
THE HIGH PERFORMANCE GENERIC GRAPH COMPONENT LIBRARY

A Thesis

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Computer Science and Engineering

by

Lie-Quan Lee, B.S., M.S.

Andrew Lumsdaine, Director

Department of Computer Science and Engineering

Notre Dame, Indiana

September 1999

THE HIGH PERFORMANCE GENERIC GRAPH COMPONENT LIBRARY

Abstract

by

Lie-Quan Lee

In this thesis I present the Generic Graph Component Library (GGCL), a generic pro-

gramming framework for graph data structures and graph algorithms. Following the

theme of the Standard Template Library (STL), the graph algorithms in GGCL do not

depend on the particular data structures upon which they operate, meaning a single algo-

rithm can operate on arbitrary concrete representations of graphs. I describe the principal

abstractions comprising the GGCL, the algorithms and data structures that it provides,

and provide examples that demonstrate the use of GGCL to implement some common

graph algorithms. Performance results are presented which demonstrate that the use of

novel lightweight implementation techniques and static polymorphism in GGCL results

in code which is significantly more efficient than similar libraries written using the object-

oriented paradigm.

To my father,

my mother in memoriam,

and my wife Yun

ii

CONTENTS

TABLES . vi

FIGURES . x

ACKNOWLEDGEMENTS . xii

CHAPTER 1: INTRODUCTION .. 1
1.1 Generic Programming . .. 2
1.2 Generic Programming Process 5
1.3 A Generic Graph Library . 5

CHAPTER 2: ABSTRACT GRAPH INTERFACE 8
2.1 Formal Graph Definition. 11
2.2 GGCL Concepts . 12

CHAPTER 3: GENERIC GRAPH ALGORITHMS 17
3.1 Breadth First Search Pattern . 17
3.2 Depth First Search Pattern . 21

CHAPTER 4: GGCL IMPLEMENTATION . 27
4.1 Graph Data Structure Implementation 27
4.2 Decorator Implementation . 35
4.3 Visitor Implementation . 39

CHAPTER 5: SPARSE MATRIX ORDERING ALGORITHMS 41
5.1 Graphs and Sparse Matrices . 41
5.2 Sparse Matrix Ordering Algorithms . 42

CHAPTER 6: PERFORMANCE . 47
6.1 Comparison to General Purpose Libraries 48
6.2 Comparison to Special Purpose Library 48
6.3 Template Issues . 52

iii

CHAPTER 7: CONCLUSION AND AVAILABILITY 55
7.1 Conclusion . 55
7.2 Availability . 55

BIBLIOGRAPHY . 56

APPENDIX A: GRAPHS . 58
A.1 Concepts . 58
A.2 Graph type selectors . 60
A.3 Graph classes . 65
A.4 Graph functions . 75

APPENDIX B: GRAPH REPRESENTATIONS 77
B.1 Concepts . 77
B.2 Graph representation type selectors . 79

APPENDIX C: VERTICES . 82
C.1 Concepts . 82
C.2 Vertex classes . 84
C.3 Vertex functions . 87

APPENDIX D: EDGES . 88
D.1 Concepts . 88
D.2 Edge classes . 89
D.3 Edge functions . 92

APPENDIX E: DECORATORS . 93
E.1 Concepts . 93
E.2 Decorator classes . 95
E.3 Decorator functions . 98

APPENDIX F: VISITORS . 100
F.1 Concepts . 100
F.2 Visitor classes . 102
F.3 Visitor functions . 116

APPENDIX G: ALGORITHMS . 120
G.1 GGCL algorithms . 120

iv

APPENDIX H: PLUGINS . 151
H.1 Concepts . 151
H.2 Plugin classes . 155

APPENDIX I: FUNCTION OBJECTS . 173
I.1 classes . 173

APPENDIX J: MATRIX ORDERING . 179
J.1 Utility classes . .. 179
J.2 Functions . 181

v

TABLES

2.1 The specification of theGraph concept 13

2.2 The specification of theVertex concept 13

2.3 The specification of theEdge concept. 14

2.4 The specification of theDecorator concept 15

2.5 The specification of theVisitor concept 16

6.1 Performance comparison of minimum degree algorithms 52

6.2 Comparison of executable sizes . 53

A.1 Expression semantics of conceptGraph 58

A.2 Function specification of conceptGraph 59

A.3 Concrete graph representations . 61

A.4 Template parameters of classadjacency list 62

A.5 Members ofadjacency list . 62

A.6 Template parameters of classadjacency matrix 63

A.7 Members ofadjacency matrix . 63

A.8 Template parameters of classdynamic 64

A.9 Members ofdynamic . 64

A.10 Members ofLEDAGraph . 66

A.11 Overview of adjacency list and adjacency matrix graphs 67

A.12 Template parameters of classgraph . 68

A.13 Members ofgraph . 69

A.14 Members ofgraph . 74

vi

B.1 Expression semantics of conceptGraphRepresentation 77

B.2 Function specification of conceptGraphRepresentation 78

B.3 Members ofordered . 80

B.4 Members ofunordered . 81

C.1 Expression semantics of conceptVertex 82

C.2 Function specification of conceptVertex 83

C.3 Members ofLEDAVertex . 84

C.4 Members ofvertex . 85

D.1 Expression semantics of conceptEdge 88

D.2 Function specification of conceptEdge 89

D.3 Members ofLEDAEdge . 90

D.4 Members ofedge . 91

D.5 Members ofstored edge . 91

E.1 Expression semantics of conceptDecorator 94

E.2 Function specification of conceptDecorator 94

E.3 Members ofdummydecorator . 95

E.4 Members ofid decorator . 96

E.5 Members ofrandom access iterator decorator 97

E.6 Members ofweight decorator . 98

F.1 Expression semantics of conceptVisitor 100

F.2 Function specification of conceptVisitor 101

F.3 Template parameters of classbfs visitor 102

F.4 Members ofbfs visitor . 103

F.5 Template parameters of classcomponents visitor 105

F.6 Members ofcomponents visitor 105

F.7 Template parameters of classdfs visitor 106

vii

F.8 Members ofdfs visitor . 106

F.9 Template parameters of classdistance visitor 108

F.10 Members ofdistance visitor . 108

F.11 Members oflevel visitor . 109

F.12 Members ofnull visitor . 110

F.13 Template parameters of classpredecessor visitor 111

F.14 Members ofpredecessor visitor 111

F.15 Template parameters of classtimestamp visitor 112

F.16 Members oftimestamp visitor 112

F.17 Template parameters of classtopo sort visitor 113

F.18 Members oftopo sort visitor . 114

F.19 Template parameters of classweighted edge visitor 114

F.20 Members ofweighted edge visitor 114

H.1 Expression semantics of conceptinterior vertex plugin 151

H.2 Function specification of conceptinterior vertex plugin 152

H.3 Expression semantics of conceptoff vertex plugin 153

H.4 Function specification of conceptoff vertex plugin 153

H.5 Expression semantics of concepton vertex plugin 154

H.6 Function specification of concepton vertex plugin 154

H.7 Template parameters of classcolor plugin 155

H.8 Members ofcolor plugin . 156

H.9 Template parameters of classdegree plugin 157

H.10 Members ofdegree plugin . 157

H.11 Template parameters of classdiscover time plugin 159

H.12 Members ofdiscover time plugin 159

H.13 Template parameters of classdistance plugin 160

H.14 Members ofdistance plugin . 161

H.15 Template parameters of classfinish time plugin 162

viii

H.16 Members offinish time plugin 162

H.17 Members ofid plugin . 163

H.18 Template parameters of classin degree plugin 164

H.19 Members ofin degree plugin . 165

H.20 Members ofoff vertex default plugin 166

H.21 Template parameters of classon vertex color plugin 167

H.22 Members ofon vertex color plugin 167

H.23 Template parameters of classon vertex distance plugin 168

H.24 Members ofon vertex distance plugin 169

H.25 Template parameters of classout degree plugin 170

H.26 Members ofout degree plugin . 170

H.27 Members ofweight plugin . 171

I.1 Members offirst equal . 173

I.2 Members offirst less . 174

I.3 Template parameters of classfunctor equal 174

I.4 Members offunctor equal . 175

I.5 Template parameters of classfunctor greater 175

I.6 Members offunctor greater . 175

I.7 Template parameters of classfunctor less 176

I.8 Members offunctor less . 176

I.9 Members ofnull operation . 177

I.10 Members ofqueue update . 178

J.1 Members ofMarker . 179

J.2 Members ofStacks . 180

J.3 Members ofordered stacks . 181

ix

FIGURES

2.1 The Breadth First Search algorithm description in the textbook. 9

2.2 The analogy between the STL and the GGCL. 11

3.1 The generalized Breadth First Search algorithm. 18

3.2 The BFS family of algorithms 20

3.3 The BFS algorithm in GGCL. 21

3.4 The GGCL implementation of the Prim's Minimum Spanning Tree algo-
rithm . 22

3.5 The GGCL implementation of the Dijkstra's Single-Source Shortest Path
algorithm . 23

3.6 The implementation ofweight edge visitor 24

3.7 The family of DFS algorithms. 25

3.8 The GGCL implementation of the topological sort algorithm using DFS. . 26

4.1 An example of pointer-based graph data structures in C. 28

4.2 The sample implementation of vertex class for the pointer-based graph
data structures. 30

4.3 The sample implementation of edge class for the pointer-based graph data
structures. 31

4.4 The sample implementation of graph class for the pointer-based graph
data structures. 32

4.5 The Graph Components Provided By GGCL. 33

4.6 An example of constructing a GGCL Graph. 36

4.7 The predefined models ofDecorator in GGCL. 37

4.8 An example model of theVisitor concept. 40

x

5.1 The GGCL implementation offind starting node 44

6.1 Performance comparison of thebfs algorithms. 49

6.2 Performance comparison of thedfs algorithms. 50

6.3 Performance comparison of thedijkstra algorithms. 51

A.1 Overview of the dynamic graph 71

xi

ACKNOWLEDGEMENTS

I want to express my special appreication to my advisor, Dr. Andrew Lumsdaine. This

work could not be done without his earnest guidance, invaluable suggestions and full

support. I would like to take this opportunity to express my thanks to Jeremy G. Siek and

his splendid ideas to GGCL. I would like to thank the all other members in the Laboratory

of Scientific Computing, Jeff M. Squyres, Michael D. Mcnally, and Kinis Meyer.

I would like to express my appreciation to Dustin and Jennifer Lee, Jerry and Beverly

Wei, Daniel and Shirley Meng, Rev. John and Grace Chao, Yamin Huang, and Bo Hu.

Thank you for your spirtual guidance, encouragement in my low time, and assistance in

my life.

xii

CHAPTER 1

INTRODUCTION

The graph abstraction is widely used to model a large variety of structures and relation-

ships in many areas such as transportation, scheduling, networks, robotics, VLSI design,

compilers, database and software engineering. For example, a weighted graph can model

airline flight schedules, with the airports as vertices and direct flights between two airports

as edges whose weight is the distance between them. In the register allocation phase of a

compiler, by constructing an undirected interference graph whose vertices represent tem-

porary values and whose edges indicate pairs of temporaries that can not be assigned to

the same register, register allocation, a very basic phase of the compiler, can be deduced

as the classic graph coloring problem. Graph theory has been ubiquitous in sparse ma-

trix computation ever since Seymour Parter used undirected graphs to model symmetric

Gaussian elimination more than 30 years ago. Graph models of symmetric matrices and

factorizations and algorithms on non-symmetric matrices, such as fill paths in Gaussian

elimination, strongly connected components in irreducibility, bipartite matching, and al-

ternating paths in linear dependence and structural singularity, not only make it easier to

understand and analyze sparse matrix algorithms, but broaden the area of manipulating

sparse matrices using existing graph algorithms and techniques [8]. Graph algorithms

can be applied directly to various problem domains if the problems are properly modeled.

Consequently, the implementation of graph algorithms is an important enterprise that can

be greatly facilitated by the availability of high-quality software for realizing graph algo-

1

rithms. (By “high-quality” in this case we take to mean, such attributes as functionality,

reliability, usability, efficiency, maintainability, and portability [18].)

There are several existing general purpose graph libraries, such as LEDA [17], the

Graph Template Library (GTL) [6], Combinatorica [26], and Stanford GraphBase [14].

Sources such as Netlib [1] and [27] represent repositories of graph algorithms. These li-

braries and repositories represent a significant amount of potentially reusable algorithms

and data structures. However, none of these libraries faithfully follows thegeneric pro-

grammingparadigm [4] (also see Section 1.1) and are therefore far more rigid (and much

less reusable) than necessary.

These libraries are inflexible in several respects. First, the user is restricted to the

graph data structures provided by the library. Second, the graph algorithms often do not

provide explicit mechanisms for extension, making it difficult or impossible for users to

customize vanilla algorithms to meet their needs. Finally, the manner in which these

libraries associate graph properties (such as color or weight) with a graph data structure

is often inflexible and hard coded into the algorithms or data structures. Ultimately, these

(and other) libraries are fundamentally limited in terms of their flexibility by their design

and implementation.

1.1 Generic Programming

Recently, generic programming [4] has emerged as a powerful new paradigm for library

development. The fundamental principle of generic programming is to separate algo-

rithms from the concrete data structures on which they operate based on the underlying

abstract problem domain concepts, allowing the algorithms and data structures to freely

interoperate. That is, in a generic library, algorithms do not manipulate concrete data

structures directly, but instead operate on abstract interfaces defined for entire equiva-

lence classes of data structures. A single generic algorithm can thus be applied to any

2

particular data structure that conforms to the requirements of its equivalence class. In

the celebrated Standard Template Library (STL) [15], the data structures are containers

such asvector , list , set andmap. Each of these container classes is a template,

and can be instantiated to contain any type of object. Most importantly, each container

has itsiterator interface. Each container class defines aniterator type and member

functionbegin andend which represent the first element of the container and the one-

beyond-the-last element, respectively.Iterator is a generalization of pointer because

the dereference of aniterator object gets the element value as a pointer does.Iterators

form the abstract interface between algorithms and containers so that algorithms are able

to be decoupled from containers. Each STL algorithm is written in terms of theiterator

interface and as a result each algorithm can operate with any of the STL containers. The

following is an example algorithm in STL which performs the operation for each iterator

in the provided range.

template <class InputIterator, class OutputIterator,
class UnaryOperation >

OutputIterator transform(InputIterator first, InputIterator last,
OutputIterator result, UnaryOperation op)

f
for (; first != last; ++first, ++result)

*result = op(*first);
return result;

g

As shown above, algorithms are parameterized by the type ofiterator so that they

are not restricted to a single type of container. In addition, many of the STL algorithms

are parameterized not only on the type ofiterator used for traversal, but on the type of

operation that is applied during the traversal. For example, thetransform() algorithm

shown above has a parameter for aUnaryOperator function object (functor). Func-

tion objects as a generalization of functions, allow abstraction not only over the types

3

of objects, but also over the operations that are being performed. Likewise, some of the

STL containers are parameterized with function objects, such as theCompare template

parameter for thestd::map andstd::set classes.

1.1.1 Concepts

The Generic Graph Component Library is expressed using terminology similar to that of

the SGI STL [4]. In the parlance of the SGI STL, the set of requirements on a template

parameter for a generic algorithm or data structure is called aconcept. (Generic program-

ming is sometimes referred to as “programming with concepts.”) For example, the type

of first andlast in the abovetransform() example is required to compare two

objects of that type for equality, to be possible to increment an object of that type, and

to be possible to dereference an object of that type to obtain the object that it points to.

The requirement set for the type offirst andlast is calledInputIterator in the STL.

Types that fulfill the requirements of a concept are said tomodelthat concept. For ex-

ample, pointer types such asint* meets the requirements of aInputIterator and can be

used intransform() . The class typesstd::vector<T> andstd::list<T> are

models of theContainer concept. Concepts can extend other concepts, which is referred

to asrefinement. We use abold sans serif font for all concept identifiers.

For proper operation oftransform() , we require that the type of the arguments

first andlast be models of the conceptInputIterator. We note that the C++ language

does not provide support for concept checking. That is, although we give the template pa-

rameter totransform() the name ofInputIterator, the name is merely a placeholder.

The C++ language does not enforce that the arguments passed totransform() actu-

ally be a model ofInputIterator. Naturally, if the arguments do not model (or refine)

InputIterator, it is likely that an error will occur when compiling that particular instan-

4

tiation of transform() , but that is not the same (semantically) as identifying that the

instantiation itself is in error.

1.2 Generic Programming Process

As described by Stepanov, the generic programming process applied to a particular prob-

lem domain consists of the following basic steps:

1. Identify useful and efficient algorithms and other components.

2. Find their generic representation (i.e., parameterize each algorithm such that it

makes the fewest possible requirements of the data on which it operates)

3. Derive a set of (minimal) requirements that allow these algorithms to run and to run

efficiently

4. Construct a framework based on classifications of requirements

1.3 A Generic Graph Library

The domain of graphs and graph algorithms is a natural one for the application of generic

programming. There are many kinds of graph representations, such as adjacency matrix,

adjacency list, and dynamic pointer-based graphs and there also numerous graph algo-

rithms such as Depth First Search (DFS), Breadth First Search (BFS), topological sort,

connected components, Dijkstra's algorithm for single-soure shortest paths, Prim's algo-

rithm and Kruskal's algorithm for minimum spanning trees, and Find/Union operation.

In a generic graph library, we should be able to write each algorithm only once and use it

with any graph data structure.

In addition, the algorithms should be flexible, so that algorithmpatternssuch as Depth

First Search can be reused. For example, one may want to use DFS to traverse a graph

and calculate whether vertices are reachable. In another situation, DFS could be used to

5

record the order of vertices. In yet another situation, one may want to use DFS to calculate

reachabilityand the order of vertices. These requirements are similar to those of most

general purpose libraries, which would perhaps suggest that the generic programming

style of the STL might be directly applicable to the creation of a graph library.

However, there are important (and fundamental) differences between the types of al-

gorithms and data structures in STL and the types of algorithms and data structures in a

generic graph library. In particular, there are numerous ways in which edge and vertex

properties (such as color and weight) are implemented and associated with vertices and

edges. One way is to store properties in an array indexed by vertex ID. Another method,

suitable for graphs with explicit storage for each vertex, is to store the properties inside

the vertex data structure. Rather than imposing one approach over another, a generic

graph library should provide an generic means for accessing the properties of a vertex or

edge, regardless of the manner in which the properties are stored.

To accommodate the unique properties of graphs and graph algorithms, we introduce

several concepts upon which the interface between graphs and graph algorithms will be

built: Vertex, Edge, Visitor, andDecorator. The latter two concepts are similar in spirit

to the “Gang of Four” [7] patternsVisitor andDecorator but are quite different in terms

of implementation techniques.

In the following chapters we describe the design and implementation of the Generic

Graph Component Library (GGCL) by applying the generic programming process to the

graph domain. This library was designed and implemented from the ground up with

generic programming as its fundamental paradigm. In the next chapter, we define the

abstract graph interface and concepts used by GGCL in more detail. The generic graph

algorithms in GGCL are described in Chapter 3, and Chapter 4 discusses the main imple-

mentation issues. Sparse matrix ordering algorithms as the first application of GGCL are

discussed in the Chapter 5. Experimental results demonstrating the performance of GGCL

6

(and comparing the performance to several other graph libraries) are given in Chapter 6.

After that, our conclusions are provided in Chapter 7. Finally, the GGCL Programmer's

Guide is included in the Appendices.

7

CHAPTER 2

ABSTRACT GRAPH INTERFACE

As the first step of applying the process of generic programming to the graph domain, we

identify that we need implement basic graph algorithms described in [3] which are Depth

First Search (DFS), Breadth First Search (BFS), topological sort, connected components,

Dijkstra's algorithm for single-source shortest paths, Prim's algorithm and Kruskal's al-

gorithm for minimum spanning trees, Find/Union disjoint set operations. Let us look at

classical BFS and consider how we can make it generic. Figure 2.1 shows the algorithm

described in [5] by Cormen et al. The algorithm computes the distance of every vertex

from starting vertexs and the predecessor of every vertex in the resulting BFS tree. Dur-

ing the graph traversing, the color of every vertexu 2 V is color[u] and a normal

First-In First-Out queue objectQ is used.

To be generic, we would like BFS can traverse any concrete graph data structures

firstly. That can be achieved by parameterizing the type of input graph object. The type

of vertexs is not necessarily parameterized. However, it should be able to know from

the type of graphG somehow. We decide that we use a traits [19] class to get the type

of vertex object. Secondly, the algorithm need to access the properties of a vertex such

as color, distance, and predecessor. Those properties could be stored either in external

arrays or inside the vertex objects. A generic algorithm requires a generic access mech-

anism. In fact, the textual description in Figure 2.1 has indicated a suitable solution. An

STL functor-like mechanism, calledDecorator, can be used here. The type ofcolor

8

BFS(G, s)

//initialization
for each vertex v 2 V(G)

do color[u] WHITE
d[u] 1
�[u] NIL

//starting point
color[s] GRAY
d[s] 0
Q s

//main algorithm
while (Q 6= 0)

//discover vertex u
do u head[Q]

for each v 2 Adj[u]
//process the edge (u !v)
do if (color[v] == WHITE)

then color[v] GRAY
d[v] d[v] + 1
�[v] u
ENQUEUE(Q, v)

DEQUEUE(Q)
//finishing point for vertex u
color[u] BLACK

Figure 2.1. The Breadth First Search algorithm description in the textbook.d[u] is the
distance of vertexu from starting vertexs . �[u] is the predecessor of vertexu.

