Adding an edge is
implemented by two steps: First step is to search the position to add lasweg _-

bound . The second step is insert the edge usitsgrt  defined in OneD. Removing

an edge also has two steps. The first step is to search the position, which is the same as
adding an edge. The second step is to@ake definedin OneD. Thus, time complexity
depends on the container to choose for OneD. If there will have a lot of adding and

removing edge operations, it is recommended to use ordered graph to represent it.

Table B.3: Members afrdered

Declaration Description Where Defined

enum type = ORDERED

B.2.7 slistT

Description

std::slist(sgi stl extention) is chosen as the OneD part of the graph representation

B.2.8 unordered

Description

The tag for the graph representation. The adjacent vertices of any vertex are not in order
with respect to the vertex. Mulitple edges between two vertices may exist. Adding an
edge takes constant time. Meanwhile, removing an edge takes linear (to the length of the

OneD part) time. In the worse case it could be linear to the number of vertices in the
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graph. It is recommended to use unordered graph if the graph will have no removing-

edges operations.

Table B.4: Members afinordered

Declaration Description Where Defined

enum type = UNORDERED

B.29 vecT

Description

std::vector is chosen as the OneD part of the graph representation
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APPENDIX C

VERTICES

C.1 Concepts

C.1.1 \Vertex

Description

Vertex provides access to the adjacent vertices, the out-edges of the vertex and optionally

the in-edges.

Notations
X Atype that is a model of Vertex
u An Object of typeX

Table C.1: Expression semantics of concégttex

Expression Description

vertex _traits < X > :edgelist type | the return type ofdj()

vertex _traits < X > :uvertexlist - the return type obut _edges()

type

out _edges(u) To return a ContainerRef object held all
out-edges
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Expression Description
in _edges(u) Optional. To return a ContainerRef object
held all in-edges
adj(u) To return a ContainerRef object held all ad-
jacent vetices.
Table C.2: Function specification of concéfatrtex
Prototype Description

edgelist _type out _edges(u)

To return a ContainerRef object held a

out-edges

edgelist _type in _edges(u)

Optional. To return a ContainerRef object

held all in-edges

vertexlist _type adj(u) To return a ContainerRef object held all ad-
jacent vetices.
Models
e vertex

e |LEDA vertex

Notes

Global functions instead of member functions are chosen to make the concept more gen-

eral. ContainerRef

the notion of “ownership”, so making a copy oCantainerRef

is similar to theContainer  concept except that the former lacks

object merely creates

an alias to the same underlying container. Obviously, a referencEdatainer object

satisfies this requirements
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C.2 \Vertex classes

C.2.1 LEDA.Vertex

Description

This is one of three classes to make LEDA's graph data structure work under GGCL

algorithms. It is to implement the Vertex concept.

Definition
LEDA.h
Table C.3: Members dfEDA Vertex
Declaration Description Where Defined
size _type
edge _type

vertex _type

LEDAVertex ()

LEDAVertex (node )

LEDAVertex (const LEDA _Vertex& Xx)

struct edgelist _type Vertex
struct vertexlist _type Vertex
vertexlist _type adj () Vertex
edgelist _type out _edges () Vertex

size _type id () const

See also

LEDA _Edge, LEDAGraph
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C.2.2 vertex

Description

The GGCL implementation of Vertex concept. See GGCL graph class. The convenient

way to refer a vertex type is through graph type. Here is an example:

typedef graph < adjacency _list <>, directed > Graph;
Graph G(n);

typedef Graph:ivertex  _type Vertex;
typedef Graph::edge _type Edge;
//Edge e

Vertex u = e.source();

Definition
vertex.h
Table C.4: Members ofertex
Declaration Description Where Defined

enum type = CONST

graph the graph type for this vert
tex object
direct _tag the tag to indicate the

graph is directed or undi

rected.
graphrep _type the graph representatian

type
edgelist _type Vertex
vertexlist _type Vertex
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Declaration Description Where Defined
edge _type The edge type of curt
rent graph object assoc)-
ated with.
size _type
GraphRepPtr
plugin _type the type of stored vertex
StoredVertexPtr
gr _iterator
vertex ()

vertex (gr _iterator i, GraphRepPtr
m, StoredVertexPtr vp)

vertex (const self& Xx)

vertex& operator= (const self& Xx)

vertexlist type adj () const

return a container objeq

held all adjacent vertices

t Vertex

edgelist _type out _edges () const

return a container objeg

held all out-edges

t Vertex

plugin _type* plugin ()

Stored vertex.

const plugin  _type* plugin () const

bool operator!= (const self& x)
const

bool operator== (const self& x)
const

gr _iterator iter

GraphRepPtr matrix
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C.3 \Vertex functions

C.3.1 adj

Prototype

template  <class Vertex >

vertex _traits <Vertex >:vertexlist type adj(Vertex u) ;
Description

This is a global function to return an instance of a model of ContainerRef which holds all

adjacent vertices of the vertex. This is a part of Vertex concept.
Definition
vertex.h

C.3.2 outedges

Prototype

template  <class Vertex >

vertex _traits <Vertex >:edgelist type out _edges(Vertex u) ;
Description

This is a global function to return an instance of a model of ContainerRef which holds all

out edges of the vertex. This is a part of Vertex concept.
Definition

vertex.h
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D.1 Concepts

D.1.1 Edge

Description

APPENDIX D

EDGES

An Edgeis a pair of vertices, one is the source vertex and the other is the target vertex.

In the unordered case It is just assumed that the position of the source and target vertices

are interchangeable.

Notations

X Atype thatis a model of Edge

e An object of theX

Table D.1: Expression semantics of conceégdge

Expression Description

edge _traits < X > uvertex _type Vertex type

source(e) source vertex. Notice it is a global fung-
tion.

target(e) target vertex. Notice it is a global functiomn.
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Table D.2: Function specification of concdgdge

Prototype Description
vertex _type source(e) source vertex. Notice it is a global func-
tion.
vertex _type target(e) target vertex. Notice it is a global function.
Models
e edge
e LEDA edge
Notes

Global functions instead of member functions are chosen to make the concept more gen-
eral. ContainerRef is similartotheContainer concept except that the former lacks

the notion of “ownership”, so making a copy o€CantainerRef  object merely creates

an alias to the same underlying container. Obviously, a referencEdatainer object

satisfies this requirements

D.2 Edge classes
D.2.1 LEDAEdge

Description

This is one of three classes to make LEDA's graph data structure work under GGCL

algorithms. It is to implement the Edge concept.

Definition

LEDA.h
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Table D.3: Members dfEDA Edge

Declaration Description Where Defined

vertex _type

LEDAEdge ()

LEDAEdge (edge _e)

vertex _type source () const Edge
vertex _type target () const Edge
See also

LEDA Vertex, LEDA Graph

D.2.2 edge

Description

This is the GGCL implementation of Edge. Extra information for the edge can be ac-
cessed through StoredEdge. See GGCL graph class. The convenient way to refer an edge

type is through graph type. Here is an example:

typedef graph < adjacency _list <>, directed > Graph;

typedef Graph::edge _type Edge;

Definition

edge.h

90



Table D.4: Members oédge

Declaration Description Where Defined
vertex _type vertex type Edge
storededge _type Stored edge type

edge ()

edge (gr -iterator s, gr -
iterator d, GraphRepPtr mf,
EdgePlugin* eplug, rep _iterator
_i, StoredVertexPtr vplug)

edge (const edge& Xx)

edge& operator= (const edge& Xx) assignment operator

vertex _type source () const source vertex of the edgel Edge
vertex _type target () const target vertex of the edge | Edge
storededge _type* plugin () Stored edge

const storededge  _type* plugin ()
const

D.2.3 storededge

Description

This is the base class for StoredEdge in the adjacemalyix representation. GGCL uses

it internally.
Definition
graph.h
Table D.5: Members oftored _edge
Declaration Description Where Defined

stored _edge ()
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Declaration Description Where Defined

stored _edge (const Plugin& p)

stored _edge (const stored _edge& s)

bool connected true if the edge exist in thg

3%

graph, false otherwise.

D.3 Edge functions

D.3.1 source

Prototype

template  <class Edge >
edge traits <Edge>:vertex type source(Edge e) ;

Description

This is to return the source vertex of the edge. This is a part of Edge concept.
Definition

edge.h

D.3.2 target
Prototype

template  <class Edge >
edge traits <Edge>:vertex _type target(Edge e) ;

Description

This is to return the target vertex of the edge. This is a part of Edge concept.

Definition

edge.h
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APPENDIX E

DECORATORS

E.1 Concepts

E.1.1 Decorator

Description

Decorator provides a generic method to access vertex and edge properties, such as color

and weight, from within an algorithm. There are two categories of decorators:

Interior Decorator: The decorating properties are stored outside of the graph object
(they are passed directly to the GGCL algorithm) and the decorator will access

the externally stored data indexed by the vertex or edge ID.

Exterior Decorator: The decorating properties are stored inside of the graph object. The

decorator consults the vertex or the edge objects to access the decorating property.

Notations
X Atype that is a model of Decorator
d An object of typeX

u An object of a model of Edge or Vertex
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Table E.1: Expression semantics of cond@ptorator

Expression

Description

decorator _traits < X >

svalue _type

the type of object accessed by the decg

tor.

decorator _traits < X >

:reference

d[u] access the decorating property of Vertex
Edge u.
Table E.2: Function specification of concé&ptcorator
Prototype Description
reference

operator[](Vertex u)

access the decorating property of Vertex

Edge u.

Models

e id_decorator

color_decorator

distancedecorator

in_degreedecorator

out degreedecorator

degreedecorator

parentdecorator

94

or

or



predecessodecorator

discovertime decorator

finish_.time_decorator

weightdecorator

E.2 Decorator classes

E.2.1 dummydecorator

Description

This is to provide a dummy decorator. Thperator[](Vertex v)
the same one regardless any vanNeitex v

Definition

decorator.h

Table E.3: Members atlummydecorator

always return

Declaration Description

Where Defined

iterator  _category

value _type

difference  _type

pointer

reference

dummydecorator ()

dummydecorator (value _type cc)

dummydecorator (const dummy  _-
decorator& x)

template <class Vertex >
reference operator[] (Vertex v)
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Declaration

Description

Where Defined

template  <class Vertex >
const value _type& operator(]
(Vertex v) const

E.2.2 iddecorator

Description

This decorator is to provide a method to get Vertex ID. Vhaust be a valid vertex{

I= Vertex()

Definition

decorator.h

held ) , otherwise, a running time error happens.

