
A Condensed Representation to Find Frequent Patterns

Artur Bykowski Christophe Rigotti
Laboratoire d’Ingénierie des Systèmes d’Information

INSA Lyon, Bâtiment 501
F-69621 Villeurbanne Cedex, France

Tel. +33 4 72 43 60 49, Fax. +33 4 72 43 87 13

Artur.Bykowski,Christophe.Rigotti@insa-lyon.fr

ABSTRACT
Given a large set of data, a common data mining problem is
to extract the frequent patterns occurring in this set. The
idea presented in this paper is to extract a condensed rep-
resentation of the frequent patterns called disjunction-free
sets, instead of extracting the whole frequent pattern col-
lection. We show that this condensed representation can
be used to regenerate all frequent patterns and their exact
frequencies. Moreover, this regeneration can be performed
without any access to the original data. Practical experi-
ments show that this representation can be extracted very
efficiently even in difficult cases. We compared it with an-
other representation of frequent patterns previously investi-
gated in the literature called frequent closed sets. In nearly
all experiments we have run, the disjunction-free sets have
been extracted much more efficiently than frequent closed
sets.

1. INTRODUCTION
An important data mining problem is to extract efficiently
the frequent patterns occurring in a large data set. In this
paper, we consider the extraction of frequent patterns called
frequent itemsets. This problem can be shortly stated as
follows, in the context of a common data mining task : basket
analysis. A collection of purchases of customers is encoded
in a table, where each row represents a customer basket (i.e.,
a set of items purchased together). A toy example, with four
items A,B,C and D is depicted in Table 1, using ’x’ to denote
the occurrences of the items in the baskets. Let r be such a
table and X be a set of items. The support of X in r denoted
Sup(r, X) is the number of baskets in r containing all items
in X. Then the frequent itemset mining problem is to find
all pairs 〈X, Sup(r,X)〉 such that Sup(r,X) exceeds a given
threshold.

Example 1. If we consider the baskets represented in Ta-
ble 1 and a support threshold value of 2, then the problem is
to find the pairs 〈∅, 8〉, 〈{A}, 4〉, 〈{A, B}, 2〉, 〈{A, B, C}, 2〉,

Table 1: Baskets of customers
A B C D

x x x
x x x

x x
x

x
x x

x x
x x x

〈{A, C}, 2〉, 〈{A, D}, 2〉, 〈{B}, 4〉, 〈{B, C}, 4〉, 〈{C}, 5〉 and
〈{D}, 4〉.

In practice the number of rows and the number of items are
rather large and näıve solutions can not be used. Several
different efficient techniques have been proposed to perform
this task on large data sets (e.g., [2, 11, 6]). An alternative
promising approach has been developed in [9, 5], based on
the following idea: instead of mining all frequent patterns,
it is sufficient to extract a particular subset of the frequent
pattern collection, such that we can regenerate from this
subset the whole collection. In this paper, this subset will
be called a condensed representation1 of the frequent pattern
collection.

Ideally, a condensed representation is much smaller than
the original collection and can be extracted more efficiently,
while allowing a quick regeneration of all frequent patterns
without costly scan of the original data and new support
counting.

To our knowledge, two condensed representations have been
proposed in the literature for frequent itemsets: closed sets
[9] and δ-free sets [5]. The first framework allows regenerat-
ing exactly the frequencies of the patterns, while the second
leads to an approximation of these frequencies.

In this paper, we propose a new condensed representation
called disjunction-free sets. Informally, this representation
is based on the following idea. Let A, B, C and D represent
items in a table r. If the rule A ∧ B ⇒ C ∨D holds in the
data (i.e., if A and B occur in a row then C or D also occur
in this row) then we can determine the support of item-

1We borrow this term from [7].

set {A, B, C, D} using the supports of {A, B}, {A, B, C}
and {A, B, D}. This can be done according to the follow-
ing observation: the sum of the supports of {A, B, C} and
{A, B, D} is equal to the sum of the supports of {A, B}
and {A, B, C, D}. So if we know the supports of {A, B},
{A, B, C} and {A, B, D}, then we can avoid the extrac-
tion and the support counting of {A, B, C, D}. In our ter-
minology, {A, B, C, D} will be a non-disjunction-free set.
In this paper, we formalize a representation based on the
disjunction-free sets and show that it can be used to regen-
erate all frequent itemsets and their exact supports.

