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Filtering for Texture Classification:
A Comparative Study

Trygve Randen, Member, IEEE, and John Håkon Husøy, Member, IEEE

Abstract—In this paper, we review most major filtering approaches to texture feature extraction and perform a comparative study.
Filtering approaches included are Laws masks, ring/wedge filters, dyadic Gabor filter banks, wavelet transforms, wavelet packets
and wavelet frames, quadrature mirror filters, discrete cosine transform, eigenfilters, optimized Gabor filters, linear predictors, and
optimized finite impulse response filters. The features are computed as the local energy of the filter responses. The effect of the
filtering is highlighted, keeping the local energy function and the classification algorithm identical for most approaches. For reference,
comparisons with two classical nonfiltering approaches, co-occurrence (statistical) and autoregressive (model based) features, are
given. We present a ranking of the tested approaches based on extensive experiments.

Index Terms—Texture classification, image processing, filtering, survey.
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1 INTRODUCTION

LASSIFICATION and segmentation of texture content in
digital images has received considerable attention

during the past decades and numerous approaches have
been presented [1], [2]. Tuceryan and Jain [2] identifies five
major categories of features for texture identification; sta-
tistical, geometrical, structural, model-based, and signal
processing features. It is our impression that the statistical,
model-based, and signal processing techniques are the most
commonly used. The focus of this paper will be on signal
processing approaches.

A common denominator for most signal processing ap-
proaches is that the textured image is submitted to a linear
transform, filter, or filter bank, followed by some energy
measure. Due to the inherent similarities between these
approaches, they will all be referred to as filtering ap-
proaches in this paper.

Although similar in concept, several quite different fil-
tering schemes have been presented in the literature. One of
the pioneering techniques was the approach by Laws [3],
where a bank of band pass filters was applied. Subsequent
works have focused on different filter bank families, differ-
ent subband decompositions, and on optimization of the
filters for texture feature separation. The large number of
different test images applied, along with different system
setups, have made comparison of the filtering approaches
based on published results very difficult.

A few comparisons between texture feature extraction
schemes have been presented. Weszka et al. [4] compared the
Fourier power spectrum, second order gray level statistics,

co-occurrence statistics, and gray level run length statistics
features. They concluded that the co-occurrence features
were the best of these features. The co-occurrence features
were also the best features in a study by Conners and Har-
low [5], when compared with run length difference, gray
level difference density, and power spectrum.

Du Buf et al. [6], on the other hand, reported that several
features had roughly the same performance. They evalu-
ated co-occurrence features, fractal dimension, transform
and filter bank features, dominant local frequency and ori-
entation features, number of gray level extrema per unit
area, and curvilinear integration features. Filtering features
have been compared to the co-occurrence features in some
more studies, with different conclusions. Strand and Taxt
[7] concluded that the co-occurrence features were per-
forming best, while Laws [3], Pietikäinen et al. [8], and
Clausi and Jernigan [9] had the opposite conclusion. Differ-
ent setups, different test images, and different filtering
methods may be the reasons for the contradicting results.
Ojala et al. [10] compared gray-level difference, Laws filter,
covariance, local binary patterns, and complementary fea-
ture pairs. They concluded that the gray level difference
features were performing best and noted a particularly
poor performance of the Laws features.

We note that no extensive evaluation of the various fil-
tering approaches has been performed. The aim of this pa-
per is to provide such a comparative study. The system
setup will be as illustrated in Fig. 1. In order to make the
results comparable, the focus will be on the filtering part
of this system, keeping the other components as similar
as possible. For reference, we also compare the filtering
approaches with two classes of popular, nonfiltering
texture features, model-based and statistical features. In
our experiments, we compare the classification results
for some images with two to 16 textures with borders
ranging from simple to difficult. Special emphasis is put
on making the results realistic, thus the design and test
data sets are disjoint. Interestingly enough, this is far
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from always the case in experiments presented in the lit-
erature on texture classification.

This paper is organized as follows: In Section 2, we give
an introduction to how texture features are extracted by
filtering, along with a review of the different filtering ap-
proaches. In Section 3, we present the experimental results
for the test of the various filtering approaches.

2 FEATURE EXTRACTION APPROACHES AND SYSTEM
SETUP

Before we proceed with the description of the different fil-
tering approaches, we will give a description of the ele-
ments of the system in Fig. 1. Consider the simple synthetic
textured image in Fig. 2a. This image consists of two tex-
tures generated by sinusoids. The left half of the image has
one low-frequency sinusoid and the right half has a high-
frequency sinusoid superimposed on the low frequency one.

For illustrational purposes, consider a horizontal line
through this image, Fig. 2b. The first operation of the sys-
tem illustrated in Fig. 1 is filtering. Assume that the image
is filtered with a filter stopping the low frequency sinusoid
and passing the high frequency sinusoid. A line in the re-
sulting image is illustrated in Fig. 2c. In this case, we see
that the filter response for the left texture has low energy,
and the right texture high. However, we still can not clas-
sify the image by its pixel values alone without significant
classification errors.

Next, a local energy function is applied, consisting of a
nonlinearity (Fig. 2d), basically rectifying1 the filter response
and smoothing (Fig. 2e). The resulting feature image is

1. Rectification here is understood as the operation of transforming nega-
tive amplitudes to the corresponding positive amplitudes.

given in Fig. 2f, and this feature image can be classified
with success. The optional second nonlinearity box in Fig. 1
is not illustrated in this experiment and will be treated later.

In the literature, different choices for all the elements of
Fig. 1 have been reported. In this section, we will review
some of the approaches found in the literature. We do, how-
ever, believe that the most important element is the filter or
filter bank. The scope of this paper is to examine the per-
formance of different choices for the filtering step. In order to
isolate this problem to keep the results comparable, we will
keep the other elements of the setup as similar as possible.

Fig. 1. Experimental setup.

Fig. 2. Illustration of a typical texture feature extraction process with
filters. (a) Two synthetic textures, (b) a horizontal scan line through the
image, (c) filtered, (d) nonlinear transform, (e) smoothing, and (f) the
resulting feature image.



RANDEN AND HUSØY:  FILTERING FOR TEXTURE CLASSIFICATION: A COMPARATIVE STUDY 293

2.1 Local Energy Function and Post Processing
The objective of the local energy function (see Figs. 1 and 2)
is to estimate the energy in the filter output in a local re-
gion. Unfortunately, accurate edge preservation and accu-
rate energy estimation are conflicting goals. For edge local-
ization, high spatial resolution is desired, while for energy
estimation, high spatial frequency resolution is desired.
These desires need to be balanced in the smoothing filter.

Commonly applied smoothing filters in the local energy
function are rectangular [3], [7], [11], [12], [13] and Gaussian
[9], [14], [15], [16], [17], [18], [19]. Experience has taught us
that the Gaussian filter is the far better choice and will con-
sequently be used in our experiments.

How can the size of the smoothing filter be appropriately
determined? If we want to estimate the local energy of low
spatial frequencies, the smoothing filter will have to be large,
while we can allow smaller smoothing filters for higher fre-
quencies. Hence, for a band-limited filter output, we may set
the smoothing filter size as a function of the band center fre-
quency. In our experiments, we compute the radial spatial
center frequency, f0, for all band pass filters, and apply a sepa-
rable Gaussian low-pass filter with the unit pulse response,
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This smoothing function was initially suggested by Jain and
Farrokhnia [20]. For subsampled filter responses, a modifi-
cation of this scheme described by Randen and Husøy [17]
is used.

