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Abstract. With teraflops-scale computational modeling expected to be routine by 2003–04,
under the terms of the Accelerated Strategic Computing Initiative (ASCI) of the U.S. Department
of Energy, and with teraflops-capable platforms already available to a small group of users, atten-
tion naturally focuses on the next symbolically important milestone, computing at rates of 1015

floating point operations per second, or “petaflop/s”. For architectural designs that are in any
sense extrapolations of today’s, petaflops-scale computing will require approximately one-million-fold
instruction-level concurrency. Given that cost-effective one-thousand-fold concurrency is challenging
in practical computational fluid dynamics simulations today, algorithms are among the many possi-
ble bottlenecks to CFD on petaflops systems. After a general outline of the problems and prospects
of petaflops computing, we examine the issue of algorithms for PDE computations in particular. A
back-of-the-envelope parallel complexity analysis focuses on the latency of global synchronization
steps in the implicit algorithm. We argue that the latency of synchronization steps is a fundamental,
but addressable, challenge for PDE computations with static data structures, which are primarily
determined by grids. We provide recent results with encouraging scalability for parallel implicit Euler
simulations using the Newton-Krylov-Schwarz solver in the PETSc software library. The prospects
for PDE simulations with dynamically evolving data structures are far less clear.
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1. Introduction. Future computing technology in general, and scientific com-
puting technology in particular, will be characterized by highly parallel, hierarchical
designs. This trend in design is a fairly straightforward consequence of two other
trends: a desire to work with increasingly large data sets at increasing speeds and
the imperative of cost-effectiveness. A system possessing large memory without a
correspondingly large number of processors to act concurrently upon it is expensively
out-of-balance. Fortunately, data use in most real programs has sufficient temporal
and spatial locality to allow a distributed and hierarchical memory system, and this
locality must be exploited at some level (by a combination of the applications pro-
grammer at the algorithmic level, the system software at the compiler and runtime
levels, and the hardware). Research on petaflops1 systems can be seen as paving
the way for exploiting hierarchical parallelism at all levels. Indeed, “petaflops” has
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1In order to distinguish the plural of “floating point operations” from the rate “floating point
operations per second,” the rate is customarily abbreviated “flop/s”, with an explicit “/” for the
“per”. We retain this distinction when quoting measurements, but we do not distinguish between
“petaflops” and “petaflop/s” when using the term as an adjective of scale. “Petaflops” will also be
used in its general adjectival form to include the term “peta-ops,” reflecting requirements to perform
integer and logical computation at comparable rates, independently of or (often) in conjunction with
floating point computation.
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come to refer to body of research dealing with very highly parallel computing, since
petaflops computers are likely to have between 104 and 106 processors, with deep
memory hierarchies.

1.1. Petaflops Numerology. Casting petaflops-scale computing into popular
terms is a worthwhile exercise even for the quantitatively elite, if for no other reason
than that this staggering (and staggeringly expensive) capability must be explained
to others. With apologies for drawing significance to any number with an arbitrary
dimension attached (i.e., the second) except for its mnemonic value, we note that
mainstream production scientific computing on workstations is carried out at ap-
proximately the square-root of 1 Pflop/s today:

√
1015 ≈ 31.5 × 106. The following

commodity workstations perform the LINPACK-100 benchmark at a rate within a
few percent of 31.5 Mflop/s [11]:

• SGI Indigo2 (200 MHz)
• IBM RS 6000-560 (50 MHz)
• DEC 3000-500 Alpha AXP (150 MHz)
• Sun Sparc 20 (90 MHz)

A typical sparse PDE computation performs somewhat below the dense LINPACK-
100 rates, but with attention to cache residency through variable interleaving and
subdomain blocking, it can come close.

There are also 31.5 × 106 seconds in a year, to within one-tenth of a percent.
Therefore, a 1 Pflop/s computer could compute in one second what one of these
workstations can compute in one year.

There are also 31.5×106 people presently living in the state of California, to within
a few percent, based on an extrapolation from the 1990 federal census. Therefore,
the processing power of a 1 Pflop/s computer (but not the requisite connectivity!)
could be realized if everyone in California pooled a commodity scientific workstation
to the task. This particular bit of numerology calls to mind that the electrical power
consumption of a 1 Pflop/s computer built from commercial, off-the-shelf (COTS)
components would be impressive.

As a final point of perspective, we note that the human brain has approximately
1012 neurons capable of firing at approximately 1 KHz, and is therefore a specialized
peta-op/s “machine” weighing just three pounds and requiring far less power.

1.2. Interagency Petaflops Workshops. Since February 1994, there has been
a systematic effort to explore the feasibility of and encourage the development of
petaflops-scale computing by an informal interdisciplinary, interagency working group,
subsets of which have met, typically for a week at a time, to consider:

• petaflops applications — what problems appear to require 1 Pflop/s or beyond
for important benefits not achievable at smaller scales?
• petaflops architectures — how can balanced systems that store, transfer, and

process the data of petaflops applications be supported with conceivable tech-
nologies?
• petaflops software — how can the gap between the complex hardware and

the application community be spanned with tools that automate program
preparation and execution?
• petaflops algorithms — how much concurrency can be exposed at various

levels in a computational model and what fundamental requirements on ca-
pacity, bandwidth, latency, and processing arise from the underlying physics
and mathematics?
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The main contents of this report were originally created for, and have been informed
by, the most recent of these meetings, the Petaflops Algorithms workshop in Williams-
burg, VA, April 13-18, 1997. Fifty-five participants from federal agencies, universi-
ties, computer vendors, and other private computational organizations attempted
to address the algorithmic research questions presented by potential of “affordable”
petaflops systems by the year 2010.

The principal findings and recommendations have been outlined in [2], which
concludes that petaflops computing is algorithmically feasible, in that at least some
of today’s key algorithms appear to be scalable to petaflops. Issues of interest to
algorithmicists include the following, many of which are shared with the software and
hardware communities:

• Concurrency
• Data locality
• Latency and synchronization
• Floating point accuracy (extended wordlength)
• Dynamic (data-adaptive) redistribution of workload
• Detailed performance analysis
• Algorithm improvement metrics
• New languages and constructs
• Role of numerical libraries
• Algorithmic adaptation to hardware failure

Participants made preliminary assessments of algorithm scalability, from as many
diverse areas of high-performance computing as were represented, and applied a
“triage”-style categorization: Class 1 – appearing to be scalable to petaflops systems,
given appropriate effort; Class 2 – appearing scalable, provided certain significant re-
search challenges are overcome; and Class 3 – appearing to possess major impediments
to scalability, from our present perspective.

Many core algorithms from scientific computing were placed in Class 1 (scalable
with appropriate effort), including: dense linear algebra algorithms; FFT algorithms
(given sufficient global bandwidth); PDE solvers, based on static grids, including
explicit and implicit schemes; sparse symmetric direct solvers, including positive def-
inite and indefinite cases; sparse iterative solvers (given parallelizable precondition-
ers); “tree-code” algorithms for n-body problems and multipole or multiresolution
methods; Monte Carlo algorithms for quantum chromodynamics; radiation transport
algorithms; and certain highly concurrent classified (in the sense of national security)
algorithms with a priori specifiable memory accesses.

Class 2 algorithms (scalable if significant challenges overcome) included a cat-
egory of principal interest to CFD practitioners — namely, dynamic unstructured
grid methods, including mesh generation, mesh adaptation and load balancing —
along with several others: molecular dynamics algorithms; interior point-based linear
programming methods; data mining, including associativity, clustering, and simi-
larity search; sampling-based optimization, search, and genetic algorithms; branch
and bound search algorithms; boundary element algorithms; symbolic algorithms, in-
cluding Gröbner basis methods; discrete event simulation; certain further classified
algorithms involving random memory accesses.

