
1

SCMS-20

Software for LaGrande Technology:  
Impact to the Software Development 
Process

Joseph Cihula
Software Security Architect
Intel Corp.

September 17, 2003



2

Safer Computing Track – Fall IDF
Tuesday Wednesday Thursday

LT Overview
SCMS-16

TCG & TPM v1.2
SCMS-17

LT Architecture
SCMS-18

Privacy Method for 
Assuring Trust

SCMS-19

Opt-In Strategy
SCMS-156

Trusted Mobile KB 
Controller

SCMS-24

Fundamentals of 
NGSCB
SCMS-21

Software for LT
SCMS-20

TPM Recovery
SCMS-25

TCG Credentials
SCMS-157

TPM Mfg & Testing
SCMS-180

Tech Showcase
Every Day

Birds of a Feather 
Lunches

Tuesday & Wednesday

= Overview
= Medium Technical
= Highly Technical

Migrating Apps to 
NGSCB
SCMS-22



3

Outline
! LaGrande Technology (LT) Overview

! Why Design for LT?

! The LT Software Development Process
– Security Analysis
– Design
– Development
– Testing
– Maintenance

! Example:  Order Entry



4

LaGrande Technology Overview
Standard Partition Protected Partition

apps

OS 

applets

kernel 

Domain Manager

3

Protected 
Memory 0

LT CPU + LT chipset + TPM

! LT is a general-purpose security foundation
– LT is application and OS agnostic



5

Why Design for LT?

TRS

HSM

! Robust security is easier and more 
maintainable

– Today’s methods:  tamper resistant 
software (TRS), obfuscation, hardware 
security modules (HSMs), etc.

– Requires specialized knowledge, proprietary, 
very complex, difficult to maintain, expensive

– LT allows standard, straightforward 
designs and implementations

– Standard algorithms, re-use existing code, 
simple and easy to maintain

– Hardware protection—not obscurity—provides 
security

algo’s
secrets



6

Why Design for LT?
! New security functionality

– Protected execution (aka domain separation)
– Program operations and data cannot be observed nor 

interfered with
– Protected input and graphics

– Keystrokes and mouse input are protected from software 
attacks

– Displayed information can’t be captured by software
– Sealed storage

– Data can be sealed to specific software environment
– Once sealed, can be persisted anywhere

– Attestation
– Remote verifiers can be assured of software and platform 

they are talking to
– Protected kernel may extend this to applets ! code identity



7

The LT Software Development 
Process

! Security Analysis

! Design

! Development

! Testing

! Maintenance



8

Security Analysis



9

Security Analysis
Threat List

! High-privilege attacks difficult to prevent 
today

– Bypass many OS security mechanisms
– Very powerful for attacker
– Difficult for applications to secure against OS 

compromises
– E.g. executing code as root/administrator to 

install a device driver
! LT can maintain security in face of OS 

compromise
– Expands threat list to include OS compromises
– May require new mindset for finding        

threats



10

Security Analysis
Mitigation Strategy

! LT enables mitigations not possible before
! Mitigations should be fine-grained and 

include partial solutions
– To permit incremental value add over time

! Need to understand entire system design
– Some LT mitigations may be incomplete

– Third party code dependencies
– Functionality not present in protected partition
– Data needs to be available outside of protected 

partition
– Data is available on un-securable systems

– Moving the attack vector may be valuable
– E.g. from client to server, etc.



11

Security Analysis
Solution Prioritization

! Prioritization is about balancing the cost of a 
mitigation against the risk its threat represents

– Many risk factors to consider
– Severity, frequency, business, etc.

– Many cost factors as well
! LT reduces some mitigation costs

– Reduces need for costly alternatives (TRS, HSM, etc.)
– Permit use of common algorithms / existing code
– Often mitigates multiple threats with single solution

! … but may increase others
– Effort to write / move code to protected partition
– May have to re-create or move libraries or infrastructure
– Potentially multiple code bases for non-LT         

platforms



12

Security Analysis
Examples

Scanning a process’ memory for data
Process sensitive data in protected applet 
(protected execution)

Altering stored security policy
Seal policy before storing 
(sealed storage)

Capture user password
Collect password from protected applet 
(protected input)

Capture data by scraping screen
Display sensitive data from protected 
applet (protected output)

LT

LT

LT

LT



13

Design



14

Software Design for LT
! Move minimum necessary code to protected 

partition
– Functionality may be limited
– Easier to secure and trust less code
– Easier to develop and maintain