Next, we show that the frequent disjunction-free sets are an
interesting condensed representation of the frequent closed
sets, which have already been shown to be an interesting
condensed representation of the frequent itemsets [9]. We
compare the extraction of the frequent disjunction-free sets
using breadth-first and depth-first strategies to the corre-
sponding state-of-the-art algorithms proposed for closed sets.
In nearly all experiments, the extraction of the frequent
disjunction-free sets is significantly more efficient.

We also consider experimentally the generation of all fre-
quent closed sets from the collection of frequent disjunction-
free sets. Since the latter collection contains the information
about the supports of all frequent itemsets the generation
of all frequent closed sets may be performed without access-
ing the original data. In this case, the experiments show
that it is in general much more efficient to begin with an ex-
traction of the disjunction-free sets and then to generate the
frequent closed sets, instead of extracting directly the closed
sets. Moreover, we always measure a gain of efficiency in the
most difficult cases (i.e. at the lowest support thresholds).

Organization of the paper. In the next section we provide
preliminary definitions used in this paper. In Section 3, we
define the notion of disjunction-free set, and show that these
sets can be used as a condensed representation for frequent
itemsets. In Section 4, we present both breadth-first and
depth-first algorithms to extract the frequent disjunction-
free sets. In Section 5, we present practical experiments
showing that frequent disjunction-free sets can be extracted
efficiently and in most cases more efficiently than frequent
closed sets. Finally, we conclude with a summary.

2. PRELIMINARY DEFINITIONS
When possible, we follow the notational conventions and
definitions of [7, 8]. In particular, we use multisets to rep-
resent collections of rows and given such a multiset r, we
write t ∈ r to denote that a particular row t belongs to r.

Definition 1. (binary database) Let R be a set of sym-
bols called items. A row is a subset of R. A binary database
r over R is a multiset of rows.

Definition 2. (support and frequent itemsets) We
note M(r, X) = {t ∈ r|X ⊆ t} the multiset of rows matched
by the itemset X and Sup(r,X) = |M(r,X)| the support of
X in r, i.e., the number of rows matched by X. Let σ
be a support threshold (σ is an absolute number of rows),
Freq(r, σ) = {X|X ⊆ R and Sup(r, X) ≥ σ} is the set of
all σ-frequent itemsets in r.

In this paper, to keep the presentation concise, we consider
the following notational conventions to handle a generalized
form of itemsets.

Definition 3. (generalized itemsets) Let R be a set of
symbols. The symbols in R will be called positive items,
and for each positive item A ∈ R we consider a negative
item noted A. Gen(R) = R ∪ {A|A ∈ R} is the set of
generalized items based on R and a subset X of Gen(R) is
called a generalized itemset based on R. We denote the items
appearing positively and negatively as follows, Pos(X) =
{A ∈ R|A ∈ X} and Neg(X) = {A ∈ R|A ∈ X}.

We generalize in this context M and Sup.

Definition 4. (generalized support) Let r be a binary
database over R and X be a generalized itemset based on R.
Then GenM(r,X) = {t ∈ r|Pos(X) ⊆ t ∧Neg(X) ∩ t = ∅}
is the multiset of rows matched by X and the support of X
in r is GenSup(r, X) = |GenM(r, X)|.

Intuitively, the rows matched by a generalized itemset X are
the rows that contain all positive items in X but none of the
items appearing under a negative form in X. For example,
in Table 1 the generalized support of {A, B, C} is 2.

3. DISJUNCTION-FREE SETS
The notion of disjunction-free set will be based on a kind of
dependency between the items called disjunctive rules and
defined as follows.

Definition 5. (simple disjunctive rule) Let X be a set
of (positive) items, a simple disjunctive rule based on X is
an expression of the form Y ⇒ A ∨ B, where Y ⊂ X and
A, B ∈ X \ Y . Notice that A and B are single items and
also that a rule of the form Y ⇒ A ∨A is a particular case
of simple disjunctive rule. Let r be a binary database over
R where X ⊆ R. The simple disjunctive rule Y ⇒ A ∨ B
is valid in r if and only if M(r, Y) = {t ∈ r|t ∈ M(r, Y ∪
{A}) ∨ t ∈M(r, Y ∪ {B})}.

Now, we state three lemmas. The first is a key implemen-
tation property for the mining of disjunction-free sets (see
Section 4.2.2), and the two others are fundamentals needed
in the rest of the paper.

