
SINGLE APPLICATIONMODEL,
MULTIPLE SYNCHRONIZED VIEWS

Rafah Hosn, Stéphane H. Maes, T.V. Raman

I.B.M
T.J.Watson Research Center, P.O.Box 218,

Yorktown Heights NY 10598
�rhosn,smaes,tvraman�@us.ibm.com

ABSTRACT

User interface is a mean to an end —its primary goal is to
capture user intent and communicate the results of the re-
quested computation. On today’s devices, user interaction
can be achieved through a multiplicity of interaction modal-
ities including speech and visual interfaces.

As we evolve toward an increasingly connected world
where we access and interact with applications throughmul-
tiple devices, it becomes crucial that the various access paths
to the underlying content be synchronized. This synchro-
nization ensures that the user interacts with the same un-
derlying content independent of the interaction modality —
despite the difference in presentation that eachmodalitymight
impose. It also ensures that the effect of user interaction in
any given modality is reflected consistently across all avail-
able modalities.

We describe an application framework that enables tightly
synchronized multimodal user interaction. This framework
derives its power from representing the application model
in a modality-independent manner, and by traversing this
model to produce the various synchronizedmultimodal views.
As the user interaction proceeds, we maintain our current
position in the model and update the application data as de-
termined by user intent, then reflect these updates in the var-
ious views being presented.

We conclude the paper by outlining an example that
demonstrates this tightly synchronized multimodal interac-
tion, and describe some of the future challenges in building
such multimodal frameworks.

1. INTRODUCTION

The availability of a plethora of access devices such as wire-
less PDAs and smart phones has increased the value pro-
posal of synchronized multimodal applications that allow
ubiquitous information access.

Application authors are now faced with the challenge
of delivering interactive content that can be made equally

available to the various access devices. When deployed, the
interaction needs to take advantage of the multiplicity of
modalities that often supplement and complement one an-
other, to provide a richer user experience.

Finally, the various access devices are themselves still
evolving —this means that content that is being presently
deployed will be accessed from devices not yet available.

These requirements are the driving force behind design-
ing an application framework that facilitates the authoring,
maintenance and deployment of multimodal applications.

The framework derives its power by separating applica-
tion content from its presentation, and providing a controller
that manages the interaction with the user while updating
the application data. This follows the model view controller
programming paradigm [KP88, SM00b]. The framework
also leverages evolving XML-based industry standards for
modeling application content, representing user interaction,
as well as for communicating the results of user interaction
among various components of the system [Con00b, Con00a,
RC00, SM00a].

2. APPLICATION FRAMEWORK
ARCHITECTURE

The framework is composed of three main components:

1. Application Model: application content and data.

2. Transformation rules: used to transform modality-
independent content to the modality-specific views.

3. Controller: used to manage the user interaction, to
update the application data and call appropriate pre-
sentation rules.

2.1. Application Model

Applications consist of a data model to be populated via
user interaction, along with a high-level description of the
user interaction to be carried out in populating this data

model. The data model represents the type and structure of
the fields that will be populated during the interaction. User
interaction is composed of modality-independent building
blocks called conversational gestures [Ram97, Ram98]. Ex-
amples of conversational gestures include input fields to be
populated by the user, messages used to convey system re-
sponse, as well as higher level abstractions such as selecting
from a given set of choices.

Thus, authoring an application consists of:

� Defining the type and structure of the data items to be
collected from the user,

� Declaring instances of these structures that will be
populated by the user interaction,

� And authoring the application dialogs by expressing
user interaction as a sequence of possibly nested con-
versational gestures.

The next section describes the various processing steps
involved in synthesizing synchronized multimodal interac-
tion from such applications.

2.2. The Controller

The controller implements the following processing model
to produce tightly synchronized multimodal interaction for
applications authored as described in 2.1:

� The data model definition is processed to produce ap-
propriate data type (or class) definitions. These type
constraints will be used to validate user input.

� The various components of the application state con-
forming to the data model are instantiated.

� The sequence of conversational gestures is represented
as a tree structure and then traversed. As traversal
progresses, user intent is processed to populate the
relevant components of the application state.

� When the application state is updated,modality-specific
transformation rules are applied to render or update
the modality-independent interaction into the specific
views of registered devices.