Another element of the local energy function is the non-
linearity. Commonly applied nonlinearities are the magni-
tude |¼| [3], [8], [9], [12], [14], [15], [16], [21], [22], the
squaring (¼)2 [4], [11], [13], [18], [23], [24], [25], [26], and the
rectified sigmoid, |tanh(a¼)| [7], [17], [19], [20]. The mag-
nitude and squaring nonlinearities are parameter free,
whereas the rectified sigmoid nonlinearity requires tuning
of the saturation parameter, a. This may be an advantage if
it is easy to tune this parameter, or a disadvantage other-
wise. An appropriate saturation parameter is dependent on
the dynamic range of the input image.

The second nonlinearity illustrated in Fig. 1 is not com-
monly used. Unser [27] proposed and tested several combi-
nations of the first and second nonlinearity for texture seg-
mentation. He concluded that squaring in combination
with a logarithmic normalizing nonlinearity was the best
combination. This combination will consequently be used
in most experiments in this paper. Unser did not test the
rectified sigmoid nonlinearity. However, due to the issue of
appropriate saturation parameter determination, this non-
linearity will primarily not be used here.

2.2 Classification
The output from the local energy function is a set of images,
one image per filter. These images are the feature images
that will form the basis for the classification. They are used to

form feature vectors, where each feature image corresponds
to one element in the feature vectors. Each feature vector
corresponds to one or a few image pixels. Classification is the
task of assigning class labels to these feature vectors.

2.2.1 Classification Scheme
Numerous classification approaches are possible and are de-
scribed in several text books, e.g., [28], [29], [30]. The choice of
classifier will not be examined in detail, but classifiers will be
used for illustrating the usefulness of the proposed feature
extraction schemes. Examples of classification schemes re-
ported in the literature are Bayes classifiers assuming multi-
variate Gaussian feature distributions [11], [15], [16], [23],
Fisher transformation [4], [26], nearest neighbor classifiers [7],
[10], [22], classification trees [26], feed-forward neural net-
works [19], and the Learning Vector Quantization scheme [17].
In some cases, even thresholding [8], [18], [25], [31] and sim-
ple extremum picking [14], [32], [33] are applicable as classifi-
cation schemes. Yet, other researchers [6], [9], [12], [20], [21],
[34] report their results using clustering schemes, i.e., unsu-
pervised schemes. It is beyond the scope of this article to test
all these classification schemes. We have chosen to use the
“Type One Learning Vector Quantizing” (LVQ) supervised
classifier of Kohonen [35] for most experiments.

Training and using complex statistical or neural network
classifiers like the LVQ is clearly both time consuming and
puts heavy requirements on training data quality and size.
As will become clear some of the feature extraction schemes
are specially designed to avoid this complexity and use
maximum picking or thresholding instead. Since these
schemes probably will never be used together with a com-
plex statistical or neural network classifier, it would not be
appropriate to test them with such classifiers.

2.2.2 Training Data
In order to have a reliable test of the classification, it is nec-
essary to have separate test and training feature vectors.
Despite this, it is quite common in texture classification to
pick the training feature vectors as a subset of the test vec-
tors [4], [7], [17], [19], [20] or as a not completely disjoint set
[10], [23], [24], [26]. This practice has major implications on
the performance of the classification system and yields re-
sults not attainable in a realistic environment. Farrokhnia
[19] suggests using 6 percent of the feature vectors for clas-
sifier training in the supervised experiments. To illustrate
the effect of this choice, experiments with the texture image
of Fig. 11a were conducted. In these experiments, the classi-
fiers were trained using two different approaches:

1)�Using 6 percent of the test feature vectors, i.e., about
800 vectors per class, for training the LVQ.

2)�Picking training and test data from nonintersecting re-
gions of the source texture images, without using any
edge specific information. About 800 feature vectors
were used for training also in this case.

Otherwise, the experiments were identical. A total of 46
feature extraction techniques were applied (see Tables 3 and
4 for details). The average results were 4.9 percent classifi-
cation error when using a subset of the test features as
training data and 17.6 percent error when using separate
training data. As expected, we see a significant increase in
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classification error, primarily due to increased edge inaccu-
racy, when using separate training data. In only 12 of the 53
cases the classification error was less than doubled when
moving to a separate training data set.

Overoptimistic results, however, is not the only problem
with a nonseparate training set. The relative performance
degradation was very dependent on the method. For ex-
ample, with co-occurrence features [36] the error rate was
7.6 percent with a nonseparate training set and 9.7 percent
with separate. The results with a dyadic Gabor filter bank
[20] were 3.8 percent and 14.5 percent, respectively. Hence,
if we were comparing these methods based on nonseparate
training data, the conclusion on their relative performances
would be the opposite of the conclusion when comparing
them with the more realistic (separate) training data case.

2.3 Heuristically Designed Filter Banks
The basic assumption for most filtering approaches is that
the energy distribution in the frequency domain identifies a
texture. Hence, if the frequency spectrum of the textured
image is decomposed into a sufficient number of subbands,
the spectral energy signatures of different textures are dif-
ferent. Utilizing this, several filter bank approaches and
related schemes have been proposed. Some major ap-
proaches are discussed here. Parameter choices for the ap-
proaches with respect to the experiments are also discussed.

2.3.1 Laws Filter Masks
One of the first approaches to filtering for texture identifi-
cation was presented in the work by Laws [3]. Laws sug-
gested using a bank of separable filters, five in each dimen-
sion, i.e., a total of 25 filters. The filter masks suggested
were h1 = [1, 4, 6, 4, 1], h2 = [-1, -2, 0, 4, 1], h3 = [-1, 0, 2, 0,
-1], h4 = [-1, 2, 0, -2, 1], and h5 = [1, -4, 6, -4, 1]. The re-
sulting 25 subbands are illustrated in Fig. 3b, with the one-
dimensional equivalent in Fig. 3a.

2.3.2 Ring and Wedge Filters
Assuming that texture is discriminated by spatial frequency
and orientation, Coggins and Jain [12] suggested using
seven dyadically spaced ring filters and four wedge-shaped
orientation filters for feature extraction. The filters are de-
signed in the two-dimensional spatial frequency domain,

giving the amplitude responses of Fig. 4. The rings and
wedges have Gaussian cross sections.

2.3.3 Dyadic Gabor Filter Bank
Jain and Farrokhnia [20] suggested a bank of Gabor filters,
i.e., Gaussian shaped band-pass filters, with dyadic cover-
age of the radial spatial frequency range and multiple ori-
entations. This choice was justified by the relation to mod-
els for the early vision of mammals as well as the filters’
joint optimum resolution in time and frequency.

The basic even-symmetric Gabor filter oriented at 0o is a
band-pass filter with unit pulse response
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where f0 is the radial center frequency. Other orientations
are obtained by rotating the reference coordinate system, (k, l).
This filter has an infinite unit pulse response, but in practi-
cal experiments it is approximated by a finite length filter.

Five radial frequencies are suggested [20] (for images
of size 256 � 256) and four orientations. In the tests pre-
sented here, the same number of filters are used, irre-
spective of the size of the input image. The discrete ra-
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and orientations 0o, 45o, 90o, and 135o are used (see Fig. 5).