Table E.4: Members afl _decorator

Declaration

Description

Where Defined

iterator  _category

the type to distinguish
RandomAccesslterator

and Decorator

value _type

difference  _type

pointer

reference

template  <class Vertex >
Vertex::size _type operator][]
(Vertex v)

template  <class Vertex >
Vertex::size type operator][]

(Vertex v) const
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E.2.3 randomaccessteratordecorator

Description

This is pretty much the same as contaidercorator except this is for RandomAccesslt-

erator instead of a random access container.
Definition
decorator.h

Table E.5: Members afandom _access _iterator _decorator

Declaration Description Where Defined

value _type

iterator  _category

difference  _type

pointer

reference

random _access _iterator  _decorator
(RandomAccesslterator cc, const
IDfunc& _id = IDfunc() )

random _access _iterator  _decorator
(const random _access _iterator  _-
decorator& x)

template  <class Vertex >
reference operator[] (Vertex v)
template  <class Vertex >
const value _type& operator(]
(Vertex v) const

E.2.4 weightdecorator

Description

this is a decorator for accessing weight of edges.
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Definition

decorator.h

Table E.6: Members ofieight _decorator

Declaration Description Where Defined

value _type weight type

iterator  _category the type to distinguish
RandomAccesslterator
and Decorator

difference  _type

pointer

reference

reference operator[] (Edge e) access method for weight
of Edge e.

const value _type& operator[] (Edge

e) const

E.3 Decorator functions

E.3.1 mapfun

Prototype

template  <class Container >
container _decorator <Container
Description

> mapfun(Container& c) ;

This is a utility to create an instance of Exterior Decorator. If there is:

std::vector < default

_color _type > color(G.num
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then themapfun(color) will return an instance of exterior decorator for color

properities.

Definition

decorator.h
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APPENDIX F

VISITORS

F.1 Concepts
F.1.1 Visitor

Description

Visitor is the STL functor-like object to make the graph algorithms more flexible. There

are several predefined models of visitor.

Notations
X A type that is a model of Visitor
visitor An object of typeX
u An object of a model of Vertex

e An object of a model of Edge

Table F.1: Expression semantics of concéjsitor

Expression Description

visitor.initialize(u) Invoked during initialization.

visitor.start(u) Invoked at the beginning of algorithms.

visitor.discover(u) Invoked when an undiscovered Vertex ulis
encountered.
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Expression

Description

visitor.finish(u)

Invoked when algorithms finish visiting th

Vertex u.

visitor.process(e)

Invoked when the edge e is traversed.

Table F.2: Function specification of concéfisitor

Prototype

Description

void initialize(Vertex u)

Invoked during initialization.

void start(Vertex s)

Invoked at the beginning of algorithms.

void discover(Vertex u)

Invoked when an undiscovered Vertex u

encountered.

void finish(Vertex u)

Invoked when algorithms finish visiting th

Vertex u.

bool process(Edge e)

Invoked when the edge e is traversed.

D

S

D

Models

e dfs.visitor

distancevisitor

predecessavisitor

timestampvisitor

bfs visitor

weightededgevisitor

componentsyisitor
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e topasortvisitor

Notes

The implementation of a visitor should always have a Super visitor as a template and
whose default arguement is recommended tanbk _visitor . It is also recom-

mended that visitor is inherited from Super visitor.

F.2 Visitor classes

F.2.1 Dbfsvisitor

Description

This is the visitor used inside the BFS algorithm

Definition
bfs_visitor.h
Table F.3: Template parameters of clags _visitor
Parameter Default Description
DistanceDecorator distance decorator
Base null _visitor a Super Visitor
FocusOnEdge false a boolean template to determine

whether an edge encountered
will be always visited ( by invok-

ing process(e) ) or not
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Table F.4: Members difs _visitor

Declaration

Description

Where Defined

bfs _visitor ()

bfs _visitor (ColorDecorator c,

const Base& b)

bfs _visitor (const bfs _visitor& Xx)
template ~<class Vertex > set the color of vertexu | Visitor
void initialize (Vertex u)
as white and invoke the
Base::initialize(u)
template <class Vertex > set the color of vertexu | Visitor
void start (Vertex u)
as gray and invoke the
Base::start(u)
template —<class Vertex > set the color of vertex Visitor

void finish (Vertex u)

u as black and invoke

Base::finish(u)
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Declaration Description Where Defined

template <class Edge >

bool process (Edge e) If the targetv of edge| Visitor

e has not been dis
covered yet, it grays
the v and invokes the
Base::process(e)
and return true, otht
erwise, there are two
cases. lfDocusOnEdge
is true, it invokes
Base::process(e)

and return false. Otht
erwise, it return false

only.

template <class Vertex >

bool is _undiscovered (Vertex u) To indicate whether Very

tex u is discovered or not

F.2.2 componentsisitor

Description

Using this visitor to record which components a vertex is attributed to during the second

DFS traversal in the strongly connected components algorithm.

Definition

connecteccomponents.h
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Table F.5: Template parameters of classponents _visitor

Parameter Default Description
ComponentsDecorator Components Decorator
Base null _visitor a Super Visitor

Table F.6: Members alomponents _visitor
Declaration Description Where Defined
comp_type

components _visitor
(ComponentsDecorator
Base& b=Base())

_C, const

components _visitor (const
components _visitor& Xx)

template <class Vertex >
void discover (Vertex u)

[

record which component

for Vertexu

void set _count (comp _type __count)

set the count of compo
nents to let the algorithm

interact with the visitor

F.2.3 dfsvisitor

Description

This visitor is used inside the DFS algorithm.

Definition

dfs visitor.h
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Table F.7: Template parameters of cldés _visitor

ne

Parameter Default Description

ColorDecorator Color Decorator

Base null _visitor a Super Visitor

FocusOnEdge false a boolean template to determir
whether an edge encounter
will be always visited ( by invok-
ing process(e) ) or not

Table F.8: Members alfs _visitor
Declaration Description Where Defined
color _type

dfs _visitor (ColorDecorator c,

const Base& b)

dfs _visitor (const dfs _visitor& x)
templ.at.e. . <class Vertex > set the color of vertexu | Visitor
void initialize (Vertex u)
as white and invoke the
Base::initialize(u)
template <class Vertex > set the color of vertexu | Visitor
void start (Vertex u)
as gray and invoke the
Base::start(u)
ter.npla.te <class Vertex > set the color of vertexu | Visitor
void discover (Vertex u)
as gray and invoke the
Base::discover(u)
template <class Vertex > void operation. Visitor

void finish (Vertex u)
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Declaration

Description

Where Defined

template <class Edge >
bool process (Edge e€)

If the targetv of edge

e has not been dis

covered yet, it grays
the v and invokes the
Base::process(e)
and return true, otht
erwise, there are two
cases. lfDocusOnEdge
is true, it invokes
Base::process(e)

and return false. Otht
erwise, it return false

only.

Visitor

template  <class Vertex

>

bool is _undiscovered (Vertex u)

check whether Vertex u i

192}

undiscovered by checking

the color of u.

template  <class Vertex
bool is _finished (Vertex u)

>

check whether visiting
Vertex u is finished
by checking whether
the color is black orn
not. If so, invoke

Base::finish(u)

and return true otherwisge

return false only.
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F.2.4 distancevisitor

Description

This visitor is used to calculate the distance for every verterx from the reference vertex
(source).

Definition

distancevisitor.h

Table F.9: Template parameters of cldgstance _visitor

Parameter Default Description
DistanceDecorator distance decorator
Base null _visitor a Super Visitor

Table F.10: Members dfistance _visitor

Declaration Description Where Defined

distance _visitor ()

distance _visitor
(DistanceDecorator dist)
distance _visitor
(DistanceDecorator dist, const
Base& Xx)

distance _visitor (const distance -
visitor& x)

template  <class Vertex >
void initialize (Vertex u)

Initialize the distanceg Visitor

of vertex u and invoke

Base::initialize(u)
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Declaration Description Where Defined

template  <class Vertex >

void start (Vertex s) Set the distance of vertexVisitor

s to be zero and invoke

Base::start(s)

template <class Edge >

bool process (Edge e) If the targetv of e have| Visitor

not been set a distanc

D

d[e.target()] =
d[e.source()]

+ 1, invoke the
Base::process(e)

and return true.  Otht
erwise, invoke the
Base::process(e)

and return false.

F.2.5 levelvisitor

Description

This is the the visitor to set the level for every vertex. The level of starting vertices is zero.
Definition

level. decorator.h

Table F.11: Members dével _visitor

Declaration Description Where Defined

level _visitor (LevelDecorator I,
const Super& x = Super())

level _visitor (const level -
visitor& x)
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Declaration Description Where Defined

template  <class Vertex >
void initialize (Vertex u)

template  <class Edge >
bool process (Edge e)

LevelDecorator level

F.2.6 nullvisitor

Description

This is a visitor to provide only the standard visitor interface. All methods are emtpy.

