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Design of Linear Combination of Weighted Medians
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Abstract—This paper introduces a novel nonlinear filtering is inherently a smoother with LP filtering characteristics. Re-
structure: the Iin_ear_ combination_ of weighted medians (LCWM). cently, to solve this problem, Arce [7] proposed the general
The proposed filtering scheme is modeled on the structure and weighted median (GWM) filter admitting positive and negative

design procedure of the linear-phase FIR highpass (HP) filter in . : . .
that the linear-phase FIR HP filter can be obtained by changing weights. In the GWM filter framework, the negative sign of the

the sign of filter coefficients of the FIR lowpass (LP) filter in the ~Weight is uncoupled from the weight magnitude value and is
odd positions. The HP filter can be represented as the difference merged with the input sample, and thus, the weights are always
between two LP subfilters that have all positive coefficients. This positive. It is shown in [7] that this filter can exhibit HP and BP
representation of the FIR HP filter is analogous to the difference frequency characteristics. This framework has been extended to

of estimates (DoE) such as the difference of medians (DoM). . - o
The DoM is essentially a nonlinear HP filter that is commonly stack filters by mirrored threshold decomposition [8] and re-

used in edge detection. Based on this observation, we introduceCursive WM filters [9]. In practice, it is desirable to design the
a class of LCWM filters whose output is given by a linear com- weights of a filter in some optimal fashion. Some adaptive algo-
bination of weighted medians of the input sequence. We propose rithms has been developed for optimizing nonlinear filters under

a mgthod of designing th(? 1-.D and 2-D LCWM filters satisfying the mean absolute error (MAE) criterion [7], [9], [10].
required frequency specifications. The proposed method adopts PR

a transformation from the FIR filter to the LCWM filter. We In this paper, we propose a class of linear combination of
show that the proposed LCWM filter can offer various frequency ~Weighted median (LCWM) filters that can offer various fre-
filtering characteristics including “LP,” “bandpass (BP),” and  quency characteristics including LP, BP, and HP responses. The

“HP” responses. proposed scheme is modeled on the structure and design proce-
Index Terms—mage enhancement, median filters, nonlinear es- dure of the linear-phase FIR HP filter. The FIR HP filter can
timation, nonlinear filters. be easily obtained by changing the sign of filter coefficients

of the FIR LP filter in the odd positions. Thus, the HP filter
can be represented as the difference between two LP subfil-
ters that have all positive coefficients. This difference is analo-
HE WEIGHTED median (WM) filter has been recognizegyous to the difference of estimates (DoE) such as the difference
as a useful smoother in signal and image processing sirgiemedians (DoM) [11]-[15]. The DoM is essentially a robust
it preserves edges in images and is effective in suppressiigh-frequency estimator that is commonly used in edge detec-
impulsive noise [1]. The connection between WM filtersion. Based on this observation, we define a new nonlinear filter
and positive Boolean functions (PBFs) has been establishgdose output is given by a linear combination of weighted me-
using threshold decomposition [2], [3]. Some statistical anflans of the input sequence. We refer to this filter class as the
deterministic properties of WM filters have been derived usingcwM filter [16]. In this paper, we introduce a filter design pro-
the PBF representation [2], [4], [5]. Mallows [6] derived the:edure for the LCWM filter using a linear-to-nonlinear mapping
relationship between linear and nonlinear filters using th@ethod.
sample selection probability (SSP). It is further proven in [6] The organization of the paper is as follows. In Section I,
that the SSPs equal the impulse response coefficients ofy@ review the analogy between WM filters and FIR filters. In
finite impulse response (FIR) filter whose output spectrum ection IlI, the LCWM filter is introduced, and its frequency
closest, of all linear filters, to that of the order statistic filteselectivity is demonstrated by some examples. Desigh methods
for independent identically distributed (i.i.d.) Gaussian inputfer one-dimensional (1-D) and two-dimensional (2-D) LCWM
Using Mallows’ approach, the WM filter can be analyzed fronfilters are derived in Section IV. Experimental results are given

a spectral point of view. in Section V. Finally, conclusions are given in Section VI.
The WM filter, however, does not offer much flexibility in

