
Query Optimization In Compressed Database Systems

Zhiyuan Chen∗

Cornell University

zhychen@cs.cornell.edu

Johannes Gehrke∗

Cornell University

johannes@cs.cornell.edu

Flip Korn
AT&T Labs–Research

flip@research.att.com

ABSTRACT
Over the last decades, improvements in CPU speed have
outpaced improvements in main memory and disk access
rates by orders of magnitude, enabling the use of data com-
pression techniques to improve the performance of database
systems. Previous work describes the benefits of compres-
sion for numerical attributes, where data is stored in com-
pressed format on disk. Despite the abundance of string-
valued attributes in relational schemas there is little work
on compression for string attributes in a database context.
Moreover, none of the previous work suitably addresses the
role of the query optimizer: During query execution, data is
either eagerly decompressed when it is read into main mem-
ory, or data lazily stays compressed in main memory and is
decompressed on demand only.
In this paper, we present an effective approach for database

compression based on lightweight, attribute-level compres-
sion techniques. We propose a Hierarchical Dictionary En-
coding strategy that intelligently selects the most effective
compression method for string-valued attributes. We show
that eager and lazy decompression strategies produce sub-
optimal plans for queries involving compressed string at-
tributes. We then formalize the problem of compression-
aware query optimization and propose one provably opti-
mal and two fast heuristic algorithms for selecting a query
plan for relational schemas with compressed attributes; our
algorithms can easily be integrated into existing cost-based
query optimizers. Experiments using TPC-H data demon-
strate the impact of our string compression methods and
show the importance of compression-aware query optimiza-
tion. Our approach results in up to an order speed up over
existing approaches.

1. INTRODUCTION
Over the last decades, improvements in CPU speed have

outpaced improvements in main memory and disk access

∗Supported in part by NSF Grant IIS-9812020, NSF Grant
EIA-9703470, and a gift from AT&T Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara, California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 ...$5.00.

speeds by orders of magnitude [6]. This technology trend
has enabled the use of data compression techniques to im-
prove performance by trading reduced storage space and I/O
against additional CPU overhead for compression and de-
compression of data. Compression has been utilized in a
wide range of applications from file storage to video pro-
cessing; the development of new compression methods is an
active area of research.
In a compressed database system, data is stored in com-

pressed format on disk and is either decompressed imme-
diately when read from disk or during query processing.
Compression has traditionally not been used in commer-
cial database systems because many compression methods
are effective only on large chunks of data and are thus in-
compatible with random accesses to small parts of the data.
In addition, compression puts extra burden on the CPU,
the bottleneck resource for many relational queries such as
joins [29]. Nonetheless, recent work on attribute-level com-
pression methods has shown that compression can improve
the performance of database systems in read-intensive envi-
ronments such as data warehouses [13, 29].
The main emphasis of previous work has been on the com-

pression of numerical attributes, where coding techniques
have been employed to reduce the length of integers, float-
ing point numbers, and dates [13, 25]. However, string at-
tributes (i.e., attributes declared in SQL of type CHAR(n) or
VARCHAR(n)) often comprise a large portion of the length of
a record and thus have significant impact on query perfor-
mance. For example, the TPC-H benchmark schema con-
tains 61 attributes, out of which 26 are string-valued, consti-
tuting 60% of the total database size. Surprisingly, there has
not been much work in the database literature on compress-
ing string attributes. Classic compression methods such as
Huffman coding [18], arithmetic coding [31], Lempel-Ziv [32,
33] (the basis for gzip), and order-preserving methods [4]
all have considerable CPU overhead that offsets the perfor-
mance gains of reduced I/O, making their use in databases
infeasible [12]. Hence, existing work in the database litera-
ture employs simple, lightweight techniques such as NULL
suppression and dictionary encoding [6, 29]. This paper
contributes such an effective and practical database com-
pression method for string-valued attributes. Our method
achieves achieves better compression ratios than existing
methods while avoiding high CPU costs during decompres-
sion.
An important issue in compressed database systems is

when to decompress the data during query execution. Tra-
ditional solutions to this problem consisted of simple strate-

271

Select S NAME, S COMMENT, L SHIPINSTRUCT, L COMMENT
From Supplier, Lineitem

Where S SUPPKEY = L SUPPKEY and
S COMMENT <> L SHIPINSTRUCT

Orderby S NAME, L COMMENT

Figure 1: Example Query

gies, while we view this problem in the larger framework of
compression-aware query optimization. In the following we
survey well-known and new strategies for decompression in
query plans. Then we show for an example query how effi-
cient query plans can only be generated by fully integrating
query optimization with the decision of when and how to
decompress.
Early work in the database literature proposed eager de-

compression whereby data is decompressed when it is brought
into main memory [19]. Eager decompression has the advan-
tage of limiting the code changes caused by compression to
the storage manager. However, as Graefe et al. point out,
eager decompression generates suboptimal plans because it
does not take advantage of the fact that many operations
such as projection and equi-joins can be executed directly
on compressed data [15].
Another strategy is lazy decompression, whereby data stays

compressed during query execution as long as possible and
is (explicitly) decompressed when necessary [12, 29]. How-
ever, this decompression can increase the size of interme-
diate results, and thus increase the I/O of later operations
in the query plan such as sort and hashing. Westmann et
al. suggest explicitly compressing intermediate results [29],
but as pointed out by Witten et al. [30], compression is usu-
ally quite expensive and can wipe out achievable benefits.
We assume in the remainder that compression never occurs
during query execution and that an attribute once uncom-
pressed will stay uncompressed in the remainder of a query.
We contribute a new decompression strategy that we call

transient decompression. In transient decompression, we
modify standard relational operators to temporarily decom-
press an attribute x, but keep x in compressed representa-
tion in the output of the operator. We refer to such modified
operators that input and output compressed data as tran-
sient operators.
Note that since numerical attributes are cheap to decom-

press, transient decompression usually outperforms lazy and
eager decompression for numerical attributes. Unfortunately,
for string attributes the choice between the three decom-
pression strategies is not so easy. And query plans involving
compressed string attributes must be chosen judiciously. On
the one hand, transient decompression on string-valued at-
tributes can result in very significant I/O savings because
(1) string attributes are typically much longer than numer-
ical values, and (2) string attributes are often easy to com-
press (e.g., string attributes with small domains can be com-
pressed to one or two bytes). On the other hand, decom-
pressing string attributes is much more expensive than de-
compressing numerical attributes, and transient operators
may need to decompress the same string value many times
(e.g., consider a nested loops join where the join attribute
is a string). The following example illustrates that choosing
the right query plan is an important decision.
Figure 1 shows an example query from the TPC-H bench-

mark [1]. The query joins the Supplier and Lineitem rela-
tions on a foreign key; the query includes an additional selec-
tion condition involving two string attributes. The string at-
tributes S COMMENT, L SHIPINSTRUCT, L COMMENT, and S NAME

are compressed using attribute-level dictionary compression
with different dictionaries; none of the compression methods
is order-preserving except the method used for S NAME (Sec-
tion 2 describes our compression methods in detail). Thus,
during the execution of the example query, the attributes
S COMMENT and L SHIPINSTRUCT need to be decompressed for
computing the join and L COMMENT needs to be decompressed
for the sort.
We ran this query on a modified version of the Predator

