
Recursive Make Considered Harmful
Peter Miller

millerp@canb.auug.org.au

ABSTRACT

For large UNIX projects, the traditional method of building the project is to use recursive
make. On some projects, this results in build times which are unacceptably large, when
all you want to do is change one file. In examining the source of the overly long build
times, it became evident that a number of apparently unrelated problems combine to pro-
duce the delay, but on analysis all have the same root cause.

This paper explores a number of problems regarding the use of recursive make, and
shows that they are all symptoms of the same problem. Symptoms that the UNIX com-
munity have long accepted as a fact of life, but which need not be endured any longer.
These problems include recursive makes which take ‘‘forever’’ to work out that they need
to do nothing, recursive makes which do too much, or too little, recursive makes which
are overly sensitive to changes in the source code and require constant Makefile inter-
vention to keep them working.

The resolution of these problems can be found by looking at what make does, from first
principles, and then analyzing the effects of introducing recursive make to this activity.
The analysis shows that the problem stems from the artificial partitioning of the build into
separate subsets. This, in turn, leads to the symptoms described. To avoid the symptoms,
it is only necessary to avoid the separation; to use a single make session to build the
whole project, which is not quite the same as a single Makefile.

This conclusion runs counter to much accumulated folk wisdom in building large projects
on UNIX. Some of the main objections raised by this folk wisdom are examined and
shown to be unfounded. The results of actual use are far more encouraging, with routine
development performance improvements significantly faster than intuition may indicate,
and without the intuitvely expected compromise of modularity. The use of a whole pro-
ject make is not as difficult to put into practice as it may at first appear.

Miller, P.A. (1998), Recursive Make Considered Harmful,
AUUGN Journal of AUUG Inc., 19(1), pp. 14-25.

1. Introduction

For large UNIX software development projects,
the traditional methods of building the project use
what has come to be known as ‘‘recursive make.’’
This refers to the use of a hierarchy of directories
containing source files for the modules which
make up the project, where each of the sub-direc-
tories contains a Makefile which describes the
rules and instructions for the make program. The
complete project build is done by arranging for
the top-level Makefile to change directory into
each of the sub-directories and recursively invoke
make.

Copyright © 1997 Peter Miller; All rights reserved.

This paper explores some significant problems
encountered when developing software projects
using the recursive make technique. A simple
solution is offered, and some of the implications
of that solution are explored.

Recursive make results in a directory tree which
looks something like this:

Peter Miller 5 April 2003 Page 1

AUUGN´97 Recursive Make Considered Harmful

Project
Makefile
module1

Makefile
source1.c
etc...

module2
Makefile
source2.c
etc...

This hierarchy of modules can be nested arbitrar-
ily deep. Real-world projects often use two- and
three-level structures.

1.1. Assumed Knowledge

This paper assumes that the reader is familiar with
developing software on UNIX, with the make pro-
gram, and with the issues of C programming and
include file dependencies.

This paper assumes that you have installed GNU
Make on your system and are moderately familiar
with its features. Some features of make
described below may not be available if you are
using the limited version supplied by your vendor.

2. The Problem

There are numerous problems with recursive
make, and they are usually observed daily in prac-
tice. Some of these problems include:

• It is very hard to get the order of the recursion
into the sub-directories correct. This order is
very unstable and frequently needs to be manu-
ally ‘‘tweaked.’’ Increasing the number of
directories, or increasing the depth in the direc-
tory tree, cause this order to be increasingly
unstable.

• It is often necessary to do more than one pass
over the sub-directories to build the whole sys-
tem. This, naturally, leads to extended build
times.

• Because the builds take so long, some depen-
dency information is omitted, otherwise devel-
opment builds take unreasonable lengths of
time, and the developers are unproductive.
This usually leads to things not being updated
when they need to be, requiring frequent
‘‘clean’’ builds from scratch, to ensure every-
thing has actually been built.

• Because inter-directory dependencies are either
omitted or too hard to express, the Make-
files are often written to build too much to

ensure that nothing is left out.

• The inaccuracy of the dependencies, or the sim-
ple lack of dependencies, can result in a prod-
uct which is incapable of building cleanly,
requiring the build process to be carefully
watched by a human.

• Related to the above, some projects are inca-
pable of taking advantage of various ‘‘parallel
make’’ impementations, because the build does
patently silly things.

Not all projects experience all of these problems.
Those that do experience the problems may do so
intermittently, and dismiss the problems as unex-
plained ‘‘one off’’ quirks. This paper attempts to
bring together a range of symptoms observed over
long practice, and presents a systematic analysis
and solution.

It must be emphasized that this paper does not
suggest that make itself is the problem. This
paper is working from the premise that make does
not have a bug, that make does not have a design
flaw. The problem is not in make at all, but rather
in the input given to make − the way make is
being used.

3. Analysis

Before it is possible to address these seemingly
unrelated problems, it is first necessary to under-
stand what make does and how it does it. It is
then possible to look at the effects recursive make
has on how make behaves.

3.1. Whole Project Make

Make is an expert system. You giv e it a set of
rules for how to construct things, and a target to
be constructed. The rules can be decomposed
into pair-wise ordered dependencies between
files. Make takes the rules and determines how to
build the given target. Once it has determined
how to construct the target, it proceeds to do so.

Make determines how to build the target by con-
structing a directed acyclic graph, the DAG famil-
iar to many Computer Science students. The ver-
tices of this graph are the files in the system, the
edges of this graph are the inter-file dependencies.
The edges of the graph are directed because the
pair-wise dependencies are ordered; resulting in
an acyclic graph − things which look like loops
are resolved by the direction of the edges.