The proof of the first lemma is immediate using the defini-
tions 4 and 5.

Lemma 1. Let r be a binary database over R, and Y
be a set of items Y ⊆ R. Let A and B be single items in
R, and A, B be their corresponding negative items. Then
Y ⇒ A∨B is a valid simple disjunctive rule in r if and only
if GenSup(r, Y ∪ {A, B}) = 0.

The proofs of the two following lemmas are also immediate
and thus omitted.

Lemma 2. Let r be a binary database over R, and X, Y
be itemsets, X, Y ⊆ R, such that Y ⊆ X. Let A, B ∈ Y . If
Y \ {A, B} ⇒ A ∨B is valid in r then X \ {A, B} ⇒ A∨B
is also valid in r.

Lemma 3. Let r be a binary database over R, X ⊆ R
be an itemset, and A,B be items in X. Then there exists
Y ⊂ X such that Y ⇒ A ∨ B is a valid simple disjunctive
rule based on X, if and only if Sup(r,X) = Sup(r,X\{A})+
Sup(r, X \ {B})− Sup(r,X \ {A, B}).

We define now the notion of disjunction-free sets, and show
that the collection of frequent disjunction-free sets together
with a collection of itemsets called the negative border (de-
fined below), are sufficient to determine the support of any
frequent itemset.

Definition 6. (disjunction-free set) Let r be a binary
database over R, X ⊆ R is a disjunction-free set w.r.t. r if
and only if there is no valid simple disjunctive rule based on
X in r. The set of all disjunction-free sets w.r.t. r is noted
DFree(r).

Definition 7. (frequent disjunction-free set) Let r be
a binary database over a set of items R, FreqDFree(r, σ) =
Freq(r, σ) ∩DFree(r) denotes the set of all σ-frequent
disjunction-free sets w.r.t. r.

We define the concept of negative border [8] for σ-frequent
disjunction-free sets. Informally, the negative border con-
sists of the smallest itemsets (w.r.t. set inclusion) that are
not σ-frequent disjunction-free sets.

Definition 8. (negative border) Let r be a binary data-
base over a set of items R, the negative border of
FreqDFree(r, σ) is noted Bd−(r, σ) and is defined as fol-
lows: Bd−(r, σ) = {X|X ⊆ R, X 6∈ FreqDFree(r, σ) ∧
(∀Y ⊂ X, Y ∈ FreqDFree(r, σ))}.

We can now state the correctness of the representation of the
frequent itemsets by means of the frequent disjunction-free
sets and the negative border.

Theorem 1. Let r be a binary database over a set of
items R, X ⊆ R, and σ be an absolute support threshold. Us-
ing the sets in FreqDFree(r, σ) and in Bd−(r, σ), together
with their supports, we can determine if X is σ-frequent,
and when X is σ-frequent we can also determine Sup(r,X).

Proof. Let X be any itemset. The proof is made by
induction on |X|.

Hypothesis. Suppose that for every itemset W ⊂ X, we can
determine if W is σ-frequent, and when W is σ-frequent we
can also determine Sup(r,W).

If X ∈ FreqDFree(r, σ) then we have trivially the claim.

If X 6∈ FreqDFree(r, σ). By Definition 8, ∃Y ⊆ X, Y ∈
Bd−(r, σ). Let Y be such an itemset.

If Y = X, then Sup(r, Y) = Sup(r,X) and we also have the
claim.

We consider now the case where Y ⊂ X.

If Sup(r, Y) < σ then X is not σ-frequent since Y ⊆ X.

If Sup(r, Y) ≥ σ then Y is not a disjunction-free set since
Y ∈ Bd−(r, σ). In this case, we now construct a valid simple
disjunctive rule based on Y , and then we use this rule to
decide if X is σ-frequent and to compute its support.

By Definition 6, Y is not a disjunction-free set implies that
there exists Z ⊂ Y and A,B ∈ Y \ Z such that Z ⇒ A ∨ B
is a valid simple disjunctive rule in r. By Lemma 3, we have
Sup(r, Z ∪ {A, B}) = Sup(r, Z ∪ {B}) + Sup(r, Z ∪ {A}) −
Sup(r, Z).

Since Y is σ-frequent and |Y | < |X|, by the induction hy-
pothesis we can determine the support of all its subsets.
So we can find among all subsets of Y four sets Z, Z ∪
{A, B}, Z ∪ {B}, Z ∪ {A} satisfying the relation above.

