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Abstract – In addition to classic clustering algorithms, many different approaches to clustering 
are emerging for objects of special nature. In this article we deal with the grouping of rows and 
columns of a matrix with non-negative entries. Two rows (or columns) are considered similar if 
corresponding cross-distributions are close. This grouping is a dual clustering of two sets of 
elements, row and column indices. The introduced approach is based on the minimization of 
reduction of mutual information contained in a matrix that represents the relationship between 
two sets of elements. Our clustering approach contains many parallels with K-Means clustering 
due to certain common algebraic properties. The obtained results have many applications, 
including grouping of Web visit data.  
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1.  Introduction  
There are a broad variety of classic clustering algorithms that are applicable for objects of general 
structure [15, 23, 25]. For objects of a special nature, new approaches to clustering are emerging  
[5, 16, 20, 27, 10]. In this article we are concerned with the clustering of rows x∈X and columns 
y∈Y of a rectangular matrix with non-negative entries [32, 11]. In the context of a two 
dimensional OLAP cube, such a matrix represents the simplest relationship between two nominal 
categorical variables, in which one variable (dimension) is the row and the other is the column.  
We want to come up with a systematic approach that groups together elements x (and y) 
exhibiting similar behavior with respect to a given relationship. This can be considered as 
learning the structure of the relationship and ultimately achieves simplification without 
significantly violating the relationship’s patterns.  

In set theory relation is the subset of the Cartesian product XxY. Any subset is defined by its 
indicator function — in our case by a matrix with entries equal to 1 or 0 indicating whether the 
corresponding element belongs to the relation. A non-negative matrix generalizes this concept.  

To illustrate the point, consider the following model: a hall has several entrance doors x (sources) 
and several exit doors y (sinks) that physically may or may not coincide with the entrances. Every 
time somebody gets in through an entrance door x, stays and leaves through an exit door y, a 
count Nxy is incremented. After a while the process is stopped. The frequency count (or 
contingency) matrix Nxy represents the averaged pattern of behavior or the relationship between 
entrances and exits (or sources and sinks). If the behavior is totally random, the row and column 
distributions will all be uniform. Any asymmetric behavior implies certain associations between x 
and y.  The question we are interested in is to group x (and symmetrically y) in a way that will 
represent similarity of their preferences with respect to y (correspondingly x). This model can be 
easily generalized to a situation when each individual (particle) passing through the hall carries 



 

some positive weight and instead of just incrementing the count Nxy, the passing weight is added 
to it. In any case, the resulting matrix has non-negative entries, representing the flow from x to y.  

Each element x is characterized by |Y| numerical attributes. We want to cluster together elements 
x with similar (conditional) distributions of y-outcomes Nxy/Nx, where (marginal) entry Nx 
represents a total flow through the door x. If some of the distributions are the same, 
corresponding x are considered indistinguishable. This simplifies the structure of data. In other 
words we want to cluster together elements x with common behavior across another dimension. 
While general clustering can be applied, all attributes are components of a single probability 
distribution, which strongly suggests some special approach.  

We are motivated by the following interpretation of the above model. Consider two jointly 
distributed nominal categorical random variables X, Y with |X| and |Y| outcomes correspondingly 
and a joint distribution Nxy/N... Mutual information I(X,Y), as defined below, measures the 
association of X and Y. It reflects a level of asymmetry in a contingency matrix. The exact 
definition expresses mutual information in terms of matrix Nxy alone, and so references to random 
variables can be omitted. We group together different elements x into groups Ga, a∈A. 
Corresponding matrix rows are rolled up (summed) into a new matrix Nay with a smaller first 
dimension. This simplification does not go for free as the mutual information contained in matrix 
Nay can be smaller, since we deliberately disregarded small differences among elements of each 
group Ga. We want to achieve grouping that results in minimal reduction of (mutual) information.  

The remainder of the paper follows this outline. In section 2 below we present a formal problem 
definition. The classic K-Means algorithm is well fitted for square of L2 minimization of within-
the-groups errors due to a special algebraic property of L2 norm [12]. In section 3 we remind the 
reader of the basic algebra concerning classic K-Means. Parallel algebraic construction is 
applicable to a minimal information reduction clustering and is presented in section 4. Introduced 
algebraic property allows designing a feasible iterative algorithm.  

So far we have talked about one dimension, keeping the other one fixed. In section 5 we describe 
an algorithm for bi-dimensional clustering (or co-clustering), which groups simultaneously 
elements of X and Y. This algorithm actually results in learning relationship patterns contained in 
matrix Nxy. It reduces the matrix size keeping discovered patterns as inviolate as possible. 