a number of signal and image processing applications since it

. INTRODUCTION

Il. ANALOGY BETWEEN WEIGHTED MEDIAN FILTERS AND
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Laplacian distributed samples with unknown meaihe like- 12
lihood functions for estimating, respectively, are given by 1
N 0.8
H fa(zisy) £ 06
i=1 0.4
ﬂ 1\ V72 . z]\: Xi—y " 02
= e — X —
] 22 P . 252 0 \ .
=1 z =1 z
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‘ Normalized frequency (Nyquist=1)
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=1 V7Y i=1 \ % Z 08
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whereo? is the variance ofY;. An ML estimate ofy is ob- g 06
tained by finding a value that maximizes the likelihood function. 204
The estimated valug maximizing (1) is the normalized sample 02
mean given by 0 s .
1 N N 0 02 04 06 08 1
= - —_X. = W:X.. 3 Normalized frequency (Nyquist=1)
y N 722; O_ig (3 722; <2 ( ) N
> Vet
i=1 Fig. 1. Estimated frequency responses. (a) Frequency responses of FIR filters

. . . . o (FIR5 and FIR7). (b) Estimated frequency responses of WM smoothers (WM5
Likewise, under the Laplacian model, the maximum likelihooghd wm7).

estimate of location minimizes the sum of weighted absolute

deviations and [1/70, 1/21, 78/315, 8/21, 78/315, 1/21, 1/70]. Fig. 1(b)
N shows the estimated frequency responses of the WM smoothers
Z iQ |X; —yl. (4) (WM5and WM7) with weights [1, 1,1, 1, 1]and [1, 2,5, 7, 5,
= Y 2, 1] whose SSPs correspond to the coefficients of the above

Th lued minimizing the ab is th fth FIR filters. The ratio of the Fourier transform of the output to
WM ﬁ valuey mtl)nlmlzmg the above sum is the output of they, o 4 rier transform of the input was utilized to estimate the
liter given by frequency response of the WM smoothers. The simulations
. - - - for this paper used ten input sequences with 100000 white
= MED|W; OA,WTOA. r,...,WrO)&r 5 . . .
Y W1 b A N N MG Gaussian samples. Comparison of Fig. 1(a) and (b) shows that
whereW; = 1/52, ando is the replication operator defined asthe frequency responses of the FIR and WM filters are very
similar and clearly exhibit LP filtering characteristics.

W; times

—_——
W,0oA=A A ..., A. . LCWM FILTERS

Note that the weights in (5) are of non-negative values dueln this secuor?, we first f.blrleﬂy review the FIR HP filter and
to their inverse relationship to the variances of the respectitfdn Propose the LCWM filter.
observation samples. From an estimation point of view, ttAe

weighted sample mean and the weighted sample medlan':IR HP Filter

estimation scheme in (3) and (5) have analogous roots. An N-tap FIR filter is given by
. N-1
B. Estimated FrequencY Respo.nse of the W.M Smoother y(n) = Z h(k)z(n — k) ©6)
Mallows’ approach gives a simple analytical tool for ana- k=0
lyzing nonlinear filters using the SSP defined as the probabili%/r equivalentl
that the outpul” equals theth sampleX;. With this approach, q y
the spectral behavior of the order-statistic filter can be reason- — hx?” 7
; ; e y(n) = hx @)
ably represented by that of an equivalent FIR filter for i.i.d.
Gaussian inputs. whereh = [h(0) A(1) --- A(N — 1)] represents the filter