Moreover, since Y ⊆ X, by Lemma 2, we know that X \
{A, B} ⇒ A ∨B is valid.

By the induction hypothesis, we can determine for the sets
X \ {A, B}, X \ {A} and X \ {B} if they all are σ-frequent
and in this case their supports. If at least one of these sets
is not σ-frequent so neither is X and we have the claim. If
the three sets are σ-frequent, since X \ {A, B} ⇒ A ∨ B is
valid, using their supports and Lemma 3 we can determine
the support of X.

It should be noticed that the proof of Theorem 1 is construc-
tive and that it can be used as a näıve recursive algorithm
to determine Sup(r,X).

4. DISCOVERING ALL FREQUENT DIS-
JUNCTION-FREE SETS

In this section we describe two algorithms to mine all fre-
quent disjunction-free sets. Two main strategies have been
proposed the explore the search space during frequent item-
sets mining: breadth-first (e.g., [2]) and depth-first [6, 1].
Each of them has its pros and cons, and even if we consider
only the extraction time criterion there is no always-winning
strategy as we will show in Section 5. So, in this section we
consider the two strategies and we describe the correspond-
ing algorithms. For each, we give an abstract version to find
FreqDFree(r, σ) and Bd−(r, σ), and then we describe the
key implementation issues.

In both cases the anti-monotonicity of disjunction-freeness
w.r.t. itemset inclusion is important for an efficient min-
ing. This anti-monotonicity property follows directly from
the definition of disjunction-free sets and is stated by the
following lemma.

Lemma 4. Let r be a binary database over R, and X be
an itemset, X ⊆ R. For all Y ⊆ X if X ∈ DFree(r) then
Y ∈ DFree(r).

During the extraction of disjunction-free sets, according to
this property, when a set is not disjunction-free then there
is no need to consider any of its supersets. This pruning cri-
terion will be applied in breadth-first and depth-first strate-
gies.

4.1 Breadth-first extraction
4.1.1 Abstract algorithm
The algorithm, presented below, is formulated as an instance
of the generic levelwise-search algorithm2 presented in [8]. It
explores iteratively the itemset lattice (w.r.t. set inclusion)
levelwise, starting from the empty set and stopping at the
level of the largest set from FreqDFree(r, σ) ∪ Bd−(r, σ).
At each iteration, it scans the database to find which sets of
the current level are frequent disjunction-free sets. Then, it
generates candidates for the next iteration considering only
the sets of the next level for which all proper subsets are
frequent disjunction-free sets.

Algorithm 1 (HLinEx).

Input: r a binary database over a set of items R, and σ an
absolute support threshold.

Output: FreqDFree(r, σ) and the search space explored.

1. C := {∅};
2. FDF := ∅; Cused := ∅
3. while C 6= ∅ do
4. FDF := FDF ∪ {X|X ∈ C and X is σ-frequent

disjunction-free in r};
5. Cused := Cused ∪ C;
6. C := {X|X ⊆ R and ∀ Y ⊂ X, Y ∈ FDF} \ Cused;
7. od;
8. output 〈FDF , Cused〉;

Using the anti-monotonicity of disjunction-freeness stated
by Lemma 4 and the correctness result of the levelwise search
algorithm of [8], the following theorem is straightforward.

Theorem 2 (Correctness of HLinEx). Given r a
binary database over a set of items R, and σ an absolute
support threshold, Algorithm 1 computes 〈FDF , Cused〉, and
we have FreqDFree(r, σ) = FDF and Bd−(r, σ) = Cused\
FDF .

4.1.2 Implementation issues
Techniques similar to the ones presented in [3] for levelwise
mining of frequent itemsets are used. The candidate gener-
ation is made using a join-based function, and the itemset
support counters are updated w.r.t. a row of the database
using a prefix-tree data structure. A specific aspect is the

2Efficient frequent set mining algorithms like Apriori [2]
can also be seen as an instance of this generic algorithm.

implementation of the disjunction-freeness test. When we
need to test this property for an itemset X, we already
know the support of all its subsets. So we check if there
exist Y and Z, subsets of X, such that |Y | = |Z| = |X| − 1
and Sup(r,X) = Sup(r, Y)+Sup(r, Z)−Sup(r, Y ∩Z). By
Lemma 3 and Definition 6, X is disjunction-free if and only
if no such pair of subsets exists.

