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Abstract—This paper introduces a novel nonlinear filtering
structure: the linear combination of weighted medians (LCWM).
The proposed filtering scheme is modeled on the structure and
design procedure of the linear-phase FIR highpass (HP) filter in
that the linear-phase FIR HP filter can be obtained by changing
the sign of filter coefficients of the FIR lowpass (LP) filter in the
odd positions. The HP filter can be represented as the difference
between two LP subfilters that have all positive coefficients. This
representation of the FIR HP filter is analogous to the difference
of estimates (DoE) such as the difference of medians (DoM).
The DoM is essentially a nonlinear HP filter that is commonly
used in edge detection. Based on this observation, we introduce
a class of LCWM filters whose output is given by a linear com-
bination of weighted medians of the input sequence. We propose
a method of designing the 1-D and 2-D LCWM filters satisfying
required frequency specifications. The proposed method adopts
a transformation from the FIR filter to the LCWM filter. We
show that the proposed LCWM filter can offer various frequency
filtering characteristics including “LP,” “bandpass (BP),” and
“HP” responses.

Index Terms—Image enhancement, median filters, nonlinear es-
timation, nonlinear filters.

I. INTRODUCTION

T HE WEIGHTED median (WM) filter has been recognized
as a useful smoother in signal and image processing since

it preserves edges in images and is effective in suppressing
impulsive noise [1]. The connection between WM filters
and positive Boolean functions (PBFs) has been established
using threshold decomposition [2], [3]. Some statistical and
deterministic properties of WM filters have been derived using
the PBF representation [2], [4], [5]. Mallows [6] derived the
relationship between linear and nonlinear filters using the
sample selection probability (SSP). It is further proven in [6]
that the SSPs equal the impulse response coefficients of a
finite impulse response (FIR) filter whose output spectrum is
closest, of all linear filters, to that of the order statistic filter
for independent identically distributed (i.i.d.) Gaussian inputs.
Using Mallows’ approach, the WM filter can be analyzed from
a spectral point of view.

The WM filter, however, does not offer much flexibility in
a number of signal and image processing applications since it
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is inherently a smoother with LP filtering characteristics. Re-
cently, to solve this problem, Arce [7] proposed the general
weighted median (GWM) filter admitting positive and negative
weights. In the GWM filter framework, the negative sign of the
weight is uncoupled from the weight magnitude value and is
merged with the input sample, and thus, the weights are always
positive. It is shown in [7] that this filter can exhibit HP and BP
frequency characteristics. This framework has been extended to
stack filters by mirrored threshold decomposition [8] and re-
cursive WM filters [9]. In practice, it is desirable to design the
weights of a filter in some optimal fashion. Some adaptive algo-
rithms has been developed for optimizing nonlinear filters under
the mean absolute error (MAE) criterion [7], [9], [10].

In this paper, we propose a class of linear combination of
weighted median (LCWM) filters that can offer various fre-
quency characteristics including LP, BP, and HP responses. The
proposed scheme is modeled on the structure and design proce-
dure of the linear-phase FIR HP filter. The FIR HP filter can
be easily obtained by changing the sign of filter coefficients
of the FIR LP filter in the odd positions. Thus, the HP filter
can be represented as the difference between two LP subfil-
ters that have all positive coefficients. This difference is analo-
gous to the difference of estimates (DoE) such as the difference
of medians (DoM) [11]–[15]. The DoM is essentially a robust
high-frequency estimator that is commonly used in edge detec-
tion. Based on this observation, we define a new nonlinear filter
whose output is given by a linear combination of weighted me-
dians of the input sequence. We refer to this filter class as the
LCWM filter [16]. In this paper, we introduce a filter design pro-
cedure for the LCWM filter using a linear-to-nonlinear mapping
method.

The organization of the paper is as follows. In Section II,
we review the analogy between WM filters and FIR filters. In
Section III, the LCWM filter is introduced, and its frequency
selectivity is demonstrated by some examples. Design methods
for one-dimensional (1-D) and two-dimensional (2-D) LCWM
filters are derived in Section IV. Experimental results are given
in Section V. Finally, conclusions are given in Section VI.