This paper will use a small example project for its
analysis. While the number of files in this exam-
ple is small, there is sufficient complexity to

Peter Miller 5 April 2003 Page 2

AUUGN´97 Recursive Make Considered Harmful

demonstrate all of the above recursive make prob-
lems. First, however, the project is presented in a
non-recursive form.

Project
Makefile
main.c
parse.c
parse.h

The Makefile in this small project looks like
this:

OBJ = main.o parse.o

prog: $(OBJ)
$(CC) -o $@ $(OBJ)

main.o: main.c parse.h
$(CC) -c main.c

parse.o: parse.c parse.h
$(CC) -c parse.c

Some of the implicit rules of make are presented
here explicitly, to assist the reader in converting
the Makefile into its equivalent DAG.

The above Makefile can be drawn as a DAG in
the following form:

prog

parse.hmain.c parse.c

main.o parse.o

This is an acyclic graph because of the arrows
which express the ordering of the relationship
between the files. If there was a circular depen-
dency according to the arrows, it would be an
error.

Note that the object files (.o) are dependent on
the include files (.h) even though it is the source
files (.c) which do the including. This is because
if an include file changes, it is the object files
which are out-of-date, not the source files.

The second part of what make does it to perform a
postorder traversal of the DAG. That is, the
dependencies are visited first. The actual order of
traversal is undefined, but most make implementa-
tions work down the graph from left to right for
edges below the same vertex, and most projects
implicitly rely on this behavior. The last-time-

modified of each file is examined, and higher files
are determined to be out-of-date if any of the
lower files on which they depend are younger.
Where a file is determined to be out-of-date, the
action associated with the relevant graph edge is
performed (in the above example, a compile or a
link).

The use of recursive make affects both phases of
the operation of make: it causes make to construct
an inaccurate DAG, and it forces make to traverse
the DAG in an inappropriate order.

3.2. Recursive Make

To examine the effects of recursive makes, the
above example will be artificially segmented into
two modules, each with its own Makefile, and
a top-level Makefile used to invoke each of the
module Makefiles.

This example is intentionally artificial, and thor-
oughly so. However, all ‘‘modularity’’ of all pro-
jects is artificial, to some extent. Consider: for
many projects, the linker flattens it all out again,
right at the end.

The directory structure is as follows:

Project
Makefile
ant

Makefile
main.c

bee
Makefile
parse.c
parse.h

The top-level Makefile often looks a lot like a
shell script:

MODULES = ant bee

all:
for dir in $(MODULES); do \
(cd $$dir; ${MAKE} all); \

done

The ant/Makefile looks like this:

all: main.o

main.o: main.c ../bee/parse.h
$(CC) -I../bee -c main.c

and the equivalent DAG looks like this:

Peter Miller 5 April 2003 Page 3

AUUGN´97 Recursive Make Considered Harmful

main.o

main.c parse.h

The bee/Makefile looks like this:

OBJ = ../ant/main.o parse.o
all: prog

prog: $(OBJ)
$(CC) -o $@ $(OBJ)

parse.o: parse.c parse.h
$(CC) -c parse.c

and the equivalent DAG looks like this:

prog

parse.h parse.c

parse.omain.o

Take a close look at the DAGs. Notice how nei-
ther is complete − there are vertices and edges
(files and dependencies) missing from both
DAGs. When the entire build is done from the
top level, everything will work.

But what happens when small changes occur?
For example, what would happen if the parse.c
and parse.h files were generated from a
parse.y yacc grammar? This would add the
following lines to the bee/Makefile:

parse.c parse.h: parse.y
$(YACC) -d parse.y
mv y.tab.c parse.c
mv y.tab.h parse.h

And the equivalent DAG changes to look like this:

prog

parse.h parse.c

parse.omain.o

parse.y

This change has a simple effect: if parse.y is
edited, main.o will not be constructed correctly.
This is because the DAG for ant knows about
only some of the dependencies of main.o, and
the DAG for bee knows none of them.

To understand why this happens, it is necessary to
look at the actions make will take from the top
level. Assume that the project is in a self-consis-
tent state. Now edit parse.y in such a way that
the generated parse.h file will have non-trivial
differences. However, when the top-level make is
invoked, first ant and then bee is visited. But
ant/main.o is not recompiled, because
bee/parse.h has not yet been regenerated and
thus does not yet indicate that main.o is out-of-
date. It is not until bee is visited by the recursive
make that parse.c and parse.h are recon-
structed, followed by parse.o. When the pro-
gram is linked main.o and parse.o are non-
trivially incompatible. That is, the program is
wrong.

3.3. Traditional Solutions

There are three traditional fixes for the above
‘‘glitch.’’

3.3.1. Reshuffle

The first is to manually tweak the order of the
modules in the top-level Makefile. But why is
this tweak required at all? Isn’t make supposed to
be an expert system? Is make somehow flawed,
or did something else go wrong?

To answer this question, it is necessary to look,
not at the graphs, but the order of traversal of the
graphs. In order to operate correctly, make needs
to perform a postorder traversal, but in separating
the DAG into two pieces, make has not been
allowed to traverse the graph in the necessary
order − instead the project has dictated an order of

Peter Miller 5 April 2003 Page 4

AUUGN´97 Recursive Make Considered Harmful

traversal. An order which, when you consider the
original graph, is plain wrong. Tweaking the top-
level Makefile corrects the order to one similar
to that which make could have used. Until the
next dependency is added...

Note that ‘‘make -j’’ (parallel build) invalidates
many of the ordering assumptions implicit in the
reshuffle solution, making it useless. And then
there are all of the sub-makes all doing their
builds in parallel, too.