! Avoid redundant UI
– Will condition the user, defeating purpose of protected 

graphics
! Don’t over-secure

– Adds complexity without security value
! Understand global data flows

– Important for knowing what to protect where
! Separate code and data

– Don’t hardcode private or shared keys or passwords
– Code is protected when executing, but not when         

stored on disk



15

Managing the Code Base(s)
! Basically, partitioning for LT is just 

distributed computing
! Easier in managed code

– Becomes responsibility of managed runtime 
provider to support protected partition

– Same basic interfaces, so mostly transparent 
where code is running

! Otherwise can use abstraction layer



16

Development



17

Software Development for LT
! Limited in-the-field debugging and performance 

tuning
– Will depend on protected kernel
– Likely that ‘release’ protected kernels:

– Will not be debuggable from standard partition
– Disable event-based monitoring, debug registers, etc.

– Time-based sampling is still supported

! Protect data sent to un-protected I/O devices
– Only keyboard, mouse, graphics have hardware 

protection
– Protected kernel could protect additional devices
– Protect data before it leaves protected partition



18

Software Development for LT
! Make security-related configuration part of code 

identity
– E.g. trace level, data sealing, backward compatibility, 

etc.
! Code reviews are important for security

– Need to be conscious of data movement between 
partitions

– Also check for common security mistakes
– Buffer overrun, array indexing, canonicalization, access 

control, least privilege, etc.
– Security vulnerabilities in protected applet can 

compromise protected data and operations



19

Testing



20

Testing LT Software
! Security testing may require special expertise
! Workload generation for sealed data

– Also applies to developer unit testing
– May want to turn off sealing for intermediate builds
– Otherwise need to re-generate or migrate for each new 

build/patch
! Validating on legacy platforms and OSes is not an 

issue
– Since LT functionality isn’t supported by legacy

! LT does not require software to be certified
– LT does not make value judgments about             

software in the protected partition



21

Maintenance



22

LT Software Maintenance
! Upgradeability must be built in

– Needed to migrate existing sealed data
– Exact process depends on protected kernel 

support
! Changes impact attestation verifiers

– Publish new code identity
– Need to update any verifiers



23

Example:

Order Entry



24

User logs into 
Account

Password is 
clear to 

browser and 
script

AutoComplete 
password can 

be copied 
from HD

Paul

Password can 
be captured 
by keystroke 

sniffer

Security Analysis
Threat List



25

Paul
User places

order

Data can be 
captured by 

screen scraper

Data can be 
captured by 

memory 
scanner

Security Analysis
Threat List



26

Security Analysis
Mitigation Strategy
1. Capture password with keyboard sniffer

" Use multi-factor or non-password authentication
" Collect password from protected applet

2. Password is extracted from browser memory
~ Ensure browser is secure from attacks
~ Use non-password authentication
" Collect password from protected applet

3. AutoComplete saves password on harddrive
" Disable AutoComplete

4. Data can be captured by screenscraper
" Display data from protected applet

5. Data is extracted from browser memory
~ Ensure browser is secure from attacks
~ Use separate application for display
" Display data from protected applet



27

Security Analysis
Solution Prioritization
1. Capture password with keyboard sniffer

~ Use multi-factor or non-password authentication
" Collect password from protected applet

2. Password is extracted from browser memory
~ Ensure browser is secure from attacks
~ Use non-password authentication
" Collect password from protected applet

3. AutoComplete saves password on harddrive
" Disable AutoComplete

4. Data can be captured by screenscraper
" Display data from protected applet

5. Data is extracted from browser memory
~ Ensure browser is secure from attacks
~ Use separate application for display
" Display data from protected applet



28

Design
Standard Partition Protected Partition

Browser

Web Page

Script
or

Plugin

Password and Display
Applet



29

Summary / Next Steps
! LT provides security enhancements to 

applications
– Begin internal discussions on how your 

applications can leverage LT
! LT’s impact to development process can 

be successfully managed
– Begin planning for impact of LT on your 

product roadmaps
! Early availability of LT Software 

Development Platforms
– Contact your Intel representative for 

information on the Intel Early Access    
Program (EAP)



30

Fall ’03 U.S. IDF session presentations
are available to IDF attendees only.

To download, go to:

http://www.intel.com/idf/attendee
Username:  attendee
Password:  fall2003



31

Thank you for attending.

Please fill out the 

Session Evaluation Form.