II. A NALOGY BETWEEN WEIGHTED MEDIAN FILTERS AND

FIR FILTERS

A. Estimation Theory [7]

The sample mean and the sample median are the maximum
likelihood (ML) estimators of location when the input sam-
ples are i.i.d. with Gaussian and Laplacian distributions, respec-
tively. If , are independent Gaussian and
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Laplacian distributed samples with unknown mean, the like-
lihood functions for estimating, respectively, are given by

(1)

(2)

where is the variance of . An ML estimate of is ob-
tained by finding a value that maximizes the likelihood function.
The estimated valuemaximizing (1) is the normalized sample
mean given by

(3)

Likewise, under the Laplacian model, the maximum likelihood
estimate of location minimizes the sum of weighted absolute
deviations

(4)

The value minimizing the above sum is the output of the
WM filter given by

(5)

where , and is the replication operator defined as

Note that the weights in (5) are of non-negative values due
to their inverse relationship to the variances of the respective
observation samples. From an estimation point of view, the
weighted sample mean and the weighted sample median
estimation scheme in (3) and (5) have analogous roots.

B. Estimated Frequency Response of the WM Smoother

Mallows’ approach gives a simple analytical tool for ana-
lyzing nonlinear filters using the SSP defined as the probability
that the output equals theth sample . With this approach,
the spectral behavior of the order-statistic filter can be reason-
ably represented by that of an equivalent FIR filter for i.i.d.
Gaussian inputs.

To illustrate that FIR and median filters exhibit similar
frequency characteristics, an example is presented in Fig. 1.
Fig. 1(a) illustrates the frequency responses of the FIR filters
(FIR5 and FIR7) with coefficients [1/5, 1/5, 1/5, 1/5, 1/5]

Fig. 1. Estimated frequency responses. (a) Frequency responses of FIR filters
(FIR5 and FIR7). (b) Estimated frequency responses of WM smoothers (WM5
and WM7).

and [1/70, 1/21, 78/315, 8/21, 78/315, 1/21, 1/70]. Fig. 1(b)
shows the estimated frequency responses of the WM smoothers
(WM5 and WM7) with weights [1, 1, 1, 1, 1] and [1, 2, 5, 7, 5,
2, 1] whose SSPs correspond to the coefficients of the above
FIR filters. The ratio of the Fourier transform of the output to
the Fourier transform of the input was utilized to estimate the
frequency response of the WM smoothers. The simulations
for this paper used ten input sequences with 100 000 white
Gaussian samples. Comparison of Fig. 1(a) and (b) shows that
the frequency responses of the FIR and WM filters are very
similar and clearly exhibit LP filtering characteristics.

III. LCWM F ILTERS

In this section, we first briefly review the FIR HP filter and
then propose the LCWM filter.

A. FIR HP Filter

An -tap FIR filter is given by

(6)

or equivalently

(7)

where represents the filter
coefficient vector, and
is the input vector.

For the linear-phase LP filter, the s are symmetric with
respect to the midpoint. Changing the sign of coefficients in
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the odd positions after reversing the filter window in the time
domain results in the HP filter given by

(8)

where

if is even

otherwise.

The HP filter in (8) can be divided into two subfilters as fol-
lows:

(9)

where is even, and and are given by

if

otherwise

if

otherwise.
(10)

Note that the two subfilters and have only non-neg-
ative coefficients s and s. Normalizing these coeffi-
cients gives

(11)

where

, and .

B. LCWM Filters

Using Mallows’ approach, we obtain a nonlinear filter con-
sisting of WM subfilters that are the nonlinear counterparts of
the FIR subfilters and in (11). Thus, the nonlinear
counterpart of the linear filter in (11) is given by

(12)

where and are the WM smoothers.

Fig. 2. (Estimated) frequency response. (a) Frequency response of FIR HP
filter with coefficients [1=6; �1=6; 1=6; �1=6; 1=6; �1=6]. (b) Estimated
frequency response of 1/2h[1 0 1 0 1 0]i � 1=2h[0 1 0 1 0 1]i.