4.2 Depth-first extraction
4.2.1 Abstract algorithm
The algorithm given below is described by means of a re-
cursive function Find which explores the itemset lattice in
a depth-first way. A call Find(X, r, σ, Cold) finds the σ-
frequent disjunction-free supersets of the itemset X in r,
but discards during the exploration all sets that are already
in Cold. The algorithm uses the efficient divide-and-conquer
strategy of [6, 1] as follows. A call to the function will con-
sider only the subset of the search space corresponding to
supersets of X. Moreover, this subspace is further reduced
to sets that have not been examined earlier using Cold. Con-
sidering only supersets of X enables an efficient support de-
termination since, in this case, only a restricted part of the
database needs to be used (i.e., the rows matched by X).

Algorithm 2 (VLinEx).

Function Find(X, r, σ, Cold)

Input: X the itemset considered as the current starting point
in the search space, r a binary database over a set of items
R, σ an absolute support threshold, and Cold the itemsets in
the search space that has already been explored.

Output: FreqDFree(r, σ) and the search space explored.

1. C := {X ∪ {A}|A ∈ R} \ Cold;
2. Cused := Cold;
3. FDF := ∅;
4. for all Y ∈ C do
5. Cused := Cused ∪ {Y };
6. if Y is a σ-frequent disjunction-free set in r then
7. 〈FDF ′′, Cused〉 := Find(Y,M(r, Y), σ, Cused);
8. FDF := FDF ∪ FDF ′′ ∪ {Y };
9. fi
10. od;
11. output 〈FDF , Cused〉;

It should be noticed that the algorithm does not consider
the empty itemset, and also that it does not provide an im-
mediate characterization of the negative border. However,
the empty itemset can be handled trivially and the compu-
tation of the exact negative border can be performed in a
straightforward post-processing step using Cused.

The correctness of Algorithm 2 is stated by the following
theorem.

Theorem 3 (Correctness of VLinEx). Given r a
binary database over a set of items R, and σ an absolute sup-
port threshold, the call Find(∅, r, σ, ∅) returns 〈FDF , Cused〉,

and we have FreqDFree(r, σ)\{∅} = FDF and Bd−(r, σ)\
{∅} ⊆ Cused \ FDF .

Proof. (sketch)

We consider 〈FDF , Cused〉 returned by Find(∅, r, σ, ∅).

First, we show that ∀X, X ∈ FreqDFree(r, σ) \ {∅} =⇒
X ∈ FDF using an induction on |X|.

Let X ∈ FreqDFree(r, σ) and |X| = 1 (i.e. X is a singleton
itemset). Note that every singleton itemset is considered
directly by Find(∅, r, σ, ∅) (line 1) and therefore if X is σ-
frequent disjunction-free (line 6) we have X ∈ FDF (line
8).

Induction hypothesis. Suppose that the property holds for
every itemset Y such that 1 ≤ |Y | ≤ n.

Given X ∈ FreqDFree(r, σ), such that |X| = n + 1, let Y
be any subset of X satisfying |Y | = n.

By Lemma 4, Y ∈ FreqDFree(r, σ), and then by the in-
duction hypothesis Y ∈ FDF . It follows that Find has
been called at least once using Find(Y,M(r, Y), σ, CusedY)
where CusedY was the search space already explored. This
call has started by the following candidate generation C :=
{Y ∪ {A}|A ∈ R} \ CusedY . So, either X was in C and then
was tested for σ-frequent disjunction-freeness, or X was in
CusedY and thus has already been considered. In both cases
X is collected in FDF .

The soundness of the algorithm (i.e., ∀X, X ∈ FDF =⇒
X ∈ FreqDFree(r, σ)) is immediate (lines 6 and 8).

Finally, we consider again the call Find(∅, r, σ, ∅), which re-
turns 〈FDF , Cused〉. Let X be an element of Bd−(r, σ) \
{∅}, and Y be any subset of X such that |Y | = |X| − 1.
By Definition 8, Y ∈ FreqDFree(r, σ), and since ∀Z, Z ∈
FreqDFree(r, σ) \ {∅} =⇒ Z ∈ FDF , we have Y ∈ FDF
unless Y = ∅. Using the same reasoning as above we know
that X ∈ Cused, and thus Bd−(r, σ) \ {∅} ⊆ Cused \ FDF .