To illustrate that FIR and median filters exhibit similarcoefficient vector, ana = [#(n) z(n — 1) --- z(n — N 4 1)]
frequency characteristics, an example is presented in Fig.islthe input vector.
Fig. 1(a) illustrates the frequency responses of the FIR filtersFor the linear-phase LP filter, thg %)s are symmetric with
(FIR5 and FIR7) with coefficients [1/5, 1/5, 1/5, 1/5, 1/5fespect to the midpoint. Changing the sign of coefficients in
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the odd positions after reversing the filter window in the time 12
domain results in the HP filter given by o;
N1 g 0.6
va(n) = > (=DFhp(N =k — Da(n — k) 04
k=0 0.2 r
]\T—l 0 1 1 I 1 1
_ _ 0 0.2 0.4 0.6 0.8 1
o P hH(k)x(n k) (8) Normalized frequency (Nyquist=1)
@)
where 12
hi(N—k—1), if kiseven = 1T
hu(k) = { ot ) i T o8
—hp(N —k —1), otherwise. Zo6 t
Eo04 t
The HP filter in (8) can be divided into two subfilters as fol- 2 0; i
lows: o . . . . ;
N1 0 0.2 0.4 0.6 0.8 1
yH(”) — Z hH(k)x(n _ k) Normalized frequency (Nyquist=1)
k=0 ®
i e Fig. 2. (Estimated) frequency response. (a) Frequency response of FIR HP
=Y bik)zn—k) = > bk)z(n—k) filter with coefficients|1/6, —1/6, 1/6, —1/6, 1/6, —1/6]. (b) Estimated
k=0 k=0 frequency response of 1(21 01 01 0]) — 1/2([0 1 0 1 0 1]).
=y1(n) — y2(n) ) - _ :
In a similar fashion as the vector notation of (7),%etlenote
whereN is even, and, (k) andb, (k) are given by the weight vector of the WM smoother. Then, the WM smoother
is defined by
hu(k), ifhg(k)>0 A
bi(k) = { 0 otherwise (w) 2 MED[w o] (13)
| (K)|, i hg(k) <0 wherewox is [wioz(n), waox(n—1), ..., wyox(n—N+1)].
ba(k) = , (10)  For example, the WM smoothdfl 0 0 2 3 0 2 1]} is
0 otherwise
’ ' represented by
Note that the two subfilterg; (n) andy.(») have only non-neg-
. - S . =MED 2 -3),3 -4
ative coefficientd; (k)s andbs(k)s. Normalizing these coeffi- y(n) [#(n), 202(n = 3), 3oa(n—4)
cients gives 20x(n—6), z(n— 7).
; ; Using vector notation, (12) can be rewritten as
u(n) = ' (n) + s (n) ) ¢ 42
g(n) = ar(wi) + az(wa). (14)
where

For example, consider a linear FIR HP filter with coefficients
N—-1 N—-1
[1/6, —1/6,1/6, —1/6,1/6, —1/6]. The above procedure
> bu(k)a(n—k) > ba(k)a(n—k) gives its nonlinear counterpait = 1/2([1 0 1 0 1 0])
yN(n) = ":ON_I . yy(n) = ’“ZON_I —1/2([0 1 0 1 0 1]). Fig. 2 shows the frequency response of
Z bu (k) Z ba(k) the linear filter and the estimated frequency response of the
— ! 2 nonlinear counterpart. It is seen that these two filters produce
- similar results.

oy = 2;_01 by (k), andas = 2;_01 ba (k). It is interesting to point out t_hat the DoM_ls a s_pec_:lal case of
(14). For example, the DoM with window size 5 is given by
B. LCWM Filters y(n) = MED[z(n), o(n — 1), 2(n — 2)]
Using Mallows’ approach, we obtain a nonlinear filter con- — MED[z(n — 2), x(n — 3), z(n — 4)].

sisting of WM subfilters that are the nonlinear counterparts of
the FIR subfilters® (n) andy3 (n) in (11). Thus, the nonlinear In this casew; = [11 100, w, =[00111], ¢; =1, and

counterpart of the linear filter in (11) is given by ay = —1.
The fact that an FIR filter is divided into two subfilters by the
g(n) = a1y, M(n) + aoyy ™ (n) (12) sign of coefficients would suggest that the resulting nonlinear

filter has two WM subfilters with two nonoverlapping subwin-
wherey;YM(n) andyy ™ (n) are the WM smoothers. dows. However, since distinct WM smoothers, which are dis-
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tinguished by their SSPs, are countable, this division does n

always produce WM smoothers with SSPs that are identical - WMSZ‘:‘)’M” s
the divided FIR subfilter coefficients. Therefore, we conside ! /
the division of a general FIR filter into several FIR subfilters
With_ ov_erlapping or nonoverlapping subwindows. The only con - . VM ?“;0‘;3‘“2 > P
straint is that the WM smoother corresponding to each FIR su 2
filter must exist. Then, we generalize (11) as
K
y(n) = Z a; - yi(n) (15a) o.| WM smoother & ol
i=1 (wK)
K N-1
= Z o Z bi(HHz(n — j), o; €R (15b) Fig. 3. LCWM filter framework.
i=1 j=