9

modelsDecorator, therefore, accessing color property of vertexu can be expressed as

color[u] . So ford and�. We will identify the minimum set of requirements for a

Decorator later. Thirdly, let us review the algorithm by focusing on the functionality to

implement. The algorithm computes the distance and predecessor of every vertex exactly.

It can not be more or less without re-implementing it. If we only want to compute prede-

cessor information, we might use the algorithm but with unnecessary overhead of setting

up the data structure for distance and computing it. On the other hand, if we want to

compute the predecessor of every vertex and assign a level for all the vertices in BFS tree,

we have to modify the algorithm. The modification is to substitute distance computation

part with level assignment. However, the structure of the modified algorithm is the same

as that of the algorithm in Figure 2.1. As we know, functors or function objects are used

to abstract operations in STL so that STL algorithms can delay binding the concrete oper-

ations until instantiating time. A similar approach can be used in this situation except that

we need several separate operations instead of one operationoperator() only. We call

it Visitor , in which initialize() , start() , discover() , process() , and

finish() are defined. For example, we abstract the operation of setting the vertex color

to beBACKat the finishing point in Figure 2.1 as operationfinish() in a Visitor. We

will give a formal definition ofVisitor later. Finally, we parameterize the type of queue

used in the algorithm to make additional reuse possible. Thus, a generic BFS could be

prototyped as follows:

template <class Graph, class QType, class Visitor >

void BFS(Graph& G, graph traits <Graph>::vertex type s,
Qtype& Q, Visitor visitor);

The complete implementation of the generic BFS algorithm in GGCL and the exten-

sive reuse of the BFS pattern can be found in Chapter 3.

10

STL Algorithms

STL Containers

(a) (b)

Graph Algorithms

Graph
Data Structures

Vertex, Edge,
Visitor, Decorator

Iterator
Functor

Figure 2.2. The analogy between the STL and the GGCL.

The domain of graph data structures and algorithms is in some respects more com-

plicated than that of containers. The abstract iterator interface used by STL is not suffi-

ciently rich to encompass the numerous ways that graph algorithms may traverse a graph.

Instead, we formulate an abstract interface that serves the same purpose for graphs that

iterators do for basic containers (though iterators still play a large role). Figure 2.2 depicts

the analogy between the STL and the GGCL.

2.1 Formal Graph Definition

The appropriate abstract graph interface can be derived directly from the formal definition

of a graph [5]. A graphG is a pair(V,E), whereV is a finite set andE is a binary relation

on V. V is called avertex setwhose elements are calledvertices. E is called anedge set

whose elements are callededges. An edge is an ordered or unordered pair(u,v)whereu,v

2 V. If (u,v) is and edge in graphG, then vertexv is adjacentto vertexu. Edge(u,v) is

anout-edgeof vertexu and anin-edgeof vertexv. In adirectedgraph edges are ordered

pairs while in aundirectedgraph edges are unordered pairs. In adirectedgraph an edge

(u,v) leaves from thesourcevertexu to thetargetvertexv.

11

2.2 GGCL Concepts

The three main concepts necessary to define our graph interface areGraph, Vertex, and

Edge. Each of our concept definitions derives directly from the formal graph definition.

By design we have tried to keep the interface close to that of existing graph libraries and

to the common graph algorithm notations.

2.2.1 Graph

The Graph concept merely contains a set of vertices and a set of edges and a tag to

specify whether it is a directed graph or an undirected graph. Table 2.1 lists theGraph

requirements, including its associated types. Note that the specific types of the sets are

not specified. The only requirement is thatvertex setbe a model ofContainerRef and

its value type a model ofVertex. Theedge setmust be a model ofContainerRef

and itsvalue type a model ofEdge. TheContainerRef concept is very similar to

theContainer concept of the STL, except that theContainerRef concept lacks the no-

tion of “ownership”, so making a copy of aContainerRef object merely creates an alias

to the same underlying container. Obviously, a reference to aContainer object satisfies

this requirements. Notice that all types are not necessary inside models ofgraph but de-

duced from traits classgraph traits . The function requirements are not the member

functions of models but global functions.

2.2.2 Vertex

TheVertex concept provides access to the adjacent vertices, the out-edges of the vertex

and optionally the in-edges. Table 2.2 lists theVertex requirements, including its associ-

ated types. Similar toGraph concept, theVertex concept requires that all the types are

deduced from traits classvertex traits and functions are global.

12

Table 2.1. The specification of theGraph concept.X is a model ofGraph while G is an
instance ofX.

Expression Return Type Description
graph traits <

X >::vertex type
A model ofVertex

graph traits < X >::edge type A model ofEdge
graph traits <

X >::vertices type
A ContainerRef of vertices

graph traits <

X >::edges type
A ContainerRef of edges

graph traits <

X >::direct tag
directed or undirected tag

vertices(G) vertices type Thevertex setof graphG
edges(G) edges type Theedge setof graphG

Table 2.2. The specification of theVertex concept.X is a model ofVertex while u is an
instance ofX.

Expression Return Type Description
vertex traits <

X >::edge type
A model ofEdge

vertex traits <

X >::vertexlist type
The type foradj , Con-
tainerRef

vertex traits <

X >::edgelist type
The type forout edge ,
ContainerRef

adj(u) vertexlist type The adjacent vertices ofu
out edges(u) edgelist type The out edges of vertexu
in edges(u) edgelist type The in edges of vertexu

13

Table 2.3. The specification of theEdge concept.X is a model ofEdge. e is an instance
of X.

Expression Return Type Description
edge traits < X >::vertex type A model ofVertex
source(e) vertex type Thesourcevertex of edgee
target(e) vertex type Thetargetvertex of edgee

2.2.3 Edge

An Edge is an ordered or unordered pair of vertices. The elements comprising theEdge

are thesourcevertex and thetargetvertex. In the unordered case it is just assumed that the

position of thesourceandtargetvertices are interchangeable (and, correspondingly, that

theGraph is undirected). Table 2.3 lists theEdge requirements. Similar toGraph con-

cept, theEdge concept requires that the type is deduced from traits classedge traits

and functions are global.

The rest of the chapter gives the formal definitions of two concepts,Decorator and

Visitor identified at the beginning of this chapter. They play an important role in the

GGCL algorithms.

2.2.4 Decorator

As we mentioned, we would like to have a generic mechanism for accessing vertex and

edge properties of a graph (e.g., color or weight) from within an algorithm. The generic

access method is necessary to support the numerous ways in which the properties can be

stored as well as the numerous ways in which access to that storage can be implemented.

We give the nameDecorator to this concept since it is similar to the intent of the “Gang

of Four” Decorator pattern [7], which attaches additional responsibilities to an object

dynamically.

Table 2.4 gives the definition of theDecorator concept. ADecorator looks like a

functor, or function object. We use the method ofoperator[] instead ofoperator()

14

Table 2.4. The specification of theDecorator concept.X is a model ofDecorator. d is
an instance ofX.

Expression Return Type Description
decorator traits < X >::value type A type of object decorated
d[u] value type The decorating property

since it is a better match for the commonly used graph algorithm notations. Similar to the

Graph concept, theDecorator concept requires that thevalue type be deduced from

the decorator traits class. Notice that there exists a fundamental difference be-

tweenDecorator andRandomAccessIterator in the STL. The latter defines the method

of operator[] with difference type as the parameter type. However, the parameter

type of the method ofoperator[] for Decorator is the type of object decorated, i.e.,

a model ofVertex or Edge.

2.2.5 Visitor

As we mentioned before, function objects or functors abstract the basic operations within

algorithms and they can be used to generalize certain algorithms. In the same way that

function objects are used to make STL algorithms more flexible, we use functor-like

objects to make the graph algorithms more flexible. We use the nameVisitor for this

concept because the intent is similar to the well known visitor pattern [7]. We want to add

operations to be performed on the graph without changing the source code for the graphs

or for the generic algorithms.

Table 2.5 shows the definition of theVisitor concept. In the table,v is a visitor object,

u ands are vertices, ande is an edge. As shown in the table, ourVisitor is somewhat more

complex than a function object, since there are several well defined entry points at which

the user may want to introduce a call-back. For example,discover() is invoked when

an undiscovered vertex is encountered within the algorithm. Theprocess() method is

15

Table 2.5. The specification of theVisitor concept. Herev, u, or e is an instance of a
model ofVisitor, Vertex, or Edge, respectively.

Expression Return Type Description
v.initialize(u) void Invoked during initialization.
v.start(u) void Invoked at the beginning of algorithms.
v.discover(u) void Invoked when an undiscovered vertex is encountered.
v.finish(u) void Invoked when algorithms finish visiting a vertex.
v.process(e) bool Invoked when an edge is encountered.

invoked when an edge is encountered. TheVisitor concept plays an important role in the

GGCL algorithms.

TheDecorator andVisitor concepts are used in the GGCL graph algorithm interfaces

to allow for maximum flexibility. Below is the prototype for the GGCL depth first search

algorithm, which includes parameters for both aDecorator and aVisitor object. There

are two overloaded versions of the interface, the first one in which there is a defaultCol-

orDecorator. The default decorator accesses the color property directly from the graph

vertices. This is analogous to the STL algorithms. For example, there are two overloaded

versions of thelower bound() algorithm. The default uses less-than operator defined

for the element type, while the other version takes an explicitBinaryOperator functor

argument for comparison operation.

template <class Graph, class Visitor >

void dfs(Graph& G, Visitor visit);

template <class Graph, class Visitor, class ColorDecorator >

void dfs(Graph& G, Visitor visit, ColorDecorator color);

16

CHAPTER 3

GENERIC GRAPH ALGORITHMS

The generic graph algorithms are written solely in terms of the abstract graph interface

defined in the previous chapter. They do not make assumptions about the actual graph type

or the underlying data structure. This enables a high degree of reuse for the algorithms.

3.1 Breadth First Search Pattern

Our first example is the classic Breadth First Search algorithm. In GGCL we capture

the essence of the Breadth First Search pattern in a generalized BFS algorithm, as shown

in Figure 3.1. Thevisitor parameter provides flexibility in the kinds of actions per-

formed during the BFS. There are several call-back points associated with the visitor,

includingstart() , discover() , process() , andfinish() . TheQparameter

allows for different kinds of queues to be used. Thevisited functor allows algorithms

to perform an action on subsequent encounters with a vertex after it is discovered. The

initialization steps were moved to a separate function to accommodate the need for certain

type-specific initializations.

In thegeneralized BFS() algorithm we use the expressionout edges(u) to

access the list of edges leaving vertexu. Iterators of this list are used to access each of

the edges. That is equivalent to traverse the list of adjacent vertices. The algorithm also

inserts each discovered vertex ontoQ or, if the vertex has already been visited, invokes

thevisited functor. Target vertices are accessed throughtarget(e) .

17

template <class Vertex, class QType,
class Visitor, class Visited >

void generalized BFS(Vertex s, QType& Q,
Visitor visitor, Visited visited)

f
typedef typename vertex traits <Vertex >::edge type Edge;
typename vertex traits <Vertex >::edgelist type::iterator ei;
visitor.start(s);
Q.push(s);
while (! Q.empty()) f

Vertex u = Q.front();
Q.pop();
visitor.discover(u);
for (ei = out edges(u).begin();

ei != out edges(u).end(); ++ei) f
Edge e = *ei;
if (visitor.process(e))

Q.push(target(e));
else

visited(visitor, Q, ei);
g
visitor.finish(u);

g
g

Figure 3.1. The generalized Breadth First Search algorithm.

18

The generalized BFS() algorithm is ideal for reuse in other algorithms. Fig-

ure 3.2 gives an overview of the algorithms we have constructed so far using thege-

neralized BFS. A variation on the UML [13, 21] notation is used to represent the

algorithms, visitor classes, and concepts. A solid box stands for an algorithm or a class.

Dotted boxes are template arguments or concepts. The classes within a concept box

are models of the concept. The notation<<bind >> indicates the binding of formal

template arguments to concrete types. Unbound template arguments are marked with

underscores, giving a notation for partial specialization.

In Figure 3.2 we can see how particular parameters are chosen in the creation the

different algorithms. First, with regards to the queue type, the BFS algorithm in Figure 3.3

is constructed by using the STLqueue , while Dijkstra's single-source shortest path and

Prim's minimum spanning tree algorithms are constructed with a mutable priority queue

(a priority queue with a decrease-key operation [5]). A customized queue is used with

BFS in the Reverse Cuthill McKee sparse matrix ordering algorithm [10, 22].

Looking at theVisitor parameter, we see that the normal BFS algorithm uses the

bfs visitor which keeps track of the vertex colors. Dijkstra's and Prim's algorithms

both use theweighted edge visitor , the only difference between them being the

operator that is bound toBinaryOp parameter. Dijkstra's algorithm is implemented using

aplus functor, and Prim's is implemented using theproject2nd functor, which is just

a binary operator that returns the 2nd argument. Figure 3.4 shows the GGCL implementa-

tion of Prim's minimum spanning tree algorithm while Figure 3.5 shows the GGCL imple-

mentation of Dijkstra's single source shortest path algorithm. The algorithms consist sim-

ply of some setup declarations, initialization and a call togeneralized BFS. The only

difference between the two algorithms is the function object used insideweighted-

edge visitor whose implementation is shown in Figure 3.6.

19

generalize_BFS

dijkstra

Graph Visitor DistanceWeight

<<bind>>(_, rcm_queue, _)
<<uses>>

MST_prim

Graph Visitor DistanceWeight

reverse_Cuthill_McKee

Graph Color Degree OuputIterator

QType

queue

priority_queue

mutable_queue

bfs

Graph Visitor Color

weighted_edge_visitor

Weight BinaryOp

dijkstra_visitor

prim_visitor

<<bind>>(_, plus)

<<bind>>(_, project2nd)

dfs_visitor

predecessor_visitor

disjoint_set_visitor

components_visitor

timestamp_visitor

topo_sort_visitor

Visitor

bfs_visitor

VisitorPlugin
Graph QType Visitor

dijkstra_visitor)
<<bind>>(_, mutable_queue,

prim_visitor)
<<bind>>(_, mutable_queue,

<<bind>>(_, queue,
bfs_visitor)

Figure 3.2. The BFS family of algorithms and the predefined set of visitors provided in
GGCL.

20

template <class Graph, class Visitor, class ColorDecorator >

void bfs(Graph& G, graph traits <Graph>::vertex type s,
Visitor visit, ColorDecorator color)

f
typedef typename graph traits <Graph>::vertex type Vertex;
std::queue <Vertex > Q;

bfs visitor <ColorDecorator, Visitor > visitor(color, visit);

generalized init(G, visitor);
generalized BFS(s, Q, visitor, null operation());

g

Figure 3.3. The BFS algorithm in GGCL.

The Visited parameter is simply a null operation for the normal BFS algorithm,

while in the Dijkstra's and Prim's algorithms it provides queue update by invoking the

mutable priority queue' decrease-key operation.

3.2 Depth First Search Pattern

The Depth First Search is another fundamental traversal pattern in graph algorithms, and

is a second source for reuse. Figure 3.7 depicts some algorithms that can be either directly

derived from DFS, or that make use of it. The code example in Figure 3.8 gives the

implementation of the topological sort algorithm, a classic example DFS algorithm reuse.

The topo sort visitor merely outputs the vertex to theOutputIterator inside the

finish(u) call-back.

The concise implementation of algorithms such as Prim's Minimum Spanning Tree

and Topological Sort is enabled by the genericity of the GGCL algorithms, allowing us to

exploit the reuse that is inherent in these graph algorithms in a concrete fashion.

Currently, the GGCL includes a basic set of algorithms: DFS, BFS, Dijksta's algo-

rithm for the Shortest Path problem, Prim and Kruskal algorithms for Minimum Spanning

21

template <class Graph, class Visitor,
class Distance, class Weight, class ID>

void prim(Graph& G, graph traits <Graph>::vertex type s,
Visitor visit, Distance d, Weight w, ID id)

f
typedef typename graph traits <Graph>::vertex type Vertex;
typedef typename decorator traits <Distance >::value type D;
typedef functor less <Distance > Compare;
typedef project2nd <D,D> Project;

Compare c(d);
mutable queue<Vertex, std::vector <Vertex >, Compare, ID >

Q(G.num vertices(), c, id);

weighted edge visitor <Weight, Distance, Visitor, Project >

visitor(w, d, visit);

generalized init(G, visitor);
generalized BFS(s, Q, visitor, queue update());

g

Figure 3.4. The GGCL implementation of the Prim's Minimum Spanning Tree algorithm
as a call togeneralized BFS() . The Dijkstra's Single-Source Shortest Path algo-
rithm can be realized in the same way simply by using a different function object in place
of project2nd<D,D> .

22

template <class Graph, class Visitor,
class Distance, class Weight, class ID>

void dijkstra(Graph& G, graph traits <Graph>::vertex type s,
Visitor visit, Distance d, Weight w, ID id)

f
typedef typename graph traits <Graph>::vertex type Vertex;
typedef typename decorator traits <Distance >::value type D;
typedef functor less <Distance > Compare;

Compare c(d);
mutable queue<Vertex, std::vector <Vertex >, Compare, ID >

Q(G.num vertices(), c, id);

weighted edge visitor <Weight, Distance, Visitor, plus <D> >

visitor(w, d, visit);

generalized init(G, visitor);
generalized BFS(s, Q, visitor, queue update());

g

Figure 3.5. The GGCL implementation of the Dijkstra's Single-Source Shortest Path
algorithm as a call togeneralized BFS() .

23

template <class Weight, class Distance,
class Super, class BinaryOperator >

class weighted edge visitor : public Super f
typedef typename decorator traits <Distance >::value type D;

public:
//constructors

template <class Edge>
bool process(Edge e) f

typedef typename decorator traits <Weight >::value type T;
D du = d[source(e)];
D dv = d[target(e)];
bool ret = (dv == numeric limits <D>::max());
T wuv = w[e];
if (dv > op(du, wuv)) f

dv = op(du, wuv);
d[target(e)] = dv;
need queue update = !ret;
Super::process(e);

g
return ret;

g

//other members

protected:
Weight w;
Distance d;
BinaryOperator op;

g;

Figure 3.6. The implementation ofweight edge visitor used in Dijkstra's algo-
rithm and Prim's algorithm.

24

generalized_DFS

Graph QType Visitor

topological_sort

Graph Color OutputIterator

cycle_detection

Graph Color Visitor

connected_components

Graph Color FinishTime

transitive_closure

Graph1 Graph2

dfs

Graph Color Visitor

<bind>>(_, stack, dfs_visitor)

<<bind>>(_, _, topo_visitor)

<<bind>>(_, color, cycle_detect_visitor)

<<use>>

<<use>>

<<use>>

Figure 3.7. The family of DFS algorithms.

Tree, topological sort, and connected components. In addition we have implemented sev-

eral graph algorithms for sparse matrix ordering, including the Reverse Cuthill McKee

and the Minimum Degree algorithms. GGCL is an ongoing project and a number of

generic graph algorithms are in the process of being implemented.

25

template <class Graph, class OutputIterator,
class Visitor, class Color >

void topological sort(Graph& G, OutputIterator result,
Visitor visitor, Color color) f

topo sort visitor <OutputIterator, Visitor >

topo visit(c, visitor);
dfs(G, topo visit, color);

g

template <class OutputIterator, class Super >
struct topo sort visitor : public Super f

//constructors . . .

template <class Vertex >

void finish(Vertex u) f
*result = u; ++result;
Super::finish(u);

g
OutputIterator result;

g;

Figure 3.8. The GGCL implementation of the topological sort algorithm using DFS.

26

CHAPTER 4

GGCL IMPLEMENTATION

4.1 Graph Data Structure Implementation

The GGCL graph data structures are constructed in a layered manner to provide maximum

flexibility and reuse. The layered architecture also provides several different points of

customizability. At one end of the spectrum one can use the graphs provided by GGCL

and make small modification with little effort. In the middle of the spectrum are graph

types that can be pieced together from standard components such as lists and vectors. At

the far end of the spectrum the user may already have their own data structure, and they

just need to create a GGCLGraph compliant interface to his or her data structure.

4.1.1 Interfacing With External Graph Types

To demonstrate the ease of creating a GGCL interface for non-GGCL graph types, we

constructed aGraph interface for LEDA graphs. The interface code is about 1 1/2 pages

and it took approximately 1 man-hour to develop. Another testing case is to create an

interface for a pointer-based graph data structure written in C-style. The code excerpt in

Figure 4.1 is a typical pointer-based graph data structure in language of C. Anode in this

graph has a list of adjacent nodes and several properties. Functionmake node serves to

create a newnode . The functionadd adj is used to make a direct edge between two

nodes .