4.2.2 Implementation issues
We combined best features from state-of-the-art algorithms
implementing a depth-first strategy for frequent itemset min-
ing. In particular, we use a support counting technique simi-
lar to the one presented in [1], and a compact storage of the
rows matched by an itemsets in a prefix-tree structure as
described in [6]. Additionally, in order to avoid the multiple
generation of the same candidate we used an enumeration
process inspired by [4].

The specificity of our implementation lies in the disjunction-
freeness test. For a set X, this test is performed as follows.
We consider all pairs of items A and B in X, and compute
GenSup(M(r, X \{A, B}), X∪{A, B}\{A, B}). If this sup-
port is equal to zero for one of the pairs, then by Lemma 1,
X is not disjunction-free.

5. EXPERIMENTS
We compare the extraction of the disjunction-free sets to the
extraction of the closed sets [9], the other condensed repre-
sentation for frequent itemsets investigated in the literature
and allowing an exact regeneration of their supports.

In this section HLinEx (resp. VLinEx) refers to the imple-
mentation of the breadth-first algorithm (resp. depth-first)
proposed in this paper to extract the disjunction-free sets.
We also used a program called regen to generate all frequent
closed sets from the disjunction-free sets. This program uses
a simple level-wise generation algorithm, which computes
the collection of frequent closed sets using the collection of
frequent disjunction-free sets and the support-inference re-
lation given in Lemma 3.

To mine efficiently the closed sets we use two algorithms pro-
posed recently: a breadth-first algorithm called CLOSE [9]
and a depth-first algorithm called CLOSET [10]. We have
implemented these algorithms as described by their authors.
We notice however that the implementations of all algo-
rithms (including HLinEx and VLinEx) use the same low-
level data structures and techniques, in order to ensure a
fair comparison. All prototypes have been implemented in
C++, and a similar effort has been spent on specific fine-
tuning of each of them.

We have run all experiments on a PC with 128 MB of mem-
ory and a 350 MHz Pentium II processor under Linux oper-
ating system.

We report experiments on three different commonly used
data sets: Mushroom (characteristics of some mushroom
species), Connect-4 (collection of game-related state infor-
mation), and Pumsb (a PUMS census data). All these data
sets have been preprocessed by researchers from IBM Al-
maden Research Center3. The particularity of the selected
data sets is that they are very dense and the combinato-
rial explosion of the number of frequent itemsets makes the
mining of all frequent itemsets together with their supports
intractable for low support thresholds [4].

The running times for several support thresholds are given
in Figure 1 (note that the axes are logarithmically scaled).
It should be noticed that the support thresholds are given as
relative frequency thresholds (i.e., 100 × absolute support
threshold / total number of rows in the data set). The
results are given for HLinEx, VLinEx, the implementations
of CLOSE and CLOSET, and also for HLinEx and VLinEx
followed by regen.

When the curve corresponding to HLinEx+regen (resp.
VLinEx+regen) completely overlaps with the curve corre-
sponding to HLinEx (resp. VLinEx) alone (i.e., the re-
generation time is very short) we only give one of the two
curves.

The Mushroom data set is based on 119 items only and con-
tains 8124 rows - a relatively small number in data mining.
Nonetheless, the correlation level between itemsets is high.
On this data set, mining our condensed representation is

3http://www.almaden.ibm.com/cs/quest/data/
long patterns.bin.tar

Mushroom

10

100

1000

0 0.25 0.5 0.75 1
relative frequency threshold (%)

time (sec.)
CLOSE

HLinEx

HLinEx+regen

Mushroom

10

100

1000

0 0.25 0.5 0.75 1
relative frequency threshold (%)

time (sec.)
CLOSET

VLinEx+regen

Connect-4

10

100

1000

10000

0 20 40 60 80
relative frequency threshold (%)

time (sec.)
CLOSE

HLinEx

HLinEx+regen

Connect-4

10

100

1000

10000

0 20 40 60 80
relative frequency threshold (%)

time (sec.)
CLOSET

VLinEx

VLinEx+regen

Pumsb

10

100

1000

10000

60 65 70 75 80 85 90
relative frequency threshold (%)

time (sec.)
CLOSE

HLinEx+regen

Pumsb

10

100

1000

10000

60 65 70 75 80 85 90
relative frequency threshold (%)

time (sec.)
CLOSET

VLinEx

VLinEx+regen

Figure 1: Experiments on the three data sets with breadth-first (left) and depth-first (right) algorithms.
.

advantageous especially using HLinEx (see Figure 1, up-
permost graphics).