Into Class 3 (possessing major impediments to scalability) the participants placed:
sparse unsymmetric Gaussian elimination, theorem-proving algorithms; sparse sim-
plex linear programming algorithms; and integer relation and integer programming
algorithms.
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From these lists one may abstract the following contraindications for petaflops:
• Data dependencies that are random in characterization and determinable only

at runtime (input-dependent dependencies);
• Insufficient speculative concurrency;
• Frequent uncoverable global synchronization;
• Multiphase algorithmic structure with disparate mappings of data to memo-

ries within alternating load-balanced phases; and
• Requirement of fast access to huge data sets by all processors.

Computational fluid dynamics as practiced at the contemporary state-of-the-art for
problems with complex physics is sometimes characterized by this list. Adaptive meth-
ods cannot be statically balanced and mapped across processors, making incremental
dynamic balancing and mapping necessary, together with performance monitoring
and performance estimation to make cost-benefit analyses. Hybrid particle-field tech-
niques often have unbalanced sequential phases when either the particle or the field
computation is given priority over the other in data distribution. Lookup tables for
complex state equations, constitutive relations, and cross-sections or reaction coeffi-
cients are often too large to replicate on each processor, but too nonlocally accessed
to partition without sacrifice of efficiency.

In addition to these readily apparent contraindications, there is another comple-
mentary pair, of relevance to fluid dynamics simulations:

• Work requirements that scale faster than than M4/3, where M is the main
memory capacity; and
• Memory requirements that scale faster than W 3/4, where W is the (arith-

metic) work complexity.
This constraint between memory and work scaling (or, alternatively, between memory
and execution time scaling) is not likely to be as painful an issue for PDE-based com-
putations as it may be for some others, since it reflects an architectural decision that
is largely influenced to accommodate stencil-type computations on three-dimensional
space-time grids (as we discuss further below). It is however, a new constraint, as
applied in a two-sided manner. CFD practitioners are accustomed to either a memory
or a time constraint, which they play up against — running the largest job that fits in
memory for as much time as required on a dedicated system or running a job up against
a temporal deadline with as much resolution as can be afforded. A tightly-coupled
petaflops-capable system will be delicately balanced in its hardware configuration for
a specific memory/processing rate model. Such systems will be too rare and too ex-
pensive to turn over in a dedicated fashion for an indefinite amount of time. They
will also be too expensive to use without employing the full amount of memory most
of the time. Algorithms that can trade space for time (such as methods that can vary
discretization order, and thus the number of operations per grid vertex) will therefore
extend more gracefully to an architecturally and economically constrained machine
than algorithms that can only be run at a specific operation-count-to-memory ratio.

1.3. Technology Outlook. We conclude our introduction with a glimpse at
a baseline COTS petaflops machine, and at a couple of nontraditional architectural
directions. As we quote the educated guesses of others in this section, we begin with
a caveat from Yogi Berra, philosopher in Baseball’s Hall of Fame:

“Prediction is hard. Especially the future. . . ”

In its projections for the year 2007 (the target year of its current ten-year win-
dow, as of this writing) the Semiconductor Industry Association (SIA) anticipates that
individual clock rates will continue their historically gratifying ascent as far as approx-
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imately 2GHz and then level off. This implies that at least 500,000-fold instruction
concurrency is required (to achieve a product of 1015 operations per second), some of
which will be found at the subprocessor level. Based on this number, and informed
by other technology extrapolations, Stevens [24] has projected a COTS design. He
envisions a 2,000-node system, with 32 processors per node, totaling 64,000 proces-
sors. This leaves approximately 8-fold concurrency to be found within a processor’s
own pipelined instruction stream (e.g., through multiple functional units). With 65
GB of shared memory per node, the system would have an aggregate of 130 TB. Ap-
proximately 80,000 disks (failing at the rate of approximately one every hour) would
back this memory. The overall memory hierarchy (from processor registers to disks)
would have 8 levels. The 2 GHz-clock multifunctional unit processors would be fed by
approximately 240 GB/s of loads and 120 GB/s stores apiece (assuming dominantly
triadic operations, a ← b op c). This requires 180 data Bytes per cycle in and out
of Level-1 cache, which would take up about 70% of an overall 2,048-bit wide path
from L1 to CPU. Extrapolating from present pricing trends and practices, such a
machine would cost approximately $32M for the CPUs and $174M for the overall
system. Power consumption would be 11.5 MW and the annual power bill would be
approximately $12M.

Sterling has led a design team that is looking well beyond COTS technology. The
Hybrid Technology, Multi-threaded (HTMT) architecture [25] is looking towards a
100 GHz clock from quantum logic processors. At this rate, there will be a latency to
DRAM of approximately 10,000 clocks. The 7-layer memory hierarchy of HTMT tra-
verses the temperature spectrum from non-uniform random access (NURA) registers,
cryogenic RAM (CRAM), at liquid helium temperatures, SRAM at liquid nitrogen
temperatures, conventional DRAM, and high density holographic RAM, (HRAM),
backed by disk. Programmer-specified “thread affinity” will reduce data hazards.

The Processor-in-Memory (PIM) design of Kogge et al. [20] will feature 100 TB
of memory in 10,000 to 20,000 chips, each of which contains about 50 embedded
“CPUs.” The memory system will be like a live file with filters attached.

All designs are subject to the so-called “Tyranny of DRAM,” which states that
bandwidth between memory and the processors must be proportional to processor con-
sumption of operands, even if latency is covered (through prefetching or some other
technique). Many kernels, like the DAXPY and the FFT, do work that is a small
constant (or at most a logarithmic) multiple of the size of the data set. The tyranny
implies that progressively remote and slower levels of the memory system must pro-
vide proportionally wider pathways of data towards the CPU, so that the bandwidth
product can be maintained during computational phases that cycle through the entire
data set and do little work with each element.

2. Partial Differential Equation Archetypes and Parallel Complexity.
Partial differential equations come in a wide variety, which explains why we have
national laboratories instead of general purpose PDE libraries. Evolution equations
come in time-hyperbolic and time-parabolic flavors, and equilibrium equations come in
elliptic and spatially hyperbolic or parabolic flavors. Generally, hyperbolic equations
are challenging to discretize since they support discontinuities, but easy to solve when
addressed in characteristic form. Conversely, elliptic equations are easy to discretize,
but challenging to solve, since their Green’s functions are global: the solution at
each point depends upon the data at all other points. The algorithms naturally
employed for “pure” problems of these types vary considerably. CFD spans all of
these regimes. Its problems can be of mixed type, varying by region, or of mixed
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type by virtue of being multicomponent in a single region (e.g., a parabolic system
with an elliptic constraint). In a prospective discussion such as this one, we cannot
afford to be algorithmically comprehensive, and fortunately, we do not need to be in
order to accomplish some computational complexity estimates of generic value, since
PDE computations have a great deal of complexity regularity within their algorithmic
variety, due to their field nature. The resource requirements of a PDE problem can
usually be characterized by the following parameters, for which typical values are
suggested for problems in the ASCI class:

• Nx, spatial grid points (104–109)
• Nt, temporal grid points (1–. . . )
• Nc, components per point (1–102)
• Na, auxiliary storage per point (0–25)
• Ns, grid points in “stencil” (7–30)

In terms of these parameters, typical memory requirements would be some small
number of copies of the fields (successive iterates, overwritten in a shifted or moving-
windowed manner) together with a copy of the current Jacobian: Nx · (Nc + Na) +
Nx · N2

c · Ns. (We assume with the N2
c term in the Jacobian that all components

depend upon all other components). The work for an explicit code, or for an implicit
code in which the linear system is solved through a sparse iterative means, is a small
multiple of: Nx ·Nt · (Na + N2

c ·Ns).
For equilibrium problems solved by “good” implicit methods, work W scales

slightly superlinearly in the problem size (or main memory M); hence the Amdahl-
Case Rule applies: M ∝W . For evolutionary problems, work scales with with prob-
lem size times the number of timesteps. CFL-type arguments place the latter on
the order of the resolution of each spatial dimension. For 3D problems, therefore,
M ∝ W 3/4, which leads to the conventional petaflops “memory-thin” scaling rule.
The actual constant of proportionality between M and W can be adjusted over a
very wide range by both discretization order (high-order implies more work per point
and per memory transfer) and by algorithmic tuning. If frequent time frames are
to be captured, other resources — disk capacity and I/O rates — must both scale
linearly with W . This is a more stringent scaling than for memory. For reasons of
scope, we do not further address the scaling of peripherals; however, we note that sig-
nificant research remains to be done with archiving data and I/O to support petaflops
computing.