27

/* Below possible pointer-based graph data structures in C. */
struct adj list;

struct node f
adj list* adj head;
int color;
int flag;
int distance;

g;

struct adj list f
node* cur;
adj list* next;

g;

node* make node(int color, int flag) f
node* x = new node;
x�>color = color;
x�>flag = flag;
x�>adj head = 0;
return x;

g

/* x -- > a */
void add adj(node* a, node* x) f

adj list* l = new adj list;
l �>cur = a;
l �>next = x �>adj head;
x�>adj head = l;

g

void connect(node* x, node* y) f
add adj(y, x);
add adj(x, y);

g

Figure 4.1. An example of pointer-based graph data structures in C.

28

Figure 4.2 is the brief implementation of a class forVertex. Constructors are omitted.

The implementation lacksvertexlist type class which will be similar toedge-

list type . Therefore, it is easy to createvertexlist type class.

I also provide the a class confirmingEdge concept in Figure 4.3. The template tech-

nique is not necessarily used here. However, it can deal with the problem of include

dependency.

Finally, a simplified version of graph class is shown in Figure 4.4. Several required

types are defined inside the class.

4.1.2 Composing Graphs From Standard Containers

The GGCL provides a framework for composing graphs out of standard containers such

as STLstd::vector , std::list , and matrices from the Matrix Template Library

(MTL) [24], another generic component library we have developed. Of course, the com-

position mechanism will work for any STLContainer compliant components, so this

provides another avenue for extensibility by the user.

The set of graph configurations currently provided by GGCL are listed in Figure 4.5.

Again, a solid box stands for a class. Dotted boxes are template arguments or concepts.

The classes within a concept box are models of the concept.

Below is an example of defining an adjacency-list graph type whose vertices have an

associated color and whose edges have an associated weight.

typedef graph <adjacency list <vecT >, undirected,
color plugin <>, weight plugin <int > > myGraph;

4.1.3 Graph Representation

The implementation framework centers around the maingraph interface class and the

GraphRepresentation concept. Thegraph interface class constructs the full graph

interface based on the minimized interface exported by theGraphRepresentation con-

29

template < class Node >
struct pointwise vertex f

typedef pointwise vertex <Node> self;
typedef Node plugin type;
typedef pointwise edge<self > edge type;

struct edgelist type f
struct iterator f

iterator(Node* s, adj list* d) : s(s), adj(d) fg
iterator& operator ++() f adj = adj �>next; return * this ; g
bool operator != (iterator x) const
f return s != x.s j j adj != x.adj; g
bool operator == (iterator x) const
f return s == x.s && adj == x.adj; g
edge type operator *() f return edge type(s, adj �>cur); g
Node* s;
adj list* adj;

g;
iterator begin() f return iterator(node, node�>adj head); g
iterator end() f return iterator(node, 0); g
Node* node;

g;
Node& plugin() f return * node; g

protected:
Node* node;

g;

template <class Node>
vertex traits <pointwise vertex <Node> >::edgelist type
out edges(pointwise vertex <Node> u)
f /*. . .*/ g

Figure 4.2. The sample implementation of vertex class for the pointer-based graph data
structures.

30

template < class Vertex >

struct pointwise edge f
typedef typename Vertex::plugin type Node;
typedef Vertex vertex type;

pointwise edge() : s(0), d(0) fg
pointwise edge(Node* s, Node* d) : s(s), d(d) fg

Node* s;
Node* d;

g;

template < class Vertex >

Vertex source(pointwise edge<Vertex > e) f
return Vertex(e.s);

g

template < class Vertex >

Vertex target(pointwise edge<Vertex > e) f
return Vertex(e.d);

g

Figure 4.3. The sample implementation of edge class for the pointer-based graph data
structures.

31

template < class Node, class Direct >

class pointwise graph f
public:

typedef pointwise vertex <Node> vertex type;
typedef pointwise edge<vertex type > edge type;
typedef ggcl::dynamic <> rep tag;
typedef Direct direct tag;

pointwise graph(Node* h) : head(h) fg
vertex type root() f return vertex type(head); g

protected:
Node* head;

g;

Figure 4.4. The sample implementation of graph class for the pointer-based graph data
structures.

cept. This allows full fledge GGCLGraphs to be constructed out of standard container

components with very little work.

The GraphRepresentation concept is basically a 2DContainer (a Container of

Containers) coupled with four helper functions:

Iter2D get target(Iter2D b, Iter1D i);
stored edge& get edge(Iter1D i);
bool add(EdgeList& elist, size type vertex num,

const stored edge& e);
void remove(EdgeList& elist, size type vertex num);

A 1D Container within aGraphRepresentation corresponds to the out-edge list for

a particular vertex. In a model of 1DContainer every element has a corresponding index

conceptually. The elements do not have to be sorted by their index, and the indices do

not necessarily have to start at0. The indices do not have to form a contiguous range. In

actual implementation, the indices do not necessarily have to be stored.

In addition, there is a one-to-one correspondence between the 2DIterator and the

vertices of the graph.

32

LEDA_graph graph

VertexPlugin EdgePlugin

slistT

flistT

vecT

ggcl_vecT

mapT

hash_mapT

listT

ordered

unordered

IsOrdered
adjacency_matrix

Selector

dynamic

Selector

adjacency_list

Selector IsOrdered

RepSelector

Graph

DirectednessRepSelector

AdjacencyList AdjacencyMatrix DynamicGraphRep

GraphRepresentation

Selector

Figure 4.5. The Graph Components Provided By GGCL.

33

Theget target() helper function is necessitated because the GGCLgraph must

be able to derive the target vertex from an edge object, through the information pro-

vided by theGraphRepresentation. The get edge() function provides a generic

access method to the extra edge properties stored within an edge list, and theadd() and

remove() methods provide a generic interface for adding and removing edges from a

vertex.

TheGraphRepresentation is further refined into three sub concepts, theAdjacen-

cyList, AdjacencyMatrix, andDynamicGraphRep.

The AdjacencyList concept corresponds to a “sparse” or “compressed” representa-

tion of a graph. As such, further requirements are added to the 2DContainer of the

GraphRepresentation. For a model ofAdjacencyList the inner container must be a

variable-sizedContainer whosevalue type is the size type for a vertex if the

graph has no extra edge-associated data, or astd::pair<size type,stored edge>

where thestored edge is the type of an object containing any extra edge-associated

data such as weight.

Technically, the edge information of anAdjacencyList graph can be stored in order

by vertices or a nature order which is the order by adding edges on creating a graph. This

is not an part of concept but it is convenient to allow users do both as they may want

to. We implement it by providing a template argumentIsOrdered in selector class

adjacency list as shown in Figure 4.5.

The AdjacencyMatrix concept corresponds to a “dense” representation of a graph,

with boolean values for all vertex pairs, to mark them as connected or not. Thus, adding

or removing an edge is simply by marking the corresponding boolean true or false.

TheDynamicGraphRep concept requires its models to have a head pointer and ex-

plicitly stored vertex objects. Through the stored vertex it is able to access adjacent

vertices.

34

4.1.4 Custom Graph Representations

As an example of constructing customized models ofGraphRepresentation, we show

how one can build anAdjacencyList usingstd::vector andstd::list . The var-

ious parts of theGraphRepresentation are injected into the GGCLgraph class by

constructing a graph representation class. This is a class that defines the four helper func-

tions mentioned above (as static member functions), and also definesgraphrep type ,

which is the 2DContainer of the GraphRepresentation. Figure 4.6 lists the imple-

mentation. One merely has to compose a couple of container types and fill in a few

short functions. Theadd() andremove() methods are not depicted, but they are each

approximately 5 lines.

4.2 Decorator Implementation

In some situations the particular property of vertices or edges is strongly associated with

the graph and exists for the lifetime of the graph. For instance, the distance property

could fall into this category. In other situations the property is only needed for a particu-

lar algorithm. Typically one would want to store a color property externally, since it may

only be needed for a particular algorithm invocation. Thus there are two categories of

decorators,interior decoratorsandexterior decorators. For exterior decorators, the dec-

orating properties are stored outside of the graph object (they are passed directly to the

GGCL algorithm) and the decorator will access the externally stored data indexed by the

vertex or edge ID. On the other hand, if the decorating properties are stored inside of the

graph object, the decorator consults the vertex or the edge objects to obtain the decorating

property. Figure 4.7 shows the predefined modelsDecorator in GGCL.

The interface of a decorator as defined in the previous chapter, is very concise. One is

the typevalue type for the property and the other is the member methodoperator[]

to access the property. For example, The weight of an edgee could be accessed by a

35

//Define a tag for the custom graph representation.
struct my graphrep tag f g;

template < class StoredEdge >

class graph representation gen< StoredEdge, my graphrep tag > f
typedef std::list <pair <size t, StoredEdge > > EdgeList;
typedef EdgeList::iterator Iter1D;
typedef std::vector <EdgeList >::iterator Iter2D;

public:
typedef adjacency list <my graphrep tag > rep tag;
typedef std::vector <EdgeList > graphrep type;

static Iter2D get target(Iter2D b, Iter1D i)
f return b + (*i).first; g

static StoredEdge* get edge(Iter1D i)
f return &((*i).second); g

static bool add(EdgeList& elist, size t vertex num,
const StoredEdge& e);

static void remove(EdgeList& elist, size t vertex num);
g;

//Use the above representation to create a graph type.
typedef graph < adjacency list < my graphrep tag > > MyGraph;

Figure 4.6. An example of constructing a GGCL Graph.

model ofWeightDecorator wasw[e] Other properties such as color and distance prop-

erties could be accessed as a similar way.

4.2.1 Internally Stored Properties: Vertex and Edge Plugins

For internal properties, the graph class provides optional parameterized storage plugins

for both vertices and edges. This allows the user to plug in storage for an arbitrary set of

decorating properties. For example, a graph with internally stored edge weights and color

and distance properties for vertices could be defined as follow:

typedef color plugin <distance plugin <> > VPlugins;
typedef graph <adjacency list <>, undirected,

VPlugins, weight plugin <int > > myGraph;

36

Decorator

finishtime_decorator

predecessor_decorator

discovertime_decorator

id_decorator

color_decorator

weight_decorator

distance_decorator

Figure 4.7. The predefined models ofDecorator in GGCL.

The mixin technique [23] of parameterized inheritance is used to implement the layer-

ing of vertex and edge plugins. Normally, superclasses are defined at subclass definition

time. However, mixins are opposite they are classes without specific superclass definition.

With the template techniques, the implementation of mixin is very simple. For example,

the definition of the above classcolor plugin looks like:

template < class Super >

class color plugin : public Super f
//. . .

g;

The advantage of static ploymorphism makes plugin classes extremely easy to extend.

Figure 4.7 shows the decorators that are provided in GGCL. We have also created

a mechanism so that users can easily create new custom storage plugins for decorating

properties with user-defined names.

4.2.2 RandomAccessIterator Issue

I mentioned in the Chapter 2 that the concept ofRandomAccessIterator is different

from that ofDecorator. However, they are similar in the following matter: They both

37

providesvalue type . and they both provide access method to memory but they do not

own the memory. With a very simple wrapper class for a model ofRandomAccessIt-

erator, it can be a model ofDecorator. Thus, I provide a traits mechanism [19] to let

users be able to use models ofRandomAccessIterator directly where aDecorator is

required in the GGCL algorithms.

The specific mechanism is as follows. First, a typecategory is defined forDecora-

tor throughdecorator traits class. Namely, letdecorator traits <Compo-

nent >::category bedecorator tag or random access iterator tag , re-

spectively, if theComponent is a model ofDecorator or RandomAccessIterator.

Second, define the following class:

template < class Component,
class Category = decorator traits <Component>::category >

struct IglueD f
typedef Component type;

g;

//specialization for Decorator
template < class Component >
struct IglueD <Component, decorator tag > f

typedef Component type;
g;

//specialization for RandomAccessIterator
template < class Component >
struct IglueD <Component, std::random access iterator tag > f

typedef random access iterator decorator <Component> type;
g;

Here the partial specialization is used to distinguish the two cases. In the first case,

Component is a model ofDecorator. The the other case,Component is a model of

RandomAccessIteraor and a wrapper class istypedef ed to betype to promise that

the type is a model ofDecorator. Finally, IglueD <Component >::type should

be a model ofDecorator always as long asComponent is either a model ofDecorator

or a model ofRandomAccessIterator.

38

4.3 Visitor Implementation

To implement a model ofVisitor one defines a class conforming to theVisitor concept and

fills in the call-back methods (discover() , process() , etc.). Figure 4.8 shows the

model ofVisitor used to create the normal BFS algorithm from thegeneralized BFS.

This class is responsible for keeping track of the vertex colors.

As in the decorator plugins, the mixin technique [23] is used to make visitors more

extensible. This is the reason for theBase template argument, which allows visitors to

be layered through inheritance, giving an arbitrary number of visitors a chance to perform

actions during the algorithm (each call-back method must invoke in inherited call-back

in addition to performing its own actions). If one wished to recreate the textbook BFS

algorithm shown previously, which calculates distances and predecessors, one would call

bfs with a distance and predecessor visitor. The GGCL has helper functions defined for

creating the standard visitors. (They are likemake pair() function which creates a

std::pair object in the STL.)

bfs(G, s, visit_distance(d, visit_predecessor(p)));

whereG is a graph object,s the starting vertex,d an instance of distance decorator, and

p an instance of predecessor decorator.

39

template < class Color, class Base = null visitor >

class bfs visitor : public Base f
typedef decorator traits <Color >::value type color type;

public:
// constructors . . .
template <class Vertex >

void initialize(Vertex u) f
color[u] = color traits <color type >::white();
Base::initialize(u);

g

template <class Vertex >

void start(Vertex u) f
color[u] = color traits <color type >::gray();
Base::start(u);

g

template <class Vertex >

void finish(Vertex u) f
color[u] = color traits <color type >::black();
Base::finish(u);

g

template <class Edge>
bool process(Edge e) f

if (is undiscovered(target(e))) f
color[target(e)] = color traits <color type >::gray();
Base::process(e);
return true ;

g
return false ;

g

template <class Vertex >

bool is undiscovered(Vertex u) f
return (color[u] == color traits <color type >::white());

g
protected:

Color color;
g;

Figure 4.8. An example model of theVisitor concept.

40

CHAPTER 5

SPARSE MATRIX ORDERING ALGORITHMS

As mentioned in the introduction, graph theory is an ideal tool in sparse matrix tech-

niques. As the first application of GGCL to sparse matrix ordering, I implemented several

sparse matrix ordering algorithms. This also serves to examine how well GGCL abstract

interface behaves in the “real world” applications.

5.1 Graphs and Sparse Matrices

As a graph is a way of representing a binary relation between objects , the nonzero pattern

of a sparse matrix of a linear system can be modeled with a graphG(V,E), whosenvertices

in V represent then unknowns. its edges represent the binary relations established by the

equations in the following manner. There is an edge from vertexi to vertexj whenAij is

nonzero. Thus, when a matrix has a symmetric nonzero pattern, the corresponding graph

is undirected.

A row permutation of sparse matrixA is to change the order of equations while a

column permutation is to relabel (reorder) the unknowns. A symmetric permutation cor-

responds to applying the same permutation to both row and column. This operation is

typical because the diagonal elements often are large. From the point view of graph

theory, finding permutation matrix the in first step of solving a symmetric linear system

mentioned above corresponds to relabeling the vertices of the graph without altering the

edges.

41

5.2 Sparse Matrix Ordering Algorithms

The process for solving a sparse symmetric positive definite linear system,Ax = b, can

be divided into four stages as follows:

Ordering: Find a permutationP of matrixA,

Symbolic factorization: Set up a data structure for Cholesky factorL of PAP T ,

Numerical factorization: DecomposePAP T intoLLT ,

Triangular system solution: SolveLLTPx = Pb for x.

Because the choice of permutationP will directly determine the number of fill-in ele-

ments (elements present in the non-zero structure ofL that are not present in the non-zero

structure ofA), the ordering has a significant impact on the memory and computational re-

quirements for the latter stages. However, finding the optimal ordering forA (in the sense

of minimizing fill-in) has been proven to be NP-complete [29] requiring that heuristics be

used for all but simple (or specially structured) cases.

An widely used but rather simple ordering algorithm is a variant of the Cuthill-McKee

orderings. It also can be used as a preordering method to improve ordering in more

sophisticated methods such as minimum degree algorithms [11].

5.2.1 Reverse Cuthill-McKee Ordering Algorithm

The original Cuthill-McKee ordering algorithm is primarily designed to reduce the pro-

file of a matrix [10]. George discovered that the reverse ordering often turned out to

be superior to the original ordering in 1971. I described RCM algorithms in the graph

language:

1. Finding a starting vertex: Determine a starting vertexr and assignx1 r.

42

2. Main part: For i = 1, : : :, N, find all the unnumbered neighbors of the vertexxi and

number them in increasing order of degree.

3. Reversing ordering: The reverse Cuthill-McKee ordering is given byy1, : : :, yN

whereyi is xN�i+1 for i = 1, : : :, N.

At the first step, a good starting vertex needs to be determined. the study by George

and Liu [10] showed that a pair of vertices which are at maximum or near maximum

”distance” apart are good ones. They also proposed an algorithm to find such a starting

vertex in [10].

My implementation of RCM is quite concise because many components from GGCL

can be reused. The key part of step one is a custom queue type with BFS as shown in

Figure 5.1. The main algorithm has a simple BFS-like structure although I can not reuse

BFS directly because the algorithm is required a local priority (increasing order of degree

of all unnumbered neighbors).

5.2.2 Minimum Degree Ordering Algorithm

Developing algorithms for high-quality orderings has been an active research topic for

many years. The pattern of ordering algorithms in wide use are based on a greedy ap-

proach such that the ordering is chosen to minimize some quantity at each step of a

simulatedn-step symmetric Gaussian elimination process. The algorithms using such

an approach are typically distinguished by their greedy minimization criteria [20].

In graph terms, the basic ordering process used by most greedy algorithms is as fol-

lows:

1. Start: Construct undirected graphG0 corresponding to matrixA

2. Iterate: Fork = 1; 2; : : : ; until Gk
= ; do:

� Choose a vertexvk fromGk according to some criterion

43

template <class Graph, class Vertex, class Color, class Degree >
int
pseudo peripheral pair(Graph& G, Vertex u, Vertex& w,

Color c, Degree d) f
typedef typename IglueD <Degree >::type DegreeDecorator;
rcm queue<Vertex, DegreeDecorator > Q(d);
bfs(G, u, Q, null visitor(), c);
w = Q.spouse();
return Q.eccentricity();

g

template <class Graph, class Color, class Degree >
typename graph traits <Graph>::vertex type
find starting node(Graph& G, Color c, Degree d) f

typedef typename graph traits <Graph>::vertex type Vertex;
Vertex r = *(vertices(G).begin());
Vertex x, y;

int eccentricity r, eccentricity x;
eccentricity r = pseudo peripheral pair(G, r, x, c, d);
eccentricity x = pseudo peripheral pair(G, x, y, c, d);

while (eccentricity x > eccentricity r) f
r = x;
eccentricity r = eccentricity x;
x = y;
eccentricity x = pseudo peripheral pair(G, x, y, c, d);

g

return r;
g

Figure 5.1. The GGCL implementation offind starting node . The key part
pseudo peripheral pair is BFS with a custom queue type virtually.

44

� Eliminatevk fromGk to formGk+1

The resulting ordering is the sequence of verticesfv0; v1; : : :g selected by the algorithm.

One of the most important examples of such an algorithm is theMinimum Degree

algorithm. At each step the minimum degree algorithm chooses the vertex with mini-

mum degree in the corresponding graph asvk. A number of enhancements to the basic

minimum degree algorithm have been developed, such as the use of a quotient graph

representation, mass elimination, incomplete degree update, multiple elimination, and

external degree. See [11] for a historical survey of the minimum degree algorithm.

The GGCL implementation of the Minimum Degree algorithm closely follows the

algorithmic descriptions of the one in [11, 16]. The implementation presently includes

the enhancements for mass elimination, incomplete degree update, multiple elimination,

and external degree.

In particular, I create a graph representation to improve the performance of the al-

gorithm. It is based on a templated “vector of vectors.” The vector container used is an

adaptor class built on top the STLvector class. Particular characteristics of this adaptor

class include the following:

� Erasing elements does not shrink the associated memory. Adding new elements

after erasing will not need to allocate additional memory.

� Additional memory is allocated efficiently on demand when new elements are added

(doubling the capacity every time it is increased). This property comes from STL

vector.

Note that this representation is similar to that used in Liu's implementation, with some

important differences due to dynamic memory allocation. With the dynamic memory al-

location we do not need to over-write portions of the graph that have been eliminated,

allowing for a more efficient graph traversal. More importantly, information about the

45

elimination graph is preserved allowing for trivial symbolic factorization. Since sym-

bolic factorization can be an expensive part of the entire solution process, improving its

performance can result in significant computational savings.

The overhead of dynamic memory allocation could conceivably compromise perfor-

mance in some cases. However, in practice, memory allocation overhead does not con-

tribute significantly to run-time for our implementation as shown in the next chapter be-

cause it is not done very often and the cost gets amortized.

46

CHAPTER 6

PERFORMANCE

Efficiency is typically advertised as yet another advantage of generic programming —

and these claims are not simply hype. The efficiency that can be gained through the

use of generic programming and high-level performance optimization techniques (which

themselves can be expressed in a generic fashion) is astonishing. For example, the Matrix

Template Library, a generic linear algebra library written completely in C++, is able to

achieve performance as good as or better than vendor-tuned math libraries [24].