3.3.2. Repetition

The second traditional solution is to make more
than one pass in the top-level Makefile, some-
thing like this:

MODULES = ant bee

all:
for dir in $(MODULES); do \

(cd $$dir; ${MAKE} all); \
done
for dir in $(MODULES); do \
(cd $$dir; ${MAKE} all); \

done

This doubles the length of time it takes to perform
the build. But that is not all: there is no guarantee
that two passes are enough! The upper bound of
the number of passes is not even proportional to
the number of modules, it is instead proportional
to the number of graph edges which cross module
boundaries.

3.3.3. Overkill

We hav e already seen an example of how recur-
sive make can build too little, but another com-
mon problem is to build too much. The third tra-
ditional solution to the above glitch is to add even
more lines to ant/Makefile:

.PHONY: ../bee/parse.h

../bee/parse.h:
cd ../bee; \
make clean; \
make all

This means that whenever main.o is made,
parse.h will always be considered to be out-of-
date. All of bee will always be rebuilt including
parse.h, and so main.o will always be
rebuilt, even if everything was self consistent.

Note that ‘‘make -j’’ (parallel build) invalidates
many of the ordering assumptions implicit in the
overkill solution, making it useless, because all of

the sub-makes are all doing their builds ("clean"
then "all") in parallel, constantly interfering with
each other in non-deterministic ways.

4. Prev ention

The above analysis is based on one simple action:
the DAG was artificially separated into incom-
plete pieces. This separation resulted in all of the
problems familiar to recursive make builds.

Did make get it wrong? No. This is a case of the
ancient GIGO principle: Garbage In, Garbage
Out. Incomplete Makefiles are wrong Make-
files.

To avoid these problems, don’t break the DAG
into pieces; instead, use one Makefile for the
entire project. It is not the recursion itself which
is harmful, it is the crippled Makefiles which
are used in the recursion which are wrong. It is
not a deficiency of make itself that recursive make
is broken, it does the best it can with the flawed
input it is given.

‘‘But, but, but... You can’t do that!’’ I
hear you cry. ‘‘A single Makefile
is too big, it’s unmaintainable, it’s
too hard to write the rules, you’ll run
out of memory, I only want to build
my little bit, the build will take too
long. It’s just not practical.’’

These are valid concerns, and they frequently lead
make users to the conclusion that re-working their
build process does not have any short- or long-
term benefits. This conclusion is based on
ancient, enduring, false assumptions.

The following sections will address each of these
concerns in turn.

4.1. A Single Makefile Is Too Big

If the entire project build description were placed
into a single Makefile this would certainly be
true, however modern make implementations have
include statements. By including a relevant frag-
ment from each module, the total size of the
Makefile and its include files need be no larger
than the total size of the Makefiles in the recur-
sive case.

4.2. A Single Makefile Is Unmaintainable

The complexity of using a single top-level Make-
file which includes a fragment from each mod-
ule is no more complex than in the recursive case.
Because the DAG is not segmented, this form of
Makefile becomes less complex, and thus more

Peter Miller 5 April 2003 Page 5

AUUGN´97 Recursive Make Considered Harmful

maintainable, simply because fewer ‘‘tweaks’’ are
required to keep it working.

Recursive Makefiles have a great deal of repe-
tition. Many projects solve this by using include
files. By using a single Makefile for the pro-
ject, the need for the ‘‘common’’ include files dis-
appears − the single Makefile is the common
part.

4.3. It’s Too Hard To Write The Rules

The only change required is to include the direc-
tory part in filenames in a number of places. This
is because the make is performed from the top-
level directory; the current directory is not the one
in which the file appears. Where the output file is
explicitly stated in a rule, this is not a problem.

GCC allows a -o option in conjunction with the
-c option, and GNU Make knows this. This
results in the implicit compilation rule placing the
output in the correct place. Older and dumber C
compilers, however, may not allow the -o option
with the -c option, and will leave the object file
in the top-level directory (i.e. the wrong direc-
tory). There are three ways for you to fix this: get
GNU Make and GCC, override the built-in rule
with one which does the right thing, or complain
to your vendor.

Also, K&R C compilers will start the double-
quote include path (#include "filename.h")
from the current directory. This will not do what
you want. ANSI C compliant C compilers, how-
ev er, start the double-quote include path from the
directory in which the source file appears; thus,
no source changes are required. If you don’t hav e
an ANSI C compliant C compiler, you should
consider installing GCC on your system as soon
as possible.

4.4. I Only Want To Build My Little Bit

Most of the time, developers are deep within the
project tree and they edit one or two files and then
run make to compile their changes and try them
out. They may do this dozens or hundreds of
times a day. Being forced to do a full project
build every time would be absurd.

Developers always have the option of giving make
a specific target. This is always the case, it’s just
that we usually rely on the default target in the
Makefile in the current directory to shorten the
command line for us. Building ‘‘my little bit’’
can still be done with a whole project Make-
file, simply by using a specific target, and an
alias if the command line is too long.

Is doing a full project build every time so absurd?
If a change made in a module has repercussions in
other modules, because there is a dependency the
developer is unaware of (but the Makefile is
aw are of), isn’t it better that the developer find out
as early as possible? Dependencies like this will
be found, because the DAG is more complete than
in the recursive case.

The developer is rarely a seasoned old salt who
knows every one of the million lines of code in
the product. More likely the developer is a short-
term contractor or a junior. You don’t want impli-
cations like these to blow up after the changes are
integrated with the master source, you want them
to blow up on the developer in some nice safe
sand-box far away from the master source.