2.1. PDE Archetypes and Software Toolchain. The Computational Archetypes
project at Caltech [9] has identified PDE archetypes according to the following clas-
sification:

• Local mesh computations
– Concurrent
∗ Explicit update schemes, diagonal relaxation schemes
∗ Sparse matrix-vector multiplications

– Sequential
∗ Triangular relaxation schemes
∗ Sparse approximate factorization schemes

• Global dimensionally-split computations
– spectral schemes
– ADI-like schemes

• Direct linear algebraic computations
– Gaussian elimination in various orderings
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With due respect to the importance of the latter, we concentrate on the prime
archetypes for parallel CFD: concurrent local mesh computations, explicit and it-
erative implicit.

Before confining our attention to a few quantitative aspects of the solution algo-
rithm, we note that solvers are just one link in a “toolchain” [19] for PDE computa-
tions worth doing at petaflops scales. This toolchain involves:

• Geometric modeling and grid generation
• Discretization (and automated code generation)
• Error estimation and adaptive refinement (h- and/or p-type)
• Task assignment

– Domain partitioning
– Subdomain-to-processor mapping

• Solution
– Grid and operator “coarsening”
– Automated or interactive steering

• Visualization, postprocessing, and application interfacing
• Parallel performance analysis

The toolchain metaphor is useful in reminding that the solver is not all there is to
a parallel computation, and may not be the most difficult part. Furthermore, the
difficulty of one link may be affected by decisions in another, e.g., a solver may have
to work harder in conjunction with a poor grid generator. The overall outcome of a
computation may be limited by any weak link, making it difficult to attach relative
merits to individual components. The toolchain metaphor is possibly misleading in
that not all links are important in all problems, and not all important relationships
are between links adjacent in list.

We make a few additional remarks on the toolchain, abstracting CFD-relevant
remarks from [19]. Software components of the chain tend to be modular, with well-
defined interfaces, because of both good design principles and the impossibility of
any one individual or team being expert in all components. A few full, vertically
integrated parallel toolchain environments exist today. Amdahl’s “rake” eventually
forces parallelization of all components; certainly, at least, for petaflops. As one tool
is perfected, the parallel bottleneck shifts to another. Significant sharing and reuse of
components occurs horizontally (across groups) at the “low” end of the toolchain. For
instance grid generators and partitioners are easy to share since they interface to the
rest of the environment through intermediate disk files. At higher levels, the compat-
ibility of inner data structures becomes an issue, which limits sharing. Some reuse of
software between components occurs vertically, such as between mesh generation and
improvement algorithms, and between these and the solver. Though data-structure-
specific, common operations are sufficiently generic to become candidates for vertical
software reuse within a group (e.g., intermesh transfer operators, error estimators,
and solvers for error estimators and for actual solution updates). The parallel scala-
bility requirement discourages the use of graph algorithms that make frequent use of
global information, such as eigenvectors. Instead, heavy use is made of maximal inde-
pendent sets, which can be constructed primarily by a local, greedy algorithm, with
local mediation at subdomain interfaces. Trees are generally avoided as primary data
structures in important inner-loop nearest-neighbor operations of PDE-based codes.
Crucial trade-offs exist between time to access grid and geometry information and
total memory usage; redundant data structures can reduce indirection at the price of
extra storage.
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2.2. Algorithms for PDEs. An explicit PDE solution algorithm has the fol-
lowing algebraic structure in moving from iterate `− 1 to iterate `:

u` = u`−1 −∆t` · f(u`−1),

or, for higher temporal order schemes, a more general, fully known right-hand side:

u` = F(u`−1,u`−2, . . .).

Let N be the discrete dimension of a 3D problem and P the number of processors. As-
sume that the domain is of unit aspect ratio so that the number of degrees of freedom
along an edge is N1/3, and that the subdomain-to-processor assignment is isotropic,
as well. The concurrency is pointwise, O(N). Since the stencil is localized, the
communication-to-computation ratio enjoys surface-to-volume scaling: O (

(N
P )−1/3

)
.

The communication range is nearest-neighbor, except for timestep selection, which
typically involves a global CFL stability check. The synchronization frequency is
therefore once per timestep, O (

(N
P )−1

)
. Storage per point is low — just a small mul-

tiple of N , itself. The data locality in the stencil update operations can be exploited
both “horizontally” (across processors) and “vertically” (in cache). Load balancing
is a straightforward matter of equipartitioning gridpoints while cutting the minimal
number of edges, for static quasi-uniform meshes. Load balance becomes nontrivial
when grid adaptivity is combined with the synchronization step of timestep selection.

The discrete framework for an implicit PDE solution algorithm has the form:

u`

∆t`
+ f(u`) =

u`−1

∆t`
,

with ∆t` → ∞ as ` → ∞. We assume that pseudo-timestepping is used to advance
towards a steady state. An implicit method may also be time-accurate, which gen-
erally leads to an easier problem than the steady-state problem, since the Jacobian
matrix for the left-hand side is more diagonally dominant when the timestep is small.
The sequence of nonlinear problems, ` = 1, 2, . . ., is solved with an inexact Newton
method. The resulting Jacobian systems for the Newton corrections are solved with
a Krylov method, relying only on matrix-vector multiplications, so the stencil-based
sparsity is not destroyed by fill-in. The Krylov method needs to be preconditioned for
acceptable inner iteration convergence rates, and the preconditioning is the “make-
or-break” aspect of an implicit code. The other phases parallelize well already, being
made up of DAXPYs, DDOTs, and sparse MATVECs.

The job of the preconditioner is to approximate the action of the Jacobian inverse
in a way that does not make it the dominant consumer of memory or cycles in the
overall algorithm. The true inverse A−1 is usually dense, reflecting the global Green’s
function of the continuous PDE operator approximated by A. Given Ax = b, we want
B approximating A−1 and a rescaled system BAx = Bb (left preconditioning) or
ABy = b, x = By (right preconditioning). Though formally expressible as a matrix,
the preconditioner is usually implemented as a vector-in, vector-out subroutine. A
good preconditioner saves both time and space by permitting fewer iterations in the
innermost loop and smaller storage for the Krylov subspace. An Additive Schwarz
preconditioner [6] accomplishes this in a localized manner, with an approximate solve
in each subdomain of a partitioning of the global PDE domain. Optimal Schwarz
methods also require solution of a global problem of small discrete dimension. Apply-
ing a preconditioner in an Additive Schwarz manner increases flop rates over a global
preconditioner, since the smaller subdomain blocks maintain better cache residency.
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Newton Krylov Schwarz

The pioneers of NKS methods.

Combining a Schwarz preconditioner with a Krylov iteration method inside an
inexact Newton method leads to a recently assembled synergistic parallelizable non-
linear boundary value problem solver with a classical name: Newton-Krylov-Schwarz
(NKS).