2.3.4 Wavelet Transform, Packets, and Frames
A transform like the discrete wavelet transform corre-
sponds to a critically sampled filter bank with particular
filter parameters and subband decompositions [37]. Wave-
let transform approaches are consequently filter bank ap-
proaches. The application of the discrete wavelet transform,
and variants thereof for texture identification has received
considerable attention in the literature. The use for texture
analysis was pioneered by Mallat [38], who applied a
“standard” wavelet transform for feature extraction, i.e.,
critically decimated with dyadic subband structure. The
work by Chang and Kuo [24], however, indicates that tex-
ture features are most prevalent in intermediate frequency

Fig. 3. (a) Subband split of the one-dimensional equivalent separable Laws [3] filter masks (normalized). (b) The resulting two-dimensional fre-
quency band split. The axis labels are vertical and horizontal normalized spatial frequencies.
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bands, thus that the octave band decomposition is not op-
timal. The trend probably therefore seems to be a concen-
tration on the wavelet packet transform [21], [24], [26],
which basically is the wavelet transform with subband de-
compositions not restricted to be dyadic.

The discrete wavelet transform and the discrete wavelet
packet transform are critically sampled multi rate filter
banks. However, critically sampled filter banks typically
imply inaccurate texture edge localization [17]. The use of
over-complete wavelet representations, i.e., wavelet frames
[11], is a remedy for alleviating this problem. Improved

results with over-complete representations have been re-
ported [11], [17], see also Section 3.

Evaluation of absolutely all approaches to texture analy-
sis using wavelet representations is beyond the scope of the
experiments. The attention will be restricted to the Dau-
bechies family of wavelets [39]. The subband decomposi-
tions illustrated in Fig. 6 will be evaluated. Using both full
rate and critical subsampling and these decompositions,
both wavelet transform, wavelet packet, and wavelet frame
techniques are covered. The responses of the applied filters
classes are illustrated in Fig. 7.

2.3.5 Discrete Cosine Transform (DCT)
The discrete cosine transform is popular in image coding
due to good performance and fast implementation [40]. It
is, for instance, the backbone in the JPEG compression
standard. Ng et al. [41] suggest using a 3 � 3 DCT for tex-
ture feature extraction. They furthermore suggest excluding
the low-frequency component of the DCT, thus yielding
eight features.

Image transforms are equivalent to critically sampled
filter banks. The above approach is tested in a filter bank
implementation, without critical sampling. The filter bank
is separable, determined by the one-dimensional filter
masks h1 = [1, 1, 1], h2 = [1, 0, -1], h3 = [1, -2, 1]. The ampli-
tude responses are illustrated in Fig. 8.

2.3.6 Quadrature Mirror Filters (QMF)
Another class of filters, quadrature mirror filters (QMF), were
used for texture analysis by Randen and Husøy [17]. This is,
like the class of wavelet filters, a very broad class of filters,
incorporating both infinite impulse response (IIR) and finite

Fig. 4. Amplitude responses of the ring and wedge filters [12]. The axis labels are normalized spatial frequencies.

Fig. 5. The frequency response of the dyadic bank of Gabor filters. The
maximum amplitude response over all filters is plotted. Each filter is
represented by one center-symmetric pair of lobes in the illustration.
The axes are in normalized spatial frequencies.
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impulse response (FIR) filters. In this study, we will analyze a
few filters applied to the subband decompositions in Fig. 6.
The filters to be analyzed are the 8, 16, and 32-tap FIR filters
“f8a,” “f16b,” and “f32d” [42] and the IIR filters “F_2_1_09”
and “F_2_1_smpl” [43]. The two-channel amplitude responses
(with a dB axis) for these filters are given in Fig. 9. The two IIR
filters require a low number of multiplications and additions
[43], yielding low computational complexity in the feature
extraction. For “F_2_1_smpl” all multiplications are by powers
of two and can be implemented by bit-wise shifts. Like with
the wavelet filters, these filters will be tested both at critical
rate (subsampled) and full rate (not subsampled).

2.3.7 Tree-Structured Gabor Filter Bank
Motivated by the success of the dyadic Gabor filter bank [20]
and the arbitrary QMF decompositions [17], we suggested

using nondyadic Gabor filter banks [17]. In this approach,
the filter bank is decomposed with the decompositions of
Fig. 6. The subband filter of Section 2.3.3 is used with only
minor modifications [17].

2.4 Optimized Filters and Filter Banks
The heuristically designed filter banks2 have been reported
to yield successful results in numerous cases. However,
most of the heuristically designed filter banks imply large
numbers of features. Consequently, the computational
complexities are typically large in both feature extraction
and classification. It may, therefore, be desirable to attempt
to optimize the filtering operation. Optimizing filters or
filter banks may yield low feature vector dimensionality,

2. By a heuristically designed filter bank is meant a filter bank that is not
optimized by some explicit criterion related to the texture classification.

Fig. 6. Subband decompositions evaluated in this paper. Decompositions (a-c) are dyadic (octave band), while (d) is not. The axes are the same
as in Fig. 3b.

Fig. 7. The two-channel filter bank dB amplitude responses for the wavelet filters (a) “Daubechies 4,” (b) “Daubechies 6,” (c) “Daubechies 8,”
(d) “Daubechies 10,” and their respective unit pulse responses (e)-(h).

Fig. 8. (a) One-dimensional equivalent of the amplitude response of the filter bank corresponding to a separable 3 � 3 Discrete Cosine Transform
(normalized). (b) The resulting two-dimensional frequency band split. The axis labels are vertical and horizontal normalized spatial frequencies.
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maximized feature separation, and in some cases more
simple classifiers.

As will be evident from the presentation, some of the
optimization approaches are inherently restricted to two-
texture problems, while others are applicable also to multi-
texture problems. Furthermore, some of the approaches
yield one filter, while others yield banks of filters. However,
common for all approaches is that the filters are optimized
with respect to some criterion related to the texture classifi-
cation task.

2.4.1 Eigenfilter
An early attempt at optimizing the filter function for
texture feature extraction was presented in 1983 by Ade
[13]. Ade suggests using eigenfilters derived from the
autocorrelation functions of the textures. From each tex-
ture, the 9 � 9 matrix
Rxx
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where xm,n is the image and E[¼] is the expectation operator
is estimated and the eigenvectors and eigenvalues are com-
puted. Each 9 � 1 eigenvector corresponds thus to a 3 � 3
filter mask. Then, the image is filtered with the 3 � 3 filters
corresponding to the principal eigenvectors. One set of fil-
ters is designed for each texture and all filters are applied to
the composite image.

In the original approach, the filters corresponding to the
eigenvalues summing up to at least 99 percent of the total
eigenvalue sum were selected. This leads to a significant
number of filters, typically in the range 5 to 9 per texture.
Since the test images in Fig. 11 have up to 16 textures, a
considerable number of filters would be constructed. This
implies very significant computational complexities for the
feature extraction and classification systems. Therefore, the
total number of filters was restricted to maximally 50/NT
per texture, where NT is the number of textures. Hence, the
maximum number of filters for any image is 50.

The filters designed by this technique are not band-pass
filters. Consequently, using a smoothing operator depend-
ent on the center frequency, as suggested in Section 2.1, is

not appropriate. Hence, a fixed Gaussian smoothing filter
with ss = 8 is used. This selection of filter size was based on
numerous experiments.

It is worth noting that this approach is optimized with
respect to image representation—it is closely related to the
Karhunen-Loeve transform [40]. However, optimized rep-
resentation does not imply optimized discrimination.