In a similar fashion as the vector notation of (7), letdenote
the weight vector of the WM smoother. Then, the WM smoother
is defined by

(13)

where is .
For example, the WM smoother is

represented by

Using vector notation, (12) can be rewritten as

(14)

For example, consider a linear FIR HP filter with coefficients
. The above procedure

gives its nonlinear counterpart
. Fig. 2 shows the frequency response of

the linear filter and the estimated frequency response of the
nonlinear counterpart. It is seen that these two filters produce
similar results.

It is interesting to point out that the DoM is a special case of
(14). For example, the DoM with window size 5 is given by

In this case, , , , and
.

The fact that an FIR filter is divided into two subfilters by the
sign of coefficients would suggest that the resulting nonlinear
filter has two WM subfilters with two nonoverlapping subwin-
dows. However, since distinct WM smoothers, which are dis-
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tinguished by their SSPs, are countable, this division does not
always produce WM smoothers with SSPs that are identical to
the divided FIR subfilter coefficients. Therefore, we consider
the division of a general FIR filter into several FIR subfilters
with overlapping or nonoverlapping subwindows. The only con-
straint is that the WM smoother corresponding to each FIR sub-
filter must exist. Then, we generalize (11) as

(15a)

(15b)

where is the number of subfilters, and is the th
coefficient of the th subfilter. Define the coefficient vector
of the th subfilter and the coefficient matrix of subfilters as
follows:

(16a)

... (16b)

Then, the matrix representation of (15b) is given by

(17)

where is referred to as the weighting factor
vector. Thus, from (7) and (17), the weight factor vectoris
determined by

(18)

Let and be the weight vector and matrix that are the
nonlinear counterpart of and , respectively. Substituting the
WM smoother for the linear subfilter in (15a), we
obtain the LCWM filter defined by

(19)

Fig. 3 illustrates the LCWM filter structure, which is a linear
combination of WM smoothers.

We can express (19) in a form similar to (17) as

(20)

where

...
... (21)

IV. DESIGNING LCWM FILTERS

In this section, we propose a design method for the LCWM
filter that satisfies required frequency characteristics. The pro-

Fig. 3. LCWM filter framework.

posed method has two steps: First, a prototype FIR filter is de-
signed. From this prototype, an LCWM filter is obtained by
using a transformation that will be introduced in the next sub-
section.

A. Transformation From the FIR Filter to the Corresponding
LCWM Filter

Before we show the main results, we provide a brief review
of the basis concepts in the context of linear algebra.

A real -dimensional vector space is spanned by lin-
early independent vectors (with components
each). These linearly independent sets in are calleda
basisfor . That is, if a basis for is given, any vector
with components can be formed as a linear combination of
vectors in the basis.

(22a)

(22b)

Consider an FIR filter with the coefficient vector. Then,
from (22a), the filter can be formed as a linear combination
of subfilter coefficient vectors , namely, the basis
for . Note that (22b) is identical to (18). The question, then, is
how we can determine the basis matrix. Before we introduce
the method to determine the basis, we briefly review the com-
bination theory.

An -combination of an -set is a subset with elements
chosen from the set with elements. For example, the 2-combi-
nations of set are , , ,

, , and . For simplicity in the manip-
ulation, each combination is denoted in vector form, such as

for . The number of -combinations of
an -set is the binomial coefficient

. Let denote an combination matrix
consisting of the combination vectors. The matrix can
be easily obtained using the classic recursive relation for bino-
mial coefficients as follows:

...

...

(23)
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Fig. 4. Recursive properties ofB andB .

where

and is the identity matrix. For example

(24)

With therow-searching algorithm[17], one can find a unique
matrix by selecting linearly independent rows of

. For example, applying the row-searching algorithm to
the matrix in (24) gives

(25)

whose rank, which is denoted by , is equal to 5.
The matrix can be also obtained by using the recursive

property of , as shown in Fig. 4. Since consists of
linearly independent vectors, the submatrix has

linearly independent rows. Appending 1s to the begin-
ning of each linearly independent row of
provides the first ( ) rows of . The last row of is
obtained by appending 0 to the beginning of the first row of

.
For a given , the basis matrix defined in (22b) is obtained

by replacing the 1s of each row in with nonzero SSPs of
the nonlinear subfilters constituting the LCWM filter. Theoret-
ically, the weights of the subfilters can be arbitrary only if the
corresponding SSPs are nonzeros. In this paper, we restrict our
attention to a simple case where the subfilters are the standard

median smoothers, that is, the SSP and are and ,
respectively.