Definition
util.h
Table F.12: Members afull _visitor
Declaration Description Where Defined

null _visitor ()

null  _visitor (const null _visitor&

X)

template  <class Vertex > _
void initialize (Vertex u) Visitor
template  <class Vertex > -
void start (Vertex s) Visitor
template  <class Vertex > .
void discover (Vertex s) Visitor
template  <class Vertex > -
void finish (Vertex s) Visitor
template  <class Edge > Visitor

bool process (Edge e)

F.2.7 predecessaisitor

Description

This is a visitor to record the predecessor of vertex discovered in the graph algorithms.
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Definition

predecessavisitor.h

Table F.13: Template parameters of clpesdecessor  _visitor
Parameter Default Description
PredecessorDecorator a predecessor deco-

rator with Vertex
operator[](Vertex)
defined.
Base a super visitor
Table F.14: Members qiredecessor _visitor
Declaration Description Where Defined
predecessor visitor ()
predecessor _visitor
(PredecessorDecorator _p)
predecessor visitor
(PredecessorDecorator _p, const
Base& b)
predecessor _visitor (const
predecessor _visitor& Xx)
temp'?t.e. . <class Vertex > Initialize the predecessar
void initialize (Vertex u)
of vertex u and invoke
Base::initialize(u)
template  <class Vertex >

void start (Vertex s)

Set the predecessor

of vertex s as a null
invoke

vertex and

Base::start(s)
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Declaration Description Where Defined

template <class Edge >

bool process (Edge e) Set pltarget(e)] =

source(e) and invoke

Base::process(e)

F.2.8 timestamisitor

Description

This visitor is to record the discover time and finish time of vertices during graph traversal.
Notice that only one timer for both time.

Definition

timestampuvisitor.h

Table F.15: Template parameters of classestamp _visitor

Parameter Default Description

DiscoverTime discover time decorator
FinishTime finish time decorator
Base null _visitor a Super Visitor

Table F.16: Members dimestamp _visitor

Declaration Description Where Defined

timestamp _visitor ()

timestamp _visitor (DiscoverTime
disc, FinishTime fin)

timestamp _visitor (DiscoverTime
disc, FinishTime fin, const Base&
b)
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Declaration Description Where Defined
timestamp _visitor (const
timestamp _visitor& Xx)
ter_npla_te <class Vertex > Increment  timer,  set Visitor
void discover (Vertex u)
the discover time for
vertex u and invoke
Base::discover(u)
templgtg <class Vertex > Increment  timer, set Visitor
void finish (Vertex u)
the finish time for
vertex u and invoke

Base::finish(u)

F.2.9 topasortvisitor

Description

This is to record the vertex in topological order.

Definition

topologicalsort.h

Table F.17: Template parameters of clagso _sort _visitor

Parameter

Default

Description

Outputlterator

output iterator

Base

Super Visitor
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Table F.18: Members dbpo _sort _visitor

Declaration Description Where Defined

topo _sort _visitor (Outputlterator
_iter, Base x)

template  <class Vertex >
void finish (Vertex& u)

F.2.10 weightededgevisitor

Description

This is a generalization of the kind of visitor used inside Dijkstra's and Prim's algorithms.
This is also used for the min-max paths problem.

Definition

weightededgevisitor.h

Table F.19: Template parameters of clagsghted _edge _visitor

Parameter Default Description

WeightDecorator weight decorator

DistanceDecorator distance decorator

Base Super visitor

BinaryOperator std::plus std::plus for dijkstra and_-
project2nd for prim

Table F.20: Members ofeighted _edge _visitor

Declaration Description Where Defined

weighted _edge _visitor ()
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Declaration

Description

Where Defined

weighted _edge visitor
(WeightDecorator wf,

DistanceDecorator df, const Base&

b)

weighted _edge visitor
(WeightDecorator wf,
DistanceDecorator df,

BinaryOperator binop, const Base&

b)

weighted _edge _visitor (const
weighted _edge _visitor& x)

template  <class Vertex >
void initialize (Vertex u)

Initialize the distance
of vertex u and invoke

Base::initialize(u)

Visitor

template  <class Vertex >
void start (Vertex s)

Base::start(s)

s to be zero and invoke

Set the distance of vertexVisitor

template <class Edge >
bool process (Edge e)

If the targetv of e have

not been set a distanc

false.

D

update it and return true.
Otherwise, update the dis

tance if need and return

Visitor

bool need _update _queue ()

To indicate  whether
update queue operatoid

need to perform
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F.3 Visitor functions

F.3.1 visitdistance

Prototype

template  <class Distance >
distance _visitor <lglueD <Distance >:type, null wvisitor > visit _-
distance(Distance d) ;

Description

To return an instance of distance visitor with Distance andvisltor as template argu-

ments, likemake_pair return apair objectin the STL.
Definition
distancevisitor.h

Requirements on types

e Distance - an instance of a distance decorator or a RandomAccesslterator.

F.3.2 visitdistance

Prototype
template  <class Distance, class SuperVisitor >
distance _visitor <IglueD <Distance >:type, SuperVisitor > visit -

distance(Distance d, SuperVisitor b) ;

Description

return an instance of distance visitor with Distance and SuperVisitor as template argu-

ments.

Definition

distancevisitor.h
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Requirements on types

e Distance d - an instance of a distance decorator or a RandomAccesslterator.

e SuperVisitor b- an instance of a visitor.

F.3.3 visitlevel
Prototype

template < class LevelDecorator >
level _visitor  <LevelDecorator > visit _level(LevelDecorator level) ;

Description

Definition
level visitor.h

F.3.4 \visitlevel

Prototype
template < class LevelDecorator, class Super >
level _visitor <LevelDecorator, Super > visit _level(LevelDecorator

level, const Super& b) ;

Description

Definition
levelvisitor.h

F.3.5 visitpredecessor

Prototype

template  <class Predecessor >
predecessor visitor <lIglueD <Predecessor >:type, null _visitor >
visit _predecessor(Predecessor p) ;
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Description

This function returns an instance of predecesssitor with Predecessor and nuwisitor
as template arguments. The former can be a model of PredecessorDecorator or a model

of RandomAccesslterator.
Definition
predecessavisitor.h

F.3.6 visitpredecessor

Prototype
template  <class Predecessor, class BaseVisitor >
predecessor .visitor <lglueD <Predecessor >:type, BaseVisitor >

visit _predecessor(Predecessor p, BaseVisitor b) ;

Description

This function returns an instance of predecesasitor with Predecessor and BaseVisitor
as template arguments. The former can be a model of PredecessorDecorator or a model

of RandomAccesslterator.
Definition
predecessavisitor.h

F.3.7 visittimestamp

Prototype

template  <class DiscoverTime, class FinishTime >
timestamp _visitor <lIglueD <DiscoverTime >:type,
IglueD <FinishTime >:type, null _visitor > visit _-
timestamp(DiscoverTime d, FinishTime f) ;

Description

To return an instance of timestamysitor with no super visitor.
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Definition
timestampvisitor.h

F.3.8 visittimestamp

Prototype

template  <class DiscoverTime, class FinishTime, class Base >
timestamp _visitor <lIglueD <DiscoverTime >:type,

IglueD <FinishTime >:type, Base > visit _timestamp(DiscoverTime
d, FinishTime f, const Base& b) ;

Description
To return an instance of timestamysitor with super visitoBase.
Definition

timestampuvisitor.h

F.3.9 visitbfs

Prototype

template  <class Color, class SuperVisitor >

bfs _visitor  <lIglueD <Color >:type, SuperVisitor > visit _bfs(Color

¢, SuperVisitor b) ;

Description

It takes two arguments and return an instance aMiggor. The type of the first one could
be either a model of ColorDecorator or a model of RandomAccesslterator. The second

one is the model of Visitor.

Definition

bfs visitor.h
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APPENDIX G

ALGORITHMS
G.1 GGCL algorithms
G.1.1 _generalizednit
Prototype
template  <class Graph, class Visitor >

void _generalized _init(Graph& G, Visitor visit) ;

Description

We spearate the initializtion step from main algorithms in case users want to call main
algorithms mulitple times. If th&is a model of dynamic graph reperesentation, This
function does nothing. Otherwisgisit.initialize(u) gets invoked for every

vertexu in the graphG.

Definition
bfs.h

G.1.2 _generalizedBFS
Prototype

template  <class Vertex, class QType, class Visitor, class
VisitedFunc >

void _generalized _BFS(Vertex s, QType& Q, Visitor visit,
VisitedFunc visited) ;
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Description

A generalized BFS algorithm with all argument types templatized. The initialization
step isnot included. If users want it, users can either cgkneralized _init  first

then call this function, or usgeneralized = _BFSwhich includes the initialization step.

We separate the initializtion step from main algorithms in case users want to call main
algorithms multiple times.

Definition

bfs.h

See also

_generalizednit, generalizedBFS

G.1.3 generalize@FS
Prototype

template  <class Graph, class QType, class Visitor, class
VisitedFunc >

void generalized BFS(Graph& G, typename graph -
traits <Graph >:vertex type s, QType& Q, Visitor visit,
VisitedFunc visited) ;

Description

A generalized BFS algorithm with all argument types templatized. The initialization step

is included.
Definition
bfs.h

See also

_generalizednit, _generalizedBFS
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G.1.4 Dbfs

Prototype
template  <class Graph, class QType, class Visitor, class Color >
void bfs(Graph& G, typename graph _traits <Graph >:vertex _type s,

QType& Q, Visitor visit, Color c) ;

Description

Three versions of overloaded BFS algorithms are provided in GGCL.

In the first version, the arguments are Gr&plts starting vertes and a visitor object
visit  only. The Graph type and visitor type are templatized. This version requires the
usage of interior coladecorator.

In the second version, the arguements are the all three ones in the first version plus a
templatized decorator objeoblor to access the color properity of vertices. The version
are able to use exterior decorator or interior decorator for color properity. With the interior
decorator, the same requirement is applied.

In the third version, the arguments are the all four ones in the second version plus a
templatized Queue type obje@to provide extra flexibility.