posed method has two steps: First, a prototype FIR filter is de-
signed. From this prototype, an LCWM filter is obtained by
using a transformation that will be introduced in the next sub-

where K is the number of subfilters, arid(y) is the(j + 1)th
coefficient of theith subfilter. Define the coefficient vectdr;
of theith subfilter and the coefficient matri8 of subfilters as

section.
follows:
A. Transformation From the FIR Filter to the Corresponding
by =[0;(0) bi(1) -+ bi(N —1)] (162) | cwm Filter
by Before we show the main results, we provide a brief review
B=| :]. (16b)  of the basis concepts in the context of linear algebra.
bx A real N-dimensional vector spad®" is spanned by lin-
] ] o early independent vectofs, ..., by (with N components
Then, the matrix representation of (15b) is given by each). TheséV linearly independent sets IR" are calleda

basisfor RY. That is, if a basis foR” is given, any vectoh
with IV components can be formed as a linear combination of

wherea = [a; --- ay] is referred to as the weighting factorVectors in the basis.

vector. Thus, from (7) and (17), the weight factor veaiois
determined by

y(n) = aBx” a7)

h=aibi+---+anby (223)

=aB. (22b)
a=hB. (18)
Consider an FIR filter with the coefficient vectar. Then,
Let w, andW be the weight vector and matrix that are thérom (22a), the filterh can be formed as a linear combination
nonlinear counterpart &f; andB, respectively. Substituting the of subfilter coefficient vectords, ..., by, namely, the basis
WM smoother{w;) for the linear subfilter;(n) in (15a), we for h. Note that (22b) is identical to (18). The question, then, is
obtain the LCWM filter defined by how we can determine the basis maf8xBefore we introduce
the method to determine the basis, we briefly review the com-
bination theory.
yLewn(n) = Z ai{wi). (19) " An M-combination of anV-set is a subset with/ elements
=t chosen from the set with' elements. For example, the 2-combi-
Fig. 3 illustrates the LCWM filter structure, which is a lineamations of se{e;, 2, e3, e4} are{ey, ea}, {e1, es}, {e1, e},

K

combination of WM smoothers. {e2, es}, {e2, es}, and{es, e4}. For simplicity in the manip-
We can express (19) in a form similar to (17) as ulation, each combination is denoted in vector form, such as
[1 1 0 0] for {e1, ea}. The number ofAf-combinations of
yLewm(n) = a(W) (20) an N-set is the binomial coefficientCy = N!/(MI(N —
M)!) = L. Let By, » denote anl x [N combination matrix
where consisting of the combination vectors. The matBx; ,; can
w1 (w1) be easily obtained using the classic recursive relation for bino-
(W) = < : > _ 5 ' 21) mial coefficientsyCps = y_1Crnr + n—1Cur—1 as follows:
Wi <WK> 1
By_1, vt
1
IV. DESIGNING LCWM FILTERS Byv= |5 (23)
In this section, we propose a design method for the LCWM : By_i, M

filter that satisfies required frequency characteristics. The pro- 0
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N-1
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1
| : T
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. Row- searching B s
1 searching algorithm N-1.M-1 E
= 1 algorithm
O -
=zl |o
0
: First row T
By.im Bp
0 BN-I,M
v 0
BN,M
Fig. 4. Recursive properties B, andB v, 1.
where median smoothers, that is, the SSP 8ylarel/M and W,

respectively.

Next, we summarize the design procedure for the LCWM
Bii=[11--1] filter.

Design Procedure for the LCWM Filter:
1) Design anV-tap prototype FIR filteth using frequency

{times

andB,,, ; is them x m identity matrix. For example

rl 1 1 0 07 specifications.
11 01 0 2) Choose a weight vectox of the M-tap SM subfilter
11 0 0 1 (smoother) 4 < N).
1 01 1 0 3) Using the row-searching algorithm, fil8ly ;, and con-
101 0 1 vert it into B, (=W).

B;.5 = 1 0 0 1 1 (24) 4) Using SSPs antl/M's, transformB,, into B.

01 110 5) Using (18), obtair.
01 1 01 The following example shows that LCWM filter can have
01 0 1 1 similar HP characteristics.