Next, we summarize the design procedure for the LCWM
filter.

Design Procedure for the LCWM Filter:

1) Design an -tap prototype FIR filter using frequency
specifications.

2) Choose a weight vector of the -tap SM subfilter
(smoother) ( ).

3) Using the row-searching algorithm, find , and con-
vert it into .

4) Using SSPs and s, transform into .
5) Using (18), obtain .
The following example shows that LCWM filter can have

similar HP characteristics.
Example 1: Consider a six-tap FIR filter with coefficient

vector
, which is the decomposition HP filter of Daubechies

wavelet. Design LCWM filter that has 3-tap subfilters.
The corresponding SSP’s of the weights are .

Using the above design procedure, we obtain the basis matrices
of LCWM as follows:

(26)

The weighting factor vectors for each case are determined
by

. Therefore, LCWM is given by
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Fig. 5. (Estimated) HP frequency response. (a) Frequency response of the HP
filter of Daubechies wavelet. (b) Estimated frequency response of the LCWM
filter with w = [1 1 1].

Fig. 5(b) shows the estimated frequency response of the above
LCWM filter. For comparison, the frequency response of the HP
filter with Daubechies wavelet is also presented. It is seen that
the LCWM filter exhibits similar HP characteristics as the linear
filter.

B. Symmetric LCWM Filter

Under the assumption that the FIR filter is of linear
phase, the number of subfilters of the LCWM filter can
be reduced. An odd-length linear-phase FIR filter with

is defined as a filter that has a
symmetric impulse response

(27)

where is an integer. Thus, the linear-phase FIR filter can be
formulated as

(28)

Fig. 6. (Estimated) BP frequency response. (a) Frequency response of the
prototype BP FIR filter. (b) Estimated frequency response of the LCWM filter
designed withw = [1 1 1 1 1].

Note that the -tap linear-phase FIR filter has
independent coefficients.

Let the vector consisting of these independent co-
efficients be denoted by with

. The reduced number ( ) of coefficients leads
to a reduced basis matrix. If we form a

-tap linear-phase FIR filter as a linear combination of
linear-phase FIR subfilters with length , we can obtain
a matrix denoted by , which consists of linear inde-
pendent rows of . For example, for and

, is equivalent to (25). From the relationship be-
tween and , the matrix for the original ( )-tap
linear-phase FIR filter can be obtained by left-unfolding
with respect to its first column as follows:

(29)



1946 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 9, SEPTEMBER 2001

Fig. 7. Two-dimensional circularly symmetric FIR filter with the eight-fold
symmetry.

where each row represents the subwindow pattern of each
-tap linear-phase subfilter, except that the last

one represents a -tap subfilter because the even
number of ones in the last row and the “0” in the middle of the
last row are rendered by the characteristic of (here, ) as
shown in Fig. 4.

As in the previous subsection, an basis
matrix for can be obtained by placing appropriate SSPs at
the nonzero positions of . Then, the weighting factor vector

is determined by

(30)

Example 2: Consider a filter coefficient vector
that is a

7-tap ( ) BP filter with cut-off frequencies
designed by MATLAB. Using the symmetric length-five
( ) median filter, design the corresponding LCWM
filter.

For and , we have

(31)

Then, is given by

(32)

Since the first three rows and the last row represent 5-tap and
6-tap median filters, respectively, replacing 1s of the first three
rows in (31) with and 1s of the last row with

yields

(33)

Fig. 8. 5� 5 subwindow patterns, where the dotted pixels indicates nonzero
element positions.

Using (30) with , we obtain
. Subsequently, the LCWM

filter is given by

(34)

The estimated frequency response of the resultant LCWM
filter is shown in Fig. 6.