This is the third version.
Definition

bfs.h
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Example
In bfs_3.cc:

using namespace ggcl;
typedef graph < adjacency _list < ggcl _vecT >,
directed > Graph;

Graph G( 5);

G.add _edge( 0, 2);
G.add _edge( 1, 1);
G.add _edge( 1, 3);
G.add _edge( 1, 4);
G.add _edge( 2, 1);
G.add _edge( 2, 3);
G.add _edge( 2, 4);
G.add _edge( 3, 1);
G.add _edge( 3, 4);
G.add _edge( 4, 0);
G.add _edge( 4, 1);

typedef Graph:vertex  _type Vertex;

std::vector <default _color _type > color(G.num _vertices());
std::vector <Vertex > p(G.num _vertices());
std::vector <Graph::size  _type > d(G.num _vertices());
Vertex s = *vertices(G).begin();

std::queue <Vertex > Q;

bfs(G, s, Q, visit _distance(mapfun(d),
visit _predecessor(mapfun(p))), mapfun(color));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 470

G.1.5 bfs

Prototype

template  <class Graph, class Visitor, class ColorDecorator >
void bfs(Graph& G, typename graph _traits <Graph >:vertex _type s,

Visitor visit, ColorDecorator color) ;
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Description

Three versions of overloaded BFS algorithms are provided in GGCL.

In the first version, the arguments are Gr&plts starting vertes and a visitor object
visit  only. The Graph type and visitor type are templatized. This version requires the
usage of interior coladecorator.

In the second version, the arguements are the all three ones in the first version plus a
templatized decorator objeoblor to access the color properity of vertices. The version
are able to use exterior decorator or interior decorator for color properity. With the interior
decorator, the same requirement is applied.

In the third version, the arguments are the all four ones in the second version plus a
templatized Queue type obje@to provide extra flexibility.

This is the second version.

Definition
bfs.h

Complexity

linear
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Example
In bfs 2.cc:

using namespace ggcl;
typedef graph < adjacency _list < ggcl _vecT >,
directed > Graph;

Graph G( 5);

G.add _edge( 0, 2);
G.add _edge( 1, 1);
G.add _edge( 1, 3);
G.add _edge( 1, 4);
G.add _edge( 2, 1);
G.add _edge( 2, 3);
G.add _edge( 2, 4);
G.add _edge( 3, 1);
G.add _edge( 3, 4);
G.add _edge( 4, 0);
G.add _edge( 4, 1);

typedef Graph:vertex  _type Vertex;

std::vector <default _color _type > color(G.num _vertices());
std::vector <Vertex > p(G.num _vertices());

std::vector <Graph::size  _type > d(G.num _vertices());

Vertex s = *vertices(G).begin();

bfs(G, s, visit _distance(mapfun(d),
visit _predecessor(mapfun(p))), mapfun(p));
See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 470

G.1.6 bfs

Prototype

template  <class Graph, class Visitor >

void bfs(Graph& G, typename Graph::vertex type s, Visitor visit)
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Description

Three versions of overloaded BFS algorithms are provided in GGCL.

In the first version, the arguments are Gr&plts starting vertes and a visitor object
visit  only. The Graph type and visitor type are templatized. This version requires the
usage of interior coladecorator.

In the second version, the arguements are the all three ones in the first version plus a
templatized decorator objeoblor to access the color properity of vertices. The version
are able to use exterior decorator or interior decorator for color properity. With the interior
decorator, the same requirement is applied.

In the third version, the arguments are the all four ones in the second version plus a
templatized Queue type obje@to provide extra flexibility.

This is the first version.
Definition
bfs.h

Preconditions

e G has to have a colgslugin as a part of StoredVertexPlugin at least so that it is

valid to use the interior colodecorator. See the example below.

Complexity

linear
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Example
In bfs_1.cc:

using namespace

typedef graph

Graph G( 5);

G.add _edge( 0O,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 3,
G.add _edge( 3,
G.add _edge( 4,
G.add _edge( 4,

typedef  Graph

ggcl;
< adjacency
directed, color

Jlist < ggcl _vecT >,

_plugin <> > Graph;

2);
1);
3);
4);
1);
3);
4);
1);
4);
0);
1);

ivertex  _type Vertex;

/* Array to store predecessor (parent) of each vertex */

std::vector <Vertex > p(G.num _vertices());

/* Array to store distances from the source to each vertex */
std::vector <Graph::size  _type > d(G.num _vertices());

/* The source vertex */
Vertex s = *vertices(G).begin();

bfs(G, s, visit _distance(mapfun(d),

visit _predecessor(mapfun(p))));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 470
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G.1.7 connectedomponents

Prototype

template < class Graph, class Visitor, class

ComponentsDecorator, class ColorDecorator >

decorator _traits <ComponentsDecorator >:value _type connected -
components(Graph& G, Visitor v, ComponentsDecorator c,

ColorDecorator color) ;

Description

Using DFS to construct the algorithm. If th@is an directed graph, the algorithm
computes the strongly connected components of the graph assuming interior decorators
DiscoverTimeDecorator andFinishTimeDecorator defined. Otherwise, the
Gis undirected graph, the algorithm compute the connected components for undirected

graphs.
Definition
connecteccomponents.h

G.1.8 connectedomponents

Prototype

template < class Graph, class Visitor, class ComponentsDecorator

>

decorator _traits <ComponentsDecorator >:value _type connected -
components(Graph& G, Visitor v, ComponentsDecorator c) ;

Description

Using DFS to construct the algorithm. Assuming an interior decorator of cf@oorator

is able to be used. If th&is an directed graph, the algorithm computes the strongly
connected components assuming interior decoratoBisfoverTimeDecorator
andFinishTimeDecorator . otherwise, thé&is undirected graph and the algorithm

compute the connected components for undirected graphs.
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Definition

connecteccomponents.h

Example

In connected:omponents.cc:

using namespace
discover

typedef

typedef graph

Graph G( 5);

G.add _edge( 0,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 3,
G.add _edge( 3,
G.add _edge( 4,
G.add _edge( 4,

typedef

std::vector

directed, VertexPlugin

Graph::

ggcl;
_time _plugin < finish _time _plugin
< color _plugin <> > > VertexPlugin;
< adjacency _list < ggcl _vecT >,
> Graph;

2);
1);
3);
1);
3);
1);
4);
0);
1);

vertex  _type Vertex;

<int > c¢(G.num _vertices());

int num = connected _components(G, null _visitor(), mapfun(c));

G.1.9 _generalizedDFS

Prototype

template  <class Vertex, class QType, class Visitor, class
VisitedFunc >

void _generalized _DFS(Vertex u, QType& Q, Visitor& visitor,

VisitedFunc visited) ;

Description

A generalized DFS algorithm with all argument types templatized. The initialization step

is not included. If users want it, users can caleneralized  _init  first then call this

function. We separate the initializtion step from main algorithms in case users want to
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call main algorithms multiple times. With thetack as the Qtype here, the algorithm

performs the normal DFS.
Definition
dfs.h

See also

_generalizednit

G.1.10 dfs

Prototype

template  <class Graph, class Visitor, class Color >
void dfs(Graph& G, Visitor visitor ., Color ¢) ;
Description

This is non-recursive version of DFS. It is implemented ggneralizedDFS with a
stack asQtype . Notice that the order of the discovering vertices in adjacenct ver-
tices of one vertex is reverse comparing to the recursive version. For exar@plave its
adjacent verticegl andv2. v1 has not adjacent vertices whii@ has an adjacent vertex
v3. The recursive version of DFS will haw® v1 v2 v3as a sequence of discovering
vertices. However, the non-recursive version will haGev2 v3 vlinstead. We choose
the nonrecursive version because it runs fast.

Two versions of overloaded DFS algorithm are provided.

In the first version, the arguments are Gra&pand a visitor objectisit  only. The
Graph type and visitor type are templatized. This version requires the usage of interior
color_decorator.

In the second version, the arguements are the all three ones in the first version plus a

templatized decorator objeoblor to access the color properity of vertices. The version
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are able to use exterior decorator or interior decorator for color properity. With the interior
decorator, the same requirement is applied.

This is the second version.

Definition
dfs.h

Example
In dfs_2.cc:

using namespace

typedef graph

Graph G( 5);

G.add _edge( 0,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 3,
G.add _edge( 3,
G.add _edge( 4,
G.add _edge( 4,

typedef
std::vector
std::vector

std::vector

dfs(G, visit

directed

Graph::vertex

<Graph::size
<Graph::size
<default

ggcl;
< adjacency _list
> Graph;

< ggcl _vecT >,

2);
1);
3);
1);
3);
1);
4);
0);
1);

_type Vertex;
_type > dt(G.num _vertices());

_type > ft(G.num _vertices());
_color _type > color(G.num _vertices());

_timestamp(mapfun(dt), mapfun(ft)),

mapfun(color));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 478
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G.1.11 dfs
Prototype

template  <class Graph, class Visitor >
void dfs(Graph& G, Visitor visitor) ;

Description

In the first version, the arguments are Grapland a visitor objecvisit  only. The
Graph type and visitor type are templatized. This version requires the usage of interior
color_decorator.

In the second version, the arguements are the all three ones in the first version plus a
templatized decorator objeoblor to access the color properity of vertices. The version
are able to use exterior decorator or interior decorator for color properity. With the interior
decorator, the same requirement is applied.

This is the first version.
Definition
dfs.h

Preconditions

e G has to have a colgslugin as a part of StoredVertexPlugin at least so that it is

valid to use the interior colodecorator. See the example below.
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Example
In dfs_1.cc:

using namespace ggcl;
typedef graph < adjacency _list < ggcl _vecT >,
directed, color _plugin <> > Graph;

Graph G( 5);

G.add _edge( 0, 2);
G.add _edge( 1, 1);
G.add _edge( 1, 3);
G.add _edge( 2, 1);
G.add _edge( 2, 3);
G.add _edge( 3, 1);
G.add _edge( 3, 4);
G.add _edge( 4, 0);
G.add _edge( 4, 1);

typedef Graph:.vertex  _type Vertex;

std::vector <Graph::size  _type > dt(G.num _vertices());
std::vector <Graph:size  _type > ft(G.num _vertices());

dfs(G, visit _timestamp(mapfun(dt), mapfun(ft)));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 478

G.1.12 dijkstra
Prototype

template  <class Graph, class Visitor, class Distance, class

Weight, class ID >

void dijkstra(Graph& G, typename graph traits <Graph >:vertex  _type
s, Visitor visit, Distance d, Weight w, const ID& id ) ;
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Description

Dijkstra's Algorithm solves the single-source shortest-paths problem on a weighted, di-
rected graph G for the case in which all edge weights are nonnegative. This algorithm
does not check whether edge weights are nonnegative or not.