2.4.2 Prediction Error Filter
Yet another filtering scheme optimized with respect to the
representation is the linear prediction error filtering scheme
of Randen and Husøy [32], [33]. The filters are designed to
give the least squared prediction error for each texture, thus
the number of filters is the same as the number of textures.
A linear predictor in image processing is an equation of the
form
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predicting a pixel value on the basis of neighboring pixels
in the neighborhood 1 using the coefficients q(k, l). The
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The least squares error (LSE) predictor for a texture will be
the predictor yielding maximum similarity between the
texture and the predictor output, in the squared error sense.

Generally, the LSE predictors for different textures are
different. Hence, for any texture the predictor yielding
minimum mean error energy will be the predictor designed
with respect to that texture. This may be used for classifica-
tion, since the predictor yielding minimum local prediction
error energy most likely corresponds to the underlying
texture. In the experiments reported here, the smoothing
filter is a Gaussian low pass filter with bandwidth given by
ss = 8, just like with the eigenfilters. Classification is ob-
tained by assigning each pixel to the class corresponding to
the minimum prediction error. In the experiments herein,
the region of support of the predictor is circular with radius
four pixels.

Like the eigenfilter approach, this approach is only op-
timized with respect to image representation.

2.4.3 Optimized Representation Gabor Filter Bank
In order to tune the filters to the characteristics of the un-
derlying textures, Bovik et al. [14] suggested using narrow-
band Gabor filters. The filters’ central frequencies are tuned

Fig. 9. The two-channel dB amplitude responses for the quadrature mirror filters (QMF) (a) “f8a,” (b) “f16b,” (c) “f32d,” (d) “F_2_1_09,” and
(e) “F_2_1_smpl” and their respective low-pass prototype unit pulse responses (f)-(j).
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to the spectral peaks of the textures. That is, for each texture
the central frequencies of the corresponding Gabor filters
are selected as the frequencies corresponding to the princi-
pal spectral peaks of the texture. Bovik et al. suggest a
manual procedure for determining the spectral peaks.
However, this procedure should easily be extendable to be
fully automatic [14]. The manual procedure was imple-
mented, selecting two filters per texture. The smoothing
filter was tuned with respect to the center frequency of the
selected filter.

We note that also this approach is optimized with respect
to image representation, thus giving no guarantee for good
feature separation.

2.4.4 Optimized Two-Class Gabor Filter
A Gabor filter design scheme yielding filters optimized
with respect to feature separation has been suggested by
Dunn and Higgins [44]. The scheme is designed to classify
problems involving two textures. The Gabor filter center
frequency giving features yielding minimum modeled clas-
sification error is designed. The optimal center frequency is
determined by evaluating a large range of center frequen-
cies (using the Fourier transform) and selecting the best
candidate. The user is required to select the bandwidth, s, of
the filter, see (2). Gabor filters with s-values 2, 4, 8, and 16 were
evaluated. These s-values are suggested by Weldon et al. [15].
Furthermore, as suggested by Weldon et al., smoothing
Gaussian filters with spatial widths given by ss = 2s (see Sec-
tion 2.1) were applied.

Inherently, this filter design approach is based on classi-
fication of the feature image by a threshold classifier. Such a
simple classifier is less complex to design and use than clas-
sifiers like the LVQ. Furthermore, a large parameter size
typically requires more training data vectors. Hence since a
threshold classifier has only one parameter, the needed
amount of training data is relatively low.

2.4.5 Optimized Multi-Class Gabor Filter Bank
The previous approach to optimized filter design was lim-
ited to two-texture problems with one filter. Furthermore,
the filter bandwidth had to be determined heuristically.
These issues are addressed by Weldon et al. [15], [16]. In
their approach, a bank of Gabor filters is designed for
problems involving an arbitrary number of textures. The
user is only required to select the number of filters to be
used. The approach is based on the feature extraction model
developed by Dunn and Higgins [44]. However, a modified
criterion function, incorporating the effect of the filter size on
the edge accuracy, is used. This approach furthermore allows
more than two textures and more than one filter.

The filter size is determined by evaluating a number of
filter sizes and selecting the best candidate. Different filter
sizes are allowed for the different filters in the filter bank.
The s and ss values, (2) and (1), suggested by Weldon et al.
[15] were also used in these experiments, that is, s = 2, 4, 8,
16, and ss = 2s.

2.4.6 Optimized Two-Texture FIR Filters
The Gabor filter is a band pass filter with a Gaussian
shaped pass band. The only free parameters of such a filter
are the radial center frequency, the orientation, and the

bandwidths. By allowing more free parameters, it should be
possible to adapt the filter better to the underlying textures.
Mahalanobis and Singh [31] suggest a two-texture design
approach yielding FIR filters with maximum ratio between
the extracted mean feature values. That is, filters maximiz-
ing the criterion

JMS
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,

are designed, where mvi
 is the mean feature value for tex-

ture i.
Randen and Husøy [18] show that this criterion is insuf-

ficient for some texture pairs, and develop an optimization
scheme allowing other criterion functions. Optimizations
with respect to the criteria
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where s vi

2  is the feature variance, are shown to yield better

results. The criterion JU was originally suggested by Unser

[23] for designing optimized texture transforms and JF was
originally suggested by Fisher [29] for linear classifier de-
sign.

For JU , a closed form solution was presented, while for JF
an approximate closed form solution and a gradient search
solution are presented. Only the closed form solutions will
be evaluated here.

Inherently, all these filters assume a threshold classifier,
as was also the case with the optimized Gabor filters. Like
the eigenfilters, filters designed by these approaches are in
general not band pass filters, thus we use a Gaussian
smoothing filter with ss = 8.

The size of the filter mask is also of importance for the
results. A symmetric region of support is intuitively prefer-
ential for accurate edge localization. In order to have a sym-
metric region of support, an odd sized mask is required. Pre-
liminary experiments indicate that mask sizes 5 � 5 and up
are adequate for the given resolution. A few texture pairs
have required larger than 5 � 5 mask sizes. In the experi-
ments, filters with mask sizes 7 � 7 are optimized.

2.4.7 Optimized FIR Filter Bank
The FIR two-texture optimization with respect to the crite-
rion functions JMS and JU have been extended to multiple-
texture multiple-filter solutions [18]. The solution is based
on one filter separating one group of textures from another,
and then subsequent filters separating the textures within a
group, hierarchically.

Note that this technique is also designed with thresh-
olding as the inherent classifier, making the classifier design
and application computationally simple. The same
smoothing is used with these filters as with the two-texture
filters.
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2.4.8 Back Propagation Designed Mask
Neural networks have proved to be of practical utility in nu-
merous applications and have also been applied to texture
feature extraction. Jain and Karu [45] suggest extracting fea-
tures and classifying using a feed forward neural network
trained by the back-propagation rule. In this approach, the
input nodes cover a neighborhood of image pixels. The inputs
are weighted and summed in the nodes in the network, thus
parts of the network may be formulated as a filter or filter
bank. Furthermore, the application of the nonlinearities in the
network resembles the nonlinearity in the local energy func-
tion. Hence, this approach is very similar to filtering ap-
proaches. The scheme may be modified to utilize the effect of
the smoothing operation in the local energy function [45].
However, this generalization is not used in the experiments
due to implementational and complexity issues.