For many of the efficient graph data structures in GGCL, vertex and edge objects

that model the GGCL interface concepts are not explicitly stored. Rather, only partial

information is stored. The GGCL interface layer constructs full vertex and edge objects

on the fly from this information. These objects are extremely light-weight, and have been

designed so that a modern C++ compiler will optimize the small objects away altogether.

We call a light-weight object such as this aMayfly because of its very short lifetime. We

discussed theMayfly as a design pattern for high performance computing in [25].

Additionally, the flexibility within the GGCL is derived exclusively from static poly-

morphism, not from dynamic polymorphism. As a result, all dispatch decisions are made

at compile time, allowing the compiler to inline every function in the GGCL graph inter-

face. Hence the “abstraction penalty” of the GGCL interface is completely eliminated.

The machine instructions produced by the compiler are equivalent to what would be pro-

duced from hand-coded graph algorithms in C or Fortran.

47

6.1 Comparison to General Purpose Libraries

Using a concise predefined implementation of adjacency list graph representation in GGCL

following the concepts we described in Section 4, we compare the performance ofbfs ,

dfs , anddijkstra algorithms with those in LEDA(version 3.8), a popular object-ori-

ented graph library [17], and those in GTL [6]. We did not perform comparison between

GGCL and Combinatorica [26] we mentioned previously since it is written in Mathemat-

ica.

Our experiments compare the performance of three algorithms:bfs , dfs , anddijkstra .

Thebfs algorithm calculates the distance and the predecessor for every reachable vertex

from a starting vertex. Thedfs algorithm calculates the discovery time and finishing

time of vertices. Thedijkstra algorithm calculates the distance and the predecessor

of every vertex from a starting vertex.

Figure A.1, Figure 6.2 and Figure 6.3 show the results for those algorithms applied

to randomly generated graphs having a varying number of edges and a varying num-

ber of vertices. Because GTL does not have a Dikstra's algorithm to compare to, it is

not in Figure 6.3. All results were obtained on a Sun Microsystems Ultra 30 with the

UltraSPARC-II 296MHz microprocessor. For these experiments, GGCL is 5 to 7 times

faster than LEDA.

6.2 Comparison to Special Purpose Library

In addition, we demonstrate the performance of a GGCL-based implementation of the

multiple minimum degree algorithm [16] using selected matrices from the Harwell-Boeing

collection [12] and the University of Florida's sparse matrix collection [2]. Our tests com-

pare the execution time of our implementation against that of the equivalent SPARSPAK

Fortran algorithm (GENMMD) [9]. For each case, our implementation and GENMMD

produced identical orderings. Note that the performance of our implementation is essen-

48

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Edges

T
im

e

500 vertices (GTL)
1000 vertices (GTL)
2000 vertices (GTL)
500 vertices (LEDA)
1000 vertices (LEDA)
2000 vertices (LEDA)
500 vertices (GGCL)
1000 vertices (GGCL)
2000 vertices (GGCL)

Figure 6.1. Performance comparison of thebfs algorithm in GGCL with that in LEDA
and in GTL. Every curve represents a graph with fixed number of vertices and with varied
number of edges.

49

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of Edges

T
im

e

500 vertices (GTL)
1000 vertices (GTL)
2000 vertices (GTL)
500 vertices (LEDA)
1000 vertices (LEDA)
2000 vertices (LEDA)
500 vertices (GGCL)
1000 vertices (GGCL)
2000 vertices (GGCL)

Figure 6.2. Performance comparison of thedfs algorithm in GGCL with that in LEDA
and in GTL. Every curve represents a graph with fixed number of vertices and with varied
number of edges.

50

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Edges

T
im

e

500 vertices (LEDA)
1000 vertices (LEDA)
2000 vertices (LEDA)
500 vertices (GGCL)
1000 vertices (GGCL)
2000 vertices (GGCL)

Figure 6.3. Performance comparison of thedijkstra algorithm in GGCL with that in
LEDA. Every curve represents a a graph with fixed number of vertices and with varied
number of edges.

51

Table 6.1. Performance comparison of minimum degree algorithms. Test matrices and
ordering time in seconds, for GENMMD (Fortran) and GGCL (C++) implementations
of minimum degree ordering. Also shown are the matrix order (n) and the number of
off-diagonal non-zero elements (nnz).

Matrix n nnz GENMMD GGCL

BCSPWR09 1723 2394 0.00728841 0.007807
BCSPWR10 5300 8271 0.0306503 0.033222
BCSSTK15 3948 56934 0.13866 0.142741
BCSSTK18 11948 68571 0.251257 0.258589
BCSSTK21 3600 11500 0.0339959 0.039638
BCSSTK23 3134 21022 0.150273 0.146198
BCSSTK24 3562 78174 0.0305037 0.031361
BCSSTK26 1922 14207 0.0262676 0.026178
BCSSTK27 1224 27451 0.00987525 0.010078
BCSSTK28 4410 107307 0.0435296 0.044423
BCSSTK29 13992 302748 0.344164 0.352947
BCSSTK31 35588 572914 0.842505 0.884734
BCSSTK35 30237 709963 0.532725 0.580499
BCSSTK36 23052 560044 0.302156 0.333226
BCSSTK37 25503 557737 0.347472 0.369738
CRYSTK02 13965 477309 0.239564 0.250633
CRYSTK03 24696 863241 0.455818 0.480006
CRYSTM03 24696 279537 0.293619 0.366581
CT20STIF 52329 1323067 1.59866 1.59809
PWT 36519 144794 0.312136 0.383882
SHUTTLE EDDY 10429 46585 0.0546211 0.066164
NASASRB 54870 1311227 1.34424 1.30256

tially equal to that of the Fortran implementation and even surpasses the Fortran imple-

mentation in a few cases.

6.3 Template Issues

There are several issues that often come up in libraries that make heavy use of C++ tem-

plates and advanced language features, such as code size, compile times, ease of debug-

ging, and compiler portability. For template libraries such as GGCL, code size is very

much dependent on how the library is used. If a particular code only uses a few GGCL

52

Table 6.2. Comparison of executable sizes forbfs , dfs , anddijkstra implemented
in GTL, LEDA and GGCL.

Executable Size (KBytes)
Package Name bfs dfs dijkstra

GTL 151 151 /
LEDA 842 841 857
GGCL 33 30 30

algorithms and graph types, then the executable size will actually be much smaller than

it would be using typical libraries. With a template library, only the functions that are

actually used are included. On the other hand, with a traditional library, the whole ob-

ject module will be linked in even though only one function in the module may be used.

To demonstrate these effects, we compare the size of sample executables ofbfs , dfs ,

anddijkstra algorithms in GTL, LEDA, and GGCL in Table 6.2. All are compiled

by egcs-1.1.2 using the same compilation options. (Similar results are obtained for other

compilers and architectures.) Of course, with a template library like GGCL it is very easy

to instantiate redundant functionality which may unnecessarily increase the executable

size, so users with large projects should be cognizant of this issue. There are techniques

one can use to reduce this effect by explicity instantiating template functions in object

files that can be shared.

Long compilation times are often cited as a drawback to template libraries, especially

those that use expression templates [28]. Since GGCL does not use expression templates,

and the overall code size of GGCL is moderate, we have not experienced severe problems

in this regard. In addition, many compilers provide precompiled header mechanisms to

improve compile times for template libraries.

Another concern for users of template libraries are the almost impenetrable error mes-

sages that occur when the library is misused (e.g., when a template parameter type does

not model the appropriate concept). We have recently addressed this problem with some

53

template techniques that cause the arguments to a library call to be checked up front with

regards to the type requirements. With this mechanism the resulting error messages are

much more informative.

Lastly, compiler portability is currently an issue for libraries that use the more ad-

vanced features of C++. GGCL currently compiles with egcs, Metrowerks CodeWarrior,

Intel C++, SGI MIPSpro, KAI C++, and other Edison Design Group based compilers.

We foresee some difficulty porting to Visual C++ because of its lack of standards con-

formance. Since the C++ standard has been finalized, we fully expect that language

conformance problems will cease to be a significant issue in the near future.

54

CHAPTER 7

CONCLUSION AND AVAILABILITY

7.1 Conclusion

In this thesis, I applied the emerging paradigm of generic programming to the important

problem domain of graphs and graph algorithms. Our resulting framework, the Generic

Graph Component Library, is a collection of generic algorithms and data structures that

interoperate through the abstract graph interface comprised ofVertex, Edge, Visitor,

andDecorator concepts. The generic GGCL algorithms allow basic algorithm patterns

to be applied in different ways to build up more complicated graph algorithms, resulting

in significant code reuse. Similarly, since GGCL algorithms are independent of the un-

derlying graph representation, custom graph representation implementation can be mixed

and matched with GGCL graph algorithms. Since our C++ implementation of the generic

programming paradigm makes heavy use of static (compile-time) polymorphism, there is

no run-time overhead associated with the powerful abstractions provided by GGCL. Ex-

perimental results demonstrate that the GGCL executes significantly faster than LEDA, a

well-known object-oriented graph library, and can even compete with high performance

Fortran code.

7.2 Availability

The source code and complete documentation for the GGCL can be downloaded from the

GGCL home page at

http://lsc.nd.edu/research/ggcl

55

BIBLIOGRAPHY

[1] Netlib repository. http://www.netlib.org/.

[2] University of Florida sparse matrix collection. http://www-
pub.cise.ufl.edu/�davis/sparse/.

[3] M. J. Atallah, editor.Algorithms and Theory of Computation Handbook. CRC Press
LLC, 1999.

[4] M. H. Austern.Generic Programming and the STL. Addison Wesley Longman, Inc,
October 1998.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. The
MIT Press, 1990.

[6] M. Forster, A. Pick, and M. Raitner.Graph Template Library. http://www.fmi.uni-
passau.de/Graphlet/GTL/.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of
Reusable Object-Oriented Software. Addiaon Wesley Publishing Company, October
1994.

[8] A. George, J. R. Gilbert, and J. W. Liu, editors.Graph Theory and Sparse Matrix
Computation. Springer-Verlag New York, Inc, 1993.

[9] A. George and J. W. H. Liu. User's guide for SPARSPAK: Waterloo sparse linear
equations packages. Technical report, Department of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada, 1980.

[10] A. George and J. W.-H. Liu.Computer Solution of Large Sparse Positive Definite
Systems. Computational Mathematics. Prentice-Hall, 1981.

[11] A. George and J. W. H. Liu. The evolution of the minimum degree ordering algo-
rithm. SIAM Review, 31(1):1–19, March 1989.

[12] R. G. Grimes, J. G. Lewis, and I. S. Duff. User's guide for the harwell-boeing sparse
matrix collection. User's Manual Release 1, Boeing Computer Services, Seattle,
WA, October 1992.

[13] I. Jacobson, G. Booch, and J. Rumbaugh.Unified Software Development Process.
Addison-Wesley, 1999.

[14] D. E. Knuth. Stanford GraphBase: a platform for combinatorial computing. ACM
Press, 1994.

56

[15] M. Lee and A. Stepanov. The standard template library. Technical report, HP Lab-
oratories, February 1995.

[16] J. W. H. Liu. Modification of the minimum-degree algorithm by multiple elimina-
tion. ACM Transaction on Mathematical Software, 11(2):141–153, 1985.

[17] K. Mehlhorn and S. Naeher.LEDA. http://www.mpi-sb.mpg.de/LEDA/leda.html.

[18] B. Meyer.Object-Oriented Software Construction. Prentice Hall, 1997.

[19] N. C. Myers. Traits: a new and useful template technique.C++ Report, June 1995.

[20] E. G. Ng and P. Raghavan. Performance of greedy ordering heuristics for sparse
Cholesky factorization.SIAM Journal on Matrix Analysis and Applications, To
appear.

[21] Object Management Group.UML Notation Guide, version 1.1 edition, September
1997. http://www.rational.com/uml/.

[22] Y. Saad. Iterative Methods for Sparse Minear System. PWS Publishing Company,
1996.

[23] Y. Samaragdakis and D. Batory. Implementing layered designs with mixin layers.
In The Europe Conference on Object-Oriented Programming, 1998.

[24] J. G. Siek and A. Lumsdaine. The matrix template library: A generic programming
approach to high performance numerical linear algebra. InInternational Symposium
on Computing in Object-Oriented Parallel Environments, 1998.

[25] J. G. Siek and A. Lumsdaine. Mayfly: A pattern for light-weight generic interfaces.
In PLOP99, 1999. Accepted.

[26] S. Skiena.Implementing Discrete mathematics. Addion-Wesley, 1990.

[27] S. S. Skiena.The Algorithm Design Manual. Springer-Verlag New York, Inc, 1998.

[28] T. L. Veldhuizen. Expression templates.C++ Report, 7(5):26–31, June 1995.
Reprinted in C++ Gems, ed. Stanley Lippman.

[29] M. Yannanakis. Computing the minimum fill-in is NP-complete.SIAM Journal of
Algebraic and Discrete Methods, 1981.

57

APPENDIX A

GRAPHS

A.1 Concepts

A.1.1 Graph

Description

The Graph concept merely contains a set of vertices and a set of edges and a tag to

specify whether it is a directed graph or an undirected graph.

Notations

X A type that is a model of Edge

G An object of theX

Table A.1: Expression semantics of conceptGraph

Expression Description

graph traits < X > ::vertex type Vertex type

graph traits < X > ::edge type Edge type

graph traits < X > ::vertices type The return type ofvertices()

graph traits < X > ::edges type The return type ofedges()

vertices(G) To return a ContainerRef object held all

vertices in the graph.

58

Expression Description

edges(G) To return a ContainerRef object held all

edges in the graph.

Table A.2: Function specification of conceptGraph

Prototype Description

vertices type vertices(G) To return a ContainerRef object held all

vertices in the graph.

edges type edges(G) To return a ContainerRef object held all

edges in the graph.

Models

� graph

� LEDA graph

Notes

Global functions instead of member functions are chosen to make the concept more gen-

eral.ContainerRef is similar to theContainer concept except that the former lacks

the notion of “ownership”, so making a copy of aContainerRef object merely creates

an alias to the same underlying container. Obviously, a reference to aContainer object

satisfies this requirements

59

A.2 Graph type selectors

A.2.1 adjacencylist

Description

To choose a graph type whose representation is the adjacency list. See GraphRepresen-

tation for details about the concept of a graph representation. The concrete graph repre-

sentation is selected by the template arguemntConcreteRep . The data stored in OneD

part can be ordered or unorder with respect to the vertex. The second template argument

is used to choose ordered or unordered. Here are several examples of adjacency lists and

the example code to use them.

typedef adjacency list < listT, ordered > GraphRep;

typedef adjacency list < slistT, ordered > GraphRep2;

typedef adjacency list < flistT, unordered > GraphRep3;

typedef adjacency list < vecT, unordered > GraphRep4;

typedef adjacency list < mapT > GraphRep5;

typedef adjacency list < hash mapT > GraphRep6;

typedef adjacency list < ggcl vecT, ordered > GraphRep7;

typedef graph < GraphRep1 > Graph1;

typedef graph < GraphRep2, undirected > Graph2;

typedef graph < GraphRep3, directed > Graph3;

The Table A.3 describes the concrete graph representation associated with the prede-

fined selectors.

Although the concrete graph representations selectd by the predefined selectors are

indeed two-dimensional, users are able to use those concrete graph representations other

than those predefined ones. For example, users have a model of twod container which is

60

Table A.3. Concrete graph representations

selector ordered/unorderedconcrete graph rep to select
listT both ggcl vec<std::list>
slistT both ggcl vec<std::slist>
flistT both ggcl vec<flist >
vecT both ggcl vec<std::vector>
mapT ordered only ggcl vec<std::map>
hashmapT ordered only ggcl vec<std::hashmap>
ggcl vecT both ggcl vec<ggcl vec>

calledcompressed2D . The following will create a custom adjacentlist graph type and

it is able to be used in GGCL.

struct compT fg; //define a custom selector

template < class StoredEdge, class IsOrdered >

class graph representation gen < adjacency list
< compT, IsOrdered > > f

typedef compressed2D < StoredEdge > graphrep type;

template <class Iter >

static StoredEdge* get edge(Iter i);

template < class RandomAccessIter, class ForwardIter >

static RandomAccessIter
get target(RandomAccessIter b, ForwardIter i);

template < class OneD, class size type >

static bool add(OneD& c, size type j,
const StoredEdge& val);

template < class OneD, class size type >

static bool remove(OneD& c, size type j);
g;

typedef graph < adjacency list < compT, unordered >,
undirected > Graph;

61

Definition

tags.h

Table A.4: Template parameters of classadjacency list

Parameter Default Description

ConcreteRep the concrete representation

type selector

IsOrdered ordered or unordered

ConcreteRep ggcl vecT concrete representation type

selector

IsOrdered ordered to store edges in order or not see

ordered and unordered

Table A.5: Members ofadjacency list

Declaration Description Where Defined

enum type = ADJACENCYLIST,
isOrdered = IsOrdered::type

concrete rep type concrete representation

type selector

is ordered type type of graph representa-

tion for ordered or un-

ordered storage.

62

A.2.2 adjacencymatrix

Description

To choose a graph type whose representation is adjacency matrix. The adjacency matrix

graph is ordered implicitly. Adding or removing an edge takes constant time. However,

the traversing an adjacency matrix graph is not so efficient as traversing an adjacency list

graph.

Currently, the selected OneD container is required to be a model of RandomAccess-

Container. See sgi stl documentation for the concept of RandomAccessContainer. Thus,

vecT and ggclvecT are the only two predefined selectors now althrough users could pro-

vides their own ones.

Table A.6: Template parameters of classadjacency matrix

Parameter Default Description

ConcreteRep vecT concrete representation type se-

lector

Table A.7: Members ofadjacency matrix

Declaration Description Where Defined

enum type = ADJACENCYMATRIX,
isOrdered = ORDERED

concrete rep type

is ordered type

A.2.3 directed

Description

The tag for directed graph

63

A.2.4 dynamic

Description

To choose a graph type whose representation is dynamic. Thus, onlyhead of a graph is

directly available from the graph class throughroot() method.

Table A.8: Template parameters of classdynamic

Parameter Default Description

ConcreteRep vecT OneD part selector

IsOrdered ordered OneD part selector

Table A.9: Members ofdynamic

Declaration Description Where Defined

enum type = DYNAMIC, isOrdered =
IsOrdered::type

concrete rep type

is ordered type

A.2.5 undirected

Description

The tag for undirected graph

64

A.3 Graph classes

A.3.1 LEDA Graph

Description

GGCL algorithms are truely generic. Users are able to use it as long as the data structures

used meet the cooresponded concepts. This is one of three classes to meet the graph

concept for LEDA's graph data structure. Here is a brief example to use them:

GRAPH< int , int > G; //This is the LEDA's graph object.
//. . .
//use GGCL algorithms
typedef LEDA Graph< GRAPH< int , int > > Graph;
Graph G(G);
bfs(G, . . .);

Example

In bfs leda.cc:

GRAPH<int , int > G;
//LEDA graph data
typedef LEDA Graph< GRAPH<int , int > > Graph;
Graph G(G);

typedef Graph::vertex type Vertex;
Vertex s = *(G.vertices().begin());

ggcl vec <Vertex > p(G.num vertices());
ggcl vec <Graph::size type > d(G.num vertices());
ggcl vec <default color type > color(G.num vertices());

bfs(G, s, visit distance(mapfun(d),
visit predecessor(mapfun(p))), mapfun(color));

Definition

LEDA.h

65

Table A.10: Members ofLEDAGraph

Declaration Description Where Defined

vertex type Graph

edge type Graph

size type

rep tag Graph

struct vertices type Graph

LEDAGraph (LEDAG& G)

vertices type vertices () Graph

size type num vertices () const

See also

LEDA Vertex, LEDA Edge

A.3.2 graph

Description

This is the GGCL implemention of GGCL Graph concept. The adjacencylist and adja-

cencymatrix representations are referred to this class. Dynamic represetnation graphs is

refered to another class which is the specialization. A graph object with any graph rep-

resentation is able to remove edges, add edges, remove vertices, and add vertices. The

following pictures give you an overview of a graph with adjacencylist or adjacency-

matrix represetation. Specially, The two dimensional structure ofTwoD andOneD are

conceptual in the pictures. The implementation could be in a segment of contigous mem-

ory depend on the concrete graph representation data structure.

