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“Quickie” problems first appeared in the March 1980 is-
sue of Mathematics Magazine. They were originated by the
late Charles W. Trigg, a prolific problem proposer and solver
who was then the Problem Editor. Many of the first good
Quickie proposals were due to the late Leo Moser (who in-
cidentally was a member of the University of Alberta Math-
ematics Department and subsequently its chairman). These
Quickie problems are even now still a popular part of the jour-
nal. Also Quickies have proliferated to the problem sections
of Crux Mathematicorum, Math Horizons, SIAM Review and
Mathematical Intelligencer (unfortunately, no longer in the
latter two journals).

Trigg noted that some problems will be solved by laborious
methods but with proper insight1 may be disposed of with
dispatch. Hence the name “Quickie”.

The probability that two random numbers are equal is
zero. It follows that there are more inequalities than equa-
tions. Consequently, the study of inequalities are important
throughout mathematics. In past issues of π in the Sky , De-
cember 2001, September 2002, Professor Hrimiuc has pro-
vided some good notes on inequalities and we shall be refer-
ring to some of them.

Here we illustrate 16 Quickie inequalities and after each
one we include for the interested reader an exercise that can
be solved in a related manner.

Our first example will set the stage for our Quickie Inequal-
ities.

1. There have been very many derivations published giving
the formulas for the distance from a point to a line and a
plane. Here is a Quickie derivation for the distance from the
point (h, k, l) to the plane ax + by + cz + d = 0 in E

3 . Here
we want to find the minimum value of [(x− h)2 + (y − k)2 +
(z − l)2]1/2 where (x, y, z) is a point of the given plane. By
Cauchy’s Inequality,

[(x − h)2 + (y − k)2 + (z − `)2]1/2[a2 + b2 + c2]1/2

≥ |a(x − h) + b(y − k) + c(z − `)|
or

min[(x − h)2 + (y − k)2 + (z − `)2]1/2

= |ah + bk + c + d|/[a2 + b2 + c2]1/2.

Exercise. Determine the distance from the point (h, k) to
the line ax + by + c = 0.
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2. KöMaL problem F. 3097. A convex quadrilateral ABCD
is inscribed in a unit circle. Its sides satisfy the inequality
AB · BC · CD · DA ≥ 4. Prove that ABCD is a square.
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Let the angles subtended by the four sides from the center
be 2α, 2β, 2γ, and 2δ (see figure above). Then AB = 2 sin α,
BC = 2 sin β, CD = 2 sin γ and CD = 2 sin δ where α + β +
γ + δ = π, π > α, β, γ, δ > 0. Since ln(sin x) is concave,

ln(sinα) + ln(sinβ) + ln(sin γ) + ln(sin δ) ≤ 4 ln
(

sin
π

4

)

or AB · BC · CD · DA ≤ 4. Hence the product is exactly 4
and α = β = γ = δ = π

4
so ABCD is a square.

Exercise. Of all convex n-gons inscribed in a unit circle,
determine the maximum of the product of its n sides.

3. KöMaL problem F. 3238. Prove that the inequality

√

a2 + (1 − b)2 +
√

b2 + (1 − c)2 +
√

c2 + (1 − a)2 ≥ 3
√

2

2

holds for arbitrary real numbers a, b, c.
By Minkowski’s Inequality, the sum of the three radicals is

grater or equal than
√

(a + b + c)2 + (3 − a − b − c)2. Then
by the power mean inequality or else letting a + b + c = x,
the expression under the radical is 2(x − 3/2)2 + 9/2, so the

minimum value is 3
√

3

2
.

Exercise. Determine the minimum value of

{x3 + (c − y)3 + a3}1/3 + {y3 + b3 + (d − x)3}1/3,

where a, b, c, d are given positive numbers and x, y ≥ 0.

4. Determine the maximum and minimum z coordinates of
the surface

5x2 + 10y2 + 2z2 + 10xy − 2yz + 2zx − 8z = 0 in E
3.

One method would be to use Lagrange Multipliers. Another
more elementary method would be to use discriminants of
quadratic equations since if z = h is the maximum, the inter-
section of the plane z = h with the quadric must be a single
point. Even simpler is to express the quadric that is an ellip-
soid as a sum of squares, i.e., (2x+y)2+(x−y+z)2+(z−4)2 =
16. Hence max z = 8 and min z = 0.

