
by T. A. Gregg
K. M. Pandey
R. K. Errickson

The Integrated
Cluster Bus for
the IBM S/390
Parallel Sysplex

IBM has developed a new S/390® Parallel
Sysplex® coupling interface for the G5 server
called the Integrated Cluster Bus (ICB). This
interface improves the coupling efficiency by
greatly reducing message-passing latency.
Using the transport layer of the S/390 self-
timed interface (STI) introduced in the G3
server, ICB adds channel function to the hub
chip to allow a more direct interconnection
between S/390 servers. This new channel has
the same function as the present intersystem
channel (ISC), but because it is integrated into
the hub chip and therefore requires no additional
components, its reliability is much better than
that of the ISC. Since the ISC transmits data
at a peak rate of 106 MB/s over distances
exceeding ten kilometers and the ICB
transmits data at a peak rate of 333 MB/s
at distances of ten meters, the ISC is still
required for the more geographically dispersed
Parallel Sysplexes, whereas the ICB is well
suited to the machine room, where multiple
servers can be interconnected by ten-meter
cables. This paper describes the design
approach for the ICB. It describes the
fundamental message-passing requirements
of the Parallel Sysplex and how they are
implemented in very complex yet compact
hardware in the server’s hub chip.

Introduction
The S/390* Parallel Sysplex* requires high-speed
interconnections to pass messages between instances of
the operating system, OS/390*, and the coupling facility
(CF), one or more of which is physically located in an
S/390 server [1, 2]. The interconnection used in all earlier
generations of S/390 servers, bipolar and CMOS, is the
intersystem channel (ISC). This interface is optical
and bit-serial, operating at 100 MB/s at distances of
up to ten kilometers. When introduced in 1994, the ISC
was perfectly suited to the performance and distance
requirements existing at the time. To meet the low-latency
requirements of message passing, the short messages did
not require extremely high bandwidth. Instead, the ISC
design concentrated on a low-overhead protocol, and kept
microcode path lengths short by putting as much function
as practical into hardware state machines. Relatively long
distances were required to interconnect the large bipolar
servers together with their input and output devices, of
the order of at least 100 meters. The same interface can
also be used by the more geographically dispersed
computer clusters.

As the CMOS servers replaced bipolar, new
environments required new solutions. First, the CMOS
servers are physically much smaller than the bipolar
servers. At present, several (up to eight) servers can be
interconnected by relatively short (in the range of ten
meters) cables. Second, new workloads move more data
and still require low latency, thus requiring higher

rCopyright 1999 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/99/$5.00 © 1999 IBM

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON

795

bandwidths. Third, S/390 Parallel Sysplex uses synchronous
message passing: The processor stops executing new
instructions until the current message has been completed
by the coupling facility. This implies that the message-
passing implementation must scale with the processor
speeds to keep the percentage of processor wait time low
[3, 4]. ISC hardware, on the other hand, is often retained
by the customer when upgrading processors from one
generation to the next, so their relative performance is
reduced, and coupling efficiency is consequently reduced.
Finally, to both improve the overall server hardware
failure rate and lower the cost, a solution using less
hardware than ISC was required.

Since the smaller size of the CMOS servers allows most
of the connections to be accommodated by relatively short
cables, we considered using the S/390 self-timed interface
(STI) technology as a new interconnect. Using this
technology required more than simply plugging an STI
port on one server into an STI port on another server.
The channel function of the ISC had to be optimized in a
way that permitted it to be moved into the hub. Since

each of the six STI ports on the hub chip requires a
channel, the channel function also had to be compact.

Hardware structure of ISC and ICB
Figure 1 shows how two G5 servers are interconnected by
both ISC and ICB. In this example, each server contains a
processor/memory cage and a single I/O cage; G5 servers
support two additional I/O cages. The processor/memory
cage contains a multichip module (MCM) that has the
processors (PU), L2 cache (L2), and I/O hub chips (Hub).
The largest G5 processors have four hub chips. Each hub
chip has six self-timed interfaces (STI), providing a
maximum of 24 STIs per server. The STI was originally
designed to be an interface to system memory, and in the
G3 and G4 servers, STIs were used only to connect the
processor/memory cage to the I/O channel adapters in
the I/O cages. In G5, STIs are still used to connect I/O
channel adapters, such as ISC, ESCON*, and parallel
channels, and open system adapters (OSA) [5], but
additions to the hub chip and microcode transform
STIs into ICBs, a new S/390 channel interface.