If you want to make ‘‘just your little’’ bit because
you are concerned that performing a full project
build will corrupt the project master source, due
to the directory structure used in your project, see
the ‘‘Projects versus Sand-Boxes’’ section below.

4.5. The Build Will Take Too Long

This statement can be made from one of two per-
spectives. First, that a whole project make, even
when everything is up-to-date, inevitably takes a
long time to perform. Secondly, that these
inevitable delays are unacceptable when a devel-
oper wants to quickly compile and link the one
file that they hav e changed.

4.5.1. Project Builds

Consider a hypothetical project with 1000 source
(.c) files, each of which has its calling interface
defined in a corresponding include (.h) file with
defines, type declarations and function prototypes.
These 1000 source files include their own inter-
face definition, plus the interface definitions of
any other module they may call. These 1000
source files are compiled into 1000 object files
which are then linked into an executable program.
This system has some 3000 files which make must
be told about, and be told about the include
dependencies, and also explore the possibility that
implicit rules (.y → .c for example) may be
necessary.

In order to build the DAG, make must ‘‘stat’’
3000 files, plus an additional 2000 files or so,
depending on which implicit rules your make
knows about and your Makefile has left
enabled. On the author’s humble 66MHz i486
this takes about 10 seconds; on native disk on
faster platforms it goes even faster. With NFS

Peter Miller 5 April 2003 Page 6

AUUGN´97 Recursive Make Considered Harmful

over 10MB Ethernet it takes about 10 seconds, no
matter what the platform.

This is an astonishing statistic! Imagine being
able to do a single file compile, out of 1000
source files, in only 10 seconds, plus the time for
the compilation itself.

Breaking the set of files up into 100 modules, and
running it as a recursive make takes about 25 sec-
onds. The repeated process creation for the sub-
ordinate make invocations take quite a long time.

Hang on a minute! On real-world projects with
less than 1000 files, it takes an awful lot longer
than 25 seconds for make to work out that it has
nothing to do. For some projects, doing it in only
25 minutes would be an improvement! The above
result tells us that it is not the number of files
which is slowing us down (that only takes 10 sec-
onds), and it is not the repeated process creation
for the subordinate make invocations (that only
takes another 15 seconds). So just what is taking
so long?

The traditional solutions to the problems intro-
duced by recursive make often increase the num-
ber of subordinate make invocations beyond the
minimum described here; e.g. to perform multiple
repetitions (3.3.2), or to overkill cross-module
dependencies (3.3.3). These can take a long time,
particularly when combined, but do not account
for some of the more spectacular build times;
what else is taking so long?

Complexity of the Makefile is what is taking
so long. This is covered, below, in the Efficient
Makefiles section.

4.5.2. Development Builds

If, as in the 1000 file example, it only takes 10
seconds to figure out which one of the files needs
to be recompiled, there is no serious threat to the
productivity of developers if they do a whole-pro-
ject make as opposed to a module-specific make.
The advantage for the project is that the module-
centric developer is reminded at relevant times
(and only relevant times) that their work has
wider ramifications.

By consistently using C include files which con-
tain accurate interface definitions (including func-
tion prototypes), this will produce compilation
errors in many of the cases which would result in
a defective product. By doing whole-project
builds, developers discover such errors very early
in the development process, and can fix the prob-
lems when they are least expensive.

4.6. You’ll Run Out Of Memory

This is the most interesting response. Once long
ago, on a CPU far, far away, it may even hav e
been true. When Feldman [feld78] first wrote
make it was 1978 and he was using a PDP11.
Unix processes were limited to 64KB of data.

On such a computer, the above project with its
3000 files detailed in the whole-project Make-
file, would probably not allow the DAG and
rule actions to fit in memory.

But we are not using PDP11s any more. The
physical memory of modern computers exceeds
10MB for small computers, and virtual memory
often exceeds 100MB. It is going to take a pro-
ject with hundreds of thousands of source files to
exhaust virtual memory on a small modern com-
puter. As the 1000 source file example takes less
than 100KB of memory (try it, I did) it is unlikely
that any project manageable in a single directory
tree on a single disk will exhaust your computer’s
memory.

4.7. Why Not Fix The DAG In The Modules?

It was shown in the above discussion that the
problem with recursive make is that the DAGs are
incomplete. It follows that by adding the missing
portions, the problems would be resolved without
abandoning the existing recursive make invest-
ment.

• The developer needs to remember to do this.
The problems will not affect the developer of
the module, it will affect the developers of
other modules. There is no trigger to remind
the developer to do this, other than the ire of
fellow dev elopers.

• It is difficult to work out where the changes
need to be made. Potentially every Makefile
in the entire project needs to be examined for
possible modifications. Of course, you can
wait for your fellow dev elopers to find them for
you.

• The include dependencies will be recomputed
unnecessarily, or will be interpreted incorrectly.
This is because make is string based, and thus
‘‘.’’ and ‘‘../ant’’ are two different places, even
when you are in the ant directory. This is of
concern when include dependencies are auto-
matically generated − as they are for all large
projects.

By making sure that each Makefile is com-
plete, you arrive at the point where the Make-
file for at least one module contains the

Peter Miller 5 April 2003 Page 7

AUUGN´97 Recursive Make Considered Harmful

equivalent of a whole-project Makefile (recall
that these modules form a single project and are
thus inter-connected), and there is no need for the
recursion any more.

5. Efficient Makefiles

The central theme of this paper is the semantic
side-effects of artificially separating a Makefile
into the pieces necessary to perform a recursive
make. Howev er, once you have a large number of
Makefiles, the speed at which make can inter-
pret this multitude of files also becomes an issue.