L0 0 1 1 1] Example 1: Consider a six-tap FIR filter with coefficient

With therow-searching algorithnfil 7], one can find a unique vectorh = [-0.3327 0.8069 —0.4599 —0.1350 0.0854
. g aigorith L q P'0352]’ which is the decomposition HP filter of Daubechies
N x N matrix By, by selecting linearly independent rows o . ; )
B For example. anplving the row-searchina aldorithm t\(/)vavelet. Design LCWM filter that has 3-tap subfilters.
thgyrjr\felltr' i (24 pX ’espp ying 949 The corresponding SSP’s of the weights |rg 1/3 1/3].
in (24) giv Using the above design procedure, we obtain the basis matrices

111 00 of LCWM B as follows:
11010 (5 3 5 0 0 0]
B,=[(1 1 0 01 25 101 1
" l1o0110 2) a3 005 000
L' L 90 L o0
01 1 1 0 B= |3 3 3 26
|l L g o o & (26)
whose rank, which is denoted byB,,), is equal to 5. 2 3
The matrixB, can be also obtained by using the recursive 3 03 35 00
property ofBy, a7, as shown in Fig. 4. SindB x_ s consists of 0+ + 1 0 0

N linearly independent vectors, the submalBix 1, ;-1 has  The weighting factor vectors for each case are determined
(N — 1) ||near|y Independent rows. Appendlng 1stothe beglrby a« = hB ! = [00430 1.0176 0.2563 0.1057 —2.4207

ning of each(V — 1) linearly independent row dBy—1, -1 0.9980]. Therefore, LCWM is given by
provides the first Yy — 1) rows of By,. The last row ofB, is (n) W)
n)y=o

obtained by appending 0 to the beginning of the first row of YLCWM

Brn_1, - 0043077 1 1 1 0 0 0

For a giverh, the basis matriB defined in (22b) is obtained 1.0176 1101 00
by replacing the 1s of each row By, with A/ nonzero SSPs of . 0.2563 1100 10
the nonlinear subfilters constituting the LCWM filter. Theoret- o 0.1057 110 0 0 1 ’
ically, the weights of the subfilters can be arbitrary only if the —2.4207 101 100
corresponding SSPs are nonzeros. In this paper, we restrict our 0.9980 011100

attention to a simple case where the subfilters are the standard ]
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(b) (b)

Fig.5. (Estimated) HP frequency response. (a) Frequency response of thef ifp 6 (Estimated) BP frequency response. (a) Frequency response of the

filter of Daubechies wavelet. (b) Estimated frequency response of the LCwijetotype B.P FIR filter. (b) Estimated frequency response of the LCWM filter
filter with w = [1 1 1]. designed withw = [1 111 1].

Fig. 5(b) shows the estimated frequency response of the abov8lote that th€2/N +1)-tap linear-phase FIR filter hdsv +1)
LCWM  filter. For comparison, the frequency response of the HRdependent coefficients.
filter with Daubechies wavelet is also presented. It is seen that_et the vector consisting of thegé/ + 1) independent co-
the LCWM filter exhibits similar HP characteristics as the lineagfficients be denoted bl’ = [hy he -+ hn41] With h; =

filter. h(N 41i—1). The reduced numbeM+ 1) of coefficients leads
_ _ to a reduced N + 1) x (N + 1) basis matrix. If we form a
B. Symmetric LCWM Filter (2N + 1)-tap linear-phase FIR filter as a linear combination of

Under the assumption that the FIR filter is of lineatinear-phase FIR subfilters with lengtM + 1), we can obtain
phase, the number of subfilters of the LCWM filter car@ matrix denoted b3 ,, which consists of V + 1) linear inde-
be reduced. An odd-length linear-phase FIR filter witRendentrows 0By 1, a+1. For example, forv +1 = 5 and
h = [(0) h(1) --- h(2N)] is defined as a filter that has aM + 1 = 3, B, is equivalent to (25). From the relationship be-
symmetric impulse response tweenh andh’, the matrixB, for the original NV + 1)-tap

linear-phase FIR filter can be obtained by left-unfoldiBg
@7)  with respect to its first column as follows:
where N is an integer. Thus, the linear-phase FIR filter can be

h(n) = h(2N —n), 0<n<2N+1

formulated as 001 1}j1}] 1100
010 1/1] 101 0
y(n) =h(N)z(n — N) Bp=|100 11| 1001 (29)
N1 01 10/1]0110
+ > E)@(n — k) +az(n+k—2N)).  (28) 01 1 1[0 1110
k=0
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° . °

. ° .
oo .