A three-layer neural network is used and the neural
network parameters (numbers of nodes in the layers, etc.)
used are the same as the ones used in [45]. Since this ap-
proach has filtering, nonlinearity, smoothing, and classifi-
cation all in one, the standard setup (Fig. 1) is not used for
these operations. Furthermore a 5 � 5 median filter is ap-
plied as proposed [45] to the resulting class map to reduce
speckle-like classification errors.

2.5 Classical Nonfiltering Approaches
The focus of this paper is on filtering and local energy esti-
mation for texture recognition. An extensive coverage of
non-filtering approaches will not be given. However, due to
the fundamental importance and wide range of applica-
tions of some nonfiltering approaches, a brief review is nec-
essary. Furthermore, to provide a reference framework with
techniques familiar to readers who are not familiar with
filtering, comparisons with two classical nonfiltering ap-
proaches are provided. Results with co-occurrence (statisti-
cal) and autoregressive (model-based) features are pre-
sented in Section 3.

2.5.1 Statistical Features
In statistical approaches, the textures are described by sta-
tistical measures. One commonly applied and referenced
method is the co-occurrence method, introduced by
Haralick [36]. In the co-occurrence method, the relative fre-
quencies of gray level pairs of pixels at certain relative dis-
placements are computed and stored in a matrix, the co-
occurrence matrix P. For G gray levels in the image, P will be
of size G � G. If G is large, the number of pixel pairs con-
tributing to each element, pij, in P will be low, and the sta-
tistical significance poor. On the other hand, if the number
of gray levels is low, much of the texture information may
be lost in the image quantization. Ohanian and Dubes [22]
reported that G = 8 was an appropriate choice for subi-
mages of size 32 � 32. These parameters have been chosen
for the experiments in this paper. Since the task is super-
vised segmentation, overlapping subimages will be used.
As suggested by other researchers [7], [22], the nearest
neighbor pairs at orientations 0o, 45o, 90o, and 135o will be
used in the experiments.

Haralick [36] suggests 14 features describing the two-
dimensional probability density function pij. Four features that

are commonly used [7], [22], [36] have been selected. These
are the Angular Second Moment (ASM), Contrast (Con), Cor-
relation (Cor), and Entropy (Ent). They are given by
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where mx, my, sx, and sy are the means and the standard de-
viations corresponding to the distributions
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We extract each of these four features at each of the four
different orientations, thus the feature vectors are 16-
dimensional.

2.5.2 Model-Based Features
Another major class of texture features is the model-based
features. With model-based features, some image model is
assumed, its parameters estimated for a subimage, and the
model parameters, or attributes derived from them, are
used as features.

As an example of this class of features, the multi-
resolution autoregressive (AR) features introduced by Mao
and Jain [34] are used. The autoregressive model for an im-
age x(m, n) can be expressed as

x m n k l x m k n l m n
k l

, , , , ,
,

0 5 1 6 1 6 0 5
1 5

= - - +
³
Êq s ee

1

   (11)

where 1 is the model neighborhood, q(k, l) are the model
parameters, and see(m, n) the model error term. The feature
vectors are composed by all the model parameters from the
three neighborhoods in Fig. 10. Furthermore, the error en-

Fig. 10. Neighborhood sets 11, 12, and 13 for the AR features. Each
1i corresponds to one relative pixel position.



300 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  21,  NO.  4,  APRIL  1999

ergy, se, is used as a feature. The parameters are deter-
mined in 25 � 25 pixel overlapping windows. In order to
overcome problems with too high feature variances, the
features are smoothed. The smoothing filter applied in the
experiments here was a Gaussian low-pass filter with ss = 3,
see (1).

3 EXPERIMENTS

In our experiments, we evaluate the different feature ex-
traction approaches by performing supervised segmenta-
tion on several test images of varying complexity, Figs. 11

and 12. As the feature quality criterion, we use the classifi-
cation error, “the most common measure of performance
for a recognition system” [22].

All filter optimization and classifier training are per-
formed on 256 � 256 subimages of the texture images that
are not part of the test images. For the classifier design,
about 16,000 features were extracted from these 256 � 256
images individually and used for training.

The local energy function used is the one described in
Section 2.1, i.e., squaring, Gaussian smoothing, and taking
the logarithm. For subsampled filters, the modification of

Fig. 11. Composite texture images used in our experiments.
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Randen and Husøy [17] is used. For filters not having a
narrow pass-band, Gaussian low-pass filters with ss = 8
(empirically determined) are used. As described in Section
2.2, the classifier is LVQ [35] in most cases. However, with
the optimized Gabor filters [44], Section 2.4.4 and the opti-
mized FIR filters, Sections 2.4.6 and 2.4.7, thresholding is
used. With the optimized prediction error filters, Section
2.4.2, the image is classified by assigning the class label as-
sociated with the minimum error predictor. The classifiers
and energy functions applied are summarized in Table 1.
The method identifiers used in this and subsequent tables
are defined in Table 2.

A normalization by a global normalization factor is ap-
plied for each feature. The global normalization factors are
determined as the factors yielding unity variance for the
image in Fig. 11a.

The presentation of the results is divided in three parts.
First, in Section 3.1 a discussion of the test images is given.
Next, in Section 3.2, heuristically designed, i.e., fixed filter
banks are considered. In Section 3.3, critically sampled filter
banks (including wavelet transform/packets) are discussed.
Finally, in Section 3.4, results with the optimized filters and
filter banks are discussed.

3.1 Test Images
We have used three different and commonly used texture
sources for our test images; the Brodatz album [47], the MIT
Vision Texture database [48], and the MeasTex Image Tex-
ture Database [49]. Consequently, we use images captured

using different equipment and under different conditions.
We have selected textures with a granularity which we have
judged to be appropriate for the sizes of the test images.
Since we train and test on separate portions of the texture
images we have selected texture images which are visually
stationary, i.e., their visual properties do not change too
much over the image.

All textures are gray-scale images when presented to the
methods. The dynamic ranges are represented by eight bits
per sample. In order to make the textures nondiscriminable
for the local mean gray level or local variance, the images
have each separately been globally histogram equalized
prior to being used.

We have tested simple two-texture images, complicated
five-texture images, images with simple borders but as
many as ten textures, and images with very complex bor-
ders and as many as 16 textures. Since all feature extractors
extract features using some window or neighborhood, the
complexity and shape of the borders is of major interest.
The ability to cope with edges is of course an important
feature and the test images should be appropriate in this
respect.

The 256 � 256 5-texture images are:

�� Fig. 11a, consisting of D77, D84, D55, D53, and D24
from [47],

�� Fig. 11b, consisting of Fabric.0000, Fabric.0017, Flow-
ers.0002, Leaves.0006, and Leaves.0013 from [48],

�� Fig. 11c, consisting of Fabric.0009, Fabric.0016, Fab-
ric.0019, Flowers.0005, and Food.0005 from [48],

�� Fig. 11d, consisting of Fabric.0007, Fabric.0009,
Leaves.0003, Misc.0002, and Sand.0000 from [48], and

�� Fig. 11e, consisting of Asphalt.0000, Concrete.0001,
Grass.0002, Misc.0002, and Rock.0005 from [49].

The 512 � 512 16-texture images are:

�� Fig. 11f, consisting of D3, D4, D5, D6, D9, D21, D24,
D29, D32, D33, D54, D55, D57, D68, D77, and D84
from [47] and

�� Fig. 11g, consisting of Fabric.0007, Fabric.0009, Fab-
ric.0013, Fabric.0014, Fabric.0016, Flowers.0005,
Food.0005, Grass.0001, Leaves.0003, Leaves.0008,
Leaves.0012, Metal.0000, Metal.0002, Misc.0002,
Sand.0000, and Stone.0004 from [48].