The introduced model is well fitted for different data mining applications. The one that brought 
our attention to the problem is about learning a relationship between referrers and important 
pages in analysis of Web site traffic. This and other applications are explored in section 6. 

2.  IR-Clustering 
We start with basic notations and definitions. Given a non-negative rectangular matrix N=(Nxy), 
marginal matrix entries are defined as  

Nx . = Σy Nxy, N. y = Σx Nxy, N. . = Σxy Nxy. 

We do not make any sparsity assumptions but we do require that Nxy>0. Matrix N defines the 
joint and two marginal probability distributions: 

Pxy = Nxy / N. ., Px .= Nx ./ N. ., P. y= N. y / N. . . 

Consider two random variables X, Y with joint distribution introduced above. Sometimes, when 
there is no confusion possible, we will use an informal simplification  

Nx = Nx .,  Ny =N. y, Px = Px .,  P y =P. y, 



 

Conditional probabilities are defined as  

Py|x = Pxy/Px = Nxy/Nx, Px|y = Pxy/Py = Nxy/Ny. 

Entropy of X is defined as  

H(X) = - Σx Px log(Px). 

The analogous formulae are applicable to Y. We use continuous interpolation 0*log(0) = 0, the 
logarithm base does not matter for future considerations (base two logarithms correspond to bit 
units, while natural logarithms result in nat units). The conditional entropy of X given Y is 
defined as the expectation of H(X|Y=y) over all Y: 

H(X|Y) = Σy Py H(X|Y=y) = - Σxy Py Px|y log(Px|y) = - Σxy Pxy log (Px|y) 

Mutual Information between X and Y is defined as 

I(X,Y) = Σxy Pxy log(Pxy/Px Py).       (2.1) 

It is a symmetric function, I(X,Y) = H(X) - H(X|Y). We use the concept of mutual information to 
define an objective function further utilized in iterative optimization. The use of information 
theory concepts for different data mining tasks has a long history [30, 33, 3, 7] partially motivated 
by probability related ideas (as for example, Kullback Leibler distance [8]) and partially by a 
convenience of the concepts in defining proximity measures for nominal categorical attributes 
[26]. For further relationships between entropy, conditional entropy, and mutual information see 
[8].  

Since the concept of probability is only a motivation for this work, we can safely ignore the 
difference between population and sample probabilities. Instead, the introduced concepts can be 
expressed in terms of the matrix N. In particular, for mutual information (2.1) we have: 

 I(N) = I(X,Y) = (1/N..) Σxy Nxy log(Nxy N../Nx Ny).    (2.2) 

Consider a map a: X $. It canonically induces a factorization of |X| elements into |A| groups 
Ga= G[a], a∈A, where x∈Ga(x). We will use similar notation for grouping Y into |B| groups Gb 
via map b: Y B. Maps a and b canonically generate a rolled-up matrix  

N ab = Σx∈G[a], y∈G[b] Nxy.   

In context of data compression, the new rolled-up matrix is a condensed version of the original 
matrix. This new simplified version is achieved through the grouping of elements in each of the 
matrix dimensions. In the context of machine learning this process should throw away 
insignificant data and should preserve specific information. The concept of mutual information 
allows exactly this. We have already determined that the specific patterns we are interested in are 
cross-element distributions associated with each row and column. An adverse effect of our 
clustering is that by combining certain rows and certain columns together we introduce some 
fuzziness into rolled-up distributions. This by itself suggests that the rows (columns) that have 
similar distributions are good candidates for grouping. If the original matrix has a mutual 
information I(X,Y), a new compressed matrix resulting from clustering has mutual information 
I(A,B). Therefore, the damage done can be measured as a mutual information reduction:  

R = I(X,Y) – I(A,B) = I(N) – I( N ).      (2.3) 

Definition. IR-clustering is a grouping of rows x and columns y of a matrix N into groups Ga and 
Gb correspondingly, that minimizes Information Reduction R.  

Since both groupings are equivalent to a construction of two maps a:X $�� E�< %, IR-
clustering is a problem of combinatorial optimization. When two dimensions are involved, we 



 

will resort to a heuristic (because the problem is known to be NP-complete) similar to the 
gradient method in numerical optimization. As described in section 5, it uses as its basic building 
block an algorithm that clusters one dimension while keeping the other one intact.  

3.  Algebraic Properties of K-Means Clustering 
In this section we describe a special algebraic property of K-Means clustering [12] that closely 
relates to the K-Means objective function defined in terms of squares of the L2 norm. This 
property allows an important cancellation in that it enables a fast implementation of the K-Means 
optimization process. Our goal is to use this as an analogy and to derive a similar property for IR-
clustering. 