): e|o|o o ° . o
. ° °

Fig. 7. Two-dimensional circularly symmetric FIR filter with the eight-fold L4
symmetry.

L J [ ] ® [ ]
where each row represents the subwindow pattern of eacw

(2M +1= 5)—tap Ilnear-phase SUbeIt_er’ except that the Ia‘?—‘ig. 8. 5 x 5 subwindow patterns, where the dotted pixels indicates nonzero
one represents @M + 2 = 6)-tap subfilter because the everelement positions.

number of ones in the last row and the “0” in the middle of the

last row are rendered by the characteristidpf (here,B;,) as
shown in Fig. 4.

As in the previous subsection, &V + 1) x (N + 1) basis
matrix B’ for h’ can be obtained by placing appropriate SSPs
the nonzero positions d8,,. Then, the weighting factor vector
« is determined by

Using (30) withh/ = [0.6806 0 —0.1597 0], we obtaine =
[0.8682 1.6667 0.8682 —3.0418]. Subsequently, the LCWM
Q\I{er is given by

yLowm(n) =a(W)

0.8682 0
a=h'(BH " 30 | 16667 1
B GO ~ | 0.8682 1)) @Y
Example 2:Consider a filter coefficient vector —3.0418 1
h = [0 —-0.1597 0 0.6806 0 —0.1597 0] that is a |
7-tap @N + 1 = 7) BP filter with cut-off frequencie$0.3 0.7] The estimated frequency response of the resultant LCWM
designed by MATLAB. Using the symmetric length-fivefilter is shown in Fig. 6.
(2M + 1 = 5) median filter, design the corresponding LCWM
filter. C. 2-D Symmetric LCWM Filter

ForN +1 =4andM +1 = 3, we have In image processing, to prevent the image distortion, a 2-D
circularly symmetric filterhaving zero-phases usually used

= =0
=
— O~
O = =
— O~
=

110 [18]. Its impulse response is circularly symmetric with respect
B -B,.— |1 1 01 (31) tothe center of the window (the origin). The design scheme for
the 1-D symmetric LCWM filter introduced in the previous sub-
01 1 1

section can be easily extended to the design method for the 2-D
circularly symmetric LCWM filter.

Then, By, is given by As mentioned before, imposing symmetry constraints re-
duces the number of filter coefficients. Consider a circularly

0111110 symmetric filter with an eight-fold symmetry given by
1 01 1 1 01

Be=11 101011 (32) Wi, j) = h(~i, §) = h(i, —j) = h(j,i).  (35)
111 0 1 1 1

For the circularly symmetric filter witi2vV 4 1) x (2N + 1)
ig@fare shape, specifyif@V+1)(N+2))/2 = Ny independent
"96r

Since the first three rows and the last row represent 5-tap
6-tap median filters, respectively, replacing 1s of the first th
rows in (31) with[1/5 1/5 1/5] and 1s of the last row with
[1/6 1/6 1/6] yields

nts in the shaded region in Fig. 7 completely speciiigs ;)
all (¢, j).
A 1-D coefficient

N1 elements
A

W =[h0,0) h(-1,0) --- h(—N, —N)|

(33) is obtained by rearranging the independent points according to
their Euclidean distance from the origin. This reconfiguration
converts the 2-D design problem into an 1-D design problem.

O v Gy e
2] Ll el [ e I Lo
e e T [ e

Q= O O ot
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(2)
(b)
(b)

(e

(©)

(d)

Fig. 11. Results of BP filtering of the noisy chirp signal. (a) Chirp input signal
corrupted by impulseg(= 0.05) and Gaussian noise{ = 200). (b) FIR BP

. . . o . filtering. (c) Optimal GWM BP filtering. (d) LCWM BP filtering.

Fig. 9. (a) Two-tone input signal. (b) FIR HP filtering. (c) Optimal GWM HP

filtering. (d) LCWM HP filtering.