Here are several simple examples of defining graphs:

66

Table A.11. Overview of adjacency list and adjacency matrix graphs

adjacencylist adjacencymatrix

StoredVertex array

TwoD

OneD

Adjacency_list Representation

StoredVertex array

StoredEdge

1

2

StoredVertex array

TwoD

OneD

Adjacency_list Representation

StoredVertex array

StoredEdge

1

2

typedef graph <> Graph1;

typedef graph < adjacency matrix <> > Graph2;

typedef on vertex color plugin
< on vertex distance plugin < id plugin <> > >

VertexPlugin;

typedef graph < dynamic <>,
directed, VertexPlugin > Graph3;

typedef graph < adjacency list < vectT, unordered >,
undireted, color plugin <>,
Weight < double > > Graph4;

67

Example

In bfs 1.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT >,

directed, color plugin <> > Graph;

Graph G(5);
G.add edge(0, 2);
G.add edge(1, 1);
G.add edge(1, 3);
G.add edge(1, 4);
G.add edge(2, 1);
G.add edge(2, 3);
G.add edge(2, 4);
G.add edge(3, 1);
G.add edge(3, 4);
G.add edge(4, 0);
G.add edge(4, 1);

typedef Graph::vertex type Vertex;

/* Array to store predecessor (parent) of each vertex */
std::vector <Vertex > p(G.num vertices());

/* Array to store distances from the source to each vertex */
std::vector <Graph::size type > d(G.num vertices());

/* The source vertex */
Vertex s = *vertices(G).begin();

bfs(G, s, visit distance(mapfun(d),
visit predecessor(mapfun(p))));

Definition

graph.h

Table A.12: Template parameters of classgraph

Parameter Default Description

rep t adjacency list <> graph representation selector

68

Parameter Default Description

direct t directed graph type selector. Two pos-

sible types: directed and undi-

rected

StoredVertexPlugin off vertex -

default plugin <>

Stored Vertex type

StoredEdgePlugin no plugin Stored edge type

Table A.13: Members ofgraph

Declaration Description Where Defined

StoredEdge

edgeplugin type

storedvertex type

direct tag

graphrep gen

vertex type vertex type

const vertex type constant vertex type

edge type edge type

const edge type constant edge type

size type

vertices type

const vertices type

edges type

const edges type

graph ()

69

Declaration Description Where Defined

graph (size type n) n is number of vertices in

the graph

graph (std::pair <size type, size -
type >* edges, size type numedges,
size type n, const edgeplugin -
type& ep = edgeplugin type())

num v (n)

bool add edge (size type i, size -
type j, const edgeplugin type&
ep=edgeplugin type())

add an edge i -> j for di-

rected graph or an edge i -

j for undirected graph

bool add directed edge (size type
i, size type j, const edgeplugin -
type& ep=edgeplugin type())

int remove edge (size type i,
size type j)

void remove all edges (size type
i)

void remove vertex (size type i) remove vertex whose id is

i

void add vertex () add a new vertex

vertices type vertices ()

const vertices type vertices ()
const

const size type num vertices ()
const

edges type edges ()

const edges type edges () const

void print () const get a vertex type from

70

A.3.3 graph

Description

This is the partial specialization of graph class for dynamic representation. The following

picture gives you an overview of a graph with a dynamic representation. This class does

not take care emory managemnet of dynamicnode. Thus add a new vertex without any

new edges will not affect the class. This is the reason why there is noadd vertex()

method here.

dynamic_node

dynamic_nodedynamic_node

Dynamic Representation

StoredVertex

StoredEdge OneD

pointer to dynamic_node

head

Figure A.1. Overview of the dynamic graph

Unlike the adjacencylist graph, here theStoredvertex is stored inside thedynamic -

node . Here is an example to define a dynamic graph:

71

typedef on vertex color plugin
< on vertex distance plugin < id plugin <> > >

VertexPlugin;
typedef graph < dynamic < vecT, unordered >, directed,

VertexPlugin, no plugin > Graph;

See examples for how to create a wraper for a pointwise graph data structure so that

GGCL algorithms can be applied.

72

Example

In dynamic.cc:

typedef on vertex color plugin < on vertex distance plugin
< id plugin <> > > VertexPlugin;

typedef graph <dynamic <listT, unordered >,
directed, VertexPlugin > Graph;

typedef Graph::storedvertex type DynamicVertex;
typedef Graph::vertex type Vertex;

DynamicVertex* head = new DynamicVertex();

Graph G(head);

DynamicVertex* v1 = new DynamicVertex();
DynamicVertex* v2 = new DynamicVertex();

G.add edge(head, v1);
G.add edge(head, v2);

DynamicVertex* v3 = new DynamicVertex();
DynamicVertex* v4 = new DynamicVertex();

G.add edge(v2, v3);
G.add edge(v2, v4);

DynamicVertex* v5 = new DynamicVertex();

G.remove edge(v2, v3);
G.add edge(v1, v3);
G.add edge(v1, v5);

bfs(G, G.root(), visit distance(distance decorator <Vertex >()),
color decorator <Vertex >());

cout << head�>distance() << " " << v1�>distance() << " "
<< v2�>distance() << " " << v3�>distance() << " "
<< v4�>distance() << " " << v5�>distance() << endl;

More examples can be found in pointwise.cc

73

Definition

dynamic.h

Table A.14: Members ofgraph

Declaration Description Where Defined

rep tag representation tag.

graphrep gen

graphrep type graph representation type

storedvertex type stored vertex type.

vertex type vertex type

const vertex type

edge type edge type

const edge type

direct tag direct tag

edgeplugin type stored edge type

graph ()

graph (storedvertex type* h)

bool add edge (storedvertex type*
u, storedvertex type* v, const
edgeplugin type& ep=edgeplugin -
type())

add an edge from vertexu

to vertexv .

void remove edge (storedvertex -
type* i, storedvertex type* j)

remove the edge from ver-

tex u to vertexv .

void remove vertex (storedvertex -
type* u)

remove vertexu, currently

only the function works

only for undircted graph.

vertex type root () the root of the graph

74

Declaration Description Where Defined

const vertex type root () const

A.4 Graph functions

A.4.1 vertices

Prototype

template <class Graph >

graph traits <Graph>::vertices type vertices(Graph& G) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

vertices in graphG. it is a part of graph concept.

Definition

graph.h

A.4.2 vertices

Prototype

template <class Graph >

graph traits <Graph>::const vertices type vertices(const Graph& G)
;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

vertices in graphG. it is a part of graph concept. This is for a constant graph object.

Definition

graph.h

75

A.4.3 edges

Prototype

template <class Graph >

graph traits <Graph>::edges type edges(Graph& G) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

edges in graphG. it is a part of graph concept.

Definition

graph.h

A.4.4 edges

Prototype

template <class Graph >

graph traits <Graph>::const edges type edges(const Graph& G) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

edges in graphG. it is a part of graph concept. This is for a constant graph object.

Definition

graph.h

76

APPENDIX B

GRAPH REPRESENTATIONS

B.1 Concepts

B.1.1 GraphRepresentation

Description

A graph can be represented in several ways. The way how to representate a graph is called

the graph representation. GGCL graphs can be three categories of graph representations:

adjacency matrix, adjacency list, and dynamic pointer based representation.

The GraphRepresentationconcept is basically a TwoD Container (conceptually it

is a Container of Containers although it is not necessary to implement it as a Container

of Containers such asvector < vector < int > >.) coupled with four helper

functions. we often refer the TwoD Container as concrete graph representation. A OneD

Container within a GraphRepresentation corresponds to the out-edge list for a particular

vertex. In addition, there is a one-to-one correspondence between the TwoD Iterator and

the vertices of the graph.

Table B.1: Expression semantics of conceptGraphRepresentation

Expression Description

get target(b, i) To deduce a TwoDIterator from a TwoDIt-

erator and a OneDIterator. Used for deriv-

ing thetarget(e) from an edgee.

77

Expression Description

get edge(i) An access method to the extra edge infor-

mation stored within an edge list

add(elist, v, storededge) To add an edge

remove(elist, v) To remove an edge

Table B.2: Function specification of conceptGraphRepresentation

Prototype Description

TwoDIterator get -
target(TwoDIterator b,
OneDIterator i)

To deduce a TwoDIterator from a TwoDIt-

erator and a OneDIterator. Used for deriv-

ing thetarget(e) from an edgee.

stored edge* get -
edge(OneDIterator i)

An access method to the extra edge infor-

mation stored within an edge list

bool add(EdgeList& elist,
size type vertex, const
stored edge& e)

To add an edge

void remove(EdgeList&
elist, size type vertex)

To remove an edge

Models

� adjacencylist

� adjacencymatrix

� dynamic

78

B.2 Graph representation type selectors

B.2.1 flistT

Description

flist(Fortran list) is chosen as the OneD part of the graph representation

B.2.2 ggclvecT

Description

ggcl vec, a model of random access container, is chosen as the OneD part of the graph

representation

B.2.3 hashmapT

Description

std::hashmap(sgi stl extension) is chosen as the OneD part of the graph representation.

Thus, it is always ordered. If theStoredEdge type isno plugin in the graph, which

indicates no extera stored edge information, std::hashset(sgi stl extension) is chosen as

the OneD part.

B.2.4 listT

Description

std::list is chosen as the OneD part of the graph representation

B.2.5 mapT

Description

std::map is chosen as the OneD part of the graph representation. Thus, it is always or-

dered. If theStoredEdge type isno plugin in the graph, which indicates no extera

stored edge information, std::set is chosen as the OneD part.

79

B.2.6 ordered

Description

The tag for the graph representation. The adjacent vertices of any vertex are in order

with respect to the vertex. Mulitple edges between two vertices are not allowed. Thus,

if adding an edge which is already there, the edge is overwitten. Adding an edge is

implemented by two steps: First step is to search the position to add usinglower -

bound . The second step is insert the edge usinginsert defined in OneD. Removing

an edge also has two steps. The first step is to search the position, which is the same as

adding an edge. The second step is to callerase defined in OneD. Thus, time complexity

depends on the container to choose for OneD. If there will have a lot of adding and

removing edge operations, it is recommended to use ordered graph to represent it.

Table B.3: Members ofordered

Declaration Description Where Defined

enum type = ORDERED

B.2.7 slistT

Description

std::slist(sgi stl extention) is chosen as the OneD part of the graph representation

B.2.8 unordered

Description

The tag for the graph representation. The adjacent vertices of any vertex are not in order

with respect to the vertex. Mulitple edges between two vertices may exist. Adding an

edge takes constant time. Meanwhile, removing an edge takes linear (to the length of the

OneD part) time. In the worse case it could be linear to the number of vertices in the

80

graph. It is recommended to use unordered graph if the graph will have no removing-

edges operations.

Table B.4: Members ofunordered

Declaration Description Where Defined

enum type = UNORDERED

B.2.9 vecT

Description

std::vector is chosen as the OneD part of the graph representation

81

APPENDIX C

VERTICES

C.1 Concepts

C.1.1 Vertex

Description

Vertex provides access to the adjacent vertices, the out-edges of the vertex and optionally

the in-edges.

Notations

X A type that is a model of Vertex

u An Object of typeX

Table C.1: Expression semantics of conceptVertex

Expression Description

vertex traits < X > ::edgelist type the return type ofadj()

vertex traits < X > ::vertexlist -

type

the return type ofout edges()

out edges(u) To return a ContainerRef object held all

out-edges

82

Expression Description

in edges(u) Optional. To return a ContainerRef object

held all in-edges

adj(u) To return a ContainerRef object held all ad-

jacent vetices.

Table C.2: Function specification of conceptVertex

Prototype Description

edgelist type out edges(u) To return a ContainerRef object held all

out-edges

edgelist type in edges(u) Optional. To return a ContainerRef object

held all in-edges

vertexlist type adj(u) To return a ContainerRef object held all ad-

jacent vetices.

Models

� vertex

� LEDA vertex

Notes

Global functions instead of member functions are chosen to make the concept more gen-

eral.ContainerRef is similar to theContainer concept except that the former lacks

the notion of “ownership”, so making a copy of aContainerRef object merely creates

an alias to the same underlying container. Obviously, a reference to aContainer object

satisfies this requirements

83

C.2 Vertex classes

C.2.1 LEDA Vertex

Description

This is one of three classes to make LEDA's graph data structure work under GGCL

algorithms. It is to implement the Vertex concept.

Definition

LEDA.h

Table C.3: Members ofLEDAVertex

Declaration Description Where Defined

size type

edge type

vertex type

LEDAVertex ()

LEDAVertex (node v)

LEDAVertex (const LEDA Vertex& x)

struct edgelist type Vertex

struct vertexlist type Vertex

vertexlist type adj () Vertex

edgelist type out edges () Vertex

size type id () const

See also

LEDA Edge, LEDAGraph

84

C.2.2 vertex

Description

The GGCL implementation of Vertex concept. See GGCL graph class. The convenient

way to refer a vertex type is through graph type. Here is an example:

typedef graph < adjacency list <>, directed > Graph;
Graph G(n);
. . .
typedef Graph::vertex type Vertex;
typedef Graph::edge type Edge;
//Edge e
. . .
Vertex u = e.source();

Definition

vertex.h

Table C.4: Members ofvertex

Declaration Description Where Defined

enum type = CONST

graph the graph type for this ver-

tex object

direct tag the tag to indicate the

graph is directed or undi-

rected.

graphrep type the graph representation

type

edgelist type Vertex

vertexlist type Vertex

85

Declaration Description Where Defined

edge type The edge type of cur-

rent graph object associ-

ated with.

size type

GraphRepPtr

plugin type the type of stored vertex

StoredVertexPtr

gr iterator

vertex ()

vertex (gr iterator i, GraphRepPtr
m, StoredVertexPtr vp)

vertex (const self& x)

vertex& operator= (const self& x)

vertexlist type adj () const return a container object

held all adjacent vertices

Vertex

edgelist type out edges () const return a container object

held all out-edges

Vertex

plugin type* plugin () Stored vertex.

const plugin type* plugin () const

bool operator!= (const self& x)
const

bool operator== (const self& x)
const

gr iterator iter

GraphRepPtr matrix

86

C.3 Vertex functions

C.3.1 adj

Prototype

template <class Vertex >

vertex traits <Vertex >::vertexlist type adj(Vertex u) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

adjacent vertices of the vertex. This is a part of Vertex concept.

Definition

vertex.h

C.3.2 outedges

Prototype

template <class Vertex >

vertex traits <Vertex >::edgelist type out edges(Vertex u) ;

Description

This is a global function to return an instance of a model of ContainerRef which holds all

out edges of the vertex. This is a part of Vertex concept.

Definition

vertex.h

87

APPENDIX D

EDGES

D.1 Concepts

D.1.1 Edge

Description

An Edge is a pair of vertices, one is the source vertex and the other is the target vertex.

In the unordered case It is just assumed that the position of the source and target vertices

are interchangeable.

Notations

X A type that is a model of Edge

e An object of theX

Table D.1: Expression semantics of conceptEdge

Expression Description

edge traits < X > ::vertex type Vertex type

source(e) source vertex. Notice it is a global func-

tion.

target(e) target vertex. Notice it is a global function.

88

Table D.2: Function specification of conceptEdge

Prototype Description

vertex type source(e) source vertex. Notice it is a global func-

tion.

vertex type target(e) target vertex. Notice it is a global function.

Models

� edge

� LEDA edge

Notes

Global functions instead of member functions are chosen to make the concept more gen-

eral.ContainerRef is similar to theContainer concept except that the former lacks

the notion of “ownership”, so making a copy of aContainerRef object merely creates

an alias to the same underlying container. Obviously, a reference to aContainer object

satisfies this requirements

D.2 Edge classes

D.2.1 LEDA Edge

Description

This is one of three classes to make LEDA's graph data structure work under GGCL

algorithms. It is to implement the Edge concept.

Definition

LEDA.h

89

Table D.3: Members ofLEDAEdge

Declaration Description Where Defined

vertex type

LEDAEdge ()

LEDAEdge (edge e)

vertex type source () const Edge

vertex type target () const Edge

See also

LEDA Vertex, LEDA Graph

D.2.2 edge

Description

This is the GGCL implementation of Edge. Extra information for the edge can be ac-

cessed through StoredEdge. See GGCL graph class. The convenient way to refer an edge

type is through graph type. Here is an example:

typedef graph < adjacency list <>, directed > Graph;
. . .
typedef Graph::edge type Edge;
. . .

Definition

edge.h

90

Table D.4: Members ofedge

Declaration Description Where Defined

vertex type vertex type Edge

storededge type Stored edge type

edge ()

edge (gr iterator s, gr -
iterator d, GraphRepPtr mf,
EdgePlugin* eplug, rep iterator
i, StoredVertexPtr vplug)

edge (const edge& x)

edge& operator= (const edge& x) assignment operator

vertex type source () const source vertex of the edge Edge

vertex type target () const target vertex of the edge Edge

storededge type* plugin () Stored edge

const storededge type* plugin ()
const

D.2.3 storededge

Description

This is the base class for StoredEdge in the adjacencymatrix representation. GGCL uses

it internally.

Definition

graph.h

Table D.5: Members ofstored edge

Declaration Description Where Defined

stored edge ()

91

Declaration Description Where Defined

stored edge (const Plugin& p)

stored edge (const stored edge& s)

bool connected true if the edge exist in the

graph, false otherwise.

D.3 Edge functions

D.3.1 source

Prototype

template <class Edge >

edge traits <Edge>::vertex type source(Edge e) ;

Description

This is to return the source vertex of the edge. This is a part of Edge concept.

Definition

edge.h

D.3.2 target

Prototype

template <class Edge >

edge traits <Edge>::vertex type target(Edge e) ;

Description

This is to return the target vertex of the edge. This is a part of Edge concept.

Definition

edge.h

92

APPENDIX E

DECORATORS

E.1 Concepts

E.1.1 Decorator

Description

Decorator provides a generic method to access vertex and edge properties, such as color

and weight, from within an algorithm. There are two categories of decorators:

Interior Decorator: The decorating properties are stored outside of the graph object

(they are passed directly to the GGCL algorithm) and the decorator will access

the externally stored data indexed by the vertex or edge ID.

Exterior Decorator: The decorating properties are stored inside of the graph object. The

decorator consults the vertex or the edge objects to access the decorating property.

Notations

X A type that is a model of Decorator

d An object of typeX

u An object of a model of Edge or Vertex

93

Table E.1: Expression semantics of conceptDecorator

Expression Description

decorator traits < X > ::value type the type of object accessed by the decora-

tor.

decorator traits < X > ::reference

d[u] access the decorating property of Vertex or

Edge u.

Table E.2: Function specification of conceptDecorator

Prototype Description

reference
operator[](Vertex u)

access the decorating property of Vertex or

Edge u.

Models

� id decorator

� color decorator

� distancedecorator

� in degreedecorator

� out degreedecorator

� degreedecorator

� parentdecorator

94

� predecessordecorator

� discovertime decorator

� finish time decorator

� weight decorator

E.2 Decorator classes

E.2.1 dummydecorator

Description

This is to provide a dummy decorator. Theoperator[](Vertex v) always return

the same one regardless any variedVertex v .

Definition

decorator.h

Table E.3: Members ofdummydecorator

Declaration Description Where Defined

iterator category

value type

difference type

pointer

reference

dummydecorator ()

dummydecorator (value type cc)

dummydecorator (const dummy -
decorator& x)

template <class Vertex >

reference operator[] (Vertex v)

95

Declaration Description Where Defined

template <class Vertex >

const value type& operator[]
(Vertex v) const

E.2.2 iddecorator

Description

This decorator is to provide a method to get Vertex ID. Thev must be a valid vertex(v

!= Vertex() held) , otherwise, a running time error happens.

Definition

decorator.h

Table E.4: Members ofid decorator

Declaration Description Where Defined

iterator category the type to distinguish

RandomAccessIterator

and Decorator

value type

difference type

pointer

reference

template <class Vertex >

Vertex::size type operator[]
(Vertex v)
template <class Vertex >

Vertex::size type operator[]
(Vertex v) const

96

E.2.3 randomaccessiteratordecorator

Description

This is pretty much the same as containerdecorator except this is for RandomAccessIt-

erator instead of a random access container.

Definition

decorator.h

Table E.5: Members ofrandom access iterator decorator

Declaration Description Where Defined

value type

iterator category

difference type

pointer

reference

random access iterator decorator
(RandomAccessIterator cc, const
IDfunc& id = IDfunc())
random access iterator decorator
(const random access iterator -
decorator& x)

template <class Vertex >

reference operator[] (Vertex v)
template <class Vertex >

const value type& operator[]
(Vertex v) const

E.2.4 weightdecorator

Description

this is a decorator for accessing weight of edges.

97

Definition

decorator.h

Table E.6: Members ofweight decorator

Declaration Description Where Defined

value type weight type

iterator category the type to distinguish

RandomAccessIterator

and Decorator

difference type

pointer

reference

reference operator[] (Edge e) access method for weight

of Edge e.

const value type& operator[] (Edge
e) const

E.3 Decorator functions

E.3.1 mapfun

Prototype

template <class Container >

container decorator <Container > mapfun(Container& c) ;

Description

This is a utility to create an instance of Exterior Decorator. If there is:

std::vector < default color type > color(G.num vertices());

98

then themapfun(color) will return an instance of exterior decorator for color

properities.

Definition

decorator.h

99

APPENDIX F

VISITORS

F.1 Concepts

F.1.1 Visitor

Description

Visitor is the STL functor-like object to make the graph algorithms more flexible. There

are several predefined models of visitor.

Notations

X A type that is a model of Visitor

visitor An object of typeX

u An object of a model of Vertex

e An object of a model of Edge

Table F.1: Expression semantics of conceptVisitor

Expression Description

visitor.initialize(u) Invoked during initialization.

visitor.start(u) Invoked at the beginning of algorithms.

visitor.discover(u) Invoked when an undiscovered Vertex u is

encountered.

100

Expression Description

visitor.finish(u) Invoked when algorithms finish visiting the

Vertex u.

visitor.process(e) Invoked when the edge e is traversed.