As a reminder, in classic K-Means algorithm we try to solve the combinatorial optimization 
problem of minimizing an objective function J that is equal to the sum of the squares of errors 
between data points and their corresponding cluster centroids. In the following, the data points 
x=(xy) are vectors in Euclidian space and y index enumerates vector components. The goal is to 
assign each x to a group or cluster G[a(x)], such that the number k of clusters Ga=G[a] is fixed, 
a=1:k. Each cluster is represented by its centroid (a center of mass or mean) ca equal to a 
(weighted) arithmetic average of x∈G[a]. This assignment is somehow initialized and then 
iteratively improved. To provide a comprehensive treatment, we derive a weighted version in 
which each point has a weight wx. The objective function of the K-Means is equal to:  

J = Σa J a,   Ja = Σx∈G[a]  wx||x – ca||
2 .      (3.1) 

Here the L 2 norm squared ||z||2 = Σy |zy|
2 is used and each term Ja= J(Ga) is a variance within the 

cluster Ga. Different iterative refinement processes for K-Means are known. Classic K-Means 
optimization process consists of major iterations, each going through every data point.  Points are 
examined one by one and are potentially moved from their current cluster to a new one so as to 
minimize J. Deleting a point x from its current cluster Ga always decreases Ja by amount ∆−

a. 
Adding a point x to a new cluster Gb increases Jb by another amount ∆+

b. If the smallest possible 
increase ∆+

b (b can be any index but a) is less than ∆−
a, then the move is justified. 

Major Iteration:         (3.2) 

for each x 
let Ga be a current cluster of x 
find  an impact ∆−

a of deleting x from Ga 
 among all b=1:k, b≠a, find the smallest ∆+

b 
 if ∆+

b
 < ∆−

a  then  
move x from Ga to Gb 

  update J = J - ∆−
a + ∆+

b  
update centroids ca and cb 

 end if 
end for 

The issue with this algorithm is that the computation of the impact of the deletion or addition of a 
point to a cluster requires an inner loop with respect to all other cluster points. Because the cluster 
centroid is affected, all the distances to it must be recomputed. Any L p norm can be used in (3.1). 
We claim that in the case of L 2 norm all these computations can be performed solely in terms of 
the point in question and a cluster centroid, making major K-Means iterations computationally 
feasible. This fact will be generalized to IR-clustering below.   

To prove this claim, consider the computation of ∆+
b. Let c=cb be the original centroid of cluster 

Gb having the weight v=vb. Adding the new point x of weight w=wx to Gb results in the shift of c 



 

to a new position c+. A new cluster Gb+{x} has the total weight v+w, and, therefore, its centroid 
satisfies the following equations (z∈Gb) 

 (v+w)c+ = Σz wz z + wx = vc + wx, 

 c+ = (v/(v+w)) c + (w/(v+w)) x = c + ∆c,   ∆c = (w/(v+w)) (x - c).  (3.3) 

The sum (3.1) of squares of errors within a group Gb+{x} is equal to 

J(Gb+{x})  = Σ z wz||z - c+||2  + w||x - c+||2 = Σz wz||z – c – ∆c||2  + w||x - c – ∆c||2 

= Σ z wz ||z – c||2 + 2(Σ z wz (z – c), ∆c)  + Σz wz||∆c||2 + w||x - c – ∆c||2. 

By the definition of c we have Σ zwz(z – c) = 0, Σ z wy = v. From (3.3) we get 

x - c - ∆c = x - c - (w/(v+w)) (x - c) = (v/(v+w)) (x - c), 

Hence 

J(Gb+{x})   = J(Gb)   + v ||∆c||2 + w ||(v/(v+w)) (x - c)|| 2  

= J(Gb) + v ||(w/(v+w)) (x - c)||2 + w ||(v/(v+w)) (x - c)||2 

= J(Gb) + (vw/(v+w)) ||x - c||2. 

We got the desired result. The impact of adding a point x to group Gb can be expressed without 
actual computations involving many members z of Gb, but only through x and c=cb:  

∆+
b = J(Gb+{x})  – J(Gb) = (vw/(v+w)) ||x - cb||

2 = (vw/(v+w)) Σy |xy - cy|
2  (3.4) 

Similarly to (3.4), it can be shown that impact of moving a point x∈Ga from its current cluster 
with centroid ca is equal to 

∆−
a
 = J(Ga) - J(Ga\{x}) = (vw/(v-w)) ||x - ca||

2.     (3.5) 

Note, that formally (3.5) can be conceived as “adding” a point x with negative weight -w. The 
move of x from Ga to Gb in (3.2) is justified if the smallest of impacts (3.4) (among b≠a) is less 
than the impact (3.5).  