Database Management System [2] where we implemented
the eager and lazy strategies, as well as variants of the tran-
sient decompression strategies (A detailed description of our
experimental setup can be found in Section 4).
Table 1 reports the execution time of different query exe-

cution plans. Plans 1 to 4 use a block-nested-loops join fol-
lowed by a sort.1 Plans 1 uses eager decompression and Plan
2 uses lazy decompression; the running times were 1515 and
1397 seconds, respectively. Plan 3 explicitly decompresses
attributes for the join operator and uses transient decom-
pression for the sort operator, which improves the running
time by about a factor of two to 712 seconds. The reason
for this improvement is that the size of the intermediate
results (the input to the sort operator) in Plan 3 is signifi-
cantly smaller than the intermediate results in Plan 1 and 2.
In Plan 3, the long string attribute L COMMENT stayed com-
pressed, whereas the attribute is already decompressed in
Plans 1 and 2. Since the performance of the sort operator
is very sensitive to the size of the input relation, keeping
L COMMENT compressed leads to better overall performance
(the sort took 612 seconds in Plan 3 versus 1307 seconds in
Plan 2).
If we choose transient decompression for both the join

and the sort operators, the execution time jumps to 3195
seconds, as shown in Plan 4 in Table 1. Plan 4 keeps the
join attributes S COMMENT and L SHIPINSTRUCT compressed
in the intermediate results, leading to better performance for
the sort operator (the sort time drops from 612 seconds to
102 seconds). However, the nested-loops join needs to test
the join condition for pairs of (S COMMENT,L SHIPINSTRUCT)
values. Thus, transient decompression is invoked a quadratic
number of times in the sizes of the input relations, leading
to a prohibitive CPU overhead (the join time increases from
90 seconds to 3093 seconds). This is an extreme case of
the classic “CPU versus I/O” trade-off, demonstrating that
transient operators should not be deployed arbitrarily.
Whereas Plans 1-4 use block-nested-loops join, Plan 5 uses

a sort-merge join, which is less efficient in the view of a tra-
ditional optimizer, but Plan 5 also uses transient decompres-
sion for both the join and the sort operator. Surprisingly,
its execution time drops to 302 seconds, more than a fac-
tor of two improvement over the previously best plan (Plan
4). Although Plan 5 takes more time for processing the join

1Predator contains block-nested-loops and sort-merge joins.
A traditional optimizer enhanced with a cost model takes
into account both I/O benefits of compression and CPU
overhead of decompression chose a block-nested-loops join
because the Supplier relation fits into the buffer pool, but
the Lineitem table does not, thus block-nested-loops join
has lower overall cost.

272

Table 1: Execution times (in seconds) for the query in Figure 1 (different decompression strategies)
Plans Strategy Total Time Join Time Sort Time

Plan 1 Eager with BNL-join 1515 96 1419
Plan 2 Lazy with BNL-join 1397 90 1307
Plan 3 BNL-join: explicit; sort: transient 712 90 612
Plan 4 BNL-join: transient; sort: transient 3195 3093 102
Plan 5 SM-join: transient; sort: transient 302 182 102

(182 seconds versus 90 seconds for Plan 3), it keeps the in-
termediate results compressed. This lowers the cost for the
sort operator (102 seconds versus 612 seconds for Plan 3),
since the intermediate results of Plan 5 fit into the buffer
pool. Plan 5 illustrates a central point: Query optimiza-
tion in compressed database systems needs to combine the
search for optimal plans with the decision of how and when
to decompress.
In this paper, we study the problem of compression-aware

query optimization in a compressed database system. We
make the following contributions:

• We propose a Hierarchical Dictionary Encoding strat-
egy that intelligently selects the most effective com-
pression methods for string-valued attributes. (Sec-
tion 2)

• We formalize the problem of compression-aware query
optimization, and propose three query optimization al-
gorithms: a provably optimal and two fast heuristic
algorithms. Our algorithms can easily be integrated
into existing cost-based optimizers. (Section 3)

• We present an extensive experimental evaluation us-
ing a real database system on TPC-H data to show
the importance of compression-aware query optimiza-
tion. The presence of string attributes makes query
processing particularly sensitive to the choice of plan.
Our methods result in up to an order of magnitude
speedup over existing strategies. (Section 4)

We discuss related work in Section 5 and conclude in Sec-
tion 6.

2. DATABASE COMPRESSION
The nature of query processing in databases imposes sev-

eral constraints in choosing a suitable database compression
method. First, the decompression speed must be extremely
fast. Since we intend to apply transient operators, the query
processor may need to decompress the data many times dur-
ing query execution. Second, only fine-grained decompres-
sion units (e.g., at the level of a tuple or a attribute) are
permissible in order to allow random access to small parts
of the data without incurring the unnecessary overhead of
decompressing a large chunk of data.
Common compression methods include Lempel-Ziv [32,

33], Huffman coding [18], arithmetic encoding [31], and pred-
icative coding [9]. Unfortunately, the decompression speeds
of these methods are not fast enough; for example, the per-
formance difference between LZ and simple methods, like
offset encoding (encoding a numerical value as the offset
from a base value) is an order of magnitude [12]. Hence, we
limit our consideration to lightweight methods. Dictionary-
based encoding involves replacing each string s by a key

value k that uniquely identifies s; a separate table called the
dictionary stores the necessary 〈s, k〉 associations. Adap-
tive compression methods (such as LZ) build the dictionary
on-the-fly during compression. However, as pointed out
by Chen et al. [8] and Goldstein et al. [12], adaptive com-
pression methods require large chunks of data as inputs to
achieve good compression ratios. Even when adaptive meth-
ods are applied on a page-level they are insufficient for our
needs because access to a single tuple requires decompress-
ing the entire page. To allow fine-grained decompression,
only methods that are static (i.e., the dictionary is fixed in
advance) or semi-static (i.e., the dictionary is built during
preprocessing and fixed thereafter) are acceptable.
Since the attributes of a relational database typically con-

sist of heterogeneous attribute types, the most suitable com-
pression method for each attribute may be different, and
should be chosen separately. Following Kossman et al. [29],
we compress numerical attributes by applying offset encod-
ing to integers and by converting 8-byte double-precision
floats to 4-byte single-precision floats if there is no loss in
precision. For string-valued attributes, we propose a simple
hierarchical semi-static dictionary-based encoding, which we
describe next.
Existing work has applied simple dictionary-based encod-

ing to the set of strings in an attribute (i.e., one dictionary
entry for each distinct string). But repetition in string at-
tributes often exists at different levels of granularity, and
applying dictionary encoding at the appropriate level can
greatly improve the compression ratio. We thus consider dic-
tionary encoding at the whole-string level, the “word” level
(e.g., English text), the prefix/suffix level (e.g., URLs and
e-mail addresses), and adjacent-character-pair level (e.g.,
phone numbers).
Given this hierarchy of dictionary encodings, we can de-

termine the level most suitable for each attribute separately
as follows. Each level of granularity � has an associated sub-
string unit u� (e.g., whole-string, word, etc.). Let W � =

{w(�)
i } be the set of distinct unit u� substrings of a given at-

tribute (e.g., the set of words) and let n� be the cardinality
of W � (e.g., the number of distinct words). Let N� be the
total number of (non-distinct) substrings (e.g., the number
of word occurrences including duplicates). We choose the

level � that minimizes b ∗ N� +
�Pn�

i |w(�)
i |+ b ∗ n�

�
where

|w(�)
i | denotes the length of the (unit u�) substring w

(�)
i , and

b is the length of the key value (in bytes). This is the size
of the encoded attribute plus the size of the dictionary. As
we demonstrate in Section 4.2, HDE is very effective for
string-valued data, achieving higher compression than ex-
isting compression methods.