Table F.2: Function specification of conceptVisitor

Prototype Description

void initialize(Vertex u) Invoked during initialization.

void start(Vertex s) Invoked at the beginning of algorithms.

void discover(Vertex u) Invoked when an undiscovered Vertex u is

encountered.

void finish(Vertex u) Invoked when algorithms finish visiting the

Vertex u.

bool process(Edge e) Invoked when the edge e is traversed.

Models

� dfs visitor

� distancevisitor

� predecessorvisitor

� timestampvisitor

� bfs visitor

� weightededgevisitor

� componentsvisitor

101

� topo sort visitor

Notes

The implementation of a visitor should always have a Super visitor as a template and

whose default arguement is recommended to benull visitor . It is also recom-

mended that visitor is inherited from Super visitor.

F.2 Visitor classes

F.2.1 bfsvisitor

Description

This is the visitor used inside the BFS algorithm

Definition

bfs visitor.h

Table F.3: Template parameters of classbfs visitor

Parameter Default Description

DistanceDecorator distance decorator

Base null visitor a Super Visitor

FocusOnEdge false a boolean template to determine

whether an edge encountered

will be always visited (by invok-

ing process(e)) or not

102

Table F.4: Members ofbfs visitor

Declaration Description Where Defined

bfs visitor ()

bfs visitor (ColorDecorator c,
const Base& b)

bfs visitor (const bfs visitor& x)

template <class Vertex >

void initialize (Vertex u)
set the color of vertexu

as white and invoke the

Base::initialize(u) .

Visitor

template <class Vertex >

void start (Vertex u)
set the color of vertexu

as gray and invoke the

Base::start(u) .

Visitor

template <class Vertex >

void finish (Vertex u)
set the color of vertex

u as black and invoke

Base::finish(u)

Visitor

103

Declaration Description Where Defined

template <class Edge >

bool process (Edge e)
If the target v of edge

e has not been dis-

covered yet, it grays

the v and invokes the

Base::process(e)

and return true, oth-

erwise, there are two

cases. IfDocusOnEdge

is true, it invokes

Base::process(e)

and return false. Oth-

erwise, it return false

only.

Visitor

template <class Vertex >

bool is undiscovered (Vertex u)
To indicate whether Ver-

tex u is discovered or not.

F.2.2 componentsvisitor

Description

Using this visitor to record which components a vertex is attributed to during the second

DFS traversal in the strongly connected components algorithm.

Definition

connectedcomponents.h

104

Table F.5: Template parameters of classcomponents visitor

Parameter Default Description

ComponentsDecorator Components Decorator

Base null visitor a Super Visitor

Table F.6: Members ofcomponents visitor

Declaration Description Where Defined

comp type

components visitor
(ComponentsDecorator c, const
Base& b=Base())

components visitor (const
components visitor& x)

template <class Vertex >

void discover (Vertex u)
record which components

for Vertexu

void set count (comp type count) set the count of compo-

nents to let the algorithm

interact with the visitor

F.2.3 dfsvisitor

Description

This visitor is used inside the DFS algorithm.

Definition

dfs visitor.h

105

Table F.7: Template parameters of classdfs visitor

Parameter Default Description

ColorDecorator Color Decorator

Base null visitor a Super Visitor

FocusOnEdge false a boolean template to determine

whether an edge encountered

will be always visited (by invok-

ing process(e)) or not

Table F.8: Members ofdfs visitor

Declaration Description Where Defined

color type

dfs visitor (ColorDecorator c,
const Base& b)

dfs visitor (const dfs visitor& x)

template <class Vertex >

void initialize (Vertex u)
set the color of vertexu

as white and invoke the

Base::initialize(u) .

Visitor

template <class Vertex >

void start (Vertex u)
set the color of vertexu

as gray and invoke the

Base::start(u) .

Visitor

template <class Vertex >

void discover (Vertex u)
set the color of vertexu

as gray and invoke the

Base::discover(u) .

Visitor

template <class Vertex >

void finish (Vertex u)
void operation. Visitor

106

Declaration Description Where Defined

template <class Edge >

bool process (Edge e)
If the target v of edge

e has not been dis-

covered yet, it grays

the v and invokes the

Base::process(e)

and return true, oth-

erwise, there are two

cases. IfDocusOnEdge

is true, it invokes

Base::process(e)

and return false. Oth-

erwise, it return false

only.

Visitor

template <class Vertex >

bool is undiscovered (Vertex u)
check whether Vertex u is

undiscovered by checking

the color of u.

template <class Vertex >

bool is finished (Vertex u)
check whether visiting

Vertex u is finished

by checking whether

the color is black or

not. If so, invoke

Base::finish(u)

and return true otherwise

return false only.

107

F.2.4 distancevisitor

Description

This visitor is used to calculate the distance for every verterx from the reference vertex

(source).

Definition

distancevisitor.h

Table F.9: Template parameters of classdistance visitor

Parameter Default Description

DistanceDecorator distance decorator

Base null visitor a Super Visitor

Table F.10: Members ofdistance visitor

Declaration Description Where Defined

distance visitor ()

distance visitor
(DistanceDecorator dist)
distance visitor
(DistanceDecorator dist, const
Base& x)

distance visitor (const distance -
visitor& x)

template <class Vertex >

void initialize (Vertex u)
Initialize the distance

of vertex u and invoke

Base::initialize(u) .

Visitor

108

Declaration Description Where Defined

template <class Vertex >

void start (Vertex s)
Set the distance of vertex

s to be zero and invoke

Base::start(s) .

Visitor

template <class Edge >

bool process (Edge e)
If the targetv of e have

not been set a distance,

d[e.target()] =

d[e.source()]

+ 1, invoke the

Base::process(e)

and return true. Oth-

erwise, invoke the

Base::process(e)

and return false.

Visitor

F.2.5 levelvisitor

Description

This is the the visitor to set the level for every vertex. The level of starting vertices is zero.

Definition

level decorator.h

Table F.11: Members oflevel visitor

Declaration Description Where Defined

level visitor (LevelDecorator l,
const Super& x = Super())

level visitor (const level -
visitor& x)

109

Declaration Description Where Defined

template <class Vertex >

void initialize (Vertex u)

template <class Edge >

bool process (Edge e)

LevelDecorator level

F.2.6 null visitor

Description

This is a visitor to provide only the standard visitor interface. All methods are emtpy.

Definition

util.h

Table F.12: Members ofnull visitor

Declaration Description Where Defined

null visitor ()

null visitor (const null visitor&
x)

template <class Vertex >

void initialize (Vertex u)
Visitor

template <class Vertex >

void start (Vertex s)
Visitor

template <class Vertex >

void discover (Vertex s)
Visitor

template <class Vertex >

void finish (Vertex s)
Visitor

template <class Edge >

bool process (Edge e)
Visitor

F.2.7 predecessorvisitor

Description

This is a visitor to record the predecessor of vertex discovered in the graph algorithms.

110

Definition

predecessorvisitor.h

Table F.13: Template parameters of classpredecessor visitor

Parameter Default Description

PredecessorDecorator a predecessor deco-

rator with Vertex

operator[](Vertex)

defined.

Base a super visitor

Table F.14: Members ofpredecessor visitor

Declaration Description Where Defined

predecessor visitor ()

predecessor visitor
(PredecessorDecorator p)
predecessor visitor
(PredecessorDecorator p, const
Base& b)

predecessor visitor (const
predecessor visitor& x)

template <class Vertex >

void initialize (Vertex u)
Initialize the predecessor

of vertex u and invoke

Base::initialize(u)

template <class Vertex >

void start (Vertex s)
Set the predecessor

of vertex s as a null

vertex and invoke

Base::start(s)

111

Declaration Description Where Defined

template <class Edge >

bool process (Edge e)
Set p[target(e)] =

source(e) and invoke

Base::process(e)

F.2.8 timestampvisitor

Description

This visitor is to record the discover time and finish time of vertices during graph traversal.

Notice that only one timer for both time.

Definition

timestampvisitor.h

Table F.15: Template parameters of classtimestamp visitor

Parameter Default Description

DiscoverTime discover time decorator

FinishTime finish time decorator

Base null visitor a Super Visitor

Table F.16: Members oftimestamp visitor

Declaration Description Where Defined

timestamp visitor ()

timestamp visitor (DiscoverTime
disc, FinishTime fin)
timestamp visitor (DiscoverTime
disc, FinishTime fin, const Base&
b)

112

Declaration Description Where Defined

timestamp visitor (const
timestamp visitor& x)

template <class Vertex >

void discover (Vertex u)
Increment timer, set

the discover time for

vertex u and invoke

Base::discover(u)

Visitor

template <class Vertex >

void finish (Vertex u)
Increment timer, set

the finish time for

vertex u and invoke

Base::finish(u)

Visitor

F.2.9 toposort visitor

Description

This is to record the vertex in topological order.

Definition

topologicalsort.h

Table F.17: Template parameters of classtopo sort visitor

Parameter Default Description

OutputIterator output iterator

Base Super Visitor

113

Table F.18: Members oftopo sort visitor

Declaration Description Where Defined

topo sort visitor (OutputIterator
iter, Base x)

template <class Vertex >

void finish (Vertex& u)

F.2.10 weightededgevisitor

Description

This is a generalization of the kind of visitor used inside Dijkstra's and Prim's algorithms.

This is also used for the min-max paths problem.

Definition

weightededgevisitor.h

Table F.19: Template parameters of classweighted edge visitor

Parameter Default Description

WeightDecorator weight decorator

DistanceDecorator distance decorator

Base Super visitor

BinaryOperator std::plus std::plus for dijkstra and -

project2nd for prim

Table F.20: Members ofweighted edge visitor

Declaration Description Where Defined

weighted edge visitor ()

114

Declaration Description Where Defined

weighted edge visitor
(WeightDecorator wf,
DistanceDecorator df, const Base&
b)
weighted edge visitor
(WeightDecorator wf,
DistanceDecorator df,
BinaryOperator binop, const Base&
b)

weighted edge visitor (const
weighted edge visitor& x)

template <class Vertex >

void initialize (Vertex u)
Initialize the distance

of vertex u and invoke

Base::initialize(u) .

Visitor

template <class Vertex >

void start (Vertex s)
Set the distance of vertex

s to be zero and invoke

Base::start(s) .

Visitor

template <class Edge >

bool process (Edge e)
If the targetv of e have

not been set a distance,

update it and return true.

Otherwise, update the dis-

tance if need and return

false.

Visitor

bool need update queue () To indicate whether

update queue operatoion

need to perform

115

F.3 Visitor functions

F.3.1 visitdistance

Prototype

template <class Distance >

distance visitor <IglueD <Distance >::type, null visitor > visit -
distance(Distance d) ;

Description

To return an instance of distance visitor with Distance and nullvisitor as template argu-

ments, likemake pair return apair object in the STL.

Definition

distancevisitor.h

Requirements on types

� Distance - an instance of a distance decorator or a RandomAccessIterator.

F.3.2 visitdistance

Prototype

template <class Distance, class SuperVisitor >

distance visitor <IglueD <Distance >::type, SuperVisitor > visit -
distance(Distance d, SuperVisitor b) ;

Description

return an instance of distance visitor with Distance and SuperVisitor as template argu-

ments.

Definition

distancevisitor.h

116

Requirements on types

� Distance d - an instance of a distance decorator or a RandomAccessIterator.

� SuperVisitor b- an instance of a visitor.

F.3.3 visit level

Prototype

template < class LevelDecorator >

level visitor <LevelDecorator > visit level(LevelDecorator level) ;

Description

Definition

level visitor.h

F.3.4 visit level

Prototype

template < class LevelDecorator, class Super >

level visitor <LevelDecorator, Super > visit level(LevelDecorator
level, const Super& b) ;

Description

Definition

level visitor.h

F.3.5 visitpredecessor

Prototype

template <class Predecessor >

predecessor visitor <IglueD <Predecessor >::type, null visitor >

visit predecessor(Predecessor p) ;

117

Description

This function returns an instance of predecessorvisitor with Predecessor and nullvisitor

as template arguments. The former can be a model of PredecessorDecorator or a model

of RandomAccessIterator.

Definition

predecessorvisitor.h

F.3.6 visitpredecessor

Prototype

template <class Predecessor, class BaseVisitor >

predecessor visitor <IglueD <Predecessor >::type, BaseVisitor >

visit predecessor(Predecessor p, BaseVisitor b) ;

Description

This function returns an instance of predecessorvisitor with Predecessor and BaseVisitor

as template arguments. The former can be a model of PredecessorDecorator or a model

of RandomAccessIterator.

Definition

predecessorvisitor.h

F.3.7 visit timestamp

Prototype

template <class DiscoverTime, class FinishTime >

timestamp visitor <IglueD <DiscoverTime >::type,
IglueD <FinishTime >::type, null visitor > visit -
timestamp(DiscoverTime d, FinishTime f) ;

Description

To return an instance of timestampvisitor with no super visitor.

118

Definition

timestampvisitor.h

F.3.8 visit timestamp

Prototype

template <class DiscoverTime, class FinishTime, class Base >

timestamp visitor <IglueD <DiscoverTime >::type,
IglueD <FinishTime >::type, Base > visit timestamp(DiscoverTime
d, FinishTime f, const Base& b) ;

Description

To return an instance of timestampvisitor with super visitorBase .

Definition

timestampvisitor.h

F.3.9 visitbfs

Prototype

template <class Color, class SuperVisitor >

bfs visitor <IglueD <Color >::type, SuperVisitor > visit bfs(Color
c, SuperVisitor b) ;

Description

It takes two arguments and return an instance of bfsvisitor. The type of the first one could

be either a model of ColorDecorator or a model of RandomAccessIterator. The second

one is the model of Visitor.

Definition

bfs visitor.h

119

APPENDIX G

ALGORITHMS

G.1 GGCL algorithms

G.1.1 generalizedinit

Prototype

template <class Graph, class Visitor >

void generalized init(Graph& G, Visitor visit) ;

Description

We spearate the initializtion step from main algorithms in case users want to call main

algorithms mulitple times. If theG is a model of dynamic graph reperesentation, This

function does nothing. Otherwise,visit.initialize(u) gets invoked for every

vertexu in the graphG.

Definition

bfs.h

G.1.2 generalizedBFS

Prototype

template <class Vertex, class QType, class Visitor, class
VisitedFunc >

void generalized BFS(Vertex s, QType& Q, Visitor visit,
VisitedFunc visited) ;

120

Description

A generalized BFS algorithm with all argument types templatized. The initialization

step isnot included. If users want it, users can either callgeneralized init first

then call this function, or usegeneralized BFSwhich includes the initialization step.

We separate the initializtion step from main algorithms in case users want to call main

algorithms multiple times.

Definition

bfs.h

See also

generalizedinit, generalizedBFS

G.1.3 generalizedBFS

Prototype

template <class Graph, class QType, class Visitor, class
VisitedFunc >

void generalized BFS(Graph& G, typename graph -
traits <Graph>::vertex type s, QType& Q, Visitor visit,
VisitedFunc visited) ;

Description

A generalized BFS algorithm with all argument types templatized. The initialization step

is included.

Definition

bfs.h

See also

generalizedinit, generalizedBFS

121

G.1.4 bfs

Prototype

template <class Graph, class QType, class Visitor, class Color >

void bfs(Graph& G, typename graph traits <Graph>::vertex type s,
QType& Q, Visitor visit, Color c) ;

Description

Three versions of overloaded BFS algorithms are provided in GGCL.

In the first version, the arguments are GraphG, its starting vertexs and a visitor object

visit only. The Graph type and visitor type are templatized. This version requires the

usage of interior colordecorator.

In the second version, the arguements are the all three ones in the first version plus a

templatized decorator objectcolor to access the color properity of vertices. The version

are able to use exterior decorator or interior decorator for color properity. With the interior

decorator, the same requirement is applied.

In the third version, the arguments are the all four ones in the second version plus a

templatized Queue type objectQto provide extra flexibility.

This is the third version.

Definition

bfs.h

122

Example

In bfs 3.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT >,

directed > Graph;

Graph G(5);
G.add edge(0, 2);
G.add edge(1, 1);
G.add edge(1, 3);
G.add edge(1, 4);
G.add edge(2, 1);
G.add edge(2, 3);
G.add edge(2, 4);
G.add edge(3, 1);
G.add edge(3, 4);
G.add edge(4, 0);
G.add edge(4, 1);

typedef Graph::vertex type Vertex;

std::vector <default color type > color(G.num vertices());
std::vector <Vertex > p(G.num vertices());
std::vector <Graph::size type > d(G.num vertices());

Vertex s = *vertices(G).begin();
std::queue <Vertex > Q;
bfs(G, s, Q, visit distance(mapfun(d),

visit predecessor(mapfun(p))), mapfun(color));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 470

G.1.5 bfs

Prototype

template <class Graph, class Visitor, class ColorDecorator >

void bfs(Graph& G, typename graph traits <Graph>::vertex type s,
Visitor visit, ColorDecorator color) ;

123

Description

Three versions of overloaded BFS algorithms are provided in GGCL.

In the first version, the arguments are GraphG, its starting vertexs and a visitor object

visit only. The Graph type and visitor type are templatized. This version requires the

usage of interior colordecorator.

In the second version, the arguements are the all three ones in the first version plus a

templatized decorator objectcolor to access the color properity of vertices. The version

are able to use exterior decorator or interior decorator for color properity. With the interior

decorator, the same requirement is applied.

In the third version, the arguments are the all four ones in the second version plus a

templatized Queue type objectQto provide extra flexibility.

This is the second version.

Definition

bfs.h

Complexity

linear

124

Example

In bfs 2.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT >,

directed > Graph;

Graph G(5);
G.add edge(0, 2);
G.add edge(1, 1);
G.add edge(1, 3);
G.add edge(1, 4);
G.add edge(2, 1);
G.add edge(2, 3);
G.add edge(2, 4);
G.add edge(3, 1);
G.add edge(3, 4);
G.add edge(4, 0);
G.add edge(4, 1);

typedef Graph::vertex type Vertex;

std::vector <default color type > color(G.num vertices());
std::vector <Vertex > p(G.num vertices());
std::vector <Graph::size type > d(G.num vertices());

Vertex s = *vertices(G).begin();

bfs(G, s, visit distance(mapfun(d),
visit predecessor(mapfun(p))), mapfun(p));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 470

G.1.6 bfs

Prototype

template <class Graph, class Visitor >

void bfs(Graph& G, typename Graph::vertex type s, Visitor visit)
;

125

Description

Three versions of overloaded BFS algorithms are provided in GGCL.

In the first version, the arguments are GraphG, its starting vertexs and a visitor object

visit only. The Graph type and visitor type are templatized. This version requires the

usage of interior colordecorator.

In the second version, the arguements are the all three ones in the first version plus a

templatized decorator objectcolor to access the color properity of vertices. The version

are able to use exterior decorator or interior decorator for color properity. With the interior

decorator, the same requirement is applied.

In the third version, the arguments are the all four ones in the second version plus a

templatized Queue type objectQto provide extra flexibility.

This is the first version.

Definition

bfs.h

Preconditions

� G has to have a colorplugin as a part of StoredVertexPlugin at least so that it is

valid to use the interior colordecorator. See the example below.

Complexity

linear

126

Example

In bfs 1.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT >,

directed, color plugin <> > Graph;

Graph G(5);
G.add edge(0, 2);
G.add edge(1, 1);
G.add edge(1, 3);
G.add edge(1, 4);
G.add edge(2, 1);
G.add edge(2, 3);
G.add edge(2, 4);
G.add edge(3, 1);
G.add edge(3, 4);
G.add edge(4, 0);
G.add edge(4, 1);

typedef Graph::vertex type Vertex;

/* Array to store predecessor (parent) of each vertex */
std::vector <Vertex > p(G.num vertices());

/* Array to store distances from the source to each vertex */
std::vector <Graph::size type > d(G.num vertices());

/* The source vertex */
Vertex s = *vertices(G).begin();

bfs(G, s, visit distance(mapfun(d),
visit predecessor(mapfun(p))));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 470

127

G.1.7 connectedcomponents

Prototype

template < class Graph, class Visitor, class
ComponentsDecorator, class ColorDecorator >

decorator traits <ComponentsDecorator >::value type connected -
components(Graph& G, Visitor v, ComponentsDecorator c,
ColorDecorator color) ;

Description

Using DFS to construct the algorithm. If theG is an directed graph, the algorithm

computes the strongly connected components of the graph assuming interior decorators

DiscoverTimeDecorator andFinishTimeDecorator defined. Otherwise, the

G is undirected graph, the algorithm compute the connected components for undirected

graphs.

Definition

connectedcomponents.h

G.1.8 connectedcomponents

Prototype

template < class Graph, class Visitor, class ComponentsDecorator
>

decorator traits <ComponentsDecorator >::value type connected -
components(Graph& G, Visitor v, ComponentsDecorator c) ;

Description

Using DFS to construct the algorithm. Assuming an interior decorator of colordecorator

is able to be used. If theG is an directed graph, the algorithm computes the strongly

connected components assuming interior decorators ofDiscoverTimeDecorator

andFinishTimeDecorator . otherwise, theG is undirected graph and the algorithm

compute the connected components for undirected graphs.