Builds can take ‘‘forever’’ for both these reasons:
the traditional fixes for the separated DAG may be
building too much and your Makefile may be
inefficient.

5.1. Deferred Evaluation

The text in a Makefile must somehow be read
from a text file and understood by make so that
the DAG can be constructed, and the specified
actions attached to the edges. This is all kept in
memory.

The input language for Makefiles is decep-
tively simple. A crucial distinction that often
escapes both novices and experts alike is that
make’s input language is text based, as opposed to
token based, as is the case for C or AWK. Make
does the very least possible to process input lines
and stash them away in memory.

As an example of this, consider the following
assignment:

OBJ = main.o parse.o

Humans read this as the variable OBJ being
assigned two filenames ‘‘main.o’’ and ‘‘parse.o’’.
But make does not see it that way. Instead OBJ
is assigned the string ‘‘main.o parse.o’’. It gets
worse:

SRC = main.c parse.c
OBJ = $(SRC:.c=.o)

In this case humans expect make to assign two
filenames to OBJ, but make actually assigns the
string ‘‘$(SRC:.c=.o)’’. This is because it is a
macro language with deferred evaluation, as
opposed to one with variables and immediate
evaluation.

If this does not seem too problematic, consider
the following Makefile:

SRC = $(shell echo ’Ouch!’ \
1>&2 ; echo *.[cy])

OBJ = \
$(patsubst %.c,%.o,\
$(filter %.c,$(SRC))) \

$(patsubst %.y,%.o,\
$(filter %.y,$(SRC)))

test: $(OBJ)
$(CC) -o $@ $(OBJ)

How many times will the shell command be
executed? Ouch! It will be executed twice just to
construct the DAG, and a further two times if the
rule needs to be executed.

If this shell command does anything complex or
time consuming (and it usually does) it will take
four times longer than you thought.

But it is worth looking at the other portions of that
OBJ macro. Each time it is named, a huge
amount of processing is performed:

• The argument to shell is a single string (all
built-in-functions take a single string argu-
ment). The string is executed in a sub-shell,
and the standard output of this command is
read back in, translating newlines into spaces.
The result is a single string.

• The argument to filter is a single string. This
argument is broken into two strings at the first
comma. These two strings are then each bro-
ken into sub-strings separated by spaces. The
first set are the patterns, the second set are the
filenames. Then, for each of the pattern sub-
strings, if a filename sub-string matches it, that
filename is included in the output. Once all of
the output has been found, it is re-assembled
into a single space-separated string.

• The argument to patsubst is a single string.
This argument is broken into three strings at the
first and second commas. The third string is
then broken into sub-strings separated by
spaces, these are the filenames. Then, for each
of the filenames which match the first string it
is substituted according to the second string. If
a filename does not match, it is passed through
unchanged. Once all of the output has been
generated, it is re-assembled into a single
space-separated string.

Notice how many times those strings are disas-
sembled and re-assembled. Notice how many
ways that happens. This is slow. The example
here names just two files but consider how ineffi-
cient this would be for 1000 files. Doing it four
times becomes decidedly inefficient.

Peter Miller 5 April 2003 Page 8

AUUGN´97 Recursive Make Considered Harmful

If you are using a dumb make that has no substitu-
tions and no built-in functions, this cannot bite
you. But a modern make has lots of built-in func-
tions and can even inv oke shell commands on-the-
fly. The semantics of make’s text manipulation is
such that string manipulation in make is very CPU
intensive, compared to performing the same string
manipulations in C or AWK.

5.2. Immediate Evaluation

Modern make implementations have an immedi-
ate evaluation ‘‘:=’’ assignment operator. The
above example can be re-written as

SRC := $(shell echo ’Ouch!’ \
1>&2 ; echo *.[cy])

OBJ := \
$(patsubst %.c,%.o,\

$(filter %.c,$(SRC))) \
$(patsubst %.y,%.o,\
$(filter %.y,$(SRC)))

test: $(OBJ)
$(CC) -o $@ $(OBJ)

Note that both assignments are immediate evalua-
tion assignments. If the first were not, the shell
command would always be executed twice. If the
second were not, the expensive substitutions
would be performed at least twice and possibly
four times.

As a rule of thumb: always use immediate evalua-
tion assignment unless you knowingly want
deferred evaluation.

5.3. Include Files

Many Makefiles perform the same text pro-
cessing (the filters above, for example) for every
single make run, but the results of the processing
rarely change. Wherever practical, it is more effi-
cient to record the results of the text processing
into a file, and have the Makefile include this
file.

5.4. Dependencies

Don’t be miserly with include files. They are rel-
atively inexpensive to read, compared to
$(shell), so more rather than less doesn’t
greatly affect efficiency.

As an example of this, it is first necessary to
describe a useful feature of GNU Make: once a
Makefile has been read in, if any of its
included files were out-of-date (or do not yet
exist), they are re-built, and then make starts
again, which has the result that make is now

working with up-to-date include files. This fea-
ture can be exploited to obtain automatic include
file dependency tracking for C sources. The obvi-
ous way to implement it, however, has a subtle
flaw.

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.o)

test: $(OBJ)
$(CC) -o $@ $(OBJ)

include dependencies

dependencies: $(SRC)
depend.sh $(CFLAGS) \
$(SRC) > $@

The depend.sh script prints lines of the form

file.o: file.c include.h ...