In both cases (3.4 and 3.5) we started with a definition that involved summation with respect to 
two indices, z, y, and algebraically transformed it into an expression having one y-summation. All 
computations can be performed in terms of a centroid and the point x in question. This is a 
remarkable simplification that makes classic K-Means algorithm viable. 

In contemporary implementations of K-Means, the cluster centroids are not recomputed until the 
end of a major iteration. In this case, the major iteration is very simple 

for each x 
find a = argmin ||x - ca|| 

 assign x to Ga 
end for 
compute centroids ca, a=1:k, for newly assembled Ga 

It can be shown that the objective function J decreases after such major iteration. This 
computational flow has several crucial advantages: 

a) Algorithm is very transparent. 
b) It is not restricted to L2 norm.  
c) Organized computation can be parallelized.  
d) Only centroids ca are necessary to ignite this implementation, while (3.2) requires 

initialization of clusters Ga themselves.  

 



 

Will the result of this simplified iterative process be the same as for a classic one or does the 
classic scheme (3.2) have its own advantages?  In fact, a counter-example can be provided that 
shows that the original process (3.2) sometimes achieves smaller values of the objective function. 
Effectively, at the end of the simplified major iteration, x are reassigned based on centroids 
already blurred by their former assignments. This also makes the convergence of the simpler 
major iterations slower. From the point of view of total operation count, computing (3.4, 3.5) 
requires almost the same amount (3|Y| + 4) as computing the distance (3|Y|) in the simpler 
modification! The updating of the centroids ca and cb in the classic version is compensated by full 
re-computation of the centroids after reassigning of all x in the simpler modification. Actually, 
when major iteration starts to converge, fewer points cause re-computation so that substantial 
saving is achieved by the classic version. Therefore, the classic schema (3.2) is preferable when 
initial assignments are known, the implementation is not parallel, and L2 norm is used.  

4.  Algebraic Properties of IR-Clustering 

Our goal now is to establish parallel results for IR-clustering. In this section we will assume that 
clustering is performed with respect to elements x only, so that B=Y is left intact. Recall that the 
objective function we want to minimize is a reduction in mutual information (2.3). We will use 
probabilistic notations; though as in (2.3) all the formulas below can be trivially expressed in 

terms of N, N  alone. We do this since, while points in K-Means are n-dimensional vectors, points 
x in this section are n-dimensional distributions associated with elements x (conditioned by x). 

Our first step is to factorize the total information reduction R into a sum similarly to the 
factorization (3.1) of J into the sum of Ja. We use the rollup property Pay = Σx∈G[a] Pxy: 

R = I(X,Y) - I(A,Y) = Σxy Pxy log(Pxy / Px Py) - Σay Pay log(Pay / Pa Py)  

= Σa Σx∈G[a]   Σy Pxy [log(Pxy / Px  Py) - log(Pay / Pa Py)] = Σa Ra,    

Ra = Σx∈G[a]  Σy Pxy log(PxyPa/PayPx).      (4.1) 

It is not immediately obvious that each term (4.1) of this factorization is non-negative. To prove 
that this is actually true, we obtain a different representation of R based on a concept of a 
Kullback Leibler (KL) distance [8]. KL-distance is used to compare two probability distributions 
Pa and Qa over the same space of outcomes y: 

D(Py || Qy) = Σy Py log(Py/Qy).       (4.2) 

Because it is not symmetric, the KL-distance is not a metric in the general sense. However, it is 
known to be non-negative. Computing the expectation of KL distance between y-probability 
distributions associated with (conditioned by) X and A respectively and comparing it with (4.1) 
yields: 

Σx Px D(Py|x || Py|a) = Σa Σx∈G[a]  Px Σy Py|x log(Py|x / Py|a) = Σa Ra = R.      (4.3) 

This result not only proves that each term Ra is non-negative, but it also gives a new 
interpretation to them; each one is equal to expectation over the cluster of KL-distance between 
y-probability distributions Py|x corresponding to the point x and another y-probability distribution 
Py|a corresponding to the cluster centroid. While in K-Means the cluster centroid is the center of 
mass (mean) with total weight located in it, here the centroid and its total weight are represented 
by the distribution Py|a, and the probability Pa, computed by the rollup process.  

The component Ra of the total reduction R increases when the group Ga contains points x with 
distributions Py|x significantly different from a centroid’s distribution Py|a. On the other hand, if all 



 

Py|x in a group are close to Py|a, then the ratios are close to one, the logarithms are close to zero, 
and so the term Ra is small. Thus each (4.3) term Ra=R(Ga) measures the compactness of a 
cluster, and is similar to the concept of within a group error Ja in K-Means clustering.  