Exercise. Determine the maximum value of y2 and z2 where
x, y, z are real and satisfy

(y − z)2 + (z − x)2 + (x − y)2 + x2 = a2.

5. Let ar = (br + br+1 + br+2)/br+1 where b1, b2, . . . , bn > 0
and br+n = br. Determine the minimum value of

3
√

a1 + 3
√

a2 + · · · + 3
√

an.
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Even more generally, let

xj = x1j + x2j + · · · + xmj , j = 1, 2, · · · , n,

where all xij > 0 and
n

∏

j=1

xij = Pn
i , i = 1, 2, · · · , m. Then

S ≡ r
√

x1 + r
√

x2 + · · · + r
√

xn ≥ n r

√

P1 + P2 + · · · + Pm.

We first use the Arithmetic–Geometric Mean Inequality to
get

S ≥ n(x1x2 · · ·xn)1/rn.

Then applying Holder’s Inequality we are done. There is
equality if and only if xij = xjk for all i, j, k.

The given inequality corresponds to the special case where
r = m = 3, P1 = P2 = P3 = 1, so that the minimum value is
n 3
√

3.

The inequalities here are extensions of problem #M1277,
Kvant, 1991, which was to show that

n
∑

i=1

{ai + ai+1)/ai+2}1/2 ≥ n
√

2.

Exercise. Gy. 2887, KöMal. The positive numbers a1, a2,
. . . , an add up to 1. Prove the following inequality:

(1 + 1/a1)(1 + 1/a2) · · · (1 + 1/an) ≥ (n + 1)n.

6. If a, b, c are sides of a triangle ABC and R1, R2, R3 are the
distances from a point P in plane of ABC to the respective
vertices A, B, C. Prove that

aR2
1 + bR2

2 + cR2
3 ≥ abc.

This is a polar moment of inertia inequality and is a special
case of the more general inequality

(x~A + y~B + z~C)2 ≥ 0,

where ~A, ~B, ~C are vectors from P to the respective vertices
A, B, C. Expanding out the square, we get

x2R2
1 + y2R2

2 + z2R2
3 + 2yz~B · ~C + 2zx~C · ~A + 2xy~A · ~B.

Since 2~B · ~C = R2
2 + R2

3 − a2, etc., the general polar moment
of inertia inequality reduces to

(x + y + z)(xR2
1 + yR2

2 + zR2
3) ≥ yza2 + zxb2 + xyc2.

Many triangle inequalities are special cases since x, y, z are
arbitrary real numbers. In particular by letting (x, y, z) =
(a, b, c), we get our starting inequality. Letting P be the cir-
cumcenter and x = y = z, we get 9R2 ≥ a2 + b2 + c2 or
equivalently sin2 A + sin2 B + sin2 C ≤ 9

4
.

Exercise. Prove that

aR2R3 + bR3R1 + cR1R2 ≥ abc.

7. Prove the identity

u(v − w)5 + u5(v − w) + v(w − u)5 + v5(w − u)

+w(u − v)5 + w5(u − v) = −10uvw(u − v)(v − w)(w − u),

and from this obtain the triangle inequality

aR1(a
4 +R4

1)+ bR2(b
4 +R4

2)+ cR3(c
4 +R4

3) ≥ 10abcR1R2R3

(with the same notation as in Problem 6).

The identity is a 6th degree polynomial. The left hand side
vanishes for u = 0, v = 0, w = 0, u = v, v = w, and w = u.
Hence the right hand side equals kuvw(u− v)(v−w)(w− u),
where k is a constant. On comparing the coefficients of uv3w2

on both sides, k = −1.

Now, let u, v, w denote complex numbers representing the
vectors from the point P to the respective vertices A, B, C.
Taking the absolute values of the both sides of the identity
and using the triangle inequality |z1 + z2| ≤ |z1| + |z2|, we
obtain the desired triangle inequality.

Exercise. Referring to Problem 6, prove that

aR1R
′
1 + bR2R

′
2 + cR3R

′
3 ≥ abc, where R′

1, R
′
2, R

′
3

are the distances from another point Q to the respective ver-
tices A, B, C.