User input is captured by modality-specific devices and
communicated to the controller. In turn, the controller up-
dates the application state, and updates the views of all the
other devices registered with it. The controller traverses the
sequence of conversational gestures until all requisite com-
ponents of the application state have been populated. The
values collected from the user are validated against the type
constraints specified in the data model. Invalid input results
in the controller traversing appropriate portions of the user

interaction to produce the necessary user interface to allow
the user to correct erroneous input.

Note that the granularity at which synchronization is
done can vary. For example the controller can synchronize
views at event level, at input field level, per conversational
gesture, per groups of conversational gestures or at applica-
tion level.

3. ADVANTAGES

Devices Supporting new devices only requires the author-
ing of the appropriate device-specific presentation rules
that enable the controller to render the interaction com-
ponents.

Synchronization Synchronization in this framework can
be done at various granularities as mentioned in sec-
tion 2.2. In addition, the application author can spec-
ify within the conversational gesture whether a cer-
tain modality should be disabled, or whether this ges-
ture should use a different set of transformation rules.
This specialization step gives application authors the
freedom to choose from tightly or loosely coupled
synchronized views.

Content Re-use By decoupling the presentation from the
application model, content re-use is optimized. Ap-
plication authors need not worry about presentation
when adding new content to their application, and in
turn, content need not be modified when new devices
are added. Furthermore, standard presentation rules
are packaged with the framework; so for applications
that do not require any specialization, the author need
only create the application data model and conversa-
tional gesture.

4. IMPLEMENTATION APPROACH

The framework described in section 2 can be implemented
in an imperative or declarative language.

4.1. Imperative Approach

In an imperative language, conversational gestures can be
implemented as classes that can be grouped together to form
more elaborate composite componentswhich will effectively
describe the application. Transformation rules would then
be implemented as appropriate methods on these classes.

4.2. Declarative Approach

In a declarative language, conversational gestures can be
easily serialized into XML elements. The application data
can be mapped to an XML document compliant with XForms

[Con00b]. Finally for transforming into modality-specific
views, one can use XSLT transformation rules [Con99].

4.3. Current Framework Implementation

The framework described in section 2 has been implemented
using an XML-based declarative language called Interac-
tion Markup Language (iML). iML is consistent with the
current XForms specification. An iML application is made
up of modality independent conversational gestures, grouped
together to describe user interaction. Examples of such ges-
tures are �dialog�, �message�,�input�,�submit� etc...
Browsers register with a proxy that plays the role of the con-
troller as defined in 2.2. iML documents are loaded, inter-
preted and transcoded for each of modality by this proxy.
The proxy interacts with registered browsers through the
Document ObjectModel interface (DOM2) [W3C01] to main-
tain application state and synchronize between modalities.

5. AN AIRLINE RESERVATION EXAMPLE

Figure 1 presents a portion of the traversal tree for a simple
airline reservation system in which a user can sign in by
entering his pin number, then query they system for a list of
available flights matching his itinerary.

The portion of the iML application for the example shown
in figure 1 is:

<?xml version="1.0" encoding="UTF-8"?>
<iml name="travel" version="1.0">
<interaction id = "travel" name = "trip"

model_ref="TravelDetails">
<dialog id="signin" name = "trip/userInfo">
<message>

Welcome to IBM’s flight information system
</message>
<input name="pin">
<caption> Please enter your pin number </caption>

</input>
</dialog>
<dialog id="itinerary" name = "trip/travelInfo"

action=’’submit’’>
<message> Please specify your itinerary </message>
<input name="arrCity">
<caption> Arrival City </caption>

</input>
<input name="depCity">

<caption> Departure City </caption>
</input>
<submit target="http://localhost/cgi-bin/myTravel.pl’’>
</dialog>

</interaction>
</iml>

The user interaction is described using the conversa-
tional gestures shown in figure1, extended of course to re-
flect all the other fields we need as airlines, dates etc... Sup-
pose the application instance data consists of the strings:
$pin, $arrivalCity, $departureCity, $arrivalTime, $departure-
Time, etc...

The controller conducts user interaction by traversing
the nodes of the tree in-order, selecting a set of gestures and
rendering the selected set to the modality specific views.