The most simple implementation of this is to use
GCC, but you will need an equivalent awk script
or C program if you have a different compiler:

#!/bin/sh
gcc -MM -MG "$@"

This implementation of tracking C include depen-
dencies has several serious flaws, but the one
most commonly discovered is that the depen-
dencies file does not, itself, depend on the C
include files. That is, it is not re-built if one of the
include files changes. There is no edge in the
DAG joining the dependencies vertex to any
of the include file vertices. If an include file
changes to include another file (a nested include),
the dependencies will not be recalculated, and
potentially the C file will not be recompiled, and
thus the program will not be re-built correctly.

A classic build-too-little problem, caused by giv-
ing make inadequate information, and thus caus-
ing it to build an inadequate DAG and reach the
wrong conclusion.

The traditional solution is to build too much:

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.o)

test: $(OBJ)
$(CC) -o $@ $(OBJ)

include dependencies

.PHONY: dependencies

dependencies: $(SRC)
depend.sh $(CFLAGS) \
$(SRC) > $@

Now, even if the project is completely up-do-date,
the dependencies will be re-built. For a large

Peter Miller 5 April 2003 Page 9

AUUGN´97 Recursive Make Considered Harmful

project, this is very wasteful, and can be a major
contributor to make taking ‘‘forever’’ to work out
that nothing needs to be done.

There is a second problem, and that is that if any
one of the C files changes, all of the C files will
be re-scanned for include dependencies. This is
as inefficient as having a Makefile which reads

prog: $(SRC)
$(CC) -o $@ $(SRC)

What is needed, in exact analogy to the C case, is
to have an intermediate form. This is usually
given a ‘‘.d’’ suffix. By exploiting the fact that
more than one file may be named in an include
line, there is no need to ‘‘link’’ all of the ‘‘.d’’
files together:

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.o)

test: $(OBJ)
$(CC) -o $@ $(OBJ)

include $(OBJ:.o=.d)

%.d: %.c
depend.sh $(CFLAGS) $* > $@

This has one more thing to fix: just as the object
(.o) files depend on the source files and the
include files, so do the dependency (.d) files.

file.d file.o: file.c include.h

This means tinkering with the depend.sh script
again:

#!/bin/sh
gcc -MM -MG "$@" |
sed -e ’s@ˆ\(.*\)\.o:@\1.d \1.o:@’

This method of determining include file depen-
dencies results in the Makefile including more
files than the original method, but opening files is
less expensive than rebuilding all of the depen-
dencies every time. Typically a developer will
edit one or two files before re-building; this
method will rebuild the exact dependency file
affected (or more than one, if you edited an
include file). On balance, this will use less CPU,
and less time.

In the case of a build where nothing needs to be
done, make will actually do nothing, and will
work this out very quickly.

However, the above technique assumes your pro-
ject fits enitrely within the one directory. For
large projects, this usually isn’t the case. This
means tinkering with the depend.sh script

again:

#!/bin/sh
DIR="$1"
shift 1
case "$DIR" in
"" | ".")
gcc -MM -MG "$@" |
sed -e ’s@ˆ\(.*\)\.o:@\1.d \1.o:@’
;;
*)
gcc -MM -MG "$@" |
sed -e "s@ˆ\(.*\)\.o:@$DIR/\1.d $DIR/\1.o:@"
;;
esac

And the rule needs to change, too, to pass the
directory as the first argument, as the script
expects.

%.d: %.c
depend.sh ‘dirname $*‘ $(CFLAGS) $* > $@

Note that the .d files will be relative to the top
level directory. Writing them so that they can be
used from any lev el is possible, but beyond the
scope of this paper.

5.5. Multiplier

All of the inefficiencies described in this section
compound together. If you do 100 Makefile
interpretations, once for each module, checking
1000 source files can take a very long time − if
the interpretation requires complex processing or
performs unnecessary work, or both. A whole
project make, on the other hand, only needs to
interpret a single Makefile.

6. Projects versus Sand-boxes

The above discussion assumes that a project
resides under a single directory tree, and this is
often the ideal. However, the realities of working
with large software projects often lead to weird
and wonderful directory structures in order to
have dev elopers working on different sections of
the project without taking complete copies and
thereby wasting precious disk space.

It is possible to see the whole-project make pro-
posed here as impractical, because it does not
match the evolved methods of your development
process.

The whole-project make proposed here does have
an effect on development methods: it can give you
cleaner and simpler build environments for your
developers. By using make’s VPATH feature, it is

Peter Miller 5 April 2003 Page 10

AUUGN´97 Recursive Make Considered Harmful

possible to copy only those files you need to edit
into your private work area, often called a sand-
box.

The simplest explanation of what VPATH does is
to make an analogy with the include file search
path specified using −Ipath options to the C com-
piler. This set of options describes where to look
for files, just as VPATH tells make where to look
for files.

By using VPATH, it is possible to ‘‘stack’’ the
sand-box on top of the project master source, so
that files in the sand-box take precedence, but it is
the union of all the files which make uses to per-
form the build.

Master Source
main.c
parse.y

Sand-Box
main.c

variable.c

Combined View
main.c
parse.y

variable.c

In this environment, the sand-box has the same
tree structure as the project master source. This
allows developers to safely change things across
separate modules, e.g. if they are changing a mod-
ule interface. It also allows the sand-box to be
physically separate − perhaps on a different disk,
or under their home directory. It also allows the
project master source to be read-only, if you have
(or would like) a rigorous check-in procedure.

Note: in addition to adding a VPATH line to your
development Makefile, you will also need to
add −I options to the CFLAGS macro, so that the
C compiler uses the same path as make does.
This is simply done with a 3-line Makefile in your
work area − set a macro, set the VPATH, and then
include the Makefile from the project master
source.