8. Determine the maximum and minimum values of
x2 + y2 + z2 subject to the constraint x2+y2+z2+2xyz = 1.

Since it is known that cos2 α + cos2 β + cos2 γ +
2 cos α cos β cos γ = 1 is a triangle identity, we let x = cosα,
y = cosβ, and z = cos γ where α + β + γ = π and π ≥ α,
β, γ ≥ 0. Clearly the maximum of cos2 α + cos2 β + cos2 γ
is 3 and is taken on for (x, y, z) = (1, 1,−1) and permutations
thereof. For the minimum (using the above),

cos2 α + cos2 β + cos2 γ = 3 − (sin2 α + sin2 β + sin2 γ) ≥ 3

4
.

Exercise. Determine the maximum of

{

n
∑

i=1

xi

}







n
∑

j=1

√

a2
i − x2

i







,

where ai ≥ xi ≥ 0.

9. Problem # 2, Final Round 21st Austrian Mathematical
Olympiad. Show that for all natural numbers n > 2,

√

2
3
√

3
4
√

4 · · · n
√

n < 2.

Here we get a better upper bound. If P denotes the left
hand side, then

lnP =
ln 2

2!
+

ln 3

3!
+ · · · + lnn

n!
.
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Since
lnx

x
is a decreasing function for x ≥ e,

lnP <
ln 2

2!
+

ln 3

3

{

1

2!
+

1

3!
+

1

4!
+ . . .

}

=
ln 2

2!
+

ln 3

3
(e − 2) ≈ 1.7592.

Exercise. Determine a good lower bound for P .

10. Prove that for any distinct real numbers a, b,

eb − ea

b − a
> e

b+a

2 .

This is a special case of the following result due to
J. Hadamard [1]: If a function f is differentiable, and its
derivative is an increasing function on a closed interval [r, s],
then for all x1, x2 ∈ (r, s) (x1 6= x2), then

∫ x2

x1

f(x)dx

x2 − x1

> f

{

x2 + x1

2

}

.

Letting f(x) = ex, we get the desired result.

Exercise. Prove that

eb2 − ea2

> (b2 − a2)e
(b+a)2

4 .

11. Prove that

cosh(y−z)+cosh(z−x)+cosh(x−y) ≥ cosh x+cosh y+cosh z

where x, y, z are real numbers whose sum is 0.

Since cosh x = cosh(y + z), etc., the inequality can be
rewritten as

(i) sinh y sinh z + sinh z sinh x + sinh x sinh y ≤ 0.

Since (i) is obviously valid if at least one of x, y, z = 0, we can
assume that xyz 6= 0 and x, y > 0. Since z = −(x + y), (i)
becomes csch x + csch y ≥ csch(x + y) for all x, y > 0. This
follows immediately since csch t is a decreasing function for
all t > 0.

Exercise. Prove that

v

w
+

w

v
+

w

u
+

u

w
+

u

v
+

v

u
≥ u +

1

u
+ v +

1

v
+ w +

1

w

where u, v, w > 0 and uvw = 1.

12. It is known and elementary that in a triangle, the longest
median is the one to the shortest side and the shortest median
is the one to the longest side. Determine whether or not the
longest median of a tetrahedron is the one to the smallest
area face and the shortest median is the one to the largest
area face.

Let the sides of tetrahedron PABC be given by PA = a,
PB = b, PC = c, PC = d, CA = e, and AB = f . The

median mp from P is given by |~A+~B+~C|
3

where ~A, ~B, ~C are
vectors from P to A, B, C respectively. Then

9m2
p = |~A + ~B + ~C|2 = 3(a2 + b2 + c2) − (d2 + e2 + f2)

and similar formulas for the other medians. It now follows
that 9m2

a − 9m2
b = 4(a2 + f2)− 4(b2 + e2). It is now possible

to have ma = mb with their respective face areas unequal, so
that the longest median is not one to the smallest face area.
The valid analogy is that the longest median is the one to
the face for which the sum of the squares of its edges is the
smallest, and the shortest median is the one to the face for
which the sum of the squares of its edges is the largest.

Exercise. Prove that the four medians of a tetrahedron are
possible sides of a quadrilateral.

13. a, b, c, d are positive numbers such that a5+b5+c5+d5 =
e5. Can an + bn + cn + dn = en for any number n > 5?

Let St = xt
1 + xt

2 + · · · + xt
n where the xi ≥ 0. A known

result [2] is that the sum St of order t, defined by St = (St)
1/t

decreases steadily from min xi to 0 as t increases from −∞
to 0−, and decreases steadily from ∞ to max xi as t increases
from 0+ to +∞. Consequently, there is no such n.