Three overloaded versions of the algoithm are provided.

The first version has four arguements with templatized types:: the Geapburce
vertexs, a visitor objectvisit and a Distance Decorator obeftt It requires id-
decorator and weighdecorator to work.

The second version has five arguments: all the four arguments in the first version plus
a templatized weight decorator object

The third version has the size arguments: all the five arguments in the second version
plus a templatized ID objead .

This is the third version.
Definition
dijkstra.h

G.1.13 dijkstra

Prototype

template  <class Graph, class Visitor, class Distance, class

Weight >

void dijkstra(Graph& G, typename graph traits  <Graph >:vertex _type

s, Visitor visit, Distance d, Weight w ) ;

Description

Dijkstra's Algorithm solves the single-source shortest-paths problem on a weighted, di-
rected graph G for the case in which all edge weights are nonnegative. This algorithm
does not check whether edge weights are nonnegative or not.

Three overloaded versions of the algoithm are provided.
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The first version has four arguements with templatized types:: the Geapburce
vertexs, a visitor objectvisit and a Distance Decorator obeptt It requires id-
decorator and weighdecorator to work.

The second version has five arguments: all the four arguments in the first version plus
a templatized weight decorator object

The third version has the size arguments: all the five arguments in the second version
plus a templatized ID objead .

This is the second version.
Definition
dijkstra.h

G.1.14 dijkstra

Prototype
template  <class Graph, class Visitor, class Distance >
void dijkstra(Graph& G, typename graph traits <Graph >:vertex  _type

s, Visitor visit, Distance d) ;

Description

Dijkstra's Algorithm solves the single-source shortest-paths problem on a weighted, di-
rected graph G for the case in which all edge weights are nonnegative. This algorithm
does not check whether edge weights are nonnegative or not.

Three overloaded versions of the algoithm are provided.

The first version has four arguements with templatized types:: the Geapburce
vertexs, a visitor objectvisit ~and a Distance Decorator obept It requires id-
decorator and weighdecorator to work.

The second version has five arguments: all the four arguments in the first version plus

a templatized weight decorator object
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The third version has the size arguments: all the five arguments in the second version
plus a templatized ID objead .

This is the first version.
Definition
dijkstra.h

Example
In dijkstra.cc:

using namespace ggcl;

typedef graph < adjacency _matrix < ggcl _vecT >, undirected,
off _vertex _default _plugin <>, Weight <int > > Graph;

typedef Graph:.vertex  _type Vertex;

typedef  Graph::edgeplugin _type::weight _type weight _type;

Graph G( 5);

G.add _edge( 0O,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 3,
G.add _edge( 4,
G.add _edge( 4,

Weight <weight _type >(1));
Weight <weight _type >(2));
Weight <weight _type >(1));
Weight <weight _type >(2));
Weight <weight _type >(7));
Weight <weight _type >(3));
Weight <weight _type >(1));
Weight <weight _type >(1));
Weight <weight _type >(1));

POMAWRPAWERN

std::vector <Vertex > p(G.num _vertices());
std::vector <Graph::size  _type > d(G.num _vertices());

Vertex s = *(vertices(G).begin());

dijkstra(G, s, visit _predecessor(mapfun(p)), mapfun(d) );
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G.1.15 kruskal
Prototype

template < class Graph, class Outputlterator, class Rank, class
Parent, class Weight >

void kruskal(Graph& G, Outputlterator ¢, Rank rank, Parent p,
Weight w) ;

Description

This is a greedy algorithm to calculate the Minimum Spanning Tree for an undirected
graph with weighted edges. The output will be a set of edges.

Two overloaded version of Kruskal's algorithm are provided.

The first version has four templatized arguments: Gr@pButputlteratorc, a rank
decorator objectank and a parent decorator objgmdrent . The version requires to
use weightdecorator.

The second version has one more additional argument which is a templatized type
weight decorator.

This is the second version.
Definition
kruskal.h

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 505

G.1.16 kruskal
Prototype

template < class Graph, class Outputlterator, class Rank, class
Parent >
void kruskal(Graph& G, Outputlterator ¢, Rank rank, Parent p ) ;
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Description

This is a greedy algorithm to calculate the Minimum Spanning Tree for an undirected
graph with weighted edges. The output will be a set of edges.

Two overloaded version of Kruskal's algorithm are provided.

The first version has four templatized arguments: Gr@pButputlteratorc, a rank
decorator objectank and a parent decorator objgmrent . The version requires to
use weightdecorator.

The second version has one more additional argument which is a templatized type
weight decorator.

This is the first version.

Definition

kruskal.h
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Example
In kruskal.cc:

using namespace ggcl;

typedef graph < adjacency _list < ggcl _vecT, unordered >,
undirected, off _vertex _default _plugin <>, Weight <int > >
Graph;

typedef  Graph::edgeplugin _type::weight _type weight _type;

Graph G( 5);

G.add _edge( O,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 2,
G.add _edge( 2,
G.add _edge( 3,
G.add _edge( 4,
G.add _edge( 4,

Weight <weight _type >(1));
Weight <weight _type >(2));
Weight <weight _type >(1));
Weight <weight _type >(2));
Weight <weight _type >(7));
Weight <weight _type >( 3));
Weight <weight _type >(1));
Weight <weight _type >(1));
Weight <weight _type >(1));

POMWPRPAWRN

typedef Graph:.edge _type Edge;
typedef Graph:vertex  _type Vertex;

typedef std::vector <Edge> container;
std::vector <Edge> c;
c.reserve(G.num  _vertices());

std::vector <Vertex > p;
std::vector <int > rank;

kruskal(G, std::back _insert _iterator  <container >(c),
mapfun(rank), mapfun(p));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 505
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G.1.17 prim
Prototype

template  <class Graph, class Visitor, class Distance, class

Weight, class ID >

void prim(Graph& G, typename graph _traits <Graph >:vertex type s,
Visitor visit, Distance d, Weight w, ID id ) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph
with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: Grastart
vertexs, and a visitor objecvisit ~ which could record information such as parent of
every vertex in MST on return. The version requires to use interior distdacerator,
weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one
additional templatized distance decoradaso that it is possible to use exterior decorator
for diatance.

The third version has one more argument comparing to the second version. The addi-
tional one is a weight decorator objeetvith a templatized type.

The fourth version has one more argument comparing to the third version. The ID
decorator is templatized and need to supply from users.

Output: visit records the information in MST

Input: undirected Grap, starting vertess, visit  Vistor, and ID decoratod .

This is the fourth version.

Definition

prim.h
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See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 505

G.1.18 prim

Prototype

template  <class Graph, class Visitor, class Distance, class

Weight >

void prim(Graph& G, typename graph _traits <Graph >:vertex type s,

Visitor visit, Distance d, Weight w) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph
with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: Grastart
vertexs, and a visitor objecvisit  which could record information such as parent of
every vertex in MST on return. The version requires to use interior distdacerator,
weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one
additional templatized distance decoradaso that it is possible to use exterior decorator
for diatance.

The third version has one more argument comparing to the second version. The addi-
tional one is a weight decorator objeetvith a templatized type.

The fourth version has one more argument comparing to the third version. The ID
decorator is templatized and need to supply from users.

Output: visit records the information in MST

Input: undirected Grap, starting vertess, visit  Vistor, and ID decoratod .

This is the third version.
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Definition
prim.h
See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 505

G.1.19 prim

Prototype

template  <class Graph, class Visitor, class Distance >

void prim(Graph& G, typename graph traits <Graph >:vertex  type s,

Visitor visit, Distance d) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph
with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: Gyastart
vertexs, and a visitor objecvisit ~ which could record information such as parent of
every vertex in MST on return. The version requires to use interior distdecerator,
weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one
additional templatized distance decoradaso that it is possible to use exterior decorator
for diatance.

The third version has one more argument comparing to the second version. The addi-
tional one is a weight decorator objeetvith a templatized type.

The fourth version has one more argument comparing to the third version. The ID
decorator is templatized and need to supply from users.

Output: visit records the information in MST
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Input: undirected Grap, starting vertess, visit  Vistor, and ID decoratod .

This is the second version.
Definition
prim.h

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 505

G.1.20 prim
Prototype

template  <class Graph, class Visitor >
void prim(Graph& G, typename graph _traits <Graph >:vertex  type s,
Visitor visit) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph
with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: Grastart
vertexs, and a visitor objectisit  which could record information such as parent of
every vertex in MST on return. The version requires to use interior distdacerator,
weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one
additional templatized distance decoradaso that it is possible to use exterior decorator
for diatance.

The third version has one more argument comparing to the second version. The addi-

tional one is a weight decorator objeetvith a templatized type.

143



The fourth version has one more argument comparing to the third version. The ID
decorator is templatized and need to supply from users.

Output: visit records the information in MST

Input: undirected Grap, starting vertess, visit  Vistor, and ID decoratoid .