273

3. COMPRESSION-AWARE QUERY OPTI-
MIZATION

Section 1 illustrated that the difference between the use
of simple heuristics for choosing query plans suing decom-
pression and the use of compression-aware optimization is
significant. This section starts with a formal introduction of
the query optimization problem for compressed databases
(Section 3.1). We then briefly discuss the relationship of
compression-aware query optimization with the problem of
query optimization with expensive predicates (Section 3.2).
We then propose new query optimization algorithms in Sec-
tions 3.3 and 3.4.

3.1 Problem Definition
We adopt the notion of properties, also called tags, to

describe which attributes are compressed in intermediate
results of a plan. The property concept extends the idea of
an interesting order from Selinger et al. [26]. We associate
with each relation r a so-called tag, denoted tag(r), which
contains the set of attributes in r that are compressed. The
tag of a plan p, tag(p) is the tag of the output relation of p.
Let us extend the physical algebra with a decompression

operator DX that decompresses a set of attributes X . The
decompression operator takes as input a relation r whose
tag is a set of attributes X that is a superset of X : X ⊆ X .
Its output is the same relation but with a tag that is reduced
by the decompressed attributes: X \X .
We also extend the physical algebra with transient ver-

sions of the traditional operators. A traditional physical al-
gebra operator takes as input relations r1, . . . , rk, each with
an empty tag, and produces an output relation r, also with
an empty tag. The transient version oT of operator o takes
as input relations r1, . . . , rk with possibly non-empty tags
and produces an output relation r with a possibly non-empty
tag X , which is the union of the tags of r1, . . . , rk minus the
set of attributes that were dropped by o. If an attribute x
appears in the output relation r of operator oT and x was
compressed in the input, then x is also compressed in r and
thus x ∈ tag(r). Vice versa, if x was not compressed in the
input it will not be compressed in the output. Thus opera-
tor oT decompresses attributes only transiently as necessary,
while attributes compressed in the input remain compressed
in the output.
We can now characterize eager and lazy decompression. In

eager decompression, every query plan contains decompres-
sion operators directly after each base relation scan. Thus
all the tags of the intermediate relations are empty because
we decompress all attributes directly when the base relations
are read into memory. In lazy decompression, we insert a
decompression operator DX directly before a physical alge-
bra operator o if o requires access to the attributes in X ,
which have not been decompressed yet. Thus we delay the
decompression of each attribute as much as possible.
In order to define the search space of compression-aware

query plans, let us first introduce the notion of a query plan.
A query plan q has two components: (1) a query plan struc-
ture (V,E), consisting of nodes V and edges E ⊂ V × V ,
and (2) a query plan tagging, which is a function tag that
maps each node v ∈ V onto the set of attributes tag(v)
that are still compressed in v’s result. The internal nodes
of the tree are instances of operators in the physical algebra
of the database system (including decompression operators
and transient operators), and the leaf nodes are base rela-

S L

BNLT0
SortT0

S L

BNLT2

SortT2

SMT3

SortT3

S L

S L

BNLT3

SortT3

S L

BNLT2

SortT1

Plan 1

Plan 2 Plan 4

Plan 3 Plan 5

D({S_C})

D({L_C,L_S})

D({L_S})

D({L_C})

D({S_C}) D({L_S})

D({S_C, S_N})

Figure 2: The compression-aware query plans
listed in Table 1. S represents Supplier ta-
ble and L represents Lineitem. Tags T0 = ∅,
T1 = {S NAME}, T2 = {S NAME,L COMMENT}, T3 =
{S NAME,L COMMENT,L SHIPINSTRUCT,S COMMENT}.

tion scans. Edges in E lead from children nodes v1, . . . , vk

to parent node v, indicating that the output of operators
v1, . . . , vk is the input of operator v. The tag of each node
v ∈ V , tag(v), represents the set of compressed attributes
in the output relation of the query plan fragment rooted at
node v.
We say that a query plan is consistent if the tagging of

its nodes matches the actual changes of tags imposed by
the operators in the tree. Let v be a node in the tree with
associated output relation r. Then the tags of v satisfy the
following properties: (1) tag(v) is a subset of the attributes
in r. (2) If v is a leaf node (a base relation scan), then
tag(v) equals the set of attributes that is compressed in the
associated base relation. (3) tag(v) = ∅ if v is the root
of the tree (the output of the query is decompressed). (4)
If attribute x is an attribute in r, but x �∈ tag(v), then
x �∈ tag(v′) for all ancestors v′ of v in the query tree (Once
an attribute is decompressed, it stays decompressed in the
remainder of the query plan). (5) If attribute x is in the
output of node v and x is in one of the tags of v’s child
nodes, then x is in the tag of v unless v is a decompression
operator v = DX that decompresses x (x ∈ X).
Thus we can (informally) define the problem of compre-

ssion-aware query optimization as the search for the least-
cost consistent query plan. Note that the space of tradi-
tional query plans (with only empty tags) partitions the
search space of compression-aware query plans into equi-
valence classes. We can map each compression-aware query
plan to a traditional query plan by deleting all tags and all
explicit decompression operators.
As an example, consider the query plans from Table 1,

which were discussed for the query in Example 1 from Sec-
tion 1. Figure 2 shows these query plans. The tags of each
relational operator are specified as superscripts (the tags of
the root nodes of each query plan are omitted because they
must be the empty set). Transient operators are displayed
in italic. Decompression operators are placed between rela-
tional operators.
Suppose there are m attributes in the base tables and

that we consider the space of consistent query plans with n

274

internal nodes. Any compression-aware plan q is fully spec-
ified by the placement of decompression operators because
the tagging of transient operators is determined by the tag-
ging of its children. For each decompression operator, there
are at most n possible placements in the query plan; thus
given a search space of size s for a traditional optimizer,
the size of the search space of the compression-aware query
optimization problem is O(s ·nm). For a System R-style op-
timizer that searches only left-deep plans, the search space
size of the compression-aware query optimization problem
is thus O(n · 2n−1 · nm). In the remainder of this paper,
we investigate how to make optimizers based on dynamic
programming compression-aware.