The 256 � 640 10-texture images are:

�� Fig. 11h, consisting of D4, D9, D19, D21, D24, D28,
D29, D36, D37, and D38 from [47] and

�� Fig. 11i, consisting of Fabric.0009, Fabric.0016, Fab-
ric.0019, Flowers.0005, Food.0005, Leaves.0003,
Misc.0000, Misc.0002, Sand.0000, and Stone.0004 from
[48].

Finally, we also have some 256 � 512 texture pair images
which are:

�� Fig. 12a, consisting of D4 and D84 from [47],
�� Fig. 12b, consisting of D12 and D17 from [47], and
�� Fig. 12c, consisting of D5 and D92 from [47].

We note that although Fig. 12c looks simple, it was very dif-
ficult to discriminate for several of the approaches.

Fig. 12. The 256 � 512 two-texture images used in our experiments.
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From the experiments, we will see the need for a wide
variety of test images when assessing the relative perform-
ances of texture classification methods. If we look at for
example the optimal representation Gabor filter bank, it is

the best optimized approach for Fig. 11a and fails com-
pletely for Fig. 11b.

Another observation is that the texture pair of Fig. 12c is
rather difficult to discriminate for several approaches. It

TABLE 1
DETAILS ON THE SMOOTHING FILTERS AND CLASSIFIERS USED IN THE EXPERIMENTS

For the smoothing filters, the ss-parameter of a Gaussian low-pass filter is given. Any f0 is the subband center frequency and s is the parameter of a Gabor filter
in the filter bank.

TABLE 2
SUMMARY OF IDENTIFIERS USED TO IDENTIFY THE METHODS IN THE RESULT TABLES



RANDEN AND HUSØY:  FILTERING FOR TEXTURE CLASSIFICATION: A COMPARATIVE STUDY 303

must be kept in mind that 50 percent error would be at-
tained by randomly picking a class assignment. Hence, 15-
25 percent error is significant.

We also observe that the 10-texture image of Fig. 11i
gives close to random performance for all approaches (ran-
dom picking of a class assignment would yield 10 percent
chance of correct class assignment, i.e., 90 percent error). In
essence, none of the approaches are giving any useful re-
sults for this image. We do not have any explanation of the
poor performance on this image, but include it to stimulate
research on how to improve texture classification methods.

3.2 Experiments with the Heuristically Designed
Filter Banks

The results for most of the heuristically designed feature
extractors are presented in Table 3. For the wavelet frame
experiments only one variant is listed in Table 3. The same
is the case with the QMF and arbitrarily decomposed Gabor
filter bank experiments. More detailed results from these
filter classes are given in Tables 4 and 5.

In order to get an increased insight from the experi-
ments, there are multiple “dimensions” in the results. Some
approaches allow variations of the filter responses and sub-
band decomposition, some are fixed on filter response,
some on decomposition, and some on both. The number
of feature images also vary much, from eight to 40 fea-
tures, having considerable impact on the computational com-
plexity and memory requirements. The complexity, subband

decomposition, and filter response issues will be discussed
later, but first an overall discussion of the results is given.

3.2.1 Overall Discussion
No clear hierarchy of classification performances is ob-
served in Table 3. For some images, some approaches are
good, for different images, others are good. No methods are
consistently poor, but many methods have examples with
poor relative performance.

Considering Table 3, evidently the “old” Laws and
ring/wedge filters are not very good. They never stand out
as clear winners, and particularly the Laws approach fail
completely in the case of the simple image in Fig. 12a. One
possible explanation might be that the frequency spectra of
the filters are too smooth, giving too poor separation of the
frequency components of the textures. Furthermore, we
also have an indication that the basic assumption behind
the ring/wedge filters that frequency and orientation can
be treated separately is not true.

The commonly referred dyadic Gabor filter bank show
rather poor performance for some of the test images,
Figs. 11b, 11d, 11f and Fig. 12c. Similar comments apply to
the arbitrary Gabor filter bank. Compared to the best ap-
proaches, also these approaches have smooth frequency
responses of the channel filters. This leads to poor separa-
tion of the frequency content in the image, which might
account for the moderate performance.

TABLE 3
CLASSIFICATION ERRORS FOR DIFFERENT HEURISTICALLY DESIGNED TEXTURE FEATURE EXTRACTORS

TABLE 4
CLASSIFICATION ERRORS FOR DIFFERENT WAVELET, GABOR,

AND QMF FULL RATE FILTER BANKS

For details on the individual experiments, see Table 8. The numbers represent
the mean classification errors over all test images.

TABLE 5
CLASSIFICATION ERRORS FOR DIFFERENT

WAVELET TRANSFORMS/PACKETS AND CRITICALLY
DECIMATED QMF FILTERS

For details on the individual experiments, see Table 9. The numbers represent
the mean classification errors over all test images.
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The DCT approach did also show poor relative perform-
ance for a few images, Figs. 11a and 11d and Fig. 12a. On
the overall results, however, it was only beaten by the best
QMF and wavelet approaches with 40-dimensional feature
spaces. Compared to the 8-feature DCT approach this is
remarkable.

With the QMF and wavelet approaches, only the best de-
composition/filter response combinations are shown in
Table 3. More results are given in Table 4. The QMF and
wavelet frame approaches are among the best for most im-
ages. Examples of the classification results for one QMF
filter bank (f16b (d)) are shown in Fig. 13. These results cor-
respond to the textures in Figs. 11a and 11f. The QMF f16b
(d) is the overall best approach.

Also the popular co-occurrence method gives rather
poor performance, giving actually the worst results in three
cases, Figs. 11d and 11e and Fig. 12b. The AR features were
slightly better for most images, but they were giving the
worst results in two cases, Figs. 11a and 11h. The best fil-
tering approaches yield classifications that are as good as or
better than the co-occurrence and AR methods in practi-
cally all cases.

To summarize, Laws and ring/wedge filters were never
found to perform best, while each of the other approaches
had at least one test image where it performed best. The
best average results and the highest number of best cases
is observed for the QMF filter bank f16b (d). Hence, we
may conclude that f16b (d) is the winner and the Laws
and ring/wedge filters are the losers. If computational
complexity is an important issue however, the DCT ap-
proach is the winner due to its good overall performance
and low complexity. We may also conclude that the
popular Gabor filter and co-occurrence features are clearly
not superior.

Finally, remember that it is a quite common practice in
texture classification to pick training data from the test
features as discussed in Section 2.2.2. This practice has
not been used in these experiments. In order to simulate
a real application environment, all classifier training has
been performed on features from separate subimages.
Furthermore, no edge or texture border specific training
data are picked. These issues must be kept in mind when
comparing the results with previously published results.
For a further analysis of the impact of this choice, see
Section 2.2.

3.2.2 Filter Response
Table 4 gives the numbers for the performances of the
wavelet frames, QMF, and arbitrary Gabor filter banks.
Careful examination of the results tells us that there are
consistent trends with respect to the performances of vari-
ous filter responses. The most clear conclusion from the
results is that the performance of the Gabor filters is inferior
to the wavelet and QMF filter classes. This despite the fact
that the Gabor filter is the preferred filter in several works
[9], [14], [15], [16], [20], [25], [44], [50].