When nested within a pseudo-transient continuation scheme to globalize the New-
ton method [18], the implicit framework has four levels:
do l = 1, n_time
SELECT TIME-STEP
do k = 1, n_Newton
compute nonlinear residual and Jacobian
do j = 1, n_Krylov

do i = 1, n_Precon
solve subdomain problems concurrently

enddo
perform Jacobian-vector product
ENFORCE KRYLOV BASIS CONDITIONS
update optimal coefficients
CHECK LINEAR CONVERGENCE

enddo
perform DAXPY update
CHECK NONLINEAR CONVERGENCE

enddo
enddo

The operations written in uppercase customarily involve global synchronizations.
The concurrency is pointwise, O(N), in most algorithmic phases but only sub-

domainwise, O(P ), in the preconditioner phase. The communication-to-computation
ratio is still mainly surface-to-volume, O (

(N
P )−1/3

)
. Communication is still mainly

nearest-neighbor in range, but convergence checking, orthogonalization/conjugation
steps in the Krylov method, and the optional global problems add nonlocal commu-
nication. The synchronization frequency is often more than once per mesh-sweep, up
to the Krylov dimension (K), O (

K(N
P )−1

)
. Similarly, storage per point is higher by

a factor of O(K). Locality can still be fully exploited horizontally and vertically, and
load balance is still straightforward for any static mesh.
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2.3. Parallel Complexity Analysis. Given complexity estimates of the lead-
ing terms of:

• the concurrent computation,
• the communication-to-computation ratio, and
• the synchronization frequency,

and a model of the architecture including:
• internode communication (network topology and protocol reflecting horizon-

tal memory structure), and
• on-node computation (effective performance parameters including vertical

memory structure),
one can formulate optimal concurrency and optimal execution time estimates for
parallel PDE computations, on per-iteration basis or overall (by taking into account
any granularity dependence in the convergence rate).

For an algebraically simple example that is sufficient to elucidate the main issues
in algorithm design, we consider a 2D stencil-based PDE simulation and construct a
model for its parallel performance based on computation and communication costs.
The basic parameters are as follows:

• n grid points in each direction, total memory N = O(n2),
• p processors in each direction, total processors P = p2,
• memory per node requirements O(n2/p2),
• execution time per iteration An2/p2 (A includes factors like number of com-

ponents at each point, number of points in stencil, number of auxiliary arrays,
amount of subdomain overlap),
• n/p grid points on a side of a single processor’s subdomain,
• neighbor communication per iteration (neglecting latency) Bn/p, and
• cost of an individual reduction per iteration (assumed to be logarithmic in p

with the frequency of global reductions included in the coefficient) C log p.
A, B, and C are all expressed in the same dimensionless units, for instance, multiples
of the scalar floating point multiply-add.

Putting the components together, the total wall-clock time per iteration is

T (n, p) = A
n2

p2
+ B

n

p
+ C log p.

The first two terms fall as p increases; the last term rises slowly. An optimal p is
found where ∂T

∂p = 0, or

−2A
n2

p3
−B

n

p2
+

C

p
= 0,

or

popt =
B

2C

[
1 +

√
1 + 8AC/B2

]
· n.

Observe that p can usefully grow proportionally to n without limitation. The larger
the problem size, the more processors that can be employed with the effect of reducing
the execution time. In this limited sense, stencil-based PDE computations are scalable
to arbitrary problem sizes and numbers of processors. The optimal running time is

T (n, popt(n)) =
A

ρ2
+

B

ρ
+ C log(ρn),
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where ρ = B
2C

[
1 +

√
1 + 8AC/B2

]
. This optimal time is not constant as the problem

size (and number of processors) increases, but it degrades only logarithmically.
To simplify, consider the limit of infinite bandwidth so that the (asynchronous)

nearest-neighbor exchanges take no time. Then,

popt =
√

2A/C · n,

and

T (n, popt(n)) = C

[
1
2

+ log(
√

2A/C · n)
]

.

This simple analysis is on a per-iteration basis; a fuller analysis would multiply this
cost by an iteration count estimate that generally depends upon n and p. We observe
that although an algorithm made up of this mix of operations is formally scalable, the
number of processors amongst which the problem should be divided varies inversely
with C, the coefficient of the global synchronization term, and running time varies
proportionally. Recall that the main difference in complexity per iteration between
explicit and implicit methods in this context is the much greater frequency of syn-
chronization for implicit methods. One of the main benefits provided in return for
this synchronization is freedom from CFL limitations, and hence the prospect of an
iteration count that is not constrained by the resolution of the grid.

The synchronization cost is made of two parts: the hardware and software latency
of accessing remote data when the data is, in fact, ready, and the synchronization delay
when the data is not ready. Since they are difficult to distinguish in practice, we lump
them together under the term “latency” and consider strategies for latency tolerance.

2.4. Latency Tolerance. From an architect’s perspective [10], there are two
classes of strategies for tolerating latency: amortization (block data transfers) and
hiding or covering (precommunication, proceeding past an outstanding communica-
tion in the same thread, and multithreading). The requirements for tolerating latency
are excess concurrency in the program (beyond the number of processors being used)
and excess capacity in the memory and communication architecture, in order to stage
operands near the processors.

Any architectural strategy has an algorithmic counterpart, which can be expressed
in a sufficiently rich high-level language. For instance, prefetching is partially under
programmer control in some recent commercially available language extensions. In ad-
dition, however, algorithmicists have a unique strategy, not available to architects by
definition: reformulation of the problem to create concurrency. Algorithmicists may
note that not all nonzeros are created equal, and can create additional concurrency
by neglecting nonzero couplings in a system matrix when they stand in the way. Al-
gorithmicists may also accept a (sufficiently rapidly converging) outer iteration that
restores the coupling in a less synchronous way, if it improves the concurrency of
the iteration body. The reduction in the cost per iteration must more than offset
the cost of the restorative outer iterations. An understanding of the convergence
behavior of the problem, especially the dependence of the convergence behavior on
special exploitable structure, such as heterogeneity (region-dependent variation) and
anisotropy (direction-dependent variation), is required in order to intelligently sup-
press nonzero data dependencies. We briefly mention some ideas for latency-tolerant
preconditioners, latency-tolerant accelerators, and latency-tolerant formulations.
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The Additive Schwarz method (ASM) named above as the innermost component
of the implicit NKS method is a perfect illustration of latency-tolerant preconditioner.
We take a closer look at the construction of this method.

The operator B is formed out of (approximate) local solves on overlapping sub-
domains. The figure below shows a domain Ω decomposed into nine subdomains Ωi,
which are extended into overlapping subdomains Ω′

i that are cut off at the original
boundary. The fine mesh spacing is indicated in one of the overlapping subdomains.
This example is for a matching discretization in the overlapping subdomains, but
nonmatching discretizations can be accommodated.

x

y

Ω

Ωi

Ω
′
i

Let Ri and RT
i be Boolean gather and scatter operations, mapping between a

global vector discretized on the fine mesh and its ith subdomain support, and let

B =
∑

i

RT
i Ãi

−1
Ri.

The concurrency thus created is proportional to the number of subdomains. Part
of the action of the Ri is indicated schematically in the figure below. The bold
right segment of Ωi and the bold left segment of Ωj are the same physical points. The
overlapping subdomains are shown pulled apart, and the padding of each with interior
data of the other is indicated by the arrows and dashed rectangles. (The width of the
overlap is exaggerated for clarity in this illustration.)
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The amount of overlap obviously determines the amount of communication and
the amount of redundant computation (on non-owned, buffered points).

A two-level form of Additive Schwarz is provably optimal in convergence rate for
some problems [23], but requires an exact solve on a coarsened grid. Convergence
theorems for scalar 3D elliptically dominated systems may be summarized as follows,
where I estimates the number of iterations as a function of problem size N and number
of subdomains (and processors) P :

• No preconditioning: I ∝ N1/3

• Zero-overlap Schwarz preconditioning: I ∝ (NP )1/6

• Generous-overlap Schwarz preconditioning: I ∝ (P )1/3

• Two-level, generous overlap Schwarz preconditioning: I = O(1)

The PETSc library [3, 4] includes portable parallel parameterized implementations of
Schwarz preconditioners, including the new, more communication efficient, Restricted
Additive Schwarz (RAS) method [8].

Another example of a latency-tolerant preconditioner is the form of the Sparse
Approximate Inverse (SPAI) recently developed in [14]. Here B is formed in explicit,
forward-multiply form by performing a sparsity-constrained norm minimization of
||AB− I||F . The minimization decouples into N independent least squares problems,
one for each row of B. An adaptively chosen sparsity pattern, such that ||Abk −
ek||2 < ε leads to κ(AB) ≤

√
1+δ
1−δ , where δ ∝ Nε2. ε is chosen as a compromise

between storage and convergence rate. The requirement on the smallness of ε appears
pessimistic (in that B becomes denser as ε becomes smaller), but SPAI is worthwhile
beyond the hypotheses of the theorem, just as Additive Schwarz is worthwhile with
overlaps much smaller than required by the theory for optimality.