The introduced formulas give rise to the following algorithm similar to K-Means. Perform major 
iterations of the form (3.2) with Ra instead of Ja. As before, ∆a

− is the impact on term Ra of the 
deletion of point x from the group Ga, and ∆b

+ is the impact on term Rb of addition of point x to 
the group Gb. Here we assume that x currently belongs to Ga, that b≠a, and that at the start groups 
are somehow initialized. The new shifted centroid c+ (c−) in K-Means now corresponds to the 
shifted probabilities P+/−

a
 = Pa +/- Px, P+/−

ay
 = Pay +/- Pxy, where x is the point that is moved. 

Starting with the ∆b
+ term, our goal is to establish that the impact terms can be computed without 

actual involvement of all the Pzy, for z∈Gb, z≠x: 

∆+
b

  = R(Gb+{x}) - R(Gb) =  

Σz Σy Pzy log(Pzy P
+

b / P
+

by
 Pz) + Σy Pxy log(Pxy P

+
b / P

+
by

 Px)  

− Σz Σy Pzy log(Pzy Pb / Pby Pz)   

= Σz Σy Pzy log(Pby P
+

b
 / P

+
by Pb) + Σy Pxy log(Pxy P

+
b / P

+
by

  Px)  

= Σy Pby log(Pby P
+

b
 / P+

by Pb) + Σy Pxy log(Pxy P
+

b / P
+

by
  Px).   (4.4) 

Similarly  

∆−
a
  = R(Ga) - R(Ga \ {x}) =  

= Σy P
−

ay log(Pa P
−

ay / P
−

a Pay) +  Σy Pxy log(Pxy Pa / PayPx)    (4.5) 

If ∆+
b

 < ∆−
a, then a move of x from Ga to Gb is justified and updated R = R - ∆−

a + ∆+
b.  

The net result achieved is that we started with a definition that involved summation with respect 
to two indices, z, y, and algebraically transformed it into an expression having one index y 
summation. From (4.4, 4.5) we see that all computations can be fully performed in terms of the 
group “centroid” (a-distribution) and the point x in question. This is a result fully parallel to the 
one we demonstrated for K-Means. In both algorithms a linear amount of operations (proportional 
to |Y| and k) is needed to decide whether x has to be reassigned and, if so, to which cluster.  

So far we have been concerned with the common theoretical treatment of two algorithms. Many 
practical issues are similar between them as well. Different implementations of K-Means 
clustering algorithms face two questions:  

(1) How to initialize clusters to start the algorithm?  

(2) What is the preferable number k of clusters to construct? 

Usually, K-Means randomly initializes k-groups and we use the same choice in IR-clustering as 
well. Although there is a known negative effect that this could result in quite non-optimal local 
minimum of objective function, there are strategies [4] to compensate for this effect. Regarding 
the second question, different indicators (such as F-statistic, Marriott index, coefficients of 
separation, MDL, AWD and BIC criteria [29, 17, 31]) are used to derive the most appropriate k. 
In the case of the IR-clustering, a more straightforward criterion can be suggested. Consider the 
user defined threshold ε, say 0.05, which specifies a percentage (e.g., 5%) of the original 
information the user is willing to sacrifice for the simplification that results from the clustering. If 
R(k) is the information reduction achieved in k-group clustering, then we stop with the smallest k 
such that 

R(k) / I(X,Y) < ε.                            (4.6) 



 

5.  IR Bi-Dimensional Clustering 
So far we have analyzed IR-clustering of X elements, leaving Y intact. However, the objective 

function R = I(X,Y) – I(A,B) = I(N) – I( N ) in (2.3) is symmetric and is well suited for structural 
simplification of both X and Y. Rather than grouping X elements having similar y-distributions or 
vice versa, simultaneous clustering learns the relationship between the two dimensions. Different 
approaches can be suggested to this bi-dimensional clustering that differ in the organization of the 
major iterations. This organization must combine the groupings of both x and y. We present one 
such combination below that exploits the duality between X and Y. 

The suggested algorithm performs a sequence of clustering steps that consecutively reduce the 
original dimensions |X|, |Y|. We do not try to reduce dimensions drastically, but rather proceed 
incrementally. This allows switching back and forth between the dimensions, and, as a result, 
concentrating on the most promising dimension of the moment. If Y-dimension is reduced, it 
benefits the following X-clustering step because the amount of computation per x-element is 
proportional to |Y |. Symmetrically, this in turn benefits the consecutive Y-reduction step. The 
algorithm uses (4.6) as the stopping criterion. 