C. 2-D Symmetric LCWM Filter

In image processing, to prevent the image distortion, a 2-D
circularly symmetric filterhaving zero-phaseis usually used
[18]. Its impulse response is circularly symmetric with respect
to the center of the window (the origin). The design scheme for
the 1-D symmetric LCWM filter introduced in the previous sub-
section can be easily extended to the design method for the 2-D
circularly symmetric LCWM filter.

As mentioned before, imposing symmetry constraints re-
duces the number of filter coefficients. Consider a circularly
symmetric filter with an eight-fold symmetry given by

(35)

For the circularly symmetric filter with
square shape, specifying independent
points in the shaded region in Fig. 7 completely specifies
for all .

A 1-D coefficient

is obtained by rearranging the independent points according to
their Euclidean distance from the origin. This reconfiguration
converts the 2-D design problem into an 1-D design problem.
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Fig. 9. (a) Two-tone input signal. (b) FIR HP filtering. (c) Optimal GWM HP
filtering. (d) LCWM HP filtering.

Fig. 10. Results of BP filtering of the chirp signal. (a) Chirp input signal. (b)
FIR BP filtering. (c) Optimal GWM BP filtering. (d) LCWM BP filtering.

Consider a ( ) 2-D circularly symmetric filter that
is formed as the linear combination of circularly symmetric sub-

Fig. 11. Results of BP filtering of the noisy chirp signal. (a) Chirp input signal
corrupted by impulses (p = 0:05) and Gaussian noise (� = 200). (b) FIR BP
filtering. (c) Optimal GWM BP filtering. (d) LCWM BP filtering.

filters with independent points. Then, from
, we obtain

(36)

Note that each row of provides the position information
of zero and nonzero elements for the corresponding 2-D sub-
windows. For example, the first row of in (36) implies that
the first 2-D subfilter has three independent nonzero coefficients
at positions corresponding to , ,
and . Using the eight-fold symmetry defined
in (35), we obtain six subwindow patterns from rows of in
(36) (see Fig. 8). Note that each subwindow pattern has a dif-
ferent number of nonzero coefficients.

Example 3: Consider a filter coefficient matrix ( ,
) given by

(37)

The filter with the coefficient matrix in (37) is an LP filter with
cut-off frequency 0.4 designed by MATLAB. Design a 2-D cir-
cularly symmetric LCWM filter consisting of circularly sym-
metric median subfilters with three independent weights (
).
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Fig. 12. (a) Original image. (b) Noisy image (Gaussian noise� = 200).

Since and , is identical to the matrix
in (36). Arranging filter coefficients of (37) according to their
Euclidean distance from the origin gives

and replacing 1s of by the corresponding SSPs, the basis
matrix for is obtained as

(38)

From (30) and (38),
.

V. EXPERIMENTAL RESULTS

The frequency response characteristics of the 1-D and 2-D
LCWM filters are examined and compared with those of the
linear FIR and some existing nonlinear filters.

A. 1-D LCWM Filters

The HP filtering performance of the filters is tested using
a two-tone signal containing two sinusoidal signals with fre-
quencies 0.02 and 0.4 shown as Fig. 9(a) (normalized Nyquist
frequency equal to 1). Fig. 9(b) shows the signal filtered by a
25-tap linear FIR filter with normalized cut-off frequency 0.35.
It is seen that the FIR filter has completely removed all low-fre-
quency components while preserving a high-frequency tone.
The two-tone signal is processed by a 25-tap GWM filter opti-
mized by the fast adaptive LMA algorithm [7]. Fig. 9(c) shows
that the optimal GWM filter removes the low-frequency com-
ponents while yielding some minor artifacts. In Fig. 9(d), the

TABLE I
NMSE’s ASSOCIATED WITHNOISE

25-tap LCWM filter consisting of symmetric median subfilters
with performs like the FIR HP filter.

In order to test BP filtering responses, a chirp signal spanning
instantaneous normalized frequency ranging from 0 to 0.5 Hz is
utilized. Fig. 10(b) shows the chirp signal filtered by a 31-tap
FIR BP filter with normalized passband frequencies

. A desired signal generated by an 121-tap FIR BP filter with
the same frequency specification was utilized to
optimize a 31-tap GWM BP filter. Fig. 10(c) depicts the output
of the 31-tap GWM BP filter. Fig. 10(d) shows the chirp signal
filtered by an LCWM filter with . The BP frequency re-
sponse of the GWM and LCWM filters are clearly seen.