6.1. VPATH Semantics

For the above discussion to apply, you need to use
GNU make 3.76 or later. For versions of GNU
Make earlier than 3.76, you will need Paul
Smith’s VPATH+ patch. This may be obtained
from ftp://ftp.wellfleet.com/-
netman/psmith/gmake/.

The POSIX semantics of VPATH are slightly
brain-dead, so many other make implementations
are too limited. You may want to consider
installing GNU Make.

7. The Big Picture

This section brings together all of the preceding
discussion, and presents the example project with
its separate modules, but with a whole-project
Makefile. The directory structure is changed
little from the recursive case, except that the
deeper Makefiles are replaced by module spe-
cific include files:

Project
Makefile
ant

module.mk
main.c

bee
module.mk
parse.y

depend.sh

The Makefile looks like this:

MODULES := ant bee

look for include files in
each of the modules
CFLAGS += $(patsubst %,-I%,\
$(MODULES))

extra libraries if required
LIBS :=

each module will add to this
SRC :=

include the description for
each module
include $(patsubst %,\

%/module.mk,$(MODULES))

determine the object files
OBJ := \
$(patsubst %.c,%.o, \
$(filter %.c,$(SRC))) \

$(patsubst %.y,%.o, \
$(filter %.y,$(SRC)))

link the program
prog: $(OBJ)
$(CC) -o $@ $(OBJ) $(LIBS)

include the C include
dependencies
include $(OBJ:.o=.d)

calculate C include
dependencies
%.d: %.c
depend.sh ‘dirname $*.c‘ $(CFLAGS) $*.c > $@

This looks absurdly large, but it has all of the
common elements in the one place, so that each
of the modules’ make includes may be small.

Peter Miller 5 April 2003 Page 11

AUUGN´97 Recursive Make Considered Harmful

The ant/module.mk file looks like:

SRC += ant/main.c

The bee/module.mk file looks like:

SRC += bee/parse.y
LIBS += -ly

%.c %.h: %.y
$(YACC) -d $*.y
mv y.tab.c $*.c
mv y.tab.h $*.h

Notice that the built-in rules are used for the C
files, but we need special yacc processing to get
the generated .h file.

The savings in this example look irrelevant,
because the top-level Makefile is so large. But
consider if there were 100 modules, each with
only a few non-comment lines, and those specifi-
cally relevant to the module. The savings soon
add up to a total size often less than the recursive
case, without loss of modularity.

The equivalent DAG of the Makefile after all
of the includes looks like this:

prog

parse.hmain.c parse.c

main.d parse.d
main.o parse.o

parse.y

The vertexes and edges for the include file depen-
dency files are also present as these are important
for make to function correctly.

7.1. Side Effects

There are a couple of desirable side-effects of
using a single Makefile.

• The GNU Make -j option, for parallel builds,
works even better than before. It can find even
more unrelated things to do at once, and no longer
has some subtle problems.

• The general make -k option, to continue as far
as possible even in the face of errors, works even
better than before. It can find even more things to

continue with.

8. Literature Survey

How can it be possible that we have been misus-
ing make for 20 years? How can it be possible
that behavior previously ascribed to make’s limi-
tations is in fact a result of misusing it?

The author only started thinking about the ideas
presented in this paper when faced with a number
of ugly build problems on utterly different pro-
jects, but with common symptoms. By stepping
back from the individual projects, and closely
examining the thing they had in common, make, it
became possible to see the larger pattern. Most of
us are too caught up in the minutiae of just getting
the rotten build to work that we don’t hav e time to
spare for the big picture. Especially when the
item in question ‘‘obviously’’ works, and has
done so continuously for the last 20 years.

It is interesting that the problems of recursive
make are rarely mentioned in the very books Unix
programmers rely on for accurate, practical
advice.

8.1. The Original Paper

The original make paper [feld78] contains no ref-
erence to recursive make, let alone any discussion
as to the relative merits of whole project make
over recursive make.

It is hardly surprising that the original paper did
not discuss recursive make, Unix projects at the
time usually did fit into a single directory.

It may be this which set the ‘‘one Makefile in
ev ery directory’’ concept so firmly in the collec-
tive Unix development mind-set.

8.2. GNU Make

The GNU Make manual [stal93] contains several
pages of material concerning recursive make,
however its discussion of the merits or otherwise
of the technique are limited to the brief statement
that

‘‘This technique is useful when you
want to separate makefiles for various
subsystems that compose a larger
system.’’

No mention is made of the problems you may
encounter.

Peter Miller 5 April 2003 Page 12

AUUGN´97 Recursive Make Considered Harmful

8.3. Managing Projects with Make

The Nutshell Make book [talb91] specifically pro-
motes recursive make over whole project make
because

‘‘The cleanest way to build is to put a
separate description file in each
directory, and tie them together
through a master description file that
invokes make recursively. While
cumbersome, the technique is easier
to maintain than a single, enormous
file that covers multiple directories.’’
(p. 65)

This is despite the book’s advice only two para-
graphs earlier that

‘‘make is happiest when you keep all
your files in a single directory.’’ (p.
64)

Yet the book fails to discuss the contradiction in
these two statements, and goes on to describe one
of the traditional ways of treating the symptoms
of incomplete DAGs caused by recursive make.

The book may give us a clue as to why recursive
make has been used in this way for so many years.
Notice how the above quotes confuse the concept
of a directory with the concept of a Makefile.

This paper suggests a simple change to the mind-
set: directory trees, however deep, are places to
store files; Makefiles are places to describe the
relationships between those files, however many.