The concurrency created by SPAI is pointwise, in both the construction and
the application of B. A parallel implementation of SPAI is described in [5]. (The
next public release of PETSc will contain an interface to this package.) The sparsity
profiles of an original matrix A and its SPAI, with a comparable number of differently
positioned nonzeros are shown below (from [14]):
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Modified forms of the classical Krylov accelerators of conjugate gradients (CG)
and generalized minimal residuals (GMRES) can provide latency-tolerant accelera-
tors. Krylov methods find the best solution to an N -dimensional problem in a K-
dimensional Krylov space (K � N). Conventional Krylov methods orthogonalize (or
conjugate) at every step to build up a well conditioned Krylov basis and to update
the expansion coefficients of the solution in the enlarged basis. In infinite precision,
this orthogonalization can be delayed for many steps at a time and “made up” in one
multicomponent global reduction [12], some options for which are available in PETSc.
In finite precision, delayed orthogonalization may be destabilizing, but for the low-
accuracy requirements of an inner loop of a Newton method it may be tolerable, since
the basis is flushed before it gets large. Furthermore, the requirement of performing
all pairwise orthogonalizations may be avoided by construction during part of the iter-
ation if the bases are generated from sparse seed vectors with sparse system matrices
A. Many other tradeoffs of stability for reduced synchronization frequency have yet
to be carefully investigated on realistic problems. Petaflops scale CFD will require a
systematic assault on the synchronicity of Krylov basis generation.

The formulations of PDE algorithms, themselves may be made more latency-
tolerant in ways that do not compromise the ultimate accuracy of the result, but
only the minimal number of iterations required to achieve it. Many synchronization
steps in conventional algorithms (e.g., convergence tests, global timestep selection)
can be hidden by speculative computation of the next step based on a conservative
prediction of the outcome. Such conservative predictions (that an iteration has not
converged, or that a timestep cannot be increased) allow by-passing tests that would
be recommended for minimal computational complexity if communication were free;
but their communication costs may not justify the resulting instant adaptation.

Much work in PDE codes with complex physical models is related to updating
auxiliary quantities used in Jacobian assembly, such as flop-intensive constitutive laws
or communication-intensive table lookups. These can be “lagged” to slightly stale (or
very stale) values with latency savings and acceptable convergence rate consequences.

Message-number versus message-volume trade-offs can be resolved in architec-
turally optimal ways, given latency and bandwidth models.

Furthermore, a “neighbor-computes” paradigm may sometimes be better than an
“owner-computes” in cases in which the output of the computation is small but the
inputs (residing on the neighbors) are large.

3. Case Study in the Parallel Port of an NKS-based CFD Code. Dis-
cussions of petaflops-scale computing ring hollow if not accompanied by experiences
on contemporary parallel platforms that demonstrate that the currently provided
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technology has been absorbed. We therefore include in this report some parallel per-
formance results for a NASA unstructured grid CFD code that is used to study the
high-lift, low-speed behavior of aircraft in take-off and landing configurations. Our
primary test case, possessing only 1.4 million degrees of freedom, is miniscule on the
petaflops scale, but we will show scalability of algorithmic convergence rate and per-
iteration performance over a wide range of numbers of processors, which we have
every reason to believe can be extended as the hardware becomes available.

The demonstration code, FUN3D [1], is a tetrahedral vertex-centered unstruc-
tured grid code developed by W. K. Anderson of the NASA Langley Research Center
for compressible and incompressible Euler and Navier-Stokes equations. FUN3D uses
a control volume discretization with variable-order Roe schemes for approximating
the convective fluxes and a Galerkin discretization for the viscous terms. Our par-
allel experience with FUN3D is with the incompressible Euler subset thus far, but
nothing in the solution algorithms or software changes for the other cases. Of course,
convergence rate will vary with conditioning, as determined by Mach and Reynolds
numbers and the correspondingly induced grid adaptivity. Furthermore, robustness
becomes more of an issue in problems admitting shocks or making use of turbulence
models. The lack of nonlinear robustness is a fact of life that is largely outside of the
domain of parallel scalability. In fact, when nonlinear robustness is restored in the
usual manner, through pseudo-transient continuation, the conditioning of the linear
inner iterations is enhanced, and parallel scalability may be improved. In some sense,
the Euler code, with its smaller number of flops per point per iteration and its ag-
gressive trajectory towards the steady state limit may be a more, not less, severe test
of scalability.

The solution algorithm we employ is pseudo-transient Newton-Krylov-Schwarz
(ΨNKS), with point-block ILU(0) on the subdomains for the action of Ãi

−1
(in

the customary Schwarz notation; see above). The original code possesses a pseudo-
transient Newton-Krylov solver already. Our reformulation of the global point-block
ILU(0) of the original FUN3D into the Schwarz framework of the PETSc version
is the primary source of additional concurrency. The timestep grows from an ini-
tial CFL of 10 towards infinity according to the switched evolution/relaxation (SER)
heuristic of Van Leer & Mulder [21]. Our ΨNKS solver operates in a matrix-free,
split-discretization mode, whereby the Jacobian-vector MATVEC operations required
by the GMRES method are approximated by finite-differenced Fréchet derivatives of
the nonlinear residual vector. The action of the Jacobian is therefore always “fresh.”
However, the submatrices used to construct the point-block ILU(0) factors on the
subdomains as part of the Schwarz preconditioning are based on a lower-order dis-
cretization than the one used in the residual vector, itself. This is a common approach
in practical codes, and the requisite distinctions within the residual and Jacobian sub-
routine calling sequences were available already in the FUN3D legacy version.

Conversion of the legacy FUN3D into the distributed memory PETSc version
was begun in October 1996 and first demonstrated in March 1997. Since then, it has
been undergoing continual enhancement, largely with respect to single-node aspects,
namely blocking, variable interlacing, and edge-reordering for higher cache efficiency.
The original five-month, part-time effort included: learning about FUN3D and its
mesh preprocessor, learning the MeTiS unstructured grid partitioning tool, adding
and testing new functionality in PETSc (which had heretofore been used with struc-
tured grid codes; see, e.g. [13]), and restructuring FUN3D from a vector to a cache
orientation. Porting a legacy unstructured code into the PETSc framework would take
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considerably less time today. Approximately 3,300 of the original 14,400 lines (pri-
marily in FORTRAN77) of FUN3D are retained in the PETSc version. The retained
lines are primarily SPMD “node code” for flux and Jacobian evaluations, plus some
file I/O routines. PETSc solvers replace the rest. Parallel I/O and post-processing
are challenges that remain.

3.1. Summary of Results on the Cray T3E and the IBM SP. We excerpt
from a fuller report to appear elsewhere a pair of tables for a 1.4-million degree-of-
freedom problem converged to near machine precision in approximately 6.5 minutes,
using approximately 1600 global fine-grid flux balance operations (or “work units” in
the multigrid sense) on 128 processors of a T3E or 80 processors of an SP. Relative
efficiencies of 75% to 85% are obtained over this range The physical configuration
is a three-dimensional ONERA M6 wing up against a symmetry plane. This con-
figuration has been extensively studied by our colleagues at NASA and ICASE, and
throughout the international aerospace industry generally, as a standard case. Our
tetrahedral Euler grids were generated by D. Mavriplis of ICASE. The grid of the
problem most thoroughly reported on herein contains 357,900 vertices, which implies
that a vector of four unknowns per vertex has dimension 1,431,600. We also present
some results for a problem eight times larger, containing approximately 11 million
degrees of freedom. (We can run this largest case only on the largest configurations
of processors, which does not permit wide scalability studies at present.) We used a
maximum Krylov dimension of 20 vectors per pseudo-timestep. The maximum CFL
used in the SER pseudo-timestepping strategy is 10,000. The pseudo-timestepping is
a nontrivial feature of the algorithm, since the norm of the steady state residual does
not decrease monotonically in the largest grid case. (In practice, we might employ
mesh sequencing so that the largest grid case is initialized from the converged solution
on a coarser grid. In the limit, such sequencing permits the finer grid simulation to
be initialized within the domain of convergence of Newton’s method.)