3.2 Compression and Expensive Predicates
Our optimization problem bears some analogy to the work

on optimizing queries with expensive predicates, such as
user-defined procedures [7, 17]. The analogy is that a de-
compression operator can be thought of as an expensive
predicate with 100% selectivity and a resulting increase in
the tuple length. The traditional heuristic of pushing pred-
icates down towards the leaves of the query plan does not
apply when a predicate incurs a significant cost during query
processing, since there is a tradeoff between the I/O savings
by pushing down a predicate and the extra CPU processing
of doing so. Similarly, the pulling up (delaying) of a decom-
pression operator must weigh the I/O savings of keeping
data compressed against the CPU overhead of transient de-
compression. Chaudhuri et al. propose a polynomial-time
algorithm for placing expensive predicates in a query plan
assuming that the cost formulas for relational operators are
regular [7].
For example, suppose r1 and r2 are two input relations

to a block-nested-loops join. Suppose [r1] and [r2] are the
number of pages of r1 and r2, and B is the number of pages
in the buffer pool. Then the cost of the join equals:

[r1] · [r2]/B + [r1] = [r1] · ([r2]/B + 1) + 0
That is, the cost can be expressed in the form of [r1] · a+ b,
where a and b are constants irrelevant to the placement
of predicates on r1 (the placement of predicates will only
change the input size [r1]). As an expensive predicate σ is
applied on input r1, the size of input becomes [r

′
1] and the

cost becomes

[r′1] · [r2]/B + [r′1] = [r′1] · ([r2]/B + 1) + 0,
thus both factors a and b remain constant.
Now consider the cost of a block-nested-loops join opera-

tor in our problem of placing decompression operators, and
assume that the join needs to decompress attribute x in re-
lation r1. Let us consider the two cases of (1) explicitly
decompressing the attribute x before the join, and (2) ex-
ecuting the operator as an transient operator. In case (1),
the input size of r1 has increased to [r

d
1] due to the decom-

pression. Hence, the cost of the join is as follows:

[rd
1] · [r2]/B + [rd

1] = [r
d
1] · ([r2]/B + 1) + 0.

Assuming that our cost formulas would be regular, we can
calculate the factors a = ([r2]/B + 1) and b = 0, both inde-
pendent of r1. Now assume that we “pull” the decompres-
sion operator on A over the join. Join attribute A needs
to be decompressed transiently n1 ·n2 times, if there are n1

tuples in r1 and n2 tuples in r2. Assuming that the unit cost

of decompression is a (usually small) constant d, the cost of
the join becomes:

[rc
1] · [r2]/B + [rc

1] + n1 · n2 · d =
[rc

1] · ([r2]/B + 1) + n1 · n2 · d.
Note that the size of r1 has decreased to [r

c
1]. Comparing

with the previous cost formula, we observe that the factor a
stayed constant, but b changed from 0 to n1 ·n2 ·d. Thus the
cost formulas for transient operators are no longer regular,
and the polynomial algorithm proposed by Chaudhuri et
al. cannot be not applied.
Note that if we exclude transient decompression, we can

reduce our problem of placing decompression operators to
the problem of expensive predicate placement. A full elabo-
ration of this reduction is beyond the scope of this paper; in
addition we showed in Section 1 that transient decompres-
sion results in query plans with very attractive costs in many
cases. Thus we concentrate in the remainder of this section
on the case where transient decompression is included.

3.3 Finding the Optimal Plan
In this section, we describe a query optimization algorithm

based on dynamic programming which always finds the op-
timal plan within the space of all left-deep query plans. The
following two observations serve as the basis of our dynamic
programming algorithm:

• Critical attributes. We only need to decompress two
types of attributes: (1) Attributes that are involved
in operations that cannot process compressed data di-
rectly, and (2) Attributes that are required in the out-
put of the query. We call such attributes critical at-
tributesl they are the attributes we need to consider
during query optimization.

• Pruning of suboptimal plans. Assume we are given two
query plans p and q that represent the same select-
project-join subexpressions of a given query and as-
sume that p and q have the same physical properties
(such as sort orders of the output relation). It is easy
to see that if tag(p) = tag(q) and cost(p) < cost(q),
then we can prune plan q and all its extensions from
the search space without compromising optimality.

Figure 3 shows the OPT Algorithm, our dynamic pro-
gramming algorithm for finding the optimal plan. To sim-
plify the presentation, we only consider joins; OPT can be
easily extended to plans including other operators (e.g., a
sort operator is just a degenerated case of join).2

The algorithm selects the join order, access methods, and
join methods exactly in the same way as the system R opti-
mizer. The main difference is that an optimal plan needs to
be stored for each distinct tag t′ of each intermediate join
result s. Note that the tagging of a plan determines the
placement of decompression operators, and whether the op-
erators in the query plan are transient operators or work on
attributes that are already uncompressed. The algorithm
enumerates bottom-up each possible join combination (lines
03-05), but at the same time also enumerates every possible
tag that a query plan fragment can be labeled with (lines
06-10); the set of tagged plans is stored in optPlan.

2OPT is based on the optimal algorithm for placing expen-
sive predicates by Chaudhuri and Shim [7].

275

OPT Algorithm
Input: A set of relations r1, . . . , rn to be joined
Output: The plan with the minimum cost
(01) Initialize each r1, ...rn’s tag with the subset of critical attributes compressed in ri, 1 ≤ i ≤ n.
(02) for i := 2 to n do
(03) for all s ⊆ {r1, ...rn} s.t. ||s|| = i do
(04) initialize array bestPlan to a dummy plan with infinite cost
(05) for all rj , sj s.t. s = {rj} ∪ sj and {rj} ∩ sj = ∅ do
(06) for all plans p stored in optPlan[sj] do
(07) t = tag(p) ∪ tag(rj)
(08) for all t′ ⊆ t do
(09) q := GenJoinP lan(p, rj , t

′)
(10) if (cost(q) < cost(bestP lan[t′])) bestP lan[t′] := q fi
(11) endfor endfor endfor
(12) copy plans in bestPlan to optP lan(s)
(13) endfor endfor
(14) finalPlan := a dummy plan with infinite cost.
(15) for all plans p ∈ optPlan({r1, ..., rn}) do
(16) if (complete cost(p) < cost(finalP lan)) finalPlan := completed plan of p fi endfor
(17) return (finalPlan)

Figure 3: OPT Algorithm for finding the optimal plan.

In Line 06 we loop over the set of existing query plans
for the join of i− 1 relations (called sj) with different tags,
creating the largest possible tag for the resulting relation in
Line 07. Lines 08 − 10 explore all possible ways to insert
decompression operators before the join while maintaining
the best possible plan for each possible output tag by calling
subroutine GenJoinPlan() shown in Figure 4. Line 12 stores
the currently best plans for each possible tag in optPlan,
our “memory” for the dynamic programming. Lines 14− 17
select the final plan with overall lowest cost. Note that the
tag of the final result of the query has to be the empty
set, thus function complete cost() potentially introduces
decompression operators at the end of query plans whose
tag is not the empty set.
In Example 1, there are four critical attributes: L COMMENT,

L SHIPINSTRUCT, S NAME, and S COMMENT. Thus 24 = 16 dif-
ferent output tags will be generated for the join node, and
16 differently tagged plans will be stored as inputs to the
sort operator. Algorithm OPT returns Plan 5 as the opti-
mal plan. Plan 4 will be pruned as we enumerate plans for
the join node because the join fragment of the plan using
transient decompression has the same tag (T3) as the join
fragment of Plan 5, but with higher cost (see Table 1).
Showing that AlgorithmOPT finds the plan with the over-

all least cost within the space of left-deep plans is straight-
forward. We omit the details here due to space constraints.
To study the complexity of OPT, let m be the number of
critical attributes and n be the number of relations in the
query. The System R optimizer has space complexity O(2n)
and time complexity O(n · 2n−1). In the worst-case, over m
critical attributes, we may have to store as many as 2m pos-
sible tags, each with an optimal subplan. Thus, the space
complexity of the OPT algorithm is O(2n ·2m). At each step
when we enumerate plans joining an existing plan p with a
relation rj , if there are � attributes compressed in p and rj ,
then there can be at most 2� different output tags. In the
worst case, the input has m critical attributes in the input,
thus there are at most

�
m
�

�
cases when � attributes are com-

pressed in the input. Therefore, the total number num of
plans enumerated for each relational operator is:

num =

mX
�=0

m

�

!
2� = 3m,

and the total time complexity of OPT is O(n · 2n−1 · 3m).