128

Definition

connectedcomponents.h

Example

In connectedcomponents.cc:

using namespace ggcl;
typedef discover time plugin < finish time plugin

< color plugin <> > > VertexPlugin;
typedef graph < adjacency list < ggcl vecT >,

directed, VertexPlugin > Graph;

Graph G(5);
G.add edge(0, 2);
G.add edge(1, 1);
G.add edge(1, 3);
G.add edge(2, 1);
G.add edge(2, 3);
G.add edge(3, 1);
G.add edge(3, 4);
G.add edge(4, 0);
G.add edge(4, 1);

typedef Graph::vertex type Vertex;

std::vector <int > c(G.num vertices());
int num = connected components(G, null visitor(), mapfun(c));

G.1.9 generalizedDFS

Prototype

template <class Vertex, class QType, class Visitor, class
VisitedFunc >

void generalized DFS(Vertex u, QType& Q, Visitor& visitor,
VisitedFunc visited) ;

Description

A generalized DFS algorithm with all argument types templatized. The initialization step

is not included. If users want it, users can callgeneralized init first then call this

function. We separate the initializtion step from main algorithms in case users want to

129

call main algorithms multiple times. With thestack as the Qtype here, the algorithm

performs the normal DFS.

Definition

dfs.h

See also

generalizedinit

G.1.10 dfs

Prototype

template <class Graph, class Visitor, class Color >

void dfs(Graph& G, Visitor visitor , Color c) ;

Description

This is non-recursive version of DFS. It is implemented bygeneralizedDFS with a

stack asQtype . Notice that the order of the discovering vertices in adjacenct ver-

tices of one vertex is reverse comparing to the recursive version. For example:v0 have its

adjacent verticesv1 andv2. v1 has not adjacent vertices whilev2 has an adjacent vertex

v3. The recursive version of DFS will havev0 v1 v2 v3as a sequence of discovering

vertices. However, the non-recursive version will havev0 v2 v3 v1instead. We choose

the nonrecursive version because it runs fast.

Two versions of overloaded DFS algorithm are provided.

In the first version, the arguments are GraphGand a visitor objectvisit only. The

Graph type and visitor type are templatized. This version requires the usage of interior

color decorator.

In the second version, the arguements are the all three ones in the first version plus a

templatized decorator objectcolor to access the color properity of vertices. The version

130

are able to use exterior decorator or interior decorator for color properity. With the interior

decorator, the same requirement is applied.

This is the second version.

Definition

dfs.h

Example

In dfs 2.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT >,

directed > Graph;

Graph G(5);
G.add edge(0, 2);
G.add edge(1, 1);
G.add edge(1, 3);
G.add edge(2, 1);
G.add edge(2, 3);
G.add edge(3, 1);
G.add edge(3, 4);
G.add edge(4, 0);
G.add edge(4, 1);

typedef Graph::vertex type Vertex;

std::vector <Graph::size type > dt(G.num vertices());
std::vector <Graph::size type > ft(G.num vertices());
std::vector <default color type > color(G.num vertices());

dfs(G, visit timestamp(mapfun(dt), mapfun(ft)),
mapfun(color));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 478

131

G.1.11 dfs

Prototype

template <class Graph, class Visitor >

void dfs(Graph& G, Visitor visitor) ;

Description

In the first version, the arguments are GraphG and a visitor objectvisit only. The

Graph type and visitor type are templatized. This version requires the usage of interior

color decorator.

In the second version, the arguements are the all three ones in the first version plus a

templatized decorator objectcolor to access the color properity of vertices. The version

are able to use exterior decorator or interior decorator for color properity. With the interior

decorator, the same requirement is applied.

This is the first version.

Definition

dfs.h

Preconditions

� G has to have a colorplugin as a part of StoredVertexPlugin at least so that it is

valid to use the interior colordecorator. See the example below.

132

Example

In dfs 1.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT >,

directed, color plugin <> > Graph;

Graph G(5);
G.add edge(0, 2);
G.add edge(1, 1);
G.add edge(1, 3);
G.add edge(2, 1);
G.add edge(2, 3);
G.add edge(3, 1);
G.add edge(3, 4);
G.add edge(4, 0);
G.add edge(4, 1);

typedef Graph::vertex type Vertex;

std::vector <Graph::size type > dt(G.num vertices());
std::vector <Graph::size type > ft(G.num vertices());

dfs(G, visit timestamp(mapfun(dt), mapfun(ft)));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 478

G.1.12 dijkstra

Prototype

template <class Graph, class Visitor, class Distance, class
Weight, class ID >

void dijkstra(Graph& G, typename graph traits <Graph>::vertex type
s, Visitor visit, Distance d, Weight w, const ID& id) ;

133

Description

Dijkstra's Algorithm solves the single-source shortest-paths problem on a weighted, di-

rected graph G for the case in which all edge weights are nonnegative. This algorithm

does not check whether edge weights are nonnegative or not.

Three overloaded versions of the algoithm are provided.

The first version has four arguements with templatized types:: the GraphG, source

vertex s , a visitor objectvisit and a Distance Decorator obejctd. It requires id-

decorator and weightdecorator to work.

The second version has five arguments: all the four arguments in the first version plus

a templatized weight decorator objectw.

The third version has the size arguments: all the five arguments in the second version

plus a templatized ID objectid .

This is the third version.

Definition

dijkstra.h

G.1.13 dijkstra

Prototype

template <class Graph, class Visitor, class Distance, class
Weight >

void dijkstra(Graph& G, typename graph traits <Graph>::vertex type
s, Visitor visit, Distance d, Weight w) ;

Description

Dijkstra's Algorithm solves the single-source shortest-paths problem on a weighted, di-

rected graph G for the case in which all edge weights are nonnegative. This algorithm

does not check whether edge weights are nonnegative or not.

Three overloaded versions of the algoithm are provided.

134

The first version has four arguements with templatized types:: the GraphG, source

vertex s , a visitor objectvisit and a Distance Decorator obejctd. It requires id-

decorator and weightdecorator to work.

The second version has five arguments: all the four arguments in the first version plus

a templatized weight decorator objectw.

The third version has the size arguments: all the five arguments in the second version

plus a templatized ID objectid .

This is the second version.

Definition

dijkstra.h

G.1.14 dijkstra

Prototype

template <class Graph, class Visitor, class Distance >

void dijkstra(Graph& G, typename graph traits <Graph>::vertex type
s, Visitor visit, Distance d) ;

Description

Dijkstra's Algorithm solves the single-source shortest-paths problem on a weighted, di-

rected graph G for the case in which all edge weights are nonnegative. This algorithm

does not check whether edge weights are nonnegative or not.

Three overloaded versions of the algoithm are provided.

The first version has four arguements with templatized types:: the GraphG, source

vertex s , a visitor objectvisit and a Distance Decorator obejctd. It requires id-

decorator and weightdecorator to work.

The second version has five arguments: all the four arguments in the first version plus

a templatized weight decorator objectw.

135

The third version has the size arguments: all the five arguments in the second version

plus a templatized ID objectid .

This is the first version.

Definition

dijkstra.h

Example

In dijkstra.cc:

using namespace ggcl;
typedef graph < adjacency matrix < ggcl vecT >, undirected,

off vertex default plugin <>, Weight <int > > Graph;
typedef Graph::vertex type Vertex;
typedef Graph::edgeplugin type::weight type weight type;

Graph G(5);

G.add edge(0, 2, Weight <weight type >(1));
G.add edge(1, 1, Weight <weight type >(2));
G.add edge(1, 3, Weight <weight type >(1));
G.add edge(1, 4, Weight <weight type >(2));
G.add edge(2, 1, Weight <weight type >(7));
G.add edge(2, 3, Weight <weight type >(3));
G.add edge(3, 4, Weight <weight type >(1));
G.add edge(4, 0, Weight <weight type >(1));
G.add edge(4, 1, Weight <weight type >(1));

std::vector <Vertex > p(G.num vertices());
std::vector <Graph::size type > d(G.num vertices());

Vertex s = *(vertices(G).begin());

dijkstra(G, s, visit predecessor(mapfun(p)), mapfun(d));

136

G.1.15 kruskal

Prototype

template < class Graph, class OutputIterator, class Rank, class
Parent, class Weight >

void kruskal(Graph& G, OutputIterator c, Rank rank, Parent p,
Weight w) ;

Description

This is a greedy algorithm to calculate the Minimum Spanning Tree for an undirected

graph with weighted edges. The output will be a set of edges.

Two overloaded version of Kruskal's algorithm are provided.

The first version has four templatized arguments: GraphG, OutputIteratorc , a rank

decorator objectrank and a parent decorator objectparent . The version requires to

use weightdecorator.

The second version has one more additional argument which is a templatized type

weight decorator.

This is the second version.

Definition

kruskal.h

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 505

G.1.16 kruskal

Prototype

template < class Graph, class OutputIterator, class Rank, class
Parent >

void kruskal(Graph& G, OutputIterator c, Rank rank, Parent p) ;

137

Description

This is a greedy algorithm to calculate the Minimum Spanning Tree for an undirected

graph with weighted edges. The output will be a set of edges.

Two overloaded version of Kruskal's algorithm are provided.

The first version has four templatized arguments: GraphG, OutputIteratorc , a rank

decorator objectrank and a parent decorator objectparent . The version requires to

use weightdecorator.

The second version has one more additional argument which is a templatized type

weight decorator.

This is the first version.

Definition

kruskal.h

138

Example

In kruskal.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT, unordered >,

undirected, off vertex default plugin <>, Weight <int > >

Graph;
typedef Graph::edgeplugin type::weight type weight type;

Graph G(5);

G.add edge(0, 2, Weight <weight type >(1));
G.add edge(1, 1, Weight <weight type >(2));
G.add edge(1, 3, Weight <weight type >(1));
G.add edge(1, 4, Weight <weight type >(2));
G.add edge(2, 1, Weight <weight type >(7));
G.add edge(2, 3, Weight <weight type >(3));
G.add edge(3, 4, Weight <weight type >(1));
G.add edge(4, 0, Weight <weight type >(1));
G.add edge(4, 1, Weight <weight type >(1));

typedef Graph::edge type Edge;
typedef Graph::vertex type Vertex;

typedef std::vector <Edge> container;
std::vector <Edge> c;
c.reserve(G.num vertices());
std::vector <Vertex > p;
std::vector <int > rank;

kruskal(G, std::back insert iterator <container >(c),
mapfun(rank), mapfun(p));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 505

139

G.1.17 prim

Prototype

template <class Graph, class Visitor, class Distance, class
Weight, class ID >

void prim(Graph& G, typename graph traits <Graph>::vertex type s,
Visitor visit, Distance d, Weight w, ID id) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph

with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: GraphG, a start

vertexs , and a visitor objectvisit which could record information such as parent of

every vertex in MST on return. The version requires to use interior distancedecorator,

weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one

additional templatized distance decoratord so that it is possible to use exterior decorator

for diatance.

The third version has one more argument comparing to the second version. The addi-

tional one is a weight decorator objectwwith a templatized type.

The fourth version has one more argument comparing to the third version. The ID

decorator is templatized and need to supply from users.

Output: visit records the information in MST

Input: undirected GraphG, starting vertexs , visit Vistor, and ID decoratorid .

This is the fourth version.

Definition

prim.h

140

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 505

G.1.18 prim

Prototype

template <class Graph, class Visitor, class Distance, class
Weight >
void prim(Graph& G, typename graph traits <Graph>::vertex type s,
Visitor visit, Distance d, Weight w) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph

with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: GraphG, a start

vertexs , and a visitor objectvisit which could record information such as parent of

every vertex in MST on return. The version requires to use interior distancedecorator,

weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one

additional templatized distance decoratord so that it is possible to use exterior decorator

for diatance.

The third version has one more argument comparing to the second version. The addi-

tional one is a weight decorator objectwwith a templatized type.

The fourth version has one more argument comparing to the third version. The ID

decorator is templatized and need to supply from users.

Output: visit records the information in MST

Input: undirected GraphG, starting vertexs , visit Vistor, and ID decoratorid .

This is the third version.

141

Definition

prim.h

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 505

G.1.19 prim

Prototype

template <class Graph, class Visitor, class Distance >

void prim(Graph& G, typename graph traits <Graph>::vertex type s,
Visitor visit, Distance d) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph

with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: GraphG, a start

vertexs , and a visitor objectvisit which could record information such as parent of

every vertex in MST on return. The version requires to use interior distancedecorator,

weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one

additional templatized distance decoratord so that it is possible to use exterior decorator

for diatance.

The third version has one more argument comparing to the second version. The addi-

tional one is a weight decorator objectwwith a templatized type.

The fourth version has one more argument comparing to the third version. The ID

decorator is templatized and need to supply from users.

Output: visit records the information in MST

142

Input: undirected GraphG, starting vertexs , visit Vistor, and ID decoratorid .

This is the second version.

Definition

prim.h

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 505

G.1.20 prim

Prototype

template <class Graph, class Visitor >

void prim(Graph& G, typename graph traits <Graph>::vertex type s,
Visitor visit) ;

Description

This is Prim's algorithm to calculate the Minimum Spanning Tree for an undirected graph

with weighted edges. There are four overloaded functions:

The first version has three arguments only with the templatized types: GraphG, a start

vertexs , and a visitor objectvisit which could record information such as parent of

every vertex in MST on return. The version requires to use interior distancedecorator,

weight decorator, iddecorator.

The second version has four arguments: the three ones in the first version with one

additional templatized distance decoratord so that it is possible to use exterior decorator

for diatance.

The third version has one more argument comparing to the second version. The addi-

tional one is a weight decorator objectwwith a templatized type.

143

The fourth version has one more argument comparing to the third version. The ID

decorator is templatized and need to supply from users.

Output: visit records the information in MST

Input: undirected GraphG, starting vertexs , visit Vistor, and ID decoratorid .

This is the first version.

Definition

prim.h

Example

In prim.cc:

using namespace ggcl;
typedef graph < adjacency list < ggcl vecT, unordered >,

undirected, distance plugin <>, Weight <int > > Graph;
typedef Graph::edgeplugin type::weight type weight type;

Graph G(5);

G.add edge(0, 2, Weight <weight type >(1));
G.add edge(1, 1, Weight <weight type >(2));
G.add edge(1, 3, Weight <weight type >(1));
G.add edge(1, 4, Weight <weight type >(2));
G.add edge(2, 1, Weight <weight type >(7));
G.add edge(2, 3, Weight <weight type >(3));
G.add edge(3, 4, Weight <weight type >(1));
G.add edge(4, 0, Weight <weight type >(1));
G.add edge(4, 1, Weight <weight type >(1));
std::vector <Graph::vertex type > p(G.num vertices());
prim(G, *(vertices(G).begin()), visit predecessor(mapfun(p)));

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 505

144

G.1.21 recursiveDFS

Prototype

template <class Graph, class Visitor, class Color >

void recursive DFS(Graph& G, Visitor v, Color c) ;

Description

This is the recursive version of DFS algorithm. We provide another version of DFS which

is based on stack. We provide both algorithms because they are different algorithms even

though they are for the same problem. If user only wants to calculate discovering and

finsihing time, the stack version is faster than recursive version. However, the recursive

version will be faster if user want tree edges only.

Definition

recursiveDFS.h

G.1.22 DFSvisit

Prototype

template < class Vertex, class Visitor >

void DFS visit(Vertex u, Visitor& v) ;

Description

The main component for recursive version of DFS and other DFS related algorithms

patterns.

Definition

recursiveDFS.h

See also

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT

Press, 1990, P. 478

145

G.1.23 topologicalsort

Prototype

template < class Graph, class OutputIterator, class Visitor,
class Color >

void topological sort(Graph& G, OutputIterator iter, Visitor
myvisit, Color color) ;

Description

Applying dfs to perform topological sorts of directed acyclic graphs(DAG). The algorithm

does not check whether the input graph is a DAG. There are three overloaded functions:

The first version has two arguments only: GraphGand an OutputIteratoriter to hold

the vertcies in topological order. The version requires to use interior colordecorator.

The second version has one more argument: a visitor objectmyvisit to provide

ability to compute more information on finding topological order. The version requires to

use interior colordecorator.

The third version has one more argument comparing to the second version. The tem-

platized color decorator makes it possible to use exterior color decorator if need.

This is the third version.

Definition

topologicalsort.h

146

Example

In topo sort 2.cc:

using namespace ggcl;
typedef discover time plugin < finish time plugin <

distance plugin <> > > VertexPlugin;

typedef graph < adjacency list < ggcl vecT, unordered >,
directed, VertexPlugin, Weight <int > > Graph;

typedef Graph::vertex type Vertex;

std::pair <size t,size t > edges[7] = f Pair(0, 1),
Pair(2, 4), Pair(2, 5),
Pair(0, 3), Pair(1, 4),
Pair(4, 3), Pair(5, 5) g;

Graph G(edges, 7, 6);
typedef std::vector < Vertex > container;
container c;
null visitor null v;
std::vector <default color type > color(G.num vertices());
topological sort(G, std::back insert iterator <container >(c),

null v, mapfun(color));

G.1.24 topologicalsort

Prototype

template <class Graph, class OutputIterator, class Visitor >

void topological sort(Graph& G, OutputIterator iter, Visitor
myvisit) ;

Description

Applying dfs to perform topological sorts of directed acyclic graphs(DAG). The algorithm

does not check whether the input graph is a DAG. There are three overloaded functions:

The first version has two arguments only: GraphGand an OutputIteratoriter to hold

the vertcies in topological order. The version requires to use interior colordecorator.

The second version has one more argument: a visitor objectmyvisit to provide

ability to compute more information on finding topological order. The version requires to

use interior colordecorator.

147

The third version has one more argument comparing to the second version. The tem-

platized color decorator makes it possible to use exterior color decorator if need.

This is the second version.

Definition

topologicalsort.h

Example

In topo sort.cc:

using namespace ggcl;
typedef discover time plugin < finish time plugin <

color plugin <distance plugin <> > > > VertexPlugin;

typedef graph < adjacency matrix < ggcl vecT >, directed,
VertexPlugin, Weight <int > > Graph;

typedef Graph::vertex type Vertex;

std::pair <size t,size t > edges[7] = f Pair(0, 1), Pair(2, 4),
Pair(2, 5),
Pair(0, 3), Pair(1, 4),
Pair(4, 3), Pair(5, 5) g;

Graph G(edges, 7, 6);
typedef std::vector < Vertex > container;
container c;
null visitor null v;
typedef std::back insert iterator <container > OutputIterator;
topological sort(G, OutputIterator(c), null v);

G.1.25 topologicalsort

Prototype

template <class Graph, class OutputIterator >

void topological sort(Graph& G, OutputIterator iter) ;

148

Description

Applying dfs to perform topological sorts of directed acyclic graphs(DAG). The algorithm

does not check whether the input graph is a DAG. There are three overloaded functions:

The first version has two arguments only: GraphGand an OutputIteratoriter to hold

the vertcies in topological order. The version requires to use interior colordecorator.

The second version has one more argument: a visitor objectmyvisit to provide

ability to compute more information on finding topological order. The version requires to

use interior colordecorator.

The third version has one more argument comparing to the second version. The tem-

platized color decorator makes it possible to use exterior color decorator if need.

This is the first version.

Definition

topologicalsort.h

149

Example

In topo sort.cc:

using namespace ggcl;
typedef discover time plugin < finish time plugin <

color plugin <distance plugin <> > > > VertexPlugin;

typedef graph < adjacency matrix < ggcl vecT >, directed,
VertexPlugin, Weight <int > > Graph;

typedef Graph::vertex type Vertex;

std::pair <size t,size t > edges[7] = f Pair(0, 1), Pair(2, 4),
Pair(2, 5),
Pair(0, 3), Pair(1, 4),
Pair(4, 3), Pair(5, 5) g;

Graph G(edges, 7, 6);
typedef std::vector < Vertex > container;
container c;
null visitor null v;
typedef std::back insert iterator <container > OutputIterator;
topological sort(G, OutputIterator(c), null v);

G.1.26 transpose

Prototype

template <class Graph1, class Graph2 >

void transpose(const Graph1& G1, Graph2& G2) ;

Description

To get the transpose of a directed graph. The transpose of a directed graph G = (V, E) is

the graph GT = (V, ET), where ET = (v, u) in V x V: (u, v) in E. i.e., GT is G with all its

edges reversed.

Definition

transpose.h

150

APPENDIX H

PLUGINS

H.1 Concepts

H.1.1 interiorvertexplugin

Description

The interior vertex plugin is to provide the a way to store the vertex properityes. There are

two categories of it. One is offvertexplugin which stored vertex properities inside the

graph object but out of the vertex. The offvertexplugin is meanful to adjacencylist and

adjacencymatrix graphs. On the other hand, if the graph is dynamic representation, it is

better that vertex properities are stored inside the vertex and onvertexplugin provides

that.

Table H.1: Expression semantics of conceptinterior vertex plugin

Expression Description

x.NAME(u) To access the properity of vertex whose ID

is u.

151

Table H.2: Function specification of conceptinterior vertex plugin

Prototype Description

NAMEtype& NAME(size type
u)

To access the properity of vertex whose ID

is u.

Models

� off vertexplugin

� on vertexplugin

H.1.2 off vertexplugin

Description

The off-vertex plugin is to provide off-vertex storage for vertex properities inside a graph

object. Using interior decorators to access the vertex properities. The four functions

defined below will be invoked automatically when a graph add/remove an edge/vertex.