The first table, for the Cray T3E, shows a relative efficiency in going from the
smallest processor number for which the problem fits (16 nodes) to the largest available
(128 nodes), of 85%. Each iteration represents one pseudo-timestep, including one
Newton correction, and up to 20 Schwarz-preconditioned GMRES steps.

Cray T3E Performance (357,900 vertices)
procs its exe speedup ηalg ηimpl ηoverall

16 77 2587.95s 1.00 1.00 1.00 1.00
24 78 1792.34s 1.44 0.99 0.97 0.96
32 75 1262.01s 2.05 1.03 1.00 1.03
40 75 1043.55s 2.48 1.03 0.97 0.99
48 76 885.91s 2.92 1.01 0.96 0.97
64 75 662.06s 3.91 1.03 0.95 0.98
80 78 559.93s 4.62 0.99 0.94 0.92
96 79 491.40s 5.27 0.97 0.90 0.88

128 82 382.30s 6.77 0.94 0.90 0.85

Convergence is defined as a relative reduction in the norm of the steady-state
nonlinear residual of the conservation laws by a factor of 10−10. The convergence rate
typically degrades slightly as number of processors is increased, due to introduction of
increased concurrency in the preconditioner, which is partition-dependent, in general.
We briefly explain the efficiency metrics in the last three columns of the tables.

Conflicting definitions of parallel efficiency abound, depending upon two choices:
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• What scaling is to be used as the number of processors is varied?
– overall fixed-size problem
– varying size problem with fixed memory per processor
– varying size problem with fixed work per processor

• What form of the algorithm is to be used as number of processor is varied?
– reproduce the sequential arithmetic exactly
– adjust parameters to perform best on each given number of processors

In our implementations of NKS, we always adjust the subdomain blocking parameter
to match the number of processors, one subdomain per processor; this causes the num-
ber of iterations to vary, especially since our subdomain partitionings are not nested.
The effect of the changing-strength preconditioner should be examined independently
of the general effect of parallel overhead, by considering separate algorithmic and
implementation efficiency factors.

The customary definition of relative efficiency in going from q to p processors
(p > q) is

η(p|q) =
q · T (q)
p · T (p)

,

where T (p) is the overall execution time on p processors (directly measurable). Factor-
ing T (p) into I(p), the number of iterations, and C(p), the average cost per iteration,
the algorithmic efficiency is an indicator of preconditioning quality (directly measur-
able):

ηalg(p|q) =
I(q)
I(p)

.

Implementation efficiency is the remaining (inferred) factor:

ηimpl(p|q) =
q · C(q)
p · C(p)

.

The second table, for the IBM SP2, shows a relative efficiency of 75% in going
from 8 to 80 nodes. The SP has 32-bit integers, rather than the 64-bit integers of the
T3E, so the integer-intensive unstructured-grid problem fits on just eight nodes. The
average per node computation rate of the SP is about 50% greater than that of the
T3E for the current cache-optimized version of the code.

IBM SP Performance (357,900 vertices)
procs its exe speedup ηalg ηimpl ηoverall

8 70 2897.46s 1.00 1.00 1.00 1.00
10 73 2405.66s 1.20 0.96 1.00 0.96
16 78 1670.67s 1.73 0.90 0.97 0.87
20 73 1233.06s 2.35 0.96 0.98 0.94
32 74 797.46s 3.63 0.95 0.96 0.91
40 75 672.90s 4.31 0.93 0.92 0.86
48 75 569.94s 5.08 0.93 0.91 0.85
64 74 437.72s 6.62 0.95 0.87 0.83
80 77 386.83s 7.49 0.91 0.82 0.75

2The configuration consists, more precisely, of 80 120MHz P2SC nodes with two 128 MB memory
cards each connected by a TB3 switch, and is available at Argonne National Lab.
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Algorithmic efficiency (ratio of iteration count of the less decomposed domain
to the more decomposed domain – using the “best” algorithm for each processor
granularity) is in excess of 90% over this range. The main reason that the iteration
count is only weakly dependent upon granularity is that the pseudo-timestepping over
the early part of the iteration provides some parabolicity.

Implementation efficiency is in excess of 82% over the experimental range, and
near unit efficiency is maintained over the early part of the range. Implementation
efficiency is a balance of two opposing effects in modern distributed memory archi-
tectures. It may improve slightly as processors are added, due to smaller workingsets
on each processor, with resulting better cache residency. Implementation efficiency
ultimately degrades as communication-to-computation ratio increases for a fixed-size
problem after the benefits of cache residency saturate.

The low (82%) implementation efficiency for the 80-processor SP can be accounted
for almost completely by communication overhead. PETSc provides detailed profiling
capabilities that provide the communication timings. The percentage of wallclock
time spent in communication and synchronization on 80 processors of the SP is:

• 6% on nearest-neighbor communication to set ghostpoint values needed in
function and Jacobian stencil computation (implemented using PETSc’s vec-
tor scatter operations);
• 13% on globally synchronized reduction operations, further subdivided into:

– 5% on norms, required in convergence tests, in vector normalizations in
GMRES, and in differencing parameter selection in matrix-free MATVECs,
and

– 8% on groups of inner products, required in the classical Gram-Schmidt
orthogonalization in GMRES. (Note that the percentage lost to inner
products would be much higher if the modified Gram-Schmidt (recom-
mended in [22] for numerical stability reasons but not needed in this
application) were used, since the modified version synchronizes on each
individual inner product.)

The effect on efficiency of the neighbor and global communications required in implicit
methods for the parallel solution of PDEs is clearly seen from this profiling. There
is, of course, some concurrency available in the scatter, norm, and inner product
operations, so the overall efficiency deficit is not quite as large as the percentage
occupied by these three main contributors. However, reducing them would sharply
increase efficiency. We would expect an explicit code that was tuned to synchronize
only rarely on timestep updates to obtain upwards of 90% fixed-size efficiency on the
SP, instead of 82%.

The IBM SP has communications performance (in both bandwidth and latency)
that is particularly poor in relation to its excellent computational performance. How-
ever, on any parallel computer with thousands of processors, algorithms requiring
frequent global reductions will be of major concern.

Since we possess a sequence of unstructured Euler grids, we can perform a Gustafson-
style scalability study by varying the number of processors and the discrete problem
dimension in proportion. We note that the concept of Gustafson-style scalability does
not extend perfectly cleanly to nonlinear PDEs, since added resolution brings out
added physics and (generally) poorer conditioning, which may cause a shift in the
“market basket” of kernel operations as the work in the nonlinear and linear phases
varies. However, our shockless Euler simulation is a reasonably clean setting for this
study, if corrected for iteration count. The table below shows three computations on
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the T3E over a range of 40 in problem and processor size, while maintaining approx-
imately 4500 vertices per processor.

Cray T3E Performance — Gustafson scaling
vert procs vert/proc its exe exe/it

357,900 80 4474 78 559.93s 7.18s
53,961 12 4497 36 265.72s 7.38s
9,428 2 4714 19 131.07s 6.89s

The good news in this experiment is contained in the final column, which shows
the average time per parallelized pseudo-time NKS outer iteration for problems with
similarly sized local workingsets. Less than a 7% variation in performance occurs
over a factor of nearly 40 in scale. Provided that synchronization latency can be
controlled as the number of processors is increased, via the ideas discussed in the
previous section and many others not yet invented, we expect that indefinite scaling
is possible. We insert the caveat that most petaflops-scale PDE computations will not
be homogeneous, but will consist of interacting tasks with different types of physics
and algorithmics. Predictions of scalability are invariably problem-dependent when
such interactions need to be taken into account. Furthermore, most petaflops-scale
PDE computations will require dynamically adaptive gridding, and the adaptivity
phase may not scale anywhere near as gracefully as the solution phase exhibits here.