3.4 Heuristic Algorithms
The OPT algorithm can be easily integrated into an exist-

ing System R-style optimizer. However, the time and space
complexity of the OPT algorithm increases by a factor that
is exponential inm, the number of critical attributes. In this
section, we propose two heuristic algorithms with sharply
reduced space and time complexity.

3.4.1 Two-Step
Our first algorithm allows for an easy integration with ex-

isting System R-style dynamic programming query optimiz-
ers. If we assume that the plan p returned by a traditional
query optimizer is structurally close to the optimal plan,
then we can use p to bootstrap a subsequent placement of
decompression operators, thus transforming the traditional
plan with empty tags into a fully tagged plan.
The Two-Step Algorithm first generates a traditional query

plan p with empty tags, and then in a second step executes
a degenerated version of Algorithm OPT, which enumerates
all possible taggings of p while maintaining join order, join
methods, and access methods from the first step. Due to the
orthogonality of the two steps, the space complexity of Two-
Step is O(2n +2m) and the time complexity of Two-Step is
O(n · 2n−1 + n · 3m) In Example 1, a traditional optimizer
returns a plan with a block-nested-loops join with Supplier
as the outer table. Two-Step will then find the optimal de-
compression strategy for that plan, resulting in Plan 3 (see
Figure 2).

276

Procedure GenJoinPlan(p, rj , t
′)

Input: Query fragment p, base relation rj , tag t′

Output: Physical algebra join plan q with output tag t′ and suitable decompression operators
(01) q = a dummy plan with maximal cost.
(02) for each possible join method J do
(03) generate a plan q′ that joins p and rj with J as the join method
(04) add a decompression operator d1(tag(p) − t′) to q′ between p and the join node.
(05) add a decompression operator d2(tag(rj) − t′) to q′ between rj and the join node.
(06) tag(q′) = t′

(07) if cost(q′) < cost(q) q := q′ fi endfor
(08) return q

Figure 4: Algorithm GenJoinPlan: Searches the space of physical join methods for a given plan.

3.4.2 Min-K
The Min-K Algorithm is based on the OPT Algorithm

from Section 3.3. It uses the following two heuristics to
reduce the search space:
Heuristic 1: For an intermediate query plan fragment,

instead of storing plans for each possible tagging of the out-
put relation, we only store the K plans with the least cost
(change line 12 in Figure 3).
Heuristic 2: Instead of considering every possible tag-

ging of the output relation of an operator (see loop lines
08–12 in Figure 3), we only consider the following two tag-
gings t1 and t2: t1 = tag(p) ∪ tag(rj), and t2 = (tag(p) ∪
tag(rj)) \X , where X is the minimal set of attributes that
needs to be decompressed for the join method to perform
the join on uncompressed attributes. Tagging t1 makes the
join operator a transient operator without inserting any de-
compression operators, whereas t2 inserts decompression op-
erators for attributes x ∈ X that are required in the join.
The intuition for this heuristic is that transient decompres-
sion usually helps for I/O intensive join operators, whereas
for CPU intensive join operators, explicitly decompressing
all join attributes can avoid prohibitive decompression over-
head during join processing.
In the Min-K Algorithm, we store at most K possible

tags (and thus different plans) for each query plan operator.
Thus, the space complexity of Min-K is O(2n ·K). At each
step we enumerate plans joining an existing plan p and a
relation rj . Since rj is a base table with one unique tag
(the set of attributes compressed in rj), there are at most
K possible tags in the inputs. Hence, there are at most
2K output tags and corresponding extended plan fragments
enumerated. Therefore, the total time complexity is O(n ·
2n−1 · 2K).
As an example, assume that K = 2 in Example 1. For

the join node, Min-K will enumerate two tags (T2 and T3 in
Figure 2). Thus, two query plan fragments will be stored,
one as the join fragment of Plan 5 with tag T3, the other
as the join fragment of Plan 3 with tag T2. For the sort
node, Min-K enumerates four possible tags: T2, T1 as T2 \
{L COMMENT}, T3, and T3 \{L COMMENT}. Min-K returns Plan
5 as the plan with least cost.

4. EXPERIMENTS
This section presents an experimental evaluation of (1) the

new HDE compression strategy for string attributes and (2)
our new query optimization algorithms. We start with a
description of our experimental setup in Section 4.1. Sec-

tion 4.2 presents a short evaluation of HDE, and Section 4.3
describes and evaluation of our algorithms for compression-
aware query optimization.

4.1 Experimental Setup
We implemented the Hierarchical Dictionary Encoding

(HDE) compression strategy proposed in Section 2 in the
Predator database system [2]. We modified the query exe-
cution engine to run queries on compressed data. We made
the following two changes to our cost model. First, we take
the effect of compression on the length of records into ac-
count by estimating the tuple size of intermediate results
based on the tags associated with each operator. Second,
we added decompression time to the optimizer cost formu-
las. We experimentally tested our revised cost model and
the results show that our cost model correctly preserves the
relative order between different query plans as imposed by
actual query execution times. As comparison to our pro-
posed algorithms, we also implemented strategies for eager,
lazy, and transient-only decompression. We refer to these
three strategies as baseline strategies.
Data: We used TPC-H data scaled to 100MB both for

our experiments on compression and on the optimization
strategies. Clustered indices were built on primary keys and
unclustered indices were built on foreign key attributes. In-
dices are not compressed. TPC-H data contains 8 tables
and 61 attributes, 23 of which are string-valued. The string
attributes account for about 60% of the total database size.
We also used a 4MB of dataset with US census data, the
adult data set [5] for experiments on compression strategies.
The adult dataset contains a single table with 14 attributes,
8 of them string-valued, accounting for about 80% of the
total database size.
Execution Environment: All experiments were run on

an Intel Pentium III 550 Mhz PC with 512 MB RAM run-
ning Microsoft Windows 2000. The database was stored on
a 17GM SCSI disk. The query execution time reported is
the average of three executions. Predator implements index-
nested-loops, block-nested-loops, and sort-merge join. We
plan to implement hash join in the future and study its im-
pact on our techniques.
Queries: We are interested in queries (particularly joins)

involving compressed string-valued attributes. Although que-
ries involving strings are quite common in practice (e.g.,
“find people with the same last name” or “find papers writ-
ten by the same author”), TPC-H queries only have foreign
key joins on numerical attributes. Hence, we modified the

277

TPC-H queries by randomly adding secondary join condi-
tions on string attributes as follows: First, we randomly
pick two joinable relations that appear in a TPC-H query,
then we randomly pick a string attribute from each relation,
and finally, we choose a join condition from equality/pre-
fix/suffix/substring matching of the two chosen attributes
with equal probability. We also add a negation for the
matching condition with 50% possibility and add the chosen
string attributes to the final output with 50% probability.
Unlike numerical attributes, string attributes usually have
different domains and decompression will be necessary for
evaluating the added join conditions on those two string at-
tributes. We formed four query workloads, based on the
number of join conditions we added. Workload W0, W1,
W2, and W3 contain zero, one, two, and three join con-
ditions on string attributes for each TPC-H query, respec-
tively. Since TPC-H queries each contain a different number
of join tables (as opposed to join conditions), we further di-
vide each workload into three groups, containing 1-2 join
tables, 3-4 join tables, and 5 or more join tables, respec-
tively.
Metrics: Following Chaudhuri and Shim [7], we use the

following two metrics to evaluate our query optimization
strategies.