Next, we may also see an overall detoriation in the re-
sults when we move from shorter Daubechies wavelet
bases to longer bases. Note that the numbers in the identifi-
ers for the QMF and wavelet filters represent number of
coefficients in the prototype low-pass filter. A high number
typically corresponds to a wide impulse response but a
crisp frequency response, and vice versa, see Figs. 9 and 7.

What do we learn from these experiments? Intuitively,
we would desire a filter with a compact representation in
the spatial domain (due to edge effects), and good fre-
quency response crispness and high stop band attenuation
(in order to discriminate the textures’ spectra). However,
the poor performance of the Gabor filter (which has optimal
joint resolution in the spatial and the frequency domains)
indicates that optimal joint resolution is no ultimate goal.

Can we then tell whether spatial resolution is more im-
portant than frequency resolution, or vice versa? The QMF
filters have significantly crisper frequency responses than
the Gabor filters, but also wider impulse responses. Since
these filters give significantly better results than the Gabor
filters, we may conclude that crisp frequency response is an
important issue in texture classification. On the other hand,
the variations in the different QMF filter crispnesses do not
have a major performance impact.

As we can see, the QMF filters are overall giving better
results than the Daubechies wavelets. This is probably at-
tributable to the significant asymmetric unit pulse re-
sponses of the Daubechies wavelets. A nonsymmetric filter
response will lead to a consistent edge detection error and
higher classification errors. As we might expect, the Dau-
bechies wavelets also give more error the longer the im-
pulse response, i.e., the larger the asymmetry.

3.2.3 Subband Decomposition
Except for the images where the methods fail (like Fig. 11i),
the choice of subband decomposition is very significant.
The clear winner of the decompositions is the decomposi-
tion of Fig. 6d. This is the overall best decomposition for all
filters. This is also the decomposition with most subbands,
i.e., highest feature dimensionality: 40.

It might seem like the expected conclusion that the de-
composition with most features yields the best results. This
would indeed be the case if we did not use separate test
and training datasets. However, it should be kept in mind
that more features makes it more difficult for the classifier
to generalize, thus more features actually presents an in-
creased challenge to the classification.

Decompositions of Figs. 6a-6c are all dyadic, also known
as wavelet decompositions. The more levels of the dy-
adic decomposition, the more the low frequency band is

Fig. 13. Classification results for the QMF “f16b” filter bank for the tex-
tures in Figs. 11a and 11f.
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split—and the more features. Since we may expect tex-
tures to have their characteristic features in higher frequency
bands, we would not expect that increasing the depth of the
decomposition would increase the performance. This is in-
deed seen on the results as well, where we can see a consis-
tent lack of improvement when the depth is increased. In fact
as the depth becomes as high as five (Fig. 6c), the perform-
ance drops consistently probably due to the mentioned prob-
lems for the classifier to generalize.

3.2.4 Complexity Issues
When comparing the results, complexity issues should also
be kept in mind. Most of the filtering approaches are signifi-
cantly less computationally complex than the co-occurrence
and AR methods. For the filtering approaches, filtering and
classification are the main contributors to the total complex-
ity of the system. The DCT approach has low filtering com-
plexity (short separable filter masks with fast implementa-
tion schemes) and low feature dimensionality, generally
yielding relatively low classifier complexity. The Laws, ring
and wedge, Gabor, and some of the wavelet and QMF filter
banks have high filtering complexities, whereas the IIR QMF
filters have low complexities. Low feature count yields low
classification complexity. In our setup the complexity contri-
bution from the LVQ classifier and the feature extractors
were of the same order. Hence classifier complexity is an im-
portant component in the overall complexity.

3.2.5 Summary
From Tables 3 and 4, no single feature extraction method is
consistently superior. The main insight we may learn from
this, is that when designing a filter bank for a particular
texture problem, it is advantageous to test multiple ap-
proaches. We do, however, see patterns in the results that
may exclude several of the approaches from such a study.

An inherent assumption made when filter banks are
used for texture feature extraction is that the spectral sig-
natures of different textures are different,3 see Section 2. For
problems with many textures or textures with subtle spectral

3. Analog discussions do also apply to other representation spaces than
the frequency space.

differences, it is reasonable to assume that the spectral de-
composition has a significant effect. This intuitive idea is
supported by the experiments, and we see great importance
of the filter classes and decompositions for difficult two-
texture images and for most multi-texture images.

In many circumstances, the effort in testing numerous
filter banks may be too large. For these applications, one
filter bank should be recommended. This filter bank should
have a reasonably good performance in most cases. One
such choice is the bank with the QMF filter f16b using the
sub-band decomposition in Fig. 6d. However, in several
cases this 40-dimensional filter bank may be too computa-
tionally complex. A viable alternative with significantly
lower feature dimensionality is the DCT approach, which
we would recommend if lower complexity is required.

3.3 Experiments with Critically Sampled Filter Banks
Considering the full rate QMF and wavelet frame ap-
proaches, Table 4, relative to the results from the critically

TABLE 6
CLASSIFICATION ERRORS FOR DIFFERENT OPTIMIZED TEXTURE FEATURE EXTRACTORS

See Table 2 for an overview of the method descriptions.

Fig. 14. (a) Texture pair D8-D84 [47] and (b) supervised segmentation
by the back propagation designed mask [45].
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sampled QMF and wavelet transform/packet approaches,
Table 5, a few conclusions may be drawn. First of all, the
filter responses for the critically sampled QMF filters, the
wavelet transforms and the wavelet packets are simply
subsampled versions of the ones obtained by the full rate or
over-complete counterparts. We see that, as expected, using
decimated filter outputs overall degrades the results. The
major cause is worse edge resolution due to the sub-
sampling. However, the significantly decreased computational
complexity [33] should be kept in mind.

Furthermore, we see that the trend in the results is the
same with the critically sampled approaches as it was with
the full rate approaches. That is, image, filter class, and de-
composition combinations that yielded poor relative results
in full rate do also yield poor results when critically sam-
pled, and vice versa.

3.4 Experiments with Optimized Filters
The results from the optimized filtering experiments are pre-
sented in Table 6. Some of the optimization approaches are
only applicable for two-texture cases, and the multi-texture
table entries for these are marked by “N/A.”

Despite the fact that the training times for the back propa-
gation designed masks were significant, the results were not
useful for any of the images in this test. Useful results were
only obtained for some very simple texture pairs. One ex-
ample is shown in Fig. 14. Improvements using a modified
scheme have been reported [45], but has for implementa-
tional and complexity reasons not been tested here.

The eigenfilter approach is the overall best optimized ap-
proach. However, it must be remembered that the number
of filters is relatively high with this approach. For two-
texture images, the number of filters is typically in the
range 16-18, while for multi-texture images it is in the range
36-50. Hence, the argument of low complexity versus the
heuristic filters is not applicable. For reference we have
made a list of number of features for the different feature
extraction approaches in Table 7.

The optimized representation Gabor filter bank was the
only optimized filtering approach doing a really good job
on the image of Fig. 11a. However, for most of the other
test images, it is only giving similar, and even in some
cases (Figs. 11b, 11e, and 11g and Fig. 12c) significantly
worse results than the best optimized filtering approaches,
despite high feature dimensionality. We assume that the
problems experienced with this approach are due to the
fact that it is optimized with respect to representation, not
discrimination.

The best result for the image in Fig. 11f in this study was
obtained with the prediction error filters. However, despite
these nice results, a remarkably poor result was obtained
with the image of Fig. 12c and relatively poor results with
the images of Figs. 11a and 11e. Hence, this approach is not
very robust.