We start from kx=|X|, ky =|Y|. Given a kxxky matrix Nxy, we can cluster a set X in m clusters as 
described in section 4 by minimizing the information reduction R. In doing so we assume that Y 
is fixed. The result of this operation is a system of m groups Ga covering X. We will use the 
function notation Ga = Cluster (X, Nxy, m), where Ga should be understood as Ga=1:m rather than 
one group, so that in this notation a is a “free” index. Symmetrically, a set Y can be clustered into 
a system of n groups Gb = Cluster (Y, Nxy, n), keeping X fixed. These two operations are dual; 
one reduces rows, the other columns. 

Grouping X $ canonically generates over the rollup mxky matrix Nay by adding together x-rows 
of the initial matrix belonging to the same groups Ga. The resulting rollup distributions are 
precisely the centroids of clusters Ga introduced in section 4. We will use the notation Nay = Roll 
(X, Nxy, Ga). Correspondingly, Nxb = Roll (X, Nxy, Gb) is a kxxn matrix obtained by adding the y-
columns in the same groups Gb. Both operations are related to maps of X onto A and Y onto B. 

In addition to the ε in (4.6), we allow the user to specify minimum x and y-dimensions kxmin, 
kymin. It gives the opportunity to limit potential reductions and, in the extreme case, to disable one 
of the dimensions. In the following algorithm SimplifyRelation we use notation k for a particular 
dimension and s for dimension decrements. This algorithm groups X and Y into unspecified 
numbers kx, ky of groups Ga, Gb respectively.  

[Ga, Gb] = SimplifyRelation (Nxy, ε, kxmin, kymin) 

// Step 0. Initialize: 
kx = |X|,   ky = |Y|,  
if kxmin < |X| then initialize sx; else sx=0    
if kymin < |Y| then initialize sy; else sy=0    
f0 = (1 - ε) I(Nxy) 
Nxb = Nxy, Nay = Nxy 
while sx > 0 and sy > 0 
 

// Step 1. Cluster rows 
if sx > 0 then 

Ga = Cluster (X, Nxb, kx - sx) 
  Nab = Roll (X, Nxb, Ga) 
  fx = I (Nab) 
  if fx < f0 and sx > 1 then reduce sx and go to step 1 

end if 



 

// Step 2. Cluster columns 
if sy > 0 then 

Gb = Cluster (Y, Nay, ky - sy) 
  Nab = Roll (Y, Nay, Gb) 
  fy = I (Nab) 
  if fy < f0 and sy > 1 then reduce sy and go to step 2 

end if 

// Step 3. Estimate the progress 
if fx < f0 and fy < f0 then 

exit while loop 
 else if fx > fy then 
  kx = kx - sx  

Nay = Roll (Nxy, X, Ga) 
 else  
  ky = ky - sy  

Nxb = Roll (Nxy, X, Gb) 
 end if 
 if kx > kxmin then update sx > 0; else sx = 0 
 if ky > kymin then update sy > 0; else sy = 0 
end while 

 

A few comments are needed regarding the above algorithm: 

- The major while-loop proceeds until the relative reduction of mutual information reaches 
specified threshold ε, or the current dimensions kx, ky both reach specified minimal values 
kxmin, kymin. Under normal circumstances, the two dual attempts to decrease each of the 
dimensions are done and the one that reduces mutual information less survives. 

- Each clustering step is based on the iterative optimization described in section 4. Consider, 
for example, step 1. Grouping of X values is performed with respect to cross elements b∈B, 
where the set B enumerates the most currently constructed Y-clusters. In particular, the time 
per step monotonically decreases. 

- We have not specified how initialization of clusters is done for each clustering step. It can be 
done randomly, but also the few closest groups of previous steps can be merged together to 
provide an initial guess. This approach utilizes previous coarser clustering in the same 
dimension that otherwise are just thrown away. 

- We experimented with different strategies of the treatment of decrements sx, sy. While the 
simplest strategy is to keep them always equal to a small number, results show that such a 
policy is too conservative. A much more liberal heuristic is based on updating decrements 
depending on the rate of decrease of mutual information fx, fy. 

Algorithm SimplifyRelation can itself be used several times to generate hierarchical 
agglomerative clustering. On each level v=1,2,... we allow relative reduction εv, εv<εv+1, where 
Π (1−εv)=1-ε. A few levels (like three or four) usually work well in practice. As a reasonable 
choice of εv=1− qv, qv+1=2vq1 can be suggested.  

6.  Applications 
Learning the structure of a relationship presented in a non-negative rectangular matrix by 
grouping its rows and columns has many applications. With some liberty, we can say that the 
generic practical problem with a simple two-dimensional OLAP cube is that the presented table is 
frequently large and thus is not well suited for business action. Some condensation of this 



 

information into a smaller table can be considered as a necessary step preceding any business 
intelligence handling.  