We have concentrated in this report on distributed aspects of high performance
computing — specifically on potential limits to attainable computational rates coming
from bottlenecks to concurrency exploitation. From a processor perspective we have
looked outward rather than inward. Since the aggregate computational rate is a
product of the concurrency and the rate at which computation occurs in a single active
thread, we should discuss the per-node performance of the code. On the 80-node IBM
SP the sustained floating point performance of the PDE solver (excluding the initial
I/O and grid setup and excluding terminal I/O) is 5.5 Gflop/s — or 69 Mflop/s per
node in sustained parallel implicit mode. We claim that this is excellent performance
for a sparse matrix code and we know of only a handful of highly tuned CFD codes
that are claimed by others to execute with comparable per-node performance on the
same hardware. Nevertheless, it is only 14% of the machine’s peak performance.3 It
required considerable effort to get the per-node performance this high. Compiling and
running the FUN3D code — which was written for vector machines, not cache-based
microprocessors — out of the box on the same hardware, in serial, yields only 2%
of peak performance. Like most codes that are not tuned for cache locality, it runs
closer to the speed of the memory system than to the speed of the processor.

On 8 processors the sustained performance of the cache-tuned FUN3D is about
16% percent of peak, and extrapolating to one processor (by means of comparison of 1-
and 8-processor performance on a smaller problem), the sustained performance on one
processor would be about 18% of peak. We conclude from this that improved per-node
performance of sparse PDE applications on cache-based microprocessors represents
an opportunity for a factor of four or five, apart from replication of processors. The
problem is a familiar one with a welcome cause — iterative solution algorithms are
themselves highly efficient in terms of the total number of operations performed per
word of storage. However, algorithms, compilers, and runtime systems must now be

3Each 120MHz processor issues up to four floating point instructions per clock for a theoretical
peak of 480 Mflop/s per processor. However, the particular configuration at Argonne is “thin”,
possessing only half of the maximum possible processor-memory bandwidth.
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coordinated to minimize the number of times a word is transferred between cache and
main memory. The 18% extrapolated peak per-node performance is obtained after
code optimizations including blocking, geometric reordering (of gridpoints), algebraic
reordering (field interlacing), and unrolling, which are beyond the scope of this chapter
and will be described in detail elsewhere.

The degradation of per-node performance with increasing numbers of processors
(from 18% to 14% of peak in going from 1 to 80 processors) stands in contrast to
our early experiences with the code, before the four optimizations just mentioned.
Previously, we routinely obtained superunitary parallel efficiencies powered by better
cache locality due simply to smaller workingsets per node. A dubious (in the par-
allel context) reward for cache optimization is that it improves the single-processor
(large memory per node) performance more than the multi-processor performance.
However, the effect of the cache is so important that it is not insightful to quote
parallel efficiencies on anything but a cache-tuned code. Only after a code is tuned
for good cache performance, can the effect of surface-to-volume (communication-to-
computation) ratio be measured. For instance, on 64 SP processors, the case with 1.4
million degrees of freedom executed at a sustained aggregate 4.9 Gflop/s, whereas the
case with 11 million degrees of freedom executed at a sustained aggregate rate of 5.5
Gflop/s.

We conclude this section by presenting fixed-size scalings for the finest grid case
that we have run to date on the IBM SP and on the Cray T3E. The 2.8 million vertex
grid is nested in the 0.36 million vertex grid used in the scalability studies above, by
subdivision of each tetrahedron into eight. It is the largest grid yet generated by our
colleagues at NASA Langley for an implicit wing computation. Coordinate and index
data (including 18 million edges) occupies an 857 MByte file.

On the SP, the problem does not fit comfortably in core on less than 64 processors
(to the nearest power of 2); on the T3E, with its long integers, that number is 128
processors. Our SP (at Argonne) contains 80 processors and our T3E (at NERSC)
contains 512, so scalings of 1.25 and 4.0 are possible, respectively.

Though a factor of 1.25 in processor number is a very inconclusive range over
which to perform scaling studies, we note a near-perfect speedup on the SP:

IBM SP Performance (2,761,774 vertices)
procs its exe speedup ηalg ηimpl ηoverall Gflop/s

64 163 9,160.91s 1.00 1.00 1.00 1.00 5.5
80 162 7,330.73s 1.25 1.01 0.99 1.00 6.8

On the T3E, we note a speedup of 3.34 out of 4.0:

Cray T3E Performance (2,761,774 vertices)
procs its exe speedup ηalg ηimpl ηoverall Gflop/s

128 164 6,048.37s 1.00 1.00 1.00 1.00 8.5
256 166 3,242.10s 1.87 0.99 0.94 0.93 16.6
512 171 1,811.13s 3.34 0.96 0.87 0.83 32.1

It is interesting to note the source of the degradation in going from 128 to 512
processors, since much finer granularities will be required in Petaflops architectures.
The maximum over all processors of the time spent at global synchronization points
(reductions — mostly inner products and norms) is 12% of the maximum over all
processors of the wall-clock execution time. This is almost entirely idle time arising
from load imbalance, not actual communication time, as demonstrated by inserting
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barriers before the global reductions and noting that the resulting fraction of wall-
clock time for global reductions drops below 1%. Closer examination of partitioning
and profiling data shows that although the distribution of “owned” vertices is nearly
perfectly balanced, and with it the “useful” work, the distribution of ghosted nodes
can be very imbalanced, and with it, the overhead work and the local communication
requirements. In other words, the partitioning objective of minimizing total edges cut
while equidistributing vertices does not , in general, equidistribute the execution time
between synchronization points, maily due to the skew among the processors in ghost
vertex responsibilities. This example of the necessity of supporting multiple objectives
(or multiple constraints) in mesh partitioning has been communicated to the authors
of major partitioning packages, who have been hearing it from other sources, as well.
We expect that a similar computation after such higher level needs are accommodated
in the partitioner will achieve close to 95% overall efficiency on 512 nodes.

As a point of humility, we note that the performance of this code on one of the
best hardware platforms available as of the date of writing is a factor of approximately
31,000 shy of 1 Petaflop/s.

4. Parallel Implementation Using PETSc. The parallelization paradigm we
illustrate above in approaching a legacy code is a compromise between the “compiler
does all” and the “hand-coded by expert” approaches. We employ the “Portable,
Extensible Toolkit for Scientific Computing” (PETSc) [3, 4], a library that attempts
to handle, in a highly efficient way, through a uniform interface, the low-level details
of the distributed memory hierarchy. Examples of such details include striking the
right balance between buffering messages and minimizing buffer copies, overlapping
communication and computation, organizing node code for strong cache locality, pre-
allocating memory in sizable chunks rather than incrementally, and separating tasks
into one-time and every-time subtasks using the inspector/executor paradigm. The
benefits to be gained from these and from other numerically neutral but architecturally
sensitive techniques are so significant that it is efficient in both the programmer-time
and execution-time senses to express them in general purpose code.

PETSc is a large and versatile package integrating distributed vectors, distributed
matrices in several sparse storage formats, Krylov subspace methods, preconditioners,
and Newton-like nonlinear methods with built-in trust region or linesearch strategies
and continuation for robustness. It has been designed to provide the numerical in-
frastructure for application codes involving the implicit numerical solution of PDEs,
and it sits atop MPI for portability to most parallel machines. The PETSc library is
written in C, but may be accessed from user codes written in C, FORTRAN, and C++.
PETSc version 2, first released in June 1995, has been downloaded thousands of times
by users worldwide. PETSc has features relevant to computational fluid dynamicists,
including matrix-free Krylov methods, blocked forms of parallel preconditioners, and
various types of time-stepping.

A diagram of the calling tree of a typical ΨNKS application appears below. The
arrows represent calls that cross the boundary between application-specific code and
PETSc library code; all other details are suppressed. The top-level user routine per-
forms I/O related to initialization, restart, and post-processing and calls PETSc sub-
routines to create data structures for vectors and matrices and to initiate the nonlinear
solver. PETSc calls user routines for function evaluations f(u) and (approximate) Ja-
cobian evaluations f ′(u) at given state vectors. Auxiliary information required for the
evaluation of f and f ′(u) that is not carried as part of u is communicated through
PETSc via a user-defined “context” that encapsulates application-specific data. (Such
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information typically includes dimensioning data, grid data, physical parameters, and
quantities that could be derived from the state u, but are most conveniently stored
instead of recalculated, such as constitutive quantities.)