This is the first version.
Definition
prim.h

Example
In prim.cc:

using namespace ggcl;

typedef graph < adjacency _list < ggcl _vecT, unordered >,
undirected, distance _plugin <>, Weight <int > > Graph;

typedef  Graph::edgeplugin _type::weight _type weight _type;

Graph G( 5);

G.add _edge( 0O,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 1,
G.add _edge( 2,
G.add _edge( 2,

Weight <weight _type >(1));

Weight <weight _type >(2));

Weight <weight _type >(1));

Weight <weight _type >(2));

Weight <weight _type >(7));

Weight <weight _type >(3));

G.add _edge( 3, Weight <weight _type >(1));

G.add _edge( 4, Weight <weight _type >(1));

G.add _edge( 4, 1, Weight <weight _type >(1));
std::vector <Graph::vertex  _type > p(G.num _vertices());
prim(G, *(vertices(G).begin()), visit _predecessor(mapfun(p)));

OAWRAWELN

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 505
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G.1.21 recursivéDFS
Prototype

template  <class Graph, class Visitor, class Color >
void recursive DFS(Graph& G, Visitor v, Color c) ;

Description

This is the recursive version of DFS algorithm. We provide another version of DFS which
is based on stack. We provide both algorithms because they are different algorithms even
though they are for the same problem. If user only wants to calculate discovering and
finsihing time, the stack version is faster than recursive version. However, the recursive

version will be faster if user want tree edges only.
Definition
recursiveDFS.h

G.1.22 DFSvisit
Prototype

template < class Vertex, class Visitor >
void DFS _visit(Vertex u, Visitor& v) ;

Description

The main component for recursive version of DFS and other DFS related algorithms

patterns.
Definition
recursiveDFS.h

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Press, 1990, P. 478
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G.1.23 topologicakort
Prototype

template < class Graph, class Outputlterator, class Visitor,
class Color >

void topological sort(Graph& G, Outputlterator iter, Visitor
myvisit, Color color) ;

Description

Applying dfs to perform topological sorts of directed acyclic graphs(DAG). The algorithm
does not check whether the input graph is a DAG. There are three overloaded functions:
The first version has two arguments only: Gr&dmnd an Outputiteratater  to hold
the vertcies in topological order. The version requires to use interior_celcorator.
The second version has one more argument: a visitor objgetsit  to provide
ability to compute more information on finding topological order. The version requires to
use interior colardecorator.
The third version has one more argument comparing to the second version. The tem-
platized color decorator makes it possible to use exterior color decorator if need.

This is the third version.

Definition

topologicalsort.h
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Example
In topo_sort2.cc:

using namespace ggcl;
typedef discover _time _plugin < finish _time _plugin <
distance _plugin <> > > VertexPlugin;

typedef graph < adjacency _list < ggcl _vecT, unordered >,
directed, VertexPlugin, Weight <int > > Graph;

typedef Graph:vertex  _type Vertex;

std::pair <size _tsize _t> edges[ 7] = { Pair( 0, 1),
Pair( 2, 4), Pair( 2,5),
Pair( 0, 3), Pair( 1, 4),
Pair( 4, 3), Pair( 5,5) };

Graph G(edges, 7, 6);

typedef std::vector < Vertex > container;

container c;

null _visitor null _V;

std::vector <default _color _type > color(G.num _vertices());
topological _sort(G, std::back _insert _iterator  <container >(c),

null _v, mapfun(color));

G.1.24 topologicakort

Prototype

template  <class Graph, class Outputlterator, class Visitor >
void topological sort(Graph& G, Outputlterator iter, Visitor

myvisit) ;

Description

Applying dfs to perform topological sorts of directed acyclic graphs(DAG). The algorithm
does not check whether the input graph is a DAG. There are three overloaded functions:
The first version has two arguments only: Gr&dmnd an Outputiteratater  to hold
the vertcies in topological order. The version requires to use interior_celcorator.
The second version has one more argument: a visitor ohjgetsit  to provide
ability to compute more information on finding topological order. The version requires to

use interior coladecorator.
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The third version has one more argument comparing to the second version. The tem-
platized color decorator makes it possible to use exterior color decorator if need.

This is the second version.
Definition
topologicalsort.h

Example
In topa_sort.cc:

using namespace ggcl;
typedef discover _time _plugin < finish _time _plugin <
color _plugin <distance _plugin <> > > > VertexPlugin;

typedef graph < adjacency _matrix < ggcl _vecT >, directed,
VertexPlugin, Weight <int > > Graph;

typedef Graph:vertex  _type Vertex;

std::pair <size _tsize _t> edges[ 7] = { Pair( 0, 1), Pair( 2, 4),
Pair( 2, 5),
Pair( 0, 3), Pair( 1, 4),
Pair( 4, 3), Pair( 5,5) };
Graph G(edges, 7, 6);
typedef std:.:vector < Vertex > container;

container c;

null _visitor null _V;

typedef std::back _insert _iterator = <container > Outputlterator;
topological _sort(G, Outputlterator(c), null _V);

G.1.25 topologicakort

Prototype
template  <class Graph, class Outputlterator >
void topological sort(Graph& G, Outputlterator iter) ;
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Description

Applying dfs to perform topological sorts of directed acyclic graphs(DAG). The algorithm
does not check whether the input graph is a DAG. There are three overloaded functions:
The first version has two arguments only: Gr&dmnd an Outputiteratater to hold
the vertcies in topological order. The version requires to use interior_celcorator.
The second version has one more argument: a visitor ohjgetsit  to provide
ability to compute more information on finding topological order. The version requires to
use interior colardecorator.
The third version has one more argument comparing to the second version. The tem-
platized color decorator makes it possible to use exterior color decorator if need.

This is the first version.

Definition

topologicalsort.h
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Example

In topo_sort.cc:

using namespace ggcl;
typedef discover _time _plugin < finish _time _plugin <
color _plugin <distance _plugin <> > > > VertexPlugin;

typedef graph < adjacency _matrix < ggcl _vecT >, directed,
VertexPlugin, Weight <int > > Graph;

typedef Graph:vertex  _type Vertex;

std::pair <size _t,;size _t> edges[ 7] = { Pair( 0, 1), Pair( 2, 4),
Pair( 2, 5),
Pair( 0, 3), Pair( 1, 4),
Pair( 4, 3), Pair( 5,5) };
Graph G(edges, 7, 6);
typedef std::vector < Vertex > container;

container c;

null _visitor null _V;

typedef std::back _insert _iterator = <container > Outputlterator;
topological _sort(G, Outputlterator(c), null _V);

G.1.26 transpose
Prototype

template  <class Graphl, class Graph2 >
void transpose(const Graphl& G1, Graph2& G2) ;

Description

To get the transpose of a directed graph. The transpose of a directed graph G = (V, E) is
the graph GT = (V, ET), where ET = (v, u) inV x V: (u, v) in E. i.e., GT is G with all its

edges reversed.

Definition

transpose.h
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H.1 Concepts

H.1.1 interiorvertexplugin

Description

APPENDIX H

PLUGINS

The interior vertex plugin is to provide the a way to store the vertex properityes. There are

two categories of it. One is affertexplugin which stored vertex properities inside the

graph object but out of the vertex. The ortex plugin is meanful to adjacendyst and

adjacencymatrix graphs. On the other hand, if the graph is dynamic representation, it is

better that vertex properities are stored inside the vertex angedax plugin provides

that.
Table H.1: Expression semantics of concaperior_vertex_plugin
Expression Description
X.NAME(u) To access the properity of vertex whose
isu.
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Table H.2: Function specification of concépterior_vertex_plugin

Prototype Description

NAMEype& NAME(size _type

) To access the properity of vertex whose |D

iSu.

Models

e off _vertexplugin
e on.vertexplugin

H.1.2 offvertexplugin

Description

The off-vertex plugin is to provide off-vertex storage for vertex properities inside a graph
object. Using interior decorators to access the vertex properities. The four functions

defined below will be invoked automatically when a graph add/remove an edge/vertex.

Refinement of

interior_vertexplugin
Notations
X Atype that is a model of offrertex plugin

X An object of typeX

u An object of a model of Vertex
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Table H.3: Expression semantics of concefbtvertex_plugin

Expression

Description

X.NAME(u)

To access the properity of vertex whose |D

iSu.

x.add _vertex(u)

invoked when a graph object add a verteix.

x.remove _vertex(u)

invoked when a graph object remove a ver-

tex.

Table H.4: Function specification of concegt_vertex_plugin

Prototype

Description

NAMEype& NAME(size _type
u)

To access the properity of vertex whose

iSu.

ID

void add _vertex(size  _type
u)

invoked when a graph object add a verte]

x

void remove _vertex(size
type u)

invoked when a graph object remove a v

tex.

er-

Models

e distanceplugin

color_plugin

out.degreeplugin

in_degreeplugin

degreeplugin

153



e discovertime_plugin
e finish_time_plugin

Notes

it is recommended to inherit from defaydtugin on implementing a user-defined off

vertex plugin.

H.1.3 onvertexplugin

Description

The on-vertex plugin is to provide the storage for vertex properities on the vertex.

Refinement of
interior_vertexplugin

Table H.5: Expression semantics of conceiptvertex_plugin

Expression Description
X.NAME(u) To access the properity of vertex whose |D
isu.

Table H.6: Function specification of concegt_vertex_plugin

Prototype Description

NAMEype& NAME(size _type

) To access the properity of vertex whose |D

is u.
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Models

e on.vertexcolor_plugin

¢ id_plugin

e on.vertexdistanceplugin

H.2 Plugin classes

H.2.1 colorplugin

Description

This is the off-

object. Use this for adjacendist and adjacencynatrix graphs. Use coladecorator to

access the distance properity.

typedef color _plugin <> VerexPlugin;
typedef graph < adjacency _list <>,
irected, VerexPlugin > Graph;

/...

typedef Graph::vertex  _type Vertex;

Vertex s = *(vertices(G).begin());

color _decorator < Vertex > color;

color[s] = color _traits < color _type >:black();
Definition

vertexplugin.h

Table H.7: Template parameters of clastor _plugin

Parameter

Default Description

StoragePlugin

off _vertex _- a super off vertex plugin

default _plugin <>
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Parameter Default Description

Container std::vector <typenamenatiner type to hold all ver

StoragePlugin::size | tices' colors

type >

Table H.8: Members ofolor _plugin

Declaration Description Where Defined

size _type off_vertex-
plugin

color _type off_vertex-
plugin

color _plugin (size _type n)

color _type& color (size _type u) off_vertex-
plugin

const color _type& color (size _type

u) const

void add _vertex (size  _type u) off_vertex -
plugin

void remove _vertex (size  _type u) off_vertex-
plugin

H.2.2 degresplugin

Description

This is the off-vertex plugin to provide the storage of vertex degree properity inside a
graph object. Use this for adjacentigt and adjacencynatrix graphs. Use degree

decorator to access the distance properity.
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typedef degree _plugin <> VerexPlugin;
typedef graph < adjacency _list <>,
undirected, VerexPlugin > Graph;
/...
typedef Graph:.vertex  _type Vertex;
Vertex s = *(vertices(G).begin());
degree _decorator < Vertex > deg;
cout << deg[s] << endl