6.1.  Retail Assortment Optimization  

Retailers with hundreds of stores and thousands of products are faced with the dilemma of how 
much of each product to place in each store.  Because using a distinct product assortment plan for 
each store causes a logistical nightmare, retailers try to simplify into a smaller number of 
assortment groups.  In this context the different stores are enumerated by elements x, the different 
products (or merchandise categories) are enumerated by elements y, sales per period of time (for 
example, a month) in a store x for a category y is stored as the matrix entry Nxy. IR bi-
dimensional clustering reduces the original universe of stores x to a lesser number of store groups 
Ga and simultaneously reduces the universe of merchandise categories to super-category groups 
Gb. The resulting matrix Nab represents generalized assortment patterns. In practice, a retailer can 
get a significantly simpler assortment plan (reducing each dimension ten-fold results in 100  times 
simpler assortment) that preserves 90% of the specificity contained in the original assortment 
matrix! 

6.2.  Affiliate Visit Analysis 

Our second example applies introduced clustering to a Web analysis. The Web can be considered 
a loose collection of inter-connected sites.  Many Web sites attempt to encourage visitors to come 
to their site by placing special content on third-party sites and paying these so-called affiliates by 
the number and/or quality of the referrals. This quality is determined by viewing specified 
important pages such as registration or checkout. Here the external referring affiliates are x, the 
specified pages are y, and the number Nxy of visits (or time spent, or any other non-negative 
characteristic) initiated from a referral x to a page y over fixed period of time represents the 
relationship between referrers and pages. In practice there is a good deal of asymmetry in 
browsing patterns and affiliates that might otherwise be treated the same (i.e., Yahoo and Excite) 
do not end up in the same groups Ga. Learning and simplification of introduced relationships 
provide important insights into how to reorganize the Web site structure. It also allows to 
experiment with promotions on low-volume referrer affiliates, and to negotiate contracts based on 
objective information of visiting activity.  

6.3.  Online Advertising Effectiveness 

In a similar vein, many Web sites use banner ads or outbound e-mails to redirect traffic to a 
special page that is not the home page. These special pages could be product directories, 
promotions, registration pages, etc. Here x are the individual redirects, y are the potential events 
(registration, purchase, spurious path, etc.) and matrix Nxy represents the frequency counts 
accumulated over a fixed period of time.  The introduced clustering provides convenient means to 
group sources with similar event-patterns and to group events under consideration in dual groups 
that respond similarly to advertisement flow. This clustering can compare these ads and e-mails.  
For example, differences between the same ad published on different external sites or two 
different ads published on the same site.  This information can be crucial for analysis of 
advertisement effectiveness and for cross selling.  



 

6.4. Text Mining 

Co-clustering of documents and words is an important problem in text mining [10]. Given a set of 
index terms (important or frequent words), document clustering can be performed based on so-
called document vector representation that identifies a document with a vector of frequencies (or 
term frequency – inverse document frequency weights). This approach is standard in text mining. 
However, the terms themselves can be defined by clustering words based on their distribution 
among the documents. So this problem has the duality described above, with a word-by-
document matrix N called incidence matrix in this context. For a thorough introduction to co-
clustering techniques that are based on graph partitioning, see [10, 11]. 

  
6.5. Example Implementation 

We will demonstrate how IR-Clustering actually works using example 6.2 above. A set Y of 203 
important pages (columns) on an anonymous Web site and a set X of 197 different referrers 
(rows) was subjected to analysis. For brevity, we omit the details of data collection, noise 
reduction, and pre-processing. Results are presented in Figures 1-3 in section 10.  

To give a taste of how dimension reduction depends on ε we provide in the table below. 

Table 1 

ε |A| |B| % of original table size 

Original data 197 203 100 % 

0.02 (2%) 49 42 5.15 % 

0.04 (4%) 33 30 2.48 % 

0.06 (6%) 26 22 1.43 % 

0.08 (8%) 20 18 0.90 % 

7.  Conclusions 
The introduced concept of IR-clustering demonstrates striking similarity with the K-Means 
optimization of the sum of squares of L2 errors. For both algorithms, we established algebraic 
formulas that allow efficient iterative optimization.  More exactly, the effects of moving a point 
to or from one cluster does not require computations involving other cluster elements, and can be 
solely performed in terms of the point itself and a cluster centroid. The objective function of IR-
clustering was defined using information theory analogy, which reflects the actual content of 
information and therefore makes it ideally suited for data mining. As a result, during the 
clustering process, points that we try to group are not represented by Euclidian vectors, but by 
probability distributions over the same set of transversal elements (outcomes).  