The Connect-4 data set is much more difficult. It contains
67557 rows, but a relatively small number of items (129).
Its difficulty lies in a very high correlation. Frequent closed
sets could not be computed for lower frequency thresholds
than 30% - we stopped the corresponding executions after 2
hours (see Figure 1, middle graphics). We compared the di-
rect extraction of closed sets (using CLOSE and CLOSET)
to the mining of disjunction-free sets followed by the regen-
eration of closed sets. We found that the latter is up to
25 times faster, clearly demonstrating the usefulness of our
representation.

The last data set, Pumsb, contains 49046 rows and is very
challenging because of the high number of items (7117). In

this case, mining disjunction-free sets was very difficult for
HLinEx and VLinEx as for CLOSE and CLOSET. How-
ever, HLinEx and VLinEx offer an evident benefit at lower
frequency thresholds (see Figure 1, lowermost graphics).

In nearly all experiments, the extraction of the frequent
disjunction-free sets is significantly more efficient than the
extraction of the frequent closed sets. Moreover, if we add
the generation step using regen to produce the frequent
closed sets from the frequent disjunction-free sets, the overall
process remains much more efficient than the direct extrac-
tion of the frequent closed sets.

6. CONCLUSION
Knowledge discovery tasks based on frequent set extrac-

tion are generally difficult at interesting support thresholds
due to the large number of frequent sets. In this paper,

we proposed a condensed representation, called disjunction-
free sets, that can be extracted very efficiently in practice
and that can be used to regenerate the exact supports of all
frequent sets.

We proposed two algorithms to extract this representation,
based respectively on a depth-first and a breadth-first strat-
egy.

We also showed that in general disjunction-free sets can be
extracted much more efficiently than closed sets [9], the
other condensed representation investigated in the litera-
ture that allows an exact regeneration of the supports of the
frequent sets.

As a future work, we plan to extend this framework towards
disjunctive rules having more than two disjuncts in their
right hand side (e.g. Y ⇒ A ∨ B ∨ C) and to consider the
corresponding generalized disjunction-free sets.

7. REFERENCES
[1] R. C. Agarwal, C. C. Aggarwal, and V. V. Prasad. A

tree projection algorithm for finding frequent itemsets.
Journal of Parallel and Distributed Computing, to
appear.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. I. Verkamo. Fast discovery of association rules. In
Advances in Knowledge Discovery and Data Mining,
pages 307–328. AAAI Press, 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. of the
20th International Conference on Very Large Data
Bases (VLDB’94), pages 487 – 499, Santiago de Chile,
Chile, Sept. 1994.

[4] R. J. Bayardo. Efficiently mining long patterns from
databases. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data,
pages 85–93, Seattle, Washington, USA, June 1998.
ACM Press.

[5] J. Boulicaut, A. Bykowski, and C. Rigotti.
Approximation of frequency queries by mean of
free-sets. In Proc. of the 4th European Conf. on
Principles and Practice of Knowledge Discovery in
Databases (PKDD’00), pages 75–85, Lyon, France,
Sept. 2000.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proceedings of the
2000 ACM SIGMOD International Conference on
Management of Data, pages 1–12, Dallas, Texas, May
2000.

[7] H. Mannila and H. Toivonen. Multiple uses of frequent
sets and condensed representations. In Proceedings
KDD’96, pages 189–194, Portland, USA, Aug. 1996.

[8] H. Mannila and H. Toivonen. Levelwise search and
borders of theories in knowledge discovery. Data
Mining and Knowledge Discovery, 1(3):241–258, 1997.

[9] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Efficient mining of association rules using closed
itemset lattices. Information Systems, 24(1):25–46,
1999.

[10] J. Pei, J. Han, and R. Mao. Closet: An efficient
algorithm for mining frequent closed itemsets. In
Proceedings of the 2000 ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge
Discovery, pages 21–30, Dallas, Texas, May 2000.

[11] H. Toivonen. Sampling large databases for association
rules. In Proc. of the 22th International Conference on
Very Large Data Bases (VLDB’96), pages 134 – 145,
Bombay, India, Sept. 1996.