G

filters with M (= 3) independent points. Then, froBiy, s,
= B¢, 3, we obtain

(36)

= O o O

(a)

k]
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= O = ==
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Note that each row oB;, provides the position information

of zero and nonzero elements for the corresponding 2-D sub-
windows. For example, the first row @, in (36) implies that

®) the first 2-D subfilter has three independent nonzero coefficients
at positions corresponding fo, = h(0, 0), ho = h(—1, 0),
andhs = h(—1, —1). Using the eight-fold symmetry defined
in (35), we obtain six subwindow patterns from rowsRif in
(36) (see Fig. 8). Note that each subwindow pattern has a dif-
ferent number of nonzero coefficients.

(© Example 3: Consider & x 5 filter coefficient matrix (v = 2,
N = 6) given by

0.0006 0.0025 0.0038 0.0025 0.0006
0.0025 0.0551 0.1051 0.0551 0.0025
0.0038 0.1051 0.3213 0.1051 0.0038|. (37)
0.0025 0.0551 0.1051 0.0551 0.0025

@ 0.0006 0.0025 0.0038 0.0025 0.0006

Fig. 10. ~Results of BP filtering of the chirp signal. (a) Chirp input signal. (b he filter with the coefficient matrix in (37) is an LP filter with
FIR BP filtering. (c) Optimal GWM BP filtering. (d) LCWM BP filtering. cut-off frequency 0.4 designed by MATLAB. Design a 2-D cir-
cularly symmetric LCWM filter consisting of circularly sym-
Consider & x 5 (/N1 = 6) 2-D circularly symmetric filter that metric median subfilters with three independent weighfs &
is formed as the linear combination of circularly symmetric sul3).

0
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[} {B)

Fig. 12. (a) Original image. (b) Noisy image (Gaussian neise= 200).

SinceN; = 6 and M, = 3, By, is identical to the matrix TABLE |
in (36). Arranging filter coefficients of (37) according to their NMSE's ASSOCIATED WITHNOISE
Euclidean distance from the origin gives

NMSE
h’ =[0.3213 0.1051 0.0551 0.0038 0.0025 0.0006] Filter Type | 0?=100 | 02=200 | p=0.02 p=0.05
(5 x 5) a2=200 2=200
and replacing 1s oB;, by the corresponding SSPs, the basis  edian 0.587 0.329 0.118 0.063
matrix B’ for h' is obtained as FIR 0.443 0.269 0.168 0.144
(&t &£ 0 0 0] GWM 0.358 0.280 0.103 0.058
Ll o9 L 0 o0 LCWM 0.340 0.254 0.095 0.055
g 5 0 0 0 g3 25-tap LCWM filter consisting of symmetric median subfilters
0 5 L o0 o0 with By > performs like the FIR HP filter.
o & & & o0 o] In order to test BP filtering responses, a chirp signal spanning

instantaneous normalized frequency ranging from 0 to 0.5 Hz is
From (30) and (38)a = [1.4031 0.9414 0.0325 0.0054 tilized. Fig. 10(b) shows the chirp signal filtered by a 31-tap
0.5193 —1.9020]. FIR BP filter with normalized passband frequendies < w <

0.2. A desired signal generated by an 121-tap FIR BP filter with

V. EXPERIMENTAL RESULTS the same frequency specificationl < w < 0.2 was utilized to
timize a 31-tap GWM BP filter. Fig. 10(c) depicts the output
the 31-tap GWM BP filter. Fig. 10(d) shows the chirp signal
iitered by an LCWM filter withB+¢ 2. The BP frequency re-
sponse of the GWM and LCWM filters are clearly seen.
. Fig. 11 shows the performance of the filters on chirp signal
A. 1-D LCWM Filters degraded by impulses of probability 0.03 and zero mean i.i.d.
The HP filtering performance of the filters is tested usingaussian noise of variance 0.04. The aforementioned filters are

a two-tone signal containing two sinusoidal signals with fregpplied to the noisy chirp signal. In Fig. 11(b)—(d), the FIR BP
quencies 0.02 and 0.4 shown as Fig. 9(a) (normalized Nyquiger is affected by noise, whereas the GWM and LCWM BP
frequency equal to 1) Flg g(b) shows the Signal filtered byfﬂters show a considerable improvement_
25-tap linear FIR filter with normalized cut-off frequency 0.35.
It is seen that the FIR filter has completely removed all low-fre-
guency components while preserving a high-frequency torie. 2-D LCWM Filters
The two-tone signal is processed by a 25-tap GWM filter opti-
mized by the fast adaptive LMA algorithm [7]. Fig. 9(c) shows For 2-D simulation, we used images consisting t x 512
that the optimal GWM filter removes the low-frequency compixels with eight bits of resolution. In order to quantitatively
ponents while yielding some minor artifacts. In Fig. 9(d), theompare the performance of the filters we have discussed, the