1. Relative cost, which measures the quality of plans. The
relative cost equals the execution time of the plan re-
turned by the optimization algorithm divided by the
execution time of the optimal plan. A relative cost of
1 means the plan is optimal; the higher the relative
cost, the worse the quality of the plan. We used OPT
to determine the optimal plan (see Section 3).

2. Multiplicative factor, which measures the time com-
plexity of optimization strategies. The multiplicative
factor equals the number of plans enumerated by the
algorithm being studied divided by the number of plans
enumerated by a standard optimizer. A small factor
implies a fast algorithm.

4.2 Effectiveness of HDE
To isolate the effect of compressing string attributes, we

compress all numerical attributes in the data sets using tech-
niques proposed by Westmann et al. [29], but vary the com-
pression methods applied to string attributes. We compared
the effectiveness of HDE with the following attribute-level
compression strategies on string attributes:

1. Numerical-Only: We only compress numerical attri-
butes.

2. Attribute-Dic: Dictionary compression on the whole
attribute for string attributes with low cardinality. This
is the strategy used by Westmann et al. [29].3

3. S-LZW: Semi-static LZW [28] on every string attribute.
A tuple-level version of this method was employed by
Iyer and Wilhite [19].

3Westmann et al. also used NULL suppression (deleting end-
ing blanks) on other string attributes, but Predator auto-
matically stores long fixed length string attributes (char(n))
as variable length strings (varchar(n)) such that blanks are
automatically deleted.

Table 2: Comparison of different compression
strategies on TPC-H data.

Strategy Data Size Scan-ND Scan-D

Uncompressed 100% 100% 100%
Numerical-Only 91% 92% 94%
Attribute-Dic 70% 71% 77%
S-LZW 61% 62% 97%
Word-Dic 56% 58% 84%
HDE 50% 51% 77%

4. Word-Dic: Word-level dictionary compression on each
string attribute. This is the technique used for infor-
mation retrieval queries by Witten et al. [30].

Table 2 reports the results of applying various compres-
sion methods to the TPC-H database, normalized by the
size of the uncompressed data. We also measured the time
to scan all tables in the database without decompressing
(referred to as Scan-ND), and the time to scan all tables
with decompressing (referred to as Scan-D). We can make
the following observations:

1. HDE achieves the best space savings. HDE beats Attri-
bute-Dic and Word-Dic because it intelligently chooses
the most appropriate level of dictionary compression
rather than using a fixed level. Numerical-Only does
not save much space because the majority of the at-
tributes are strings that are not compressed in Numeri-
cal-Only. S-LZW uses more space than HDE because
there are many short fixed lengthed string attributes
with very low cardinality, which can be compressed
to one or two byte fixed length integers by dictio-
nary compression on the whole attribute level (the
method selected by HDE). In contrast, S-LZW gener-
ates variable-length codes and needs to use extra bytes
to store the length.

2. The I/O benefits are proportional to the space sav-
ings (although slightly lower); HDE achieves the best
performance.

3. HDE also achieves the best balance between I/O sav-
ings and decompression overhead because it has the
shortest time for scan with decompression. Numerical-
Only has worse performance because the I/O savings
are insignificant although decompression is very fast.
S-LZW and Word-Dic have good I/O savings but the
decompression overhead is too high. Only Attribute-
Dic has similar performance to HDE.

Table 3 reports the results for the Adult data set; the
observations are similar except that Attribute-Dic works
equally well as HDE because all string attributes in the
Adult data set have low cardinality. All compression strate-
gies also added about 1 sec/MB compression overhead when
the database was loaded, mainly due to the preprocessing
pass over the data to build the dictionary. However, in a
read-intensive environment, this penalty is offset by the im-
provement in query performance.

278

Table 3: Comparison of different compression
strategies on Adult data.

Strategy Data Size Scan-ND Scan-D

Uncompressed 100% 100% 100%
Numerical-Only 88% 90% 93%
Attribute-Dic 24% 25% 32%
S-LZW 77% 79% 110%
Word-Dic 55% 57% 94%
HDE 24% 25% 32%

4.3 Compression-Aware Optimization
This section evaluates the various optimization strategies

by the quality of returned plans and the time complexity for
optimization strategies. Our main findings are as follows:

1. The Min-K strategy with K = 2 is optimal for all the
queries we tried at various buffer pool sizes, and the
optimization cost is very low.

2. The Two-Step strategy sometimes finds near-optimal
plans, especially when the buffer size is large.

3. The Transient-Only strategy is optimal only when que-
ries do not contain join conditions on strings or the
buffer pool size is large. Otherwise, it often produces
inefficient plans.

Average Quality of Plans: We first fix the buffer pool size
at 5 MB, but vary the query workload. Figures 5 (a), (b),
and (c) report the average relative cost of different groups
of queries as we vary the number of join conditions on string
attributes. The x-axis shows the number of join conditions
we added (each number corresponds to one of the four work-
loads). For the Min-K algorithms, we show two cases: K = 1
and K = 2. The relative costs for running the queries on
uncompressed data and data where only the numerical at-
tributes are compressed are also displayed. These costs are
2-10 times that of optimal plans over compressed string at-
tributes, confirming the performance benefits from string
attribute compression.
The Transient-Only strategy is best only when there are

no join conditions on string attributes; numerical attributes
are inexpensive to decompress, and it is usually better to de-
compress them transiently so that intermediate results re-
main compressed. Otherwise, the average relative cost of
plans returned by the Transient-Only strategy is up to an
order worse than OPT, demonstrating that transient oper-
ators must be applied selectively to be effective.
As the number of join conditions on string attributes in-

creases, the performance of plans returned by all strategies
except Min-2 and OPT deteriorates. The reason is that
string attributes are expensive to decompress and the right
decision of whether to keep string attributes compressed to
save I/O makes more and more of a difference. The ranking
of relative costs for plans returned by the different optimiza-
tion strategies is as follows:

OPT ∼Min-2 < Min-1 ∼ Two-Step < Baseline strategies

Among the baseline strategies, Lazy is significantly better
than Eager (up to a factor of 3) because, using Lazy strat-
egy, decompression does not occur until necessary and the

intermediate results are smaller. The Transient-Only strat-
egy achieves more I/O savings than Lazy by always keep-
ing string attributes compressed. However, arbitrary use of
transient operators may lead to prohibitive decompression
overhead when relational operators require repeated access
to compressed string attributes (e.g., in a block-nested-loops
join).
Min-2 always gave optimal plans in our experiments, where-

as both Min-1 and Two-Step often gave suboptimal plans.
Min-K considers up to two cases for each join operator: One
is to transiently decompress all string attributes during the
join and leave them compressed afterwards, such that rela-
tional operators later in the plan will get extra I/O benefits.
The other is to decompress all those string attributes before
the join to avoid the prohibitive overhead of repeated decom-
pressions during the join. However, since the I/O savings for
future relational operations cannot be decided locally, a local
decision can be suboptimal. Hence, the choice of K is cru-
cial: If K = 2, optimal plans for both cases are kept, while
if K = 1, only the local minimum is kept, allowing globally
suboptimal results. Similarly, the Two-Step heuristic is less
effective than Min-2 because the decision of join order and
join methods is made independently of the decision on the
decompression strategy.
In summary, the optimizer has to combine the search for

optimal plans with the decision of how and when to decom-
press (as in OPT and Min-2). Using straightforward, simple
heuristics such as Eager, Lazy, and Transient-Only, or mak-
ing the optimization too local such as in Min-1 can lead to
significantly worse performance.
Distribution of Query Performance: We examined

the performance distribution of individual queries in the
workload W2 using a 5 MB buffer pool size (the results
for other workloads are similar). We found that Min-2 gave
an optimal plan for all 22 queries; Two-Step gave an op-
timal plan for 11 queries, but had 7 queries with relative
cost greater than 5; Min-1 had 5 queries with an optimal
plan but 13 queries with relative cost greater than 5; Eager
was the only strategy that never found the optimal plan;
Transient-Only was very unstable, with optimal plans for 7
queries but relative cost over 20 for 6 queries.
In practice, it is usually suffices to return a “good” plan

instead of the optimal plan. We plot the number of queries
with relative cost lower than 2 (i.e., with cost within twice
of the optimal cost) for various strategies in Figure 7 (a).
Again, OPT and Min-K always return good plans. The
number of good plans returned by other strategies decreases
as the number of join conditions on string attributes in-
creases. The total number of good plans over all workloads
is reported in Figure 7 (b).
Number of Plans Enumerated: Figures 6 (a), (b),

and (c) report the average multiplicative factor of differ-
ent groups of queries as we vary the number of join con-
ditions on string attributes. The three baseline strategies
have a multiplicative factor of 1 because no additional plan
is enumerated after standard optimization. The multiplica-
tive factor of OPT increases rapidly as the number of join
conditions on string attributes and the number of join tables
increases, and soon leads to prohibitive optimization over-
head. Our proposed heuristic algorithms reduce the search
space greatly. Note that Min-2 never enumerates more than
four times as many plans as the standard optimizer, regard-
less of the number of join conditions added or of the number

279

0

2

4

6

8

10

12

14

16

0 1 2 3

Number of join conditions on string fields

Re
l-C

os
t

OPT
Min-2
Min-1
Two-Step
Eager
Lazy
Transient-Only
Uncompressed
Numeric-Only

0

5

10

15

20

25

30

35

0 1 2 3

Number of join considtions on string fields

Re
l-c

os
t

OPT
Min-2
Min-1
Two-Step
Eager
Lazy
Transient-Only
Uncompressed
Numeric-Only

0

2

4

6

8

10

12

0 1 2 3

Number of join conditions on string fields

Re
l-C

os
t

OPT
Min-2
Min-1
Two-Step
Eager
Lazy
Transient-Only
Uncompressed
Numeric-Only

(a) Queries with 1-2 join tables (b) Queries with 3-4 join tables (c) Queries with ≥ 5 join tables

Figure 5: Relative cost of various strategies vs. number of join conditions on strings.

1

10

100

0 1 2 3

Number of join conditions on string fields

M
ul

tip
lic

ati
ve

Fa
cto

r

OPT

Min-2

Min-1

Two-Step

Baseline

4

1

10

100

0 1 2 3

Number of join conditions on string fields

M
ul

tip
lic

ati
ve

Fa
cto

r

OPT

Min-2

Min-1

Two-Step

Baseline

4

1

10

100

1000

0 1 2 3

Number of join conditions on string fields

M
ul

tip
lic

ati
ve

Fa
cto

r

OPT

Min-2

Min-1

Two-Step

Baseline

4

(a) Queries with 1-2 join tables (b) Queries with 3-4 join tables (c) Queries with ≥ 5 join tables

Figure 6: Multiplicative factor of various strategies vs. number of join conditions on strings.

of join tables. Given that the plans returned by Min-2 are
close to optimal, Min-2 appears to be the most attractive
strategy.
Effect of Buffer Pool Size: The size of the buffer pool

is an important determinant of query performance. We ran
the experiments with buffer pool sizes 5, 20, and 100 MB.
Since the trends we observed for the different workloads were
similar, we report the results from workload W2 only. Fig-
ures 8 (a) and (b) show the average relative costs of different
query groups using different strategies against varying buffer
pool size (the results for the query group with 3-4 join tables
were similar to that with 1-2 join tables and are omitted).
Not surprisingly, the performance benefits resulting from

string compression decrease as the buffer pool becomes larger,
since compression has less impact on the amount of data
that can be brought into the buffer. Nonetheless, the sav-
ings from compression are still substantial (ranging from
70-300%) even when the whole database fits into the buffer
pool (100 MB), due to the CPU savings of transient decom-
pression (e.g., fewer memory copies). Also, as reported by
Lehman et al. [20], when the whole database fits into the
buffer pool, the choice of join methods becomes simpler be-

cause CPU cost becomes the only dominant factor. Hence,
the plan returned by a traditional optimizer becomes good
enough, thus Two-Step often finds optimal plans. More-
over, for this buffer size transient-decompression seems to
be a good choice for most queries, and thus Transient-Only
strategy is close to optimal as well.

5. RELATED WORK
Data compression has been a very popular topic in the

research literature, and there is a copious amount of work
on this subject. Well known methods include Huffman cod-
ing [18], arithmetic coding [31], and Lempel-Ziv [32, 33].
Most existing work on database compression focused on

designing new compression methods [4, 8, 10, 11, 12, 14, 19,
22, 23, 24, 27]. However, despite the abundance of string-
valued attributes in databases, most existing work has fo-
cused on compressing numerical attributes.
Recently, there has been a resurgence of interest on em-

ploying compression techniques to improve performance in
a database. Greer uses simple compression techniques in
the Daytona database system, but does not consider how

280

0

2

4

6

8

10

12

14

16

18

20

22

0 1 2 3

Number of join conditions on string fields

Nu
mb

er
of

go
od

pla
ns

OPT
Min-2
Min-1
Two-Step
Eager
Lazy
Transient-Only
Uncompressed
Numeric-Only

0

10

20

30

40

50

60

70

80

90

OPT
Min-2

Min-1

Two-Step
Eager

Lazy

Tran
sie

nt-O
nly

Uncompres
sed

Numeri
c-O

nly

Strategies

Nu
mb

er
of

go
od

pla
ns

Number of Good Plans

(a) Number of good plans vs. (b) Total number of good plans
number of join conditions

Figure 7: Distribution of query performance.