Fig. 11 shows the performance of the filters on chirp signal
degraded by impulses of probability 0.03 and zero mean i.i.d.
Gaussian noise of variance 0.04. The aforementioned filters are
applied to the noisy chirp signal. In Fig. 11(b)–(d), the FIR BP
filter is affected by noise, whereas the GWM and LCWM BP
filters show a considerable improvement.

B. 2-D LCWM Filters

For 2-D simulation, we used images consisting of
pixels with eight bits of resolution. In order to quantitatively
compare the performance of the filters we have discussed, the
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Fig. 13. LP filtering. (a) Original image. (b) Noisy image. (c) Median filtering. (d) FIR filtering. (e) GWM filtering. (f) LCWM filtering.
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Fig. 14. BP filtering. (a) FIR filtering. (b) GWM filtering. (c) LCWM filtering.

normalized mean square error (NMSE) between the original and
filtered images is evaluated. The NMSE is given by

NMSE (39)

where , , and are the original, noisy input,
and filtered images, respectively, and . In addition,
we present original and filtered images to quantify the error in
human visual error criteria.

The performance of the filters discussed so far is evaluated
by applying them to noisy images degraded by additive white
and/or impulsive noise and then by comparing their respective
results. The original noise-free image is shown in Fig. 12(a).
Two noisy images were generated by adding zero mean i.i.d.
Gaussian noise of variance 100 and 200 to the original image,
and two Gaussian plus impulsive noisy images were obtained

by adding impulsive noise of probability 0.02 and 0.05 to the
Gaussian noisy image of variance 200. Then, these four noisy
images were passed through various 2-D filters with square
window. Fig. 12(b) shows the noisy image with the noise vari-
ance 200. In the following, we first compare the NMSEs of the
LP filters and then visually compare some of the filtered images.

Table I summarizes the NMSEs of median, FIR, GWM, and
LCWM filters. The filters except the median filter were de-
signed based on the LP FIR filter with cut-off frequency 0.001.
In each case, the LCWM filter yields the smallest NMSE.

The LP filters with window are applied to the noisy
image contaminated by zero mean i.i.d. Gaussian noise of
variance 200 and impulses of probability 0.05. The GWM and
LCWM LP filters are designed using the coefficients of the FIR
LP filter with a normalized cut-off frequency 0.1. Fig. 13(c)–(f)
shows that the median filter causes the blur, and that the FIR
filter performs the worst, whereas both the LCWM and GWM
filters produce satisfactory results.

The noisy image in Fig. 13(b) is filtered by the FIR,
GWM, and LCWM BP filters with passband .
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Fig. 15. HP filtering. (a) FIR filtering. (b) GWM filtering. (c) LCWM filtering.

Fig. 14(a)–(c) shows that the FIR and GWM filters do not
suppress impulsive noise. Since the absolute value of the center
coefficient among the FIR filter coefficients is almost as large
as the absolute sum of the other coefficients, the GWM filter
fails to remove the impulses. The LCWM BP filter removes
both impulsive noise and Gaussian noise significantly.

The noisy image in Fig. 13(b) is processed by the FIR, GWM,
and LCWM HP filters with cut-off frequency 0.7. For the pur-
pose of display, the absolute values of the HP filtered image are
taken so that edges of negative values are shown. Fig. 15(a)–(c)
shows that the LCWM filter significantly attenuates the low-fre-
quency components of images while removing impulsive noise.

VI. CONCLUSIONS

The observation on structure and design procedure of the
linear FIR HP filter has brought us to the definition of the
LCWM filter, which is represented as a linear combination
of WM filters. The proposed filter can be considered as a
generalization of the difference of estimates including the
DoM.

We have presented the design method of the LCWM filters
using the transform from the FIR filter to the LCWM filter. A
simulation using the chirp signal and 2-D images confirmed our
expectations and shows that the LCWM filter should be consid-
ered as a possible alternative to the LP, HP, and BP FIR filters
in dealing with noise that present strong non-Gaussian nature.
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