The IR-clustering algorithm has an embedded duality; it can be applied to either of the 
relationship dimensions.  We exploit this symmetry to gradually simplify a matrix using bi-
dimensional clustering scheme. Attempts in both directions are performed, and the most 
promising ones are preserved. This automatically determines the appropriate numbers of clusters 
for each system, eliminating a troublesome problem in K-Means. 

The simplicity of the model that led us to a concept of IR-clustering predisposes it to a wide 
variety of applications from retail to the Web. In fact, while we started this research with the 
practical goal of grouping together referrers and pages, we were pleasantly surprised to discover 



 

than it efficiently solved the assortment optimization problem that we had previously attacked 
with K-Means.   

In practical use, IR clustering has several important properties. It addresses the ubiquitous 
problem of exploring a relatively large and unmanageable table by reducing it to a table of 
actionable size. Furthermore, IR clustering uses an easily explainable objective function and the 
process is controlled by a single parameter, relative information reduction. As a result, the 
granularity is picked automatically. We actively use the mathematical concept of duality. Rather 
than clustering in a subspace, the approach continually creates derived attributes to cluster on.  
Finally, the resulting clusters are simple to present and allow rich visualization.    

8.  Related Work 
Clustering is used in a variety of fields and applications, including statistics [25] and machine 
learning [15]. Several clustering techniques applicable to data with general set of attributes are 
presented in [23]. In this article we are mostly interested in partitioning clustering, however we 
also present an extension to a hierarchical clustering [23, 25]. Most partitioning clustering 
techniques are based on the concepts of closeness, distance, or similarity while other partitioning 
algorithms look for dense areas [2, 13]. The classic example of the first kind is K-Means 
algorithm [12, 22]. Different improvements to alleviate effects of initialization on results of K-
Means are proposed [4, 34]. While we are not concerned here with scalability issues, we note that 
classic K-Means has numerous extensions to scalable unsupervised learning in databases 
CLARANS [14] and BIRCH [35].  

IR algorithm is an iterative optimization of objective function (equal to a reduction in mutual 
information). It can be viewed in a context of general EM framework [9, 28, 30]. Two specific 
examples of particular algorithms are AutoClass [6] and MCLUST [18]. 

New approaches are emerging for objects of special nature. Many of them are influenced by Web 
applications [5, 16, 19], textual analysis [10, 11, 27], and spatial data mining [21]. In [5], for 
example, probabilistic clustering is employed to cluster visitor sessions. Many practical 
applications involve data with numerous attributes that make data cells very sparse and distance 
measures very blurred. Clustering in subspaces is a promising direction for many practical 
problems [1, 2, 7]. Bi-dimensional clustering or co-clustering that involves duality was used in 
context of the Web in [32]. An excellent review of graph partitioning methods for co-clustering in 
text mining is presented in [11]. 

We started with several application problems. Successful application of clustering requires 
effective visualization. References to corresponding techniques can be found in [24].  

In this article we heavily relied on information theory concepts [8]. Their use in data mining is 
quite established [30]. In particular, applications in classification learning using decision trees 
[33], in exploratory data analysis [3], in determining subspaces for clustering [7], and in 
definition of similarity measures [26]. 
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10.  Screen Shots 
 

 
 
Figure 1: Original 197 rows X representing different referrers and 203 columns Y 
representing important pages are clustered into 26 row groups A and 22 column groups 
B. Information reduction ε=6% was used in IR bi-dimensional clustering. Numbers in 
cells are row percentages (of total referrers volume).  Selected light-color row 
corresponds to a group with 12 elements. It got its name excite.com from its most typical 
representative. Three darker color rows indicate groups whose behavior is similar to the 
selected group. Colored columns are cross-groups that reflect the selected group the most. 
 



 

 

 

Figure 2: The same data as before is subjected to a hierarchical clustering. Three-level 
dendrogram is constructed. One top-level row group, yahoo.com, is selected. It contains total 8 
rows organized in three sub-groups of level two. For example, the third one, netscape.com, 
consists in turn of two level-one groups. One of them, askjeeves.com, finally represents two 
original rows. 

 

 

 

 

 

 

 



 

 

 

 

Figure 3: IR clustering allows rich visualization. Again consider the same data and clustering 
that are presented on Figure 1. Instead of the row group excite.com, the group yahoo.com 
(containing actually yahoo.com and two other referrers) is selected.  In the above visualization, 
the selected group is located in the center. The radial distance from this central group is 
(logarithmically) proportional to the informational distance between the groups. Therefore, most 
similar groups are go.com (6 elements), microsoft.com (6 elements), and altavista.com (13 
elements). The angle reflects metric relationships between non-central groups. The intensity of 
color corresponds to the group click volume, the number in square brackets is a number of 
affiliates in the group, and the size of a circle reflects a group’s compactness. 
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