1

10

100

5 20 100

Buffer Pool Size (MB)

Re
l-C

os
t

OPT
Min-2
Min-1
Two-Step
Eager
Lazy
Transient-Only
Uncompressed
Numeric-Only

1

10

100

5 20 100
Buffer Pool Size (MB)

Re
l-C

os
t

OPT
Min-2
Min-1
Two-Step
Eager
Lazy
Transient-Only
Uncompressed
Numeric-Only

(a) Queries with 1-2 join tables (b) Queries with ≥ 5 join tables

Figure 8: Rel-Cost of various optimization strategies varying buffer pool size.

to exploit this in the query optimizer [16]. Goldstein et
al. propose attribute-level offset encoding where the data
is only decompressed lazily as needed [12, 13]; little con-
sideration is paid to query optimization other than a mod-
ified cost model. Westmann et al. propose a collection of
lightweight, attribute-level compression methods and shows
how to modify the query execution engine [29]; the authors
briefly mention that the cost model should be modified and
the issue of whether to compress intermediate results, but
no query optimization algorithm was proposed. Boncz et
al. [6] consider some attribute-level compression techniques
(dictionary-based encoding) for improving join performance
in a main-memory database; the focus of this work is on the
design of new join algorithms, but without any considera-
tion of query optimization. Li et al. [21] consider aggrega-
tion algorithms in a compressed Multi-dimensional OLAP
databases; however, they have not addressed querying more
general compressed relational databases. The only work we
are aware of which considers query optimization over com-
pressed data is by Amer-Yahia and Johnson [3], but they
focus on bitmaps. Finally, as discussed in Section 3, there

is some similarity between our work and that of Chaudhuri
and Shim [7] and Hellerstein et al. [17], which considers the
optimization of queries over expensive predicates. However,
for the reasons put forth in Section 3, their algorithms do
not apply in our case.

6. CONCLUSIONS
In this paper, we studied the use of compression to im-

prove database performance. We observed that compressing
string attributes is important for query performance. Due to
the heterogeneous nature of string attributes, a single com-
pression method is inferior to our Hierarchical Dictionary
Encoding, a comprehensive strategy that chooses the most
effective encoding level for each string attribute.
In addition, we observed that the placement of string

decompression in a query plan is crucial for query perfor-
mance. A traditional optimizer enhanced with a cost model
that takes both I/O benefits of compression and the CPU
overhead of decompression into account, does not necessar-
ily achieve good plans. (The Two-Step algorithm is an in-
stantiation of this approach.) We proposed two new query

281

optimization algorithm, OPT and Min-K, that combine the
search for optimal plans with the decision of when and where
to decompress. Our experiments show that the combination
of effective compression methods and compression-aware que-
ry optimization is crucial for query performance – usage
of our compression methods and optimization algorithms
achieves up to an order improvement in query performance
over existing techniques. The significant gains in perfor-
mance suggests that a compressed database system should
have the query optimizer modified for better performance.
There are several interesting future research directions.

First, it would be interesting to study how caching of inter-
mediate (decompressed) results can reduce the overhead of
transient decompression. Second, we plan to study how our
compression techniques can handle updates.
Acknowledgments. We thank Praveen Seshadri, Philip-

pe Bonnet, Divesh Srivastava, and Tobias Mayr for useful
discussions.

7. REFERENCES
[1] Transaction processing performance council. TPC-H

benchmark, http://www.tpc.org, 1999.

[2] Predator DMBS.
http://www.cs.cornell.edu/database/predator, Cornell
Univ., Computer Science Dept., 2000.

[3] S. Amer-Yahia and T. Johnson. Optimizing queries on
compressed bitmaps. In Proc. of VLDB, pages
329–338, 2000.

[4] G. Antoshenkov, D. B. Lomet, and J. Murray. Order
preserving compression. In Proc. of ICDE, pages
655–663, 1996.

[5] C. Blake and C. Merz. UCI repository of machine
learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html,
1998.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database architecture optimized for the new
bottleneck: Memory access. In Proc. of VLDB, pages
54–65, 1999.

[7] S. Chaudhuri and K. Shim. Optimization of queries
with user-defined predicates. TODS, 24(2):177–228,
1999.

[8] Z. Chen and P. Seshadri. An algebraic compression
framework for query results. In Proc. of ICDE, pages
177 – 188, 2000.

[9] J. G. Cleary and I. H. Witten. Data compression
using adaptive coding and partial string matching.
IEEE Trans. on Communications COM-32(4), pages
396–402, April 1984.

[10] G. Cormack. Data compression in a database system.
Commnications of the ACM, pages 1336–1342, Dec.
1985.

[11] S. J. Eggers, F. Olken, and A. Shoshani. A
compression technique for large statistical data-bases.
In Proc. of VLDB, pages 424–434, 1981.

[12] J. Goldstein, R. Ramakrishnan, and U. Shaft.
Compressing relations and indexes. In Proc. of ICDE,
pages 370–379, 1998.

[13] J. Goldstein, R. Ramakrishnan, and U. Shaft.
Squeezing the most out of relational database systems.
In Proc. of ICDE, page 81, 2000.

[14] G. Graefe. Options in physical databases. SIGMOD
Record 22(3), pages 76–83, Sept. 1993.

[15] G. Graefe and L. Shapiro. Data compression and
database performance. In ACM/IEEE-CS Symp. On
Applied Computing, pages 22–27, April 1991.

[16] R. Greer. Daytona and the fourth-generation language
cymbal. In Proc. of SIGMOD, pages 525–526, 1999.

[17] J. M. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates. In Proc. of SIGMOD, pages 267–276, 1993.

[18] D. Huffman. A method for the construction of
minimum-redundanc codes. In Proc. IRE, 40(9),
pages 1098–1101, Sept. 1952.

[19] B. R. Iyer and D. Wilhite. Data compression support
in databases. In Proc. of VLDB, pages 695–704, 1994.

[20] T. J. Lehman and M. J. Carey. Query processing in
main memory database management systems. In Proc.
of SIGMOD,, pages 239–250, 1986.

[21] J. Li, D. Rotem, and J. Srivastava. Aggregation
algorithms for very large compressed data warehouses.
In Proc. of VLDB, pages 651–662, 1999.

[22] H. Liefke and D. Suciu. Xmill: An efficient compressor
for XML data. In Proc. of SIGMOD, pages 153–164,
2000.

[23] W. K. Ng and C. V. Ravishankar. Relational database
compression using augmented vector quantization. In
Proc. of ICDE, pages 540–549, 1995.

[24] G. Ray, J. R. Harista, and S. Seshadri. Database
compression: A performance enhancement tool. In the
7th Int’l Conf. on Management of Data (COMAD),
Pune, India, 1995.

[25] M. A. Roth and S. J. V. Horn. Database compression.
SIGMOD Record, 22(3):31–39, 1993.

[26] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In Proc. of
SIGMOD, pages 23–34, 1979.

[27] D. Severance. A practitioner’s guide to database
compression. Information Systems 8(1), pages 51–62,
1983.

[28] T. Welch. A technique for high-performance data
compression. IEEE Computer 17(6), pages 8–19, June
1984.

[29] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Record 29(3),
Sept. 2000.

[30] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Giga Bytes - Compressing and Indexing Documents
and Images. Morgan Kaufmann Publishers, Inc, 1999.

[31] I. H. Witten, R. Neal, and J. Cleary. Arithmetic
coding for data compression. Communications of the
ACM, 30(6), pages 520–540, June 1987.

[32] J. Ziv and A. Lempel. On the complexity of finite
sequences. IEEE Trans. on Information Theory,
22(1), pages 75–81, 1976.

[33] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Trans. on
Information Theory, 22(1), pages 337–343, 1977.

282