Refinement of

interior vertexplugin

Notations

X A type that is a model of offvertexplugin

x An object of typeX

u An object of a model of Vertex

152

Table H.3: Expression semantics of conceptoff vertex plugin

Expression Description

x.NAME(u) To access the properity of vertex whose ID

is u.

x.add vertex(u) invoked when a graph object add a vertex.

x.remove vertex(u) invoked when a graph object remove a ver-

tex.

Table H.4: Function specification of conceptoff vertex plugin

Prototype Description

NAMEtype& NAME(size type
u)

To access the properity of vertex whose ID

is u.

void add vertex(size type
u)

invoked when a graph object add a vertex.

void remove vertex(size -
type u)

invoked when a graph object remove a ver-

tex.

Models

� distanceplugin

� color plugin

� out degreeplugin

� in degreeplugin

� degreeplugin

153

� discovertime plugin

� finish time plugin

Notes

it is recommended to inherit from defaultplugin on implementing a user-defined off-

vertex plugin.

H.1.3 onvertexplugin

Description

The on-vertex plugin is to provide the storage for vertex properities on the vertex.

Refinement of

interior vertexplugin

Table H.5: Expression semantics of concepton vertex plugin

Expression Description

x.NAME(u) To access the properity of vertex whose ID

is u.

Table H.6: Function specification of concepton vertex plugin

Prototype Description

NAMEtype& NAME(size type
u)

To access the properity of vertex whose ID

is u.

154

Models

� on vertexcolor plugin

� id plugin

� on vertexdistanceplugin

H.2 Plugin classes

H.2.1 colorplugin

Description

This is the off-vertex plugin to provide the storage of vertex color properity inside a graph

object. Use this for adjacencylist and adjacencymatrix graphs. Use colordecorator to

access the distance properity.

typedef color plugin <> VerexPlugin;
typedef graph < adjacency list <>,

irected, VerexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex s = *(vertices(G).begin());
color decorator < Vertex > color;
color[s] = color traits < color type >::black();

Definition

vertexplugin.h

Table H.7: Template parameters of classcolor plugin

Parameter Default Description

StoragePlugin off vertex -

default plugin <>

a super off vertex plugin

155

Parameter Default Description

Container std::vector <typename

StoragePlugin::size -

type >

a conatiner type to hold all ver-

tices' colors

Table H.8: Members ofcolor plugin

Declaration Description Where Defined

size type off vertex -

plugin

color type off vertex -

plugin

color plugin (size type n)

color type& color (size type u) off vertex -

plugin

const color type& color (size type
u) const

void add vertex (size type u) off vertex -

plugin

void remove vertex (size type u) off vertex -

plugin

H.2.2 degreeplugin

Description

This is the off-vertex plugin to provide the storage of vertex degree properity inside a

graph object. Use this for adjacencylist and adjacencymatrix graphs. Use degree-

decorator to access the distance properity.

156

typedef degree plugin <> VerexPlugin;
typedef graph < adjacency list <>,

undirected, VerexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex s = *(vertices(G).begin());
degree decorator < Vertex > deg;
cout << deg[s] << endl;

Definition

vertexplugin.h

Table H.9: Template parameters of classdegree plugin

Parameter Default Description

StoragePlugin off vertex -

default plugin <>

a super off vertex plugin

Container std::vector <typename

StoragePlugin::size -

type >

a conatiner type to hold all ver-

tices' degrees

Table H.10: Members ofdegree plugin

Declaration Description Where Defined

size type off vertex -

plugin

degree type off vertex -

plugin

degree plugin ()

157

Declaration Description Where Defined

degree plugin (size type n)

const degree type& degree (size -
type u) const

degree type& degree (size type u) off vertex -

plugin

void add edge (size type u, size -
type v)

off vertex -

plugin

void remove edge (size type u,
size type v)

off vertex -

plugin

void add vertex (size type u) off vertex -

plugin

void remove vertex (size type u) off vertex -

plugin

H.2.3 discovertime plugin

Description

This is the off-vertex plugin to provide the storage of vertex discover-time properity inside

a graph object. Use this for adjacencylist and adjacencymatrix graphs. Use discover-

time decorator to access the distance properity.

typedef discover time plugin <> VerexPlugin;
typedef graph < adjacency list <>,

undirected, VerexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex s = *(vertices(G).begin());
discover time decorator < Vertex > dt;
cout << dt[s] << endl;

158

Definition

vertexplugin.h

Table H.11: Template parameters of classdiscover time plugin

Parameter Default Description

StoragePlugin off vertex -

default plugin <>

a super off vertex plugin

Container std::vector <typename

StoragePlugin::size -

type >

a conatiner type to hold all ver-

tices' discover time

Table H.12: Members ofdiscover time plugin

Declaration Description Where Defined

size type off vertex -

plugin

discover time type off vertex -

plugin

discover time plugin ()

discover time plugin (size type n)

const discover time type&
discover time (size type u) const

discover time type& discover time
(size type u)

off vertex -

plugin

void add vertex (size type u) off vertex -

plugin

159

Declaration Description Where Defined

void remove vertex (size type u) off vertex -

plugin

H.2.4 distanceplugin

Description

This is the off-vertex distance plugin to provide the storage of vertex distance properity

inside a graph object. Use this for adjacencylist and adjacencymatrix graphs. Use

distancedecorator to access the distance properity.

typedef distance plugin <> VerexPlugin;
typedef graph < adjacency list <>,

directed, VerexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex s = *(vertices(G).begin());
distance decorator < Vertex > d;
d[s] = 0;

Definition

vertexplugin.h

Table H.13: Template parameters of classdistance plugin

Parameter Default Description

StoragePlugin off vertex -

default plugin <>

a super off vertex plugin

Container std::vector <typename

StoragePlugin::size -

type >

a conatiner type to hold all ver-

tices' distances

160

Table H.14: Members ofdistance plugin

Declaration Description Where Defined

size type off vertex -

plugin

distance type off vertex -

plugin

distance plugin (size type n)

distance type& distance (size type
u)

off vertex -

plugin

const distance type& distance
(size type u) const

void add vertex (size type u) off vertex -

plugin

void remove vertex (size type u) off vertex -

plugin

H.2.5 finishtime plugin

Description

This is the off-vertex plugin to provide the storage of vertex discover-time properity inside

a graph object. Use this for adjacencylist and adjacencymatrix graphs. Use discover-

time decorator to access the distance properity.

161

typedef finish time plugin <> VerexPlugin;
typedef graph < adjacency list <>,

undirected, VerexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex s = *(vertices(G).begin());
finish time decorator < Vertex > ft;
cout << ft[s] << endl;

Definition

vertexplugin.h

Table H.15: Template parameters of classfinish time plugin

Parameter Default Description

StoragePlugin off vertex -

default plugin <>

a super off vertex plugin

Container a conatiner type to hold

all vertices' finish-time -

std::vector<typename Storage-

Plugin::sizetype>

Table H.16: Members offinish time plugin

Declaration Description Where Defined

size type off vertex -

plugin

finish time type off vertex -

plugin

162

Declaration Description Where Defined

finish time plugin ()

finish time plugin (size type n)

const finish time type& finish -
time (size type u) const

finish time type& finish time
(size type u)

off vertex -

plugin

void add vertex (size type u) off vertex -

plugin

void remove vertex (size type u) off vertex -

plugin

H.2.6 id plugin

Description

This is to provide an on vertex plugin so that every vertex can have an ID. Use this for

dyanmic graph only.

typedef on vertex color plugin < id plugin <> > VertexPlugin;
typedef graph < dynamic < vecT, unordered >,

directed, VertexPlugin > Graph;

Definition

vertexplugin.h

Table H.17: Members ofid plugin

Declaration Description Where Defined

id type

id type& id ()

163

Declaration Description Where Defined

id type& id () const

id type id

H.2.7 in degreeplugin

Description

This is the off-vertex plugin to provide the storage of vertex in degree properity inside a

graph object. Use this for adjacencylist and adjacencymatrix graphs. Use indegree-

decorator to access the distance properity.

typedef in degree plugin <> VerexPlugin;
typedef graph < adjacency list <>,

directed, VerexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex s = *(vertices(G).begin());
in degree decorator < Vertex > in d;
cout << in d[s] << endl;

Definition

vertexplugin.h

Table H.18: Template parameters of classin degree plugin

Parameter Default Description

StoragePlugin off vertex -

default plugin <>

a super off vertex plugin

164

Parameter Default Description

Container a conatiner type to hold

all vertices' in-degrees -

std::vector<typename Storage-

Plugin::sizetype>

Table H.19: Members ofin degree plugin

Declaration Description Where Defined

size type off vertex -

plugin

in degree type off vertex -

plugin

in degree plugin (size type n)

const in degree type& in degree
(size type u) const

in degree type& in degree (size -
type u)

off vertex -

plugin

void add edge (size type u, size -
type v)

off vertex -

plugin

void remove edge (size type u,
size type v)

off vertex -

plugin

void add vertex (size type u) off vertex -

plugin

void remove vertex (size type u) off vertex -

plugin

165

H.2.8 off vertexdefault plugin

Description

This class is the default stored vertex plugin and will be the base of other offvertex

plugin.

Definition

vertexplugin.h

Table H.20: Members ofoff vertex default plugin

Declaration Description Where Defined

size type

off vertex default plugin ()

off vertex default plugin (size -
type n)

void add edge (size type u, size -
type v)

off vertex -

plugin

void remove edge (size type u,
size type v)

off vertex -

plugin

void add vertex (size type u) off vertex -

plugin

void remove vertex (size type u) off vertex -

plugin

166

H.2.9 onvertexcolor plugin

Description

This is to provide an on vertex plugin so that every vertex can have a color properity. Use

this for dyanmic graph only. Interior decoratorcolor decorator is used to access

this properity.

typedef on vertex color plugin < > VertexPlugin;
typedef graph < dynamic <>,

undirected, VertexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex u = G.root();
color decorator < Vertex > color;
color[u] = color traits < color type >::grey();

Definition

vertexplugin.h

Table H.21: Template parameters of classon vertex color plugin

Parameter Default Description

Super id plugin <> a super on vertex plugin

Table H.22: Members ofon vertex color plugin

Declaration Description Where Defined

color type on vertex -

plugin

on vertex color plugin ()

167

Declaration Description Where Defined

default color type& color
(typename Super::id type i = 0)

on vertex -

plugin

default color type& color
(typename Super::id type i = 0)
const

default color type color

H.2.10 onvertexdistanceplugin

Description

This is to provide an on vertex plugin so that every vertex can have a distance properity.

Use this for dyanmic graph only. Interior decoratordistance decorator is used to

access this properity.

typedef on vertex distance plugin < > VertexPlugin;
typedef graph < dynamic <>,

directed, VertexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex u = G.root();
distance decorator < Vertex > d;
d[u] = 0;

Definition

vertexplugin.h

Table H.23: Template parameters of classon vertex distance plugin

Parameter Default Description

Super id plugin <> a super on vertex plugin

168

Table H.24: Members ofon vertex distance plugin

Declaration Description Where Defined

distance type on vertex -

plugin

on vertex distance plugin ()

distance type& distance (typename
Super::id type i = 0)

on vertex -

plugin

distance type& distance (typename
Super::id type i = 0) const

distance type distance

H.2.11 outdegreeplugin

Description

This is the off-vertex plugin to provide the storage of vertex out degree properity inside a

graph object. Use this for adjacencylist and adjacencymatrix graphs. Use outdegree-

decorator to access the distance properity.

typedef out degree plugin <> VerexPlugin;
typedef graph < adjacency list <>,

directed, VerexPlugin > Graph;
//. . .
typedef Graph::vertex type Vertex;
Vertex s = *(vertices(G).begin());
out degree decorator < Vertex > out d;
cout << out d[s] << endl;

Definition

vertexplugin.h

169

Table H.25: Template parameters of classout degree plugin

Parameter Default Description

StoragePlugin off vertex -

default plugin <>

a super off vertex plugin

Container a conatiner type to hold

all vertices' out-degrees -

std::vector<typename Storage-

Plugin::sizetype>

Table H.26: Members ofout degree plugin

Declaration Description Where Defined

size type off vertex -

plugin

out degree type off vertex -

plugin

out degree plugin (size type n)

const out degree type& out degree
(size type u) const

out degree type& out degree (size -
type u)

off vertex -

plugin

void add edge (size type u, size -
type v)

off vertex -

plugin

void remove edge (size type u,
size type v)

off vertex -

plugin

170

Declaration Description Where Defined

void add vertex (size type u) off vertex -

plugin

void remove vertex (size type u) off vertex -

plugin

H.2.12 weightplugin

Description

This is to provide the storage for weight information for every edge. It is stored on the

edge as a plugin. Use weightdecorator to access weight for an edge.

typedef graph < adjacency list <>, undirected,
interior default plugin <>, Weight <int > > Graph;

//. . .
typedef Graph::edge type Edge;
// . . . e is a valid edge from graph G
weight decorator < Edge > w;
cout << w[e] << endl;

Definition

edgeplugin.h

Table H.27: Members ofweight plugin

Declaration Description Where Defined

weight type

weight plugin ()

weight plugin (T t, const Plugin&
p = Plugin())

weight plugin (const weight -
plugin& W)

171

Declaration Description Where Defined

const weight type& weight () const

weight type& weight ()

172

APPENDIX I

FUNCTION OBJECTS

I.1 classes

I.1.1 first equal

Description

This is a function object. It tests the truth or falsehood of two objects whose types are

std::pair. Iff is an object offirst equal andx andy are two pair objects Thenf(x,

y) returns true ifx.first == y.first and false otherwise.

Definition

functor.h

Table I.1: Members offirst equal

Declaration Description Where Defined

first argument type

second argument type

result type

bool operator() (const PairType&
a, const PairType& b) const

173

I.1.2 first less

Description

This is a function object. It tests the truth or falsehood of two objects whose types are

std::pair. Iff is an object offirst less andx andy are two pair objects Thenf(x,

y) returns true ifx.first < y.first and false otherwise.

Definition

functor.h

Table I.2: Members offirst less

Declaration Description Where Defined

template < class PairType >

bool operator() (const PairType&
a, const PairType& b) const

I.1.3 functorequal

Description

This is a function object. It tests the truth or falsehood of two objects' decorating prop-

erties through decorator. Iff is an object offunctor equal < D > andx andy are

two objects with decoratord which is an object ofD, thenf(x, y) returns true ifd[x]

== d[y] and false otherwise.

Table I.3: Template parameters of classfunctor equal

Parameter Default Description

Decorator a model of Decorator

174

Table I.4: Members offunctor equal

Declaration Description Where Defined

functor equal (const Decorator& df
= Decorator())
template <class Vertex >

bool operator() (const Vertex& u,
const Vertex& v) const

returnd[u] == d[v]

I.1.4 functorgreater

Description

This is a function object. It tests the truth or falsehood of two objects' decorating prop-

erties through decorator. Iff is an object offunctor greator < D > andx andy

are two objects with decoratord, which is an object ofD, thenf(x, y) returns true if

d[x] > d[y] and false otherwise.

Definition

functor.h

Table I.5: Template parameters of classfunctor greater

Parameter Default Description

Decorator a model of Decorator

Table I.6: Members offunctor greater

Declaration Description Where Defined

functor greater (const Decorator&
df = Decorator())
template <class Vertex >

bool operator() (const Vertex& u,
const Vertex& v) const

returnd[u] > d[v]

175

I.1.5 functorless

Description

This is a function object. It tests the truth or falsehood of two objects' decorating proper-

ties through decorator. Iff is an object offunctor less < D > andx andy are two

objects with decoratord which is an object ofD, thenf(x, y) returns true ifd[x] <

d[y] and false otherwise.

Definition

functor.h

Table I.7: Template parameters of classfunctor less

Parameter Default Description

Decorator a model of Decorator

Table I.8: Members offunctor less

Declaration Description Where Defined

functor less (const Decorator& df
= Decorator())
template <class Vertex >

bool operator() (const Vertex& u,
const Vertex& v) const

returnd[u] < d[v]

I.1.6 null operation

Description

This functor provides three overloaded versions ofoperator() function with one ar-

gument, two arguments, and three arguments. The function body is empty to provide the

null operation.

176

Definition

visited.h

Table I.9: Members ofnull operation

Declaration Description Where Defined

template < class A, class B,
class C >

void operator() (const A& a,
const B& b, const C& c) const
template < class A, class B >

void operator() (const A& a,
const B& b) const
template < class A >

void operator() (const A& a)
const

I.1.7 queueupdate

Description

This functor is used for dijkstra amd prim. It provides a operation to check if it needs

perform queue update. if so, do it.

Definition

visited.h

Type requirements

� Visitor must be a model of Visitor to provide the methodneed update queue() .

� Qtype must be a model of queue who has method ofupdate(v) wherev has a

type ofQtype::value type .

177

Table I.10: Members ofqueue update

Declaration Description Where Defined

template < class Visitor, class
Qtype, class Iter >

void operator() (Visitor&
visitor, Qtype& Q, Iter ei)
const

178

APPENDIX J

MATRIX ORDERING

J.1 Utility classes

J.1.1 Marker

Description

This class is to provide a generalization of coloring which has complexity of amortized

constant time to set all vertices' color back to be white. It implemented by simply in-

creasing a tag.

Definition

mmd aux.h

Table J.1: Members ofMarker

Declaration Description Where Defined

Marker (Decorator data, size type
num)

void init (size type n)

void mark done (size type node)

bool is done (size type node)

void mark tag (size type node)

void mark mtag (size type node)

bool is tagged (size type node)
const

179

Declaration Description Where Defined

bool is not tagged (size type
node) const

bool is mtagged (size type node)
const

void increment tag ()

void set mtag (value type mdeg0)

void set tag as mtag ()

void print (size type n)

J.1.2 Stacks

Description

This to use a single array for multiple stacks. It was used in Fortran code orginally because

of its efficiency.

Definition

mmd aux.h

Table J.2: Members ofStacks

Declaration Description Where Defined

Stacks (Decorator data)

class stack stack

stack operator[] (size type i) To return a stack object

with the head provided.

stack make stack () To return a stack object

180

J.1.3 orderedstacks

Description

This is a bucket sorter virtually. It is used inside of mmd algorithms.

Table J.3: Members ofordered stacks

Declaration Description Where Defined

ordered stacks (Decorator head,
Decorator next, Decorator prev)

ordered stacks (const ordered -
stacks& x)

void init (size type n)

class stack

stack operator[] (size type i)

stack operator[] (size type i)
const

void remove (size type i)

void mark need update (size type
i)

bool need update (size type i)

const value type null ()

bool outmatched or done (size type
i)

void mark (size type i)

void print (size type n)

J.2 Functions

J.2.1 psuedoperipheralpair

Prototype

template <class Graph, class Vertex, class Color, class Degree >

int psuedo peripheral pair(Graph& G, const Vertex& u, Vertex& w,
Color c, Degree d) ;

181

Description

To compute an approximated peripheral for a given vertex.

Definition

RCM.h

J.2.2 findstartingnode

Prototype

template <class Graph, class Color, class Degree >

graph traits <Graph>::vertex type find starting node(Graph& G,
Color c, Degree d) ;

Description

This is to find a good starting node for the RCM algorithm. The ”good” is in sense of the

ordering generated by RCM.

Definition

RCM.h

See also

Alan George and Joseph W-H Liu, Computer Solution of Large Sparse Positive Definite

Systems, Prentice-Hall, 1981, Page 62.

J.2.3 reverseCuthill McKee

Prototype

template < class Graph, class RandomAccessContainer, class
Color, class Degree >

void reverse Cuthill McKee(Graph& G, RandomAccessContainer&
iperm, Color c, Degree d) ;

182

Description

A starting vertex is computed byfind starting node . This algorithm does not

require user to provide a starting vertex to compute RCM ordering.

Definition

RCM.h

J.2.4 reverseCuthill McKee

Prototype

template < class Graph, class RandomAccessContainer, class Color
>

void reverse Cuthill McKee(Graph& G, RandomAccessContainer&
iperm, Color c) ;

Description

A starting vertex is computed byfind starting node . This algorithm does not re-

quire user to provide a starting vertex to compute RCM ordering. An interior DegreeDec-

orator is required.

Definition

RCM.h

J.2.5 reverseCuthill McKee

Prototype

template <class Graph, class RandomAccessContainer >

void reverse Cuthill McKee(Graph& G, RandomAccessContainer&
iperm) ;

183

Description

A starting vertex is computed byfind starting node . This algorithm does not

require user to provide a starting vertex to compute RCM ordering. Assume that an

interior DegreeDecorator and a ColorDecorator are available.

Definition

RCM.h

J.2.6 mmd

Prototype

template <class Graph, class DecoratorI, class DecoratorP, class
DecoratorQ >

void mmd(Graph& G, DecoratorI inverse perm, DecoratorP perm,
DecoratorQ qsize, int delta=0) ;

Description

The implementation presently includes the enhancements for mass elimination, incom-

plete degree update, multiple elimination, and external degree.

Definition

mmd.h

See also

Alan George and Joseph W. H. Liu, The Evolution of the Minimum Degree Ordering

Algorithm, SIAM Review, 31, 1989, Page 1-19

184