Exercise. Prove that ST ≤
n

∑

i=1

α1Sti
for arbitrary ti > 0 and

for α1 > 0,

n
∑

i=1

α1 = 1 and T =

n
∑

i=1

α1ti.

14. Prove that

xt+1

yt
+

yt+1

zt
+

zt+1

xt
≥ x + y + z

where x, y, z > 0 and t ≥ 0.

Let

F (t) =

[

y
(

x
y

)t+1

+ z
(

y
z

)t+1
+ x

(

z
x

)t+1

]
1

t+1

[x + y + z]
1

t+1

.

Then by the Power Mean Inequality, F (t) ≥ F (0) = 1.

Exercise. Prove more generally that

xt+1

at
+

yt+1

bt
+

zt+1

ct
≥ (x + y + z)t+1

(a + b + c)t
,

where x, y, z, a, b, c > 0 and t ≥ 0.

15. Determine the maximum value of

S = 3(a3 + b2 + c) − 2(bc + ca + ab),

where 1 ≥ a, b, c ≥ 0.

Here, S ≤ 3(a + b + c) − 2(bc + ca + ab). Since this latter
expression is linear in each of a, b, c, its maximum value is
taken on for a, b, c = 0 or 1. Hence the maximum is 6−2 = 4.

Exercise. Determine the maximum value of

S = 4(a4 + b4 + c4 + d4) − (a2bc + b2cd + c2da + d2ab)

−(a2b + b2c + c2d + d2a),

where 1 ≥ a, b, c, d ≥ 0.

16. Determine the maximum and minimum values of

sin A + sin B + sin C + sin D + sin E + sin F,
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where A + B + C + D + E + F = 2π and π
2
≥ A, B, C, D,

E, F ≥ 0.

Here we get a quick solution by applying Karamata’s In-

equality [3]. If two vectors ~A and ~B having n components,
ai and bi, are arranged in non-increasing magnitude are such
that

k
∑

i=1

ai ≥
k

∑

i=1

bi, k = 1, 2, . . . , n − 1,

and
n

∑

i=1

ai =

n
∑

i=1

bi,

we say that ~A majorizes ~B and write ~A � ~B. We then have
for a convex function F (x) that

F (a1) + F (a2) + · · · + F (an) ≥ F (b1) + F (b2) + · · · + F (bn).

If F (x) is concave, the inequality is reversed.

Since sin x is concave in [0, π/2], and

(π

2
,
π

2
,
π

2
,
π

2
, 0, 0

)

� (A, B, C, D, E, F )

�
(

2π

6
,
2π

6
,
2π

6
,
2π

6
,
2π

6
,
2π

6

)

.

The maximum value is 6 sin π
3

or 3
√

3 and the minimum value
is 4 sin π

2
or 4.

Exercise. Determine the extreme values of a5 + b5 + c5 +
d5 + e5 + f5 given that a, b, c, d, e, f , are distinct positive
integers with sum 36.
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Mother to her daughter: “Why does the tablecloth you just put

on the table have the word ‘truth’ written on it?”
Daughter: “Because I want to turn the table into a truth table!”

Summer Institute for

Mathematics at the

University of

Washington
SIMUW is seeking applications from talented and en-
thusiastic high school students for its 2004 summer
program.

Students experimenting
with boomerang.

Admission is competitive.
Twenty-four students will be se-
lected from Washington, British
Columbia, Oregon, Idaho, and
Alaska. Room, board, and
participation in all activities are
completely free for all admitted
participants.

Six weeks of classroom activi-
ties, special lectures, and related
activities are led by mathemati-
cians and other scientists with
the help of graduate and under-
graduate teaching assistants.

SIMUW activities are de-
signed to allow students to par-
ticipate in the experience of
mathematical inquiry and to be
immersed in the world of math-

ematics. Topics are accessible yet of sufficient sophistication
to be challenging.

2003 SIMUW participants

Students will gain a full appreciation of the nature of math-
ematics: its wide-ranging content, the intrinsic beauty of its
ideas, the nature of mathematical argument and proof, and
the surprising power of mathematics within the sciences and
beyond.

To obtain more information and application materials, con-
tact us at:

http://www.math.washington.edu/∼simuw
SIMUW
Department of Mathematics
University of Washington
Box 354350
Seattle, WA 98195–4350
Phone: (206) 992–5469
Fax: (206) 543–0397
E-mail: simuw@math.washington.edu

The 2004 SIMUW program runs from June 20th to
July 31st.
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