Definition
vertexplugin.h

Table H.9: Template parameters of claggree _plugin

Parameter Default Description

StoragePlugin off _vertex _- a super off vertex plugin

default _plugin <>

Container std::vector <typenamenatiner type to hold all ver

StoragePlugin::size | tices' degrees

type >

Table H.10: Members alegree _plugin

Declaration Description Where Defined

size _type off_vertex -
plugin

degree _type off_vertex-
plugin

degree _plugin ()
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Declaration Description Where Defined
degree _plugin (size _type n)
const degree _type& degree (size -
type u) const
degree _type& degree (size _type u) off_vertex-
plugin
void add _edge (size _type u, size - off_vertex.-
type v)
plugin
vpld remove _edge (size _type u, off_vertex.-
size _type V)
plugin
void add _vertex (size  _type u) off_vertex -
plugin
void remove _vertex (size  _type u) off_vertex-
plugin

H.2.3 discovetime_plugin

Description

This is the off-vertex plugin to provide the storage of vertex discover-time properity inside
a graph object. Use this for adjacendst and adjacencynatrix graphs. Use discover

time_decorator to access the distance properity.

typedef discover _time _plugin <> VerexPlugin;
typedef graph < adjacency _list <>,

undirected, VerexPlugin > Graph;
/...
typedef Graph::vertex  _type Vertex;

Vertex s = *(vertices(G).begin());
discover _time _decorator < Vertex
cout << dtfs] << endl;

> dt;
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Definition
vertexplugin.h

Table H.11: Template parameters of cldgscover _time _plugin

Parameter Default Description

StoragePlugin off _vertex _- a super off vertex plugin

default _plugin <>

Container std::vector <typenamenatiner type to hold all ver

StoragePlugin::size | tices' discover time

type >

Table H.12: Members aliscover _time _plugin

Declaration Description Where Defined

size _type off_vertex -
plugin

discover _time _type off_vertex-
plugin

discover _time _plugin ()

discover _time _plugin (size _type n)

const discover  _time _type&
discover _time (size _type u) const

discover _time _type& discover _time

; off_vertex-
(size _type u)
plugin
void add _vertex (size  _type u) off_vertex-
plugin
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Declaration Description Where Defined

void remove _vertex (size  _type u) off_vertex -

plugin

H.2.4 distanceplugin

Description

This is the off-vertex distance plugin to provide the storage of vertex distance properity
inside a graph object. Use this for adjacetisy and adjacencynatrix graphs. Use

distancedecorator to access the distance properity.

typedef distance _plugin <> VerexPlugin;
typedef graph < adjacency _list <>,
directed, VerexPlugin > Graph;
/...
typedef Graph:ivertex  _type Vertex;
Vertex s = *(vertices(G).begin());
distance _decorator < Vertex > d;
dls] = O;

Definition
vertexplugin.h

Table H.13: Template parameters of cldgsstance _plugin

Parameter Default Description

StoragePlugin off _vertex _- a super off vertex plugin

default _plugin <>

Container std::vector <typenanenatiner type to hold all ver

StoragePlugin::size | tices' distances

type >
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Table H.14: Members alistance _plugin

Declaration Description Where Defined

size _type off_vertex-
plugin

distance _type off_vertex-
plugin

distance _plugin (size _type n)

Si)stance type& distance (size _type off_vertex.-
plugin

const distance  _type& distance

(size _type u) const

void add _vertex (size  _type u) off_vertex-
plugin

void remove _vertex (size  _type u) off_vertex-
plugin

H.2.5 finishtime_plugin

Description

This is the off-vertex plugin to provide the storage of vertex discover-time properity inside
a graph object. Use this for adjacencst and adjacencynatrix graphs. Use discover

time_decorator to access the distance properity.
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Graph;

typedef finish _time _plugin <> VerexPlugin;

typedef graph < adjacency _list <>,
undirected, VerexPlugin >

/...

typedef Graph:.vertex  _type Vertex;

Vertex s = *(vertices(G).begin());
< Vertex

finish _time _decorator
cout << ft[s] << endl
Definition

vertexplugin.h

> ft;

)

Table H.15: Template parameters of cléiagsh _time _plugin
Parameter Default Description
StoragePlugin off _vertex _- a super off vertex plugin
default _plugin <>
Container a conatiner type to holg
all  vertices' finish-time -
std::vectoktypename Storage
Plugin::sizetype>
Table H.16: Members dinish  _time _plugin
Declaration Description Where Defined
size _type off_vertex-
plugin
finish _time _type off_vertex -
plugin
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Declaration Description Where Defined

finish  _time _plugin ()

finish  _time _plugin (size _type n)

const finish time _type& finish  _-
time (size _type u) const

finish _time _type& finish  _time

. off_vertex -
(size _type u)
plugin
void add _vertex (size  _type u) off_vertex-
plugin
void remove _vertex (size  _type u) off_vertex-
plugin

H.2.6 idplugin

Description

This is to provide an on vertex plugin so that every vertex can have an ID. Use this for

dyanmic graph only.

typedef on_vertex _color _plugin < id _plugin <> > VertexPlugin;
typedef graph < dynamic < vecT, unordered >,
directed, VertexPlugin > Graph;

Definition
vertexplugin.h

Table H.17: Members atl _plugin

Declaration Description Where Defined

id _type

id _type& id ()
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Declaration Description Where Defined

id _type& id () const

id _type _id

H.2.7 indegreeplugin

Description

This is the off-vertex plugin to provide the storage of vertex in degree properity inside a
graph object. Use this for adjacentigt and adjacencynatrix graphs. Use iglegree-

decorator to access the distance properity.

typedef in _degree _plugin <> VerexPlugin;
typedef graph < adjacency _list <>,
directed, VerexPlugin > Graph;
/...
typedef Graph:ivertex  _type Vertex;
Vertex s = *(vertices(G).begin());
in _degree _decorator < Vertex > in _d;
cout << in _d[s] << endl;

Definition
vertexplugin.h

Table H.18: Template parameters of classdegree _plugin

Parameter Default Description

StoragePlugin off _vertex _- a super off vertex plugin

default _plugin <>
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)

Parameter Default Description
Container a conatiner type to holg
all vertices' in-degrees
std::vectoktypename Storage
Plugin::sizetype>
Table H.19: Members dh _degree _plugin
Declaration Description Where Defined
size _type off_vertex-
plugin
in _degree _type off_vertex -
plugin
in _degree _plugin (size _type n)
const in _degree _type& in _degree
(size _type u) const
in _degree _type& in _degree (size _- off_vertex-
type u)
plugin
void add _edge (size _type u, size _- off_vertex.-
type v)
plugin
vpld remove _edge (size _type u, off_vertex.-
size _type V)
plugin
void add _vertex (size  _type u) off_vertex -
plugin
void remove _vertex (size  _type u) off_vertex -
plugin
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H.2.8 off.vertexdefaultplugin

Description

This class is the default stored vertex plugin and will be the base of otheed#x
plugin.

Definition

vertexplugin.h

Table H.20: Members dafff _vertex _default _plugin

Declaration Description Where Defined
size _type
off _vertex _default _plugin ()
off _vertex _default _plugin (size -
type n)
void add _edge (size _type u, size - off_vertex.-
type v)
plugin
vpld remove _edge (size _type u, off_vertex.-
size _type V)
plugin
void add _vertex (size  _type u) off_vertex -
plugin
void remove _vertex (size  _type u) off_vertex -
plugin
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H.2.9 onvertexcolor_plugin

Description

This is to provide an on vertex plugin so that every vertex can have a color properity. Use
this for dyanmic graph only. Interior decoratoolor _decorator is used to access

this properity.

typedef on_vertex _color _plugin < > VertexPlugin;
typedef graph < dynamic <>,
undirected, VertexPlugin > Graph;
/...
typedef Graph:.vertex  _type Vertex;
Vertex u = G.root();
color _decorator < Vertex > color;
color[u] = color _traits < color _type >:grey();

Definition
vertexplugin.h

Table H.21: Template parameters of clagsvertex _color _plugin

Parameter Default Description

Super id _plugin <> a super on vertex plugin

Table H.22: Members afn _vertex _color _plugin

Declaration Description Where Defined
color _type on.vertex-

plugin
on_vertex _color _plugin ()
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Declaration Description Where Defined

default _color _type& color

(typename Super::id type i = 0) on.vertex-
plugin

default _color _type& color

(typename Super::id type i = 0)

const

default _color _type _color

H.2.10 onvertexdistanceplugin

Description

This is to provide an on vertex plugin so that every vertex can have a distance properity.
Use this for dyanmic graph only. Interior decoratlistance _decorator is used to

access this properity.

typedef on_vertex _distance _plugin < > VertexPlugin;
typedef graph < dynamic <>,
directed, VertexPlugin > Graph;
/...
typedef Graph:.vertex  _type Vertex;
Vertex u = G.root();
distance _decorator < Vertex > d;
dlu] = O0;

Definition
vertexplugin.h

Table H.23: Template parameters of classvertex _distance _plugin

Parameter Default Description

Super id _plugin <> a super on vertex plugin
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Table H.24: Members afn _vertex _distance _plugin

Declaration Description Where Defined
distance _type on.vertex-
plugin

on_vertex _distance _plugin ()

distance _type& distance (typename

Super:id _type i = 0) on.vertex-

plugin

distance _type& distance (typename
Super:id _type i = 0) const

distance _type _distance

H.2.11 outdegreeplugin

Description

This is the off-vertex plugin to provide the storage of vertex out degree properity inside a
graph object. Use this for adjacentigt and adjacencynatrix graphs. Use owdegree-

decorator to access the distance properity.

typedef out _degree _plugin <> VerexPlugin;
typedef graph < adjacency _list <>,
directed, VerexPlugin > Graph;
/...
typedef Graph:ivertex  _type Vertex;
Vertex s = *(vertices(G).begin());
out _degree _decorator < Vertex > out _d;
cout << out _d[s] << endl