8.4. BSD Make

The tutorial for BSD Make [debo88] says nothing
at all about recursive make, but it is one of the few
which actually described, however briefly, the
relationship between a Makefile and a DAG (p.
30). There is also a wonderful quote

‘‘If make doesn’t do what you expect
it to, it’s a good chance the make-
file is wrong.’’ (p. 10)

Which is a pithy summary of the thesis of this
paper.

9. Summary

This paper presents a number of related problems,
and demonstrates that they are not inherent limita-
tions of make, as is commonly believed, but are
the result of presenting incorrect information to
make. This is the ancient Garbage In, Garbage
Out principle at work. Because make can only
operate correctly with a complete DAG, the error

is in segmenting the Makefile into incomplete
pieces.

This requires a shift in thinking: directory trees
are simply a place to hold files, Makefiles are a
place to remember relationships between files.
Do not confuse the two because it is as important
to accurately represent the relationships between
files in different directories as it is to represent the
relationships between files in the same directory.
This has the implication that there should be
exactly one Makefile for a project, but the
magnitude of the description can be managed by
using a make include file in each directory to
describe the subset of the project files in that
directory. This is just as modular as having a
Makefile in each directory.

This paper has shown how a project build and a
development build can be equally brief for a
whole-project make. Giv en this parity of time,
the gains provided by accurate dependencies
mean that this process will, in fact, be faster than
the recursive make case, and more accurate.

9.1. Inter-dependent Projects

In organizations with a strong culture of re-use,
implementing whole-project make can present
challenges. Rising to these challenges, however,
may require looking at the bigger picture.

• A module may be shared between two pro-
grams because the programs are closely related.
Clearly, the two programs plus the shared mod-
ule belong to the same project (the module may
be self-contained, but the programs are not).
The dependencies must be explicitly stated, and
changes to the module must result in both pro-
grams being recompiled and re-linked as appro-
priate. Combining them all into a single pro-
ject means that whole-project make can accom-
plish this.

• A module may be shared between two projects
because they must inter-operate. Possibly your
project is bigger than your current directory
structure implies. The dependencies must be
explicitly stated, and changes to the module
must result in both projects being recompiled
and re-linked as appropriate. Combining them
all into a single project means that whole-pro-
ject make can accomplish this.

• It is the normal case to omit the edges between
your project and the operating system or other
installed third party tools. So normal that they
are ignored in the Makefiles in this paper,
and they are ignored in the built-in rules of

Peter Miller 5 April 2003 Page 13

AUUGN´97 Recursive Make Considered Harmful

make programs.

Modules shared between your projects may fall
into a similar category: if they change, you will
deliberately re-build to include their changes,
or quietly include their changes whenever the
next build may happen. In either case, you do
not explicitly state the dependencies, and
whole-project make does not apply.

• Re-use may be better served if the module were
used as a template, and divergence between two
projects is seen as normal. Duplicating the
module in each project allows the dependencies
to be explicitly stated, but requires additional
effort if maintenance is required to the common
portion.

How to structure dependencies in a strong re-use
environment thus becomes an exercise in risk
management. What is the danger that omitting
chunks of the DAG will harm your projects?
How vital is it to rebuild if a module changes?
What are the consequences of not rebuilding auto-
matically? How can you tell when a rebuild is
necessary if the dependencies are not explicitly
stated? What are the consequences of forgetting
to rebuild?

9.2. Return On Inv estment

Some of the techniques presented in this paper
will improve the speed of your builds, even if you
continue to use recursive make. These are not the
focus of this paper, merely a useful detour.

The focus of this paper is that you will get more
accurate builds of your project if you use whole-
project make rather than recursive make.

• The time for make to work out that nothing
needs to be done will not be more, and will
often be less.

• The size and complexity of the total Make-
file input will not be more, and will often be
less.

• The total Makefile input is no less modular
than in the resursive case.

• The difficulty of maintaining the total Make-
file input will not be more, and will often be
less.

The disadvantages of using whole-project make
over recursive make are often un-measured. How
much time is spent figuring out why make did
something unexpected? How much time is spent
figuring out that make did something unexpected?
How much time is spent tinkering with the build

process? These activities are often thought of as
‘‘normal’’ dev elopment overheads.

Building your project is a fundamental activity. If
it is performing poorly, so are development,
debugging and testing. Building your project
needs to be so simple the newest recruit can do it
immediately with only a single page of instruc-
tions. Building your project needs to be so simple
that it rarely needs any dev elopment effort at all.
Is your build process this simple?

10. References

debo88: Adam de Boor (1988). PMake −
A Tutorial. University of California, Berkeley

feld78: Stuart I. Feldman (1978). Make −
A Pro gram for Maintaining Computer Programs.
Bell Laboratories Computing Science Technical
Report 57

stal93: Richard M. Stallman and Roland
McGrath (1993). GNU Make: A Program for
Directing Recompilation. Free Software Founda-
tion, Inc.

talb91: Steve Talbott (1991). Managing
Projects with Make, 2nd Ed. O’Reilly & Associ-
ates, Inc.

11. About the Author

Peter Miller has worked for many years in the
software R&D industry, principally on UNIX sys-
tems. In that time he has written tools such as
Aegis (a software configuration management sys-
tem) and Cook (yet another make-oid), both of
which are freely available on the Internet. Sup-
porting the use of these tools at many Internet
sites provided the insights which led to this paper.

Please visit http://www.canb.auug.org-
.au/˜millerp/ if you would like to look at
some of the author’s free software.

Peter Miller 5 April 2003 Page 14