Initialization
Application

PETSc

KSPPC

Linear Solver (SLES)

Matrix VectorNonlinear Solver (SNES)

Main Routine

DA

Function Jacobian Post-
Evaluation Evaluation Processing

From our experience in writing and rewriting PDE codes for cache-based dis-
tributed memory machines, we have the following recommendations, which will un-
doubtedly continue to be relevant as codes are written in anticipation of an ultimate
petaflops port.

• Replace global vector-based disk-striped data orderings (e.g., node colorings)
with cache-based data orderings (e.g., subblocks) at the outer level.
• Interlace unknown fields so that most rapid ordering is within a point, not

between points.
• Use the most convenient naming (global or local) for each given task, main-

taining translation capability:
– Physical boundary conditions rely on global names.
– Many interior operations can be carried over from the uniprocessor code

to SPMD node code by a simple “1-to-n” loop, with remapped entity
relations (e.g., “vertices of edges”, “edges of cells”).

• Apply memory conservation aggressively; consider recomputation in cache
rather than storage in memory.
• Micromanage storage based on knowledge of horizontal (e.g., network node)

and vertical (e.g., cache) boundaries.
These recommendations do not provide explicit recognition for parallelism at the mul-
tiple functional unit level within a processor (and therefore within a cache). Within
this level, vertex colorings can be applied to provide more fine-grained concurrency
in local stencil updates.

5. Nontraditional Sources of Concurrency. We step back briefly from our
narrow focus on data parallelism through spatial decomposition of a PDE grid to
consider less traditional means of discovering the million-fold concurrency that will
be required for petaflops-scale computing.

Time-parallelism is a counterintuitive but demonstrably interesting source of con-
currency, even in evolutionary, causal simulations. A key idea of time-parallelism is
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that not all of the work that goes into producing a converged solution at time level
` is sequentially captive to a converged solution at time level ` − 1. When an itera-
tive method is employed, different components of the error may converge at different
stages, and useful work may conceivably begin at level ` before the solution at `−1 is
completely globally converged. This is particularly true in nonlinear problems. The
direction, volume, and granularity of interprocessor communications in temporal par-
allelism are different from those of spatial parallelism, as are the memory scalings,
since multiple time-frames of the problem proportional to the temporary concurrency
must be kept in fast memory. For reasons of scope, we do not pursue the corresponding
parallel complexities here, but refer to [16, 17].

In addition to the data parallelism within an individual PDE analysis, there is
data parallelism between PDE analyses when the analyses are evaluations of objec-
tive functions or enforcements of state variable constraints within a computational
optimization context. Computational fluid dynamics is not about individual large-
scale analyses, done fast and well-resolved and “thrown over the wall.” Both the
results and their sensitivities are desired. Often multiple forcings (right-hand sides)
are available a priori, rather than sequentially, which permits concurrent evaluation.
Petaflops-scale computing for CFD will arrive in the form of 100 quasi-independent
analyses running on 10,000 1Gflop/s processors earlier than in the form of 1 analysis
running on 1,000,000 1Gflop/s processors.

Finally, we recall that computational fluid dynamics is not bound to a PDE for-
mulation. The continuum approach is convenient, but not fundamental. In a flat,
global memory system, it is natural to solve Poisson equations; in a hierarchical, dis-
tributed memory system, it is less natural. Nature is statistical, and enforces elliptic
constraints like incompressibility through fast local collision processes. Among major
phenomena in CFD only radiation is fundamentally “action at a distance.” Lattice
gas models have had a discouraging history, perhaps because they are too highly quan-
tized, requiring massive statistics, and because their fundamental operations cannot
exploit floating point hardware. Lattice Boltzmann models, on the other hand, seem
highly promising. They are still quantized in space and time, but not in particle
number, as quantized particles are replaced with continuous probability distribution
functions. Lattice Boltzmann models possess ideal petaflops-scale concurrency prop-
erties: their two phases or relaxation and advection are alternatively completely local
and nearest-neighbor in nature. There is no inherent global synchronization, except
for assembling a visualization.

6. Summary Observations. The PDE-based algorithms for general purpose
CFD simulations that we use today will in theory4 scale to petaflops, particularly as
the equilibrium simulations that are prevalent today go over to evolutionary simula-
tions, with the superior linear conditioning properties of the latter in implicit contexts.
The pressure to find latency tolerant algorithms intensifies. Longer word lengths (e.g.,
128-bit floats) anticipated for petaflops-scale architectures, for more finely resolved
— and typically worse-conditioned — problems, can assist in those forms of latency
toleration, such as delayed orthogonalization, that are destabilizing. Solution algo-
rithms are, in some sense, the “easy” part of highly parallel computing, and thornier
issues such as parallel I/O and parallel dynamic redistribution schemes may ultimately
determine the practical limits to scalability.

4We are warned by Philosopher Berra: “In theory there is no difference between theory and
practice. In practice, there is.”
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Summarizing the “state-of-the-art” of architectures and programming environ-
ments, as they affect parallel CFD, we believe that:

• Vector-awareness is out; cache-awareness is in; but vector-awareness will re-
turn in subtle ways having to do with highly multiple-issue processors.
• Except for the Tera machine and the presently installed vector base, near-

term large-scale computer acquisitions will be based on commodity cache-
based processors.
• Driven by ASCI, large-scale systems will be of distributed-shared memory

(DSM) type: shared in local clusters on a node, with the nodes connected by
a fast network.
• Codes written for the Message Passing Interface (MPI) are considered “legacy”

already and will therefore continue to be supported in the DSM environment;
MPI-2 will gracefully extend MPI to effective use of DSM and to parallel I/O.
• High-performance Fortran (HPF) and parallel compilers are not yet up to the

performance of message-passing codes, except in limited settings with lots of
structure to the memory addressing [15]. Hybrid HPF/MPI codes are possible
steps along the evolutionary process, with high-level languages automating
the expression and compiler detection of structured-address concurrency at
lower levels of the PDE modeling.
• Automated source-to-source parallel translators, such as the University of

Greenwich CAPTools project (which adds MPI calls to a sequential F77 in-
put) may attain 80–95% of the benefits of the best manual practice [27],
but the result is limited to the concurrency extractable from the original
algorithm, like HPF. In many cases, the legacy algorithm should, itself, be
replaced.
• Computational steering will be an important aspect of petaflops-scale simu-

lations and will appear in the form of interpreted scripts that control SPMD
compiled executables.

With respect to algorithms, we believe that:
• Explicit time integration is a solved problem, except for dynamic mesh adap-

tivity.
• Implicit methods remain a major challenge, since:

– Today’s algorithms leave something to be desired in convergence rate,
and

– All “good” implicit algorithms have some global synchronization.
• Data parallelism from domain decomposition is unquestionably the main

source of locality-preserving concurrency, but optimal smoothers and pre-
conditioners violate strict data locality.
• New forms of algorithmic latency tolerance must be found.
• Exotic methods should be considered at petaflops scales.

With respect to the interaction of algorithms with applications we believe that
the ripest remaining advances are interdisciplinary:

• Ordering, partitioning, and coarsening must adapt to coefficients (grid spac-
ing and flow magnitude and direction) for convergence rate improvement.
• Trade-offs between pseudo-time iteration, nonlinear iteration, linear iteration,

and preconditioner iteration must be understood and exploited.
With respect to the interaction of algorithms with architecture, we believe that:
• Algorithmicists must learn to think natively in parallel and avoid introducing

unnecessary sequential constraints.
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• Algorithmicists should inform their choices with a detailed knowledge of the
memory hierarchy and interconnection network of their target architecture.
It should be possible to develop very portable software, but that software will
have tuning parameters that are determined by hardware thresholds.
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