The frequency response characteristics of the 1-D and 2=
LCWAM filters are examined and compared with those of th
linear FIR and some existing nonlinear filters.
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Fig. 13. LP filtering. (a) Original image. (b) Noisy image. (c) Median filtering. (d) FIR filtering. (€) GWM filtering. (f) LCWM filtering.
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(el

Fig. 14. BP filtering. (a) FIR filtering. (b) GWM filtering. (c) LCWM filtering.

normalized mean square error (NMSE) between the original abpg adding impulsive noise of probability 0.02 and 0.05 to the

filtered images is evaluated. The NMSE is given by Gaussian noisy image of variance 200. Then, these four noisy
Lli1 images were passed through various 2-D filters Witts square
. N, window. Fig. 12(b) shows the noisy image with the noise vari-
Z Z [Y'(i, 5) — S(%, j)] ance 200. In the following, we first compare the NMSEs of the

NMSE = ~=2/=0

T (39) LPfiltersandthen yisually compare some (_)f the filtered images.
Z Z [X(i, ) — 5(i, )2 Table | summarizes the NMSEs of medlgn, FIR, GWM, and
’ ’ LCWAM filters. The filters except the median filter were de-
signed based on the LP FIR filter with cut-off frequency 0.001.
whereS(i, ), X (4, j),andY (i, j) are the original, noisy input, In each case, the LCWM filter yields the smallest NMSE.
and filtered images, respectively, ald = 512. In addition, The LP filters with5 x 5 window are applied to the noisy
we present original and filtered images to quantify the error image contaminated by zero mean i.i.d. Gaussian noise of
human visual error criteria. variance 200 and impulses of probability 0.05. The GWM and
The performance of the filters discussed so far is evaluate@WM LP filters are designed using the coefficients of the FIR
by applying them to noisy images degraded by additive whitd® filter with a normalized cut-off frequency 0.1. Fig. 13(c)—(f)
and/or impulsive noise and then by comparing their respectighows that the median filter causes the blur, and that the FIR
results. The original noise-free image is shown in Fig. 12(d)lter performs the worst, whereas both the LCWM and GWM
Two noisy images were generated by adding zero mean i.ififers produce satisfactory results.
Gaussian noise of variance 100 and 200 to the original image;The noisy image in Fig. 13(b) is filtered by the FIR,
and two Gaussian plus impulsive noisy images were obtain€VM, and LCWM BP filters with passban@3 < w < 0.7.

=0 5=0
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Fig. 15. HP filtering. (a) FIR filtering. (b) GWM filtering. (c) LCWM filtering.

Fig. 14(a)—(c) shows that the FIR and GWM filters do not We have presented the design method of the LCWM filters
suppress impulsive noise. Since the absolute value of the centgng the transform from the FIR filter to the LCWM filter. A

coefficient among the FIR filter coefficients is almost as largeimulation using the chirp signal and 2-D images confirmed our
as the absolute sum of the other coefficients, the GWM filtexpectations and shows that the LCWM filter should be consid-
fails to remove the impulses. The LCWM BP filter removesred as a possible alternative to the LP, HP, and BP FIR filters
both impulsive noise and Gaussian noise significantly. in dealing with noise that present strong non-Gaussian nature.

The noisy image in Fig. 13(b) is processed by the FIR, GWM,
and LCWM HP filters with cut-off frequency 0.7. For the pur-
pose of display, the absolute values of the HP filtered image are
taken so that edges of negative values are shown. Fig. 15(a)—(d}!
shows that the LCWM filter significantly attenuates the low-fre- 2]
quency components of images while removing impulsive noise.

VI. CONCLUSIONS
[3]

The observation on structure and design procedure of the
linear FIR HP filter has brought us to the definition of the
LCWM filter, which is represented as a linear combination
of WM filters. The proposed filter can be considered as a
generalization of the difference of estimates including the
DoM.

(5]
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