Definition

vertexplugin.h
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Table H.25: Template parameters of class _degree _plugin

Parameter Default Description
StoragePlugin off _vertex _- a super off vertex plugin
default _plugin <>
Container a conatiner type to hold
all vertices' out-degrees |-
std::vectoktypename Storage-
Plugin::sizetype>
Table H.26: Members afut _degree _plugin
Declaration Description Where Defined
size _type off_vertex-
plugin
out _degree _type off_vertex-
plugin
out _degree _plugin (size  _type n)
const out _degree _type& out _degree
(size _type u) const
out _degree _type& out _degree (size _- off_vertex-
type u)
plugin
void add _edge (size _type u, size _- off_vertex-
type v)
plugin
vpld remove _edge (size _type u, off_vertex.-
size _type v)
plugin
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Declaration Description Where Defined

void add _vertex (size  _type u) off_vertex -
plugin

void remove _vertex (size  _type u) off_vertex-
plugin

H.2.12 weightplugin

Description

This is to provide the storage for weight information for every edge. It is stored on the

edge as a plugin. Use weigtecorator to access weight for an edge.

typedef graph < adjacency _list <>, undirected,
interior  _default _plugin <>, Weight <int > > Graph;
/...
typedef Graph::edge _type Edge;
/... eis a valid edge from graph G
weight _decorator < Edge > w;
cout << wle] << endl

Definition
edgeplugin.h
Table H.27: Members ofreight _plugin
Declaration Description Where Defined
weight _type

weight _plugin ()

weight _plugin (T t, const Plugin&
p = Plugin() )

weight _plugin (const weight -
plugin& W)
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Declaration Description Where Defined

const weight _type& weight () const

weight _type& weight ()
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APPENDIX |

FUNCTION OBJECTS

.1 classes

1.1.1 firstequal

Description

This is a function object. It tests the truth or falsehood of two objects whose types are
std::pair. Iff isan objectofirst _equal andx andy are two pair objects Thei,

y) returns true ifx.first == y.first and false otherwise.

Definition

functor.h

Table I.1: Members ofirst  _equal

Declaration Description Where Defined

first _argument _type

second _argument _type

result _type

bool operator() (const PairType&
a, const PairType& b) const
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[.1.2 firstless

Description

This is a function object. It tests the truth or falsehood of two objects whose types are
std::pair. Iff is an object ofirst _less andx andy are two pair objects Theiix,

y) returns true ii.first < y.first and false otherwise.

Definition
functor.h

Table 1.2: Members ofirst _less

Declaration Description Where Defined

template < class PairType >
bool operator() (const PairType&
a, const PairType& b) const

1.1.3 functorequal

Description

This is a function object. It tests the truth or falsehood of two objects' decorating prop-
erties through decorator. 1f is an object ofunctor _equal < D > andx andy are

two objects with decoratat which is an object oD, thenf(x, y)  returns true ifd[x]

== d[y] and false otherwise.

Table 1.3: Template parameters of cléissctor _equal

Parameter Default Description

Decorator a model of Decorator
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Table I.4: Members ofunctor _equal

Declaration Description Where Defined
functor _equal (const Decorator& df

= Decorator())

template  <class Vertex >

bool operator() (const Vertex& u, returnd[u] == d[v]

const Vertex& v) const

[.1.4 functorgreater

Description

This is a function object. It tests the truth or falsehood of two objects' decorating prop-
erties through decorator. 1f is an object ofunctor _greator < D > andx andy

are two objects with decoratdr, which is an object oD, thenf(x, y)  returns true if

d[x] > d[y] and false otherwise.

Definition
functor.h
Table I.5: Template parameters of cléissctor _greater
Parameter Default Description
Decorator a model of Decorator
Table I.6: Members ofunctor _greater
Declaration Description Where Defined

functor _greater (const Decorator&
df = Decorator())

template  <class Vertex >

bool operator() (const Vertex& u, returndfu] > d[v]
const Vertex& v) const
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1.1.5 functorless

Description

This is a function object. It tests the truth or falsehood of two objects' decorating proper-
ties through decorator. ff is an object ofunctor _less < D > andx andy are two
objects with decorata which is an object oD, thenf(x, y)  returns true id[x] <

dly] and false otherwise.

Definition
functor.h
Table I.7: Template parameters of cldéissctor _less
Parameter Default Description
Decorator a model of Decorator
Table 1.8: Members ofunctor _less
Declaration Description Where Defined
functor _less (const Decorator& df
= Decorator())
template  <class Vertex >
bool operator() (const Vertex& u, returnd[u] < d[v]

const Vertex& v) const

1.1.6 nullLoperation

Description

This functor provides three overloaded versiongpérator() function with one ar-
gument, two arguments, and three arguments. The function body is empty to provide the

null operation.
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Definition
visited.h

Table 1.9: Members afull _operation

Declaration Description Where Defined

template < class A, class B,
class C >

void operator() ( const A& a,

const B& b, const C& ¢ ) const
template < class A, class B >
void operator() ( const A& a,

const B& b ) const

template < class A >

void operator() ( const A& a )
const

1.1.7 queueupdate

Description

This functor is used for dijkstra amd prim. It provides a operation to check if it needs

perform queue update. if so, do it.
Definition
visited.h

Type requirements

e Visitor must be a model of Visitor to provide the methoeked _update _queue() .

e Qtype must be a model of queue who has methodpofate(v)  wherev has a

type of Qtype::value  _type .
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Table 1.10: Members ajueue _update

Declaration Description Where Defined

template < class Visitor, class
Qtype, class lter >

void operator() ( Visitor&

visitor, Qtype& Q, Iter ei )
const
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APPENDIX J

MATRIX ORDERING

J.1 Utility classes
J.1.1 Marker

Description

This class is to provide a generalization of coloring which has complexity of amortized
constant time to set all vertices' color back to be white. It implemented by simply in-
creasing a tag.

Definition

mmd.aux.h

Table J.1: Members dflarker

Declaration Description Where Defined

Marker (Decorator _data, size _type
-num)

void init (size _type n)

void mark _done (size _type node)

bool is _done (size _type node)

void mark _tag (size _type node)

void mark _mtag (size _type node)

bool is _tagged (size _type node)
const
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Declaration Description Where Defined

bool is _not _tagged (size _type
node) const

bool is _mtagged (size _type node)
const

void increment _tag ()

void set _mtag (value _type mdegO)

void set _tag _as_mtag ()

void print (size type n)

J.1.2 Stacks

Description

This to use a single array for multiple stacks. It was used in Fortran code orginally because

of its efficiency.

Definition
mmd.aux.h
Table J.2: Members ddtacks
Declaration Description Where Defined
Stacks (Decorator _data)
class stack stack
stack operator|] (size _type i) To return a stack objeqt
with the head provided.
stack make _stack () To return a stack object
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J.1.3 orderedtacks

Description
This is a bucket sorter virtually. It is used inside of mmd algorithms.

Table J.3: Members adrdered _stacks

Declaration Description Where Defined

ordered _stacks (Decorator _head,
Decorator  _next, Decorator _prev)

ordered _stacks (const ordered -
stacks& Xx)

void init (size _type n)

class stack

stack operator[] (size _type i)

stack operator[] (size _type i)
const

void remove (size  _type i)

void mark _need _update (size _type

i)

bool need _update (size _type i)

const value _type null ()

bool outmatched _or _done (size _type

i)

void mark (size _type i)

void print (size type n)

J.2 Functions

J.2.1 psuedgeripheralpair
Prototype

template  <class Graph, class Vertex, class Color, class Degree >
int psuedo _peripheral _pair(Graph& G, const Vertex& u, Vertex& w,
Color c, Degree d) ;
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Description

To compute an approximated peripheral for a given vertex.
Definition

RCM.h

J.2.2 findstartingnode
Prototype

template  <class Graph, class Color, class Degree >
graph _traits <Graph >:vertex type find _starting _node(Graph& G,
Color c, Degree d) ;

Description

This is to find a good starting node for the RCM algorithm. The "good” is in sense of the

ordering generated by RCM.
Definition
RCM.h

See also

Alan George and Joseph W-H Liu, Computer Solution of Large Sparse Positive Definite

Systems, Prentice-Hall, 1981, Page 62.

J.2.3 reverse&uthill McKee

Prototype

template < class Graph, class RandomAccessContainer, class
Color, class Degree >

void reverse _Cuthill _McKee(Graph& G, RandomAccessContainer&

iperm, Color ¢, Degree d) ;
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Description

A starting vertex is computed biind _starting _node. This algorithm does not
require user to provide a starting vertex to compute RCM ordering.

Definition

RCM.h

J.2.4 reverse&uthill McKee
Prototype

template < class Graph, class RandomAccessContainer, class Color
>

void reverse _Cuthill _McKee(Graph& G, RandomAccessContainer&
iperm, Color c) ;

Description

A starting vertex is computed ind _starting  _node . This algorithm does not re-
quire user to provide a starting vertex to compute RCM ordering. An interior DegreeDec-

orator is required.
Definition
RCM.h

J.2.5 reverse&uthill McKee

Prototype

template  <class Graph, class RandomAccessContainer >
void reverse _Cuthill _McKee(Graph& G, RandomAccessContainer&
iperm) ;
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Description

A starting vertex is computed bgnd _starting _node. This algorithm does not
require user to provide a starting vertex to compute RCM ordering. Assume that an
interior DegreeDecorator and a ColorDecorator are available.

Definition

RCM.h

J.2.6 mmd
Prototype

template <class Graph, class Decoratorl, class DecoratorP, class
DecoratorQ >

void mmd(Graph& G, Decoratorl inverse _perm, DecoratorP perm,
DecoratorQ gsize, int delta=0) ;

Description

The implementation presently includes the enhancements for mass elimination, incom-

plete degree update, multiple elimination, and external degree.
Definition
mmd.h

See also

Alan George and Joseph W. H. Liu, The Evolution of the Minimum Degree Ordering
Algorithm, SIAM Review, 31, 1989, Page 1-19
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