<interaction>

<dialog>
id="signin"

name="trip/userInfo

<message> <input>
name="pin"

<caption>

welcome to IBM's Flight
Information System

Please enter your
pin number

<message>

<dialog>
id="itinerary"

name="trip/travelInfo

Please specify
you itinerary

<submit>
<input>

name="depCity"

<caption>

Departure City

<input>
name="arrCity"

<caption>

Arrival City

http://localhost/cgi-bin/myTravel.pl

Figure 1: iML interaction tree

The manner in which gestures are selected determines di-
alog strategy. For example, we can traverse the entire tree
and generate the modality specific views thus simulating a
mixed-initiative dialog. Alternatively the controller might
traverse the tree sequentially to produce directed dialog. Note
that the controller can synchronize application state across
the various views independent of the dialog strategies used.

Consider the following application dialog flow: the user
is presented with the welcome message and is asked to lo-
gin. Upon successful login, he is presented the flight reser-
vation dialog. We achieve this by visiting and rendering the
subtree rooted at the signin dialog. Once the input field $pin
number has been acquired and verified, we then proceed to
the itinerary dialog node where we render all nodes in this
subtree. DOM events are sent to the controller for each fo-
cus and input field update. The controller uses these DOM
events to maintain the application state. Once all input fields
have been acquired, the controller submits the instance data
model to the application backend.

6. CONCLUSION

The framework described enables the rapid development
and deployment of synchronized multimodal applications.
Providing a high-level description of the user interaction al-
lows us to define modality-independent conversational ges-
tures that can be appropriately combined to express the ap-
plication’s dialog flow. These gestures are used to populate
the various components in the application data model. The
interaction with the user is conducted through the controller
that maintains and updates the data model. It is also respon-
sible for reflecting these updates on all available views.

There are many challenges in developing such frame-
works, such as

Multi-level Synchronization Devices vary in sizes and shape.
Thus, presenting information in one modality may be
inappropriate in another. For example, selection rules
differs depending on the device in use; for speech, lis-
tening to more than three choices becomes tiresome,
for wireless devices presentingmore than two or threes
choices becomes cumbersome,while listing all choices
on a desktop browser is easier and intuitive. Hence,
synchronization between modalities may happen at
different points in the application model depending
on the type of device it’s being presented on.

Generic Vs Specific Presentation Rules Certain applications
many need to override the default presentation rules.
For example, images are not typically rendered on a
small device, but this needs to be overruled for inter-
active map applications.

Legacy Applications Converting legacy applications that
have been authored without separating presentation

from interaction, for example today’s HTML pages,
requires significant effort.

7. REFERENCES

[Con99] World Wide Web Consortium. Xsl tranforma-
tions. Technical report, W3C, 1999.

[Con00a] World Wide Web Consortium. Multimoal re-
quirements for voice markup language. Techni-
cal report, W3C, 2000.

[Con00b] World Wide Web Consortium. Xforms:the next
generation web forms. Technical report, W3C,
2000.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cook-
book for using the model-view-controller user
interface paradigm in smalltalk-80. Technical re-
port, 1988.

[Ram97] T. V. Raman. Auditory User Interfaces –Toward
The Speaking Computer. Kluwer Academic Pub-
lishers, August 1997.

[Ram98] T. V. Raman. Conversational gestures for direct
manipulation on the audio desktop. In Third An-
nual ACMConference on Assistive Technologies,
pages 51–58, 1998.

[RC00] T.V. Raman R.B. Case, S. H. Maes. Ibm position
paper for the w3c/wap workshop on the web de-
vice independent authoring. In W3C/WAP joint
Workshop on Web Device Independent Author-
ing, October 2000. Bristol.

[SM00a] T.V. Raman S.H. Maes. Ibm position paper for
the w3c/wap workshop on the multi-modal web.
InW3C/WAP joint Workshop on the Multi-modal
Web, September 2000. Hong Kong.

[SM00b] T.V. Raman S.H. Maes. Multi-modal interaction
in the age of information appliance. In ICME
2000, July 2000. New York.

[W3C01] World Wide Web Consortium W3C. Document
object model (dom) level 2. Technical report,
W3C, 2001.