It is interesting to observe the performances of the three
approaches optimizing filters with respect to representa-
tion, i.e., the eigenfilters, the optimized representation
Gabor filter bank and the prediction error filters. For the
latter two we do observe some cases with breakdown in
performance, particularly for Fig. 11e and Fig. 12c, most
likely corresponding to cases where textures are too similar
for discrimination. Close examination of the confidence
matrices4 for these cases support this assumption, i.e., a few
of the textures were severely misclassified while other tex-
tures had nice classification results. When the eigenfilter
approach do not have the same problems with breakdowns,
this might be due to the high number of features and the
versatile classification algorithm which compensate for the
problems.

The results from the optimized Gabor filters and optimized
Gabor filter banks are fairly good, but the results indicate
problems with similar textures—especially when using
only one or a few filters. In particular, the results for the

4. The confidence matrix shows how the misclassification is distributed
among the textures in the image, i.e., how many percent of texture 1 was
classified as belonging to texture class 2, etc.

TABLE 7
FEATURE DIMENSIONALITY FOR THE DIFFERENT FEATURE EXTRACTION SCHEMES
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images of Figs. 11a and 12c are noted. On the other hand,
the optimized Gabor filters yield one-dimensional feature
spaces for two textures. Hence, class labels may be assigned
to the feature values by thresholding. Thresholding has a
very low computational complexity compared to classifiers
like the LVQ. Furthermore, training the threshold classifier
means determining one scalar parameter per feature image.
This is clearly a simpler task than training the parameters
of, say, the LVQ classifier.

Of the optimized FIR filters, the clearly best and most ver-
satile criterion is the JU criterion, while the JMS gives poorer
performance for most images. The JF criterion does not give
any improvement over the JU criterion for any of the texture
pairs and it is not applicable to multi-texture images. For
two-texture images, the JU-optimized filters are the winners
of this study. Overall, they outperform all other approaches,

optimized and heuristic, irrespective of number of features
for texture-pair images. Since these approaches yield only
one feature image that may be classified by thresholding,
they are also among the least computational demanding for
two-texture images.

Even for multi-texture images, filters optimized with re-
spect to JU are among the best optimized filters, except for
the image in Fig. 11e. Compared to the heuristic approaches
on the other hand, the performance for the multi-textured
images is not very good. However we note that these
schemes are designed to utilize thresholding as the classifi-
cation scheme also for multi-texture images, and that the
filtering and classification scheme for multi-texture im-
ages is hierarchical. Hence, the computational complexity
is very low which, in some cases, may make this approach
viable still.

TABLE 8
DETAILED SUMMARY OF THE CLASSIFICATION ERRORS FOR DIFFERENT WAVELET, GABOR, AND QMF FULL RATE FILTER BANKS

The averages are summarized in Table 4.
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4 CONCLUSIONS

We have seen how various filtering approaches yield differ-
ent results for different images. No single approach did
perform best or very close to the best for all images, thus no
single approach may be selected as the clear “winner” of
this study. In addition to the classification error issue is the
issue of computational complexity. If we take the classifica-
tion error and computational complexity into consideration,
the following conclusions may be drawn:

�� Much of the focus in the filter optimization ap-
proaches is on a low feature count, thus many of
the optimization schemes yield nice computational
characteristics. For multi-textured images this how-
ever comes at the cost of an increase in the classifi-
cation error, in our experiments about 3.5 percent
average increase from the best heuristic to the best
optimized approach.

�� For two-textured images, the conclusion is very clear.
The best results were obtained with the filters opti-
mized with respect to JU or JF. Since none of the other

approaches are less computationally complex they
should be the clear choice.

�� For multi-textured images the most robust and overall
best performance was achieved with the f16b (d) filter
bank—having an overall error rate of only 26 percent.
This is however a high-complexity 40-dimensional
feature extractor which puts high requirements on the
system. If the complexity can be allowed however,
this is the system of choice.

�� Otherwise the choice is between the f16b (d) critically
sampled filter bank and the full rate DCT approach.
They both have about 29 percent overall error. The f16b
(d) critically sampled filter bank will lead to only 1/8
the number of feature samples compared to the DCT
approach, thus classification will be less complex.

�� If even these systems are too complex, the next
choice will be an optimized approach. The best op-
timized approach—the Eigenfilter approach—is not
an option. Its feature dimensionality, and thus its com-
plexity, is in the range of the f16b (d) full rate filter

TABLE 9
DETAILED SUMMARY OF THE CLASSIFICATION ERRORS FOR DIFFERENT WAVELET TRANSFORMS/PACKETS AND

CRITICALLY DECIMATED QMF FILTERS

The averages are summarized in Table 5.
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bank. This leaves us with the second best optimized
approach, the JU-optimized filter bank, or the fourth
best approach, the prediction error filters. These ap-
proaches have overall error rates of 31.0 percent and
33.3 percent, respectively. Both of these approaches
are characterized by a generally low feature dimen-
sionality and extraordinary simple classification
schemes. The third-best scheme, the 10-filter opti-
mized Gabor filter bank is outperformed by the DCT
approach regarding both complexity and overall er-
ror rate.

�� Based on the overall impression from the experiments
reported here, we would not give a general recom-
mendation to use any of the other approaches. We do
however recognize that for specific images some of
the other techniques give the best results. It might
therefore be advisable to test the Gabor filter bank,
AR, and co-occurrence features in the case that they
may perform well for the specific dataset at hand.
However the co-occurrence and AR schemes do have
a significant computational complexity, which should
be kept in mind.

In addition to these recommendations, we would also like
to make some comments regarding system setups that are
commonly presented in the literature.

�� The commonly used dyadic decomposition [7], [9],
[19], [20], [38] (also known as the wavelet transform
decomposition or octave band decomposition) is gen-
erally not superior to other decompositions. Our re-
sults indicate that it is actually inferior to the decom-
position of Fig. 6d, supporting similar findings of
Chang and Kuo [24]. Furthermore, we see that in-
creasing the depth (i.e., adding more subbands) of the
dyadic decomposition do not improve the classifica-
tion results.

�� The very popular Gabor filter [7], [9], [14], [15], [16],
[19], [20], [22], [25] is outperformed in most cases.
Hence, there is no evidence that the Gabor filter
should be preferred.

�� Experiments without true separate test and training
datasets can not be trusted. We have presented ex-
periments showing that testing with partially the
same data that were used in training the classifier
leads us to the opposite conclusion than we got when
we tested with separate test and training data.

5 DIRECTIONS FOR FUTURE RESEARCH

The experiments reported in this paper have taken weeks,
maybe months of computer time on powerful modern
workstations. Of course, the software is prototype software,
made with an emphasis on short development time and
high flexibility. Yet the time consumption is an indication of
the problem with several of the approaches—they are very
computationally complex. The computer hardware indus-
try is giving us some relief on this issue, but there’s a long
way yet until the most complex approaches reach what a
user would deem as acceptable interactive performance on
a standard desktop computer system.

A very useful direction for future research is therefore
the development of powerful texture measures that can

be extracted and classified with a low computational
complexity. The experiments reported here show that the
current least complex schemes do not yet have quite the
same nice overall classification rate as the best of the
more complex ones. In our opinion this is the most im-
portant direction for future research in texture analysis.

Finally, we would also like to point the readers attention
towards the implicit directions for future research pre-
sented in the conclusions of Section 4.
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