T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

796

The I/O cages in Figure 1 show the connections to
typical S/390 I/O channel adapters, in this case ISCs.
The STI from the hub chip in the processor/memory
cage connects to a bridge chip in the I/O cage. This chip
provides internal buses (IBs) that connect several I/O
channel adapters, including the ISC. Each ISC element
provides two ISC interfaces, one of which is shown as an
interconnection between Server A and Server B.

ISC: An example of a typical S/390 I/O channel
adapter
In order to better understand the function of the ICB and
how the design approach was chosen, it is important to
describe the ISC. This description will reveal the nature of
S/390 Parallel Sysplex traffic between instances of OS/390
and the coupling facilities, the function of a typical S/390
I/O channel adapter, and the operation of the STI.

S/390 I/O channel adapters such as the ISC are direct
memory adapter (DMA) engines which move data from
the peripherals to and from system memory without direct
involvement of any of the processors. They also provide
memory protection by protecting peripherals from storing
into any arbitrary location in memory. The peripherals can
only store into those memory locations known to the I/O
channel adapters, and those locations are determined
by the programs running in the processors. I/O channel
adapters provide error isolation to keep errors on the
I/O interface from propagating into the system. The I/O
channel adapters are considered a trusted, integral part of
the server. The traffic between the I/O channel adapter
and the peripheral is said to use channel semantics; that
is, the data are identified by the operation, and no
memory addresses are transferred.

● ISC link protocols
Parallel Sysplex passes messages between instances of
OS/390 and coupling facilities by using a command/
response protocol. Messages from instances of OS/390,
called primary messages, are sent by the Send Message
instruction, and have optional read or write data;
messages from the coupling facility, called secondary
messages, have no data. The ISC was specifically designed
to transport this information; Figure 2 shows the basic
exchanges over the ISC interface. The ISC on the OS/390
side of the link is called a sender ISC, and the ISC on the
coupling facility side is called a receiver ISC. Sender ISCs
send primary messages to receiver ISCs, while receiver
ISCs send secondary messages to the sender ISCs.
Message command frames are called message command
blocks (MCBs), and response frames are called message
response blocks (MRBs); both contain up to 256 bytes
of information. If there are no data to be transferred, the
message exchange simply consists of the command, an
MCB frame, followed by the response, an MRB frame.

There is only one round trip in the exchange. Data frames
are added to the protocol to exchange more information.
Each data frame can have up to 4096 bytes of information,
and if only one data frame is required, the exchange still
uses only one round trip. When multiple data frames are
required, they are paced by data acknowledgment (Data
Ack) frames that add extra round trips on the link. Both
the read and write examples in Figure 2 show two data
frames, and both examples require two round trips on the
link. Each message exchange requires hardware resources
called buffer sets that contain separate areas for MCBs,
MRBs, and data; to improve link utilization, multiple
buffer sets are provided to exchange multiple messages
over the link at the same time.

The ISC protocol reduces latency at relatively long
distances by using a flow control that minimizes the
number of round trips, but this protocol requires buffers
in the ISC that are large enough to receive an entire MCB
and data frame for each of the multiple messages, or
buffer sets, on the link. For example, two buffer sets, each
with 4096-byte data frames and 256-byte command and
response frames, require 8704 bytes of buffering.

The secondary messages sent from the coupling facility
to instances of OS/390 manipulate local cache and list
(or queue) validity vectors [6]. The ISC microprocessor
at a sender ISC receives these secondary messages,
manipulates the vectors, and sends the response back to
the coupling facility. These messages have no data and
consist of MCB/MRB pairs. Only 256 additional bytes of
inbound buffering are required to process these messages.
A third type of secondary message is used to send fencing
commands, and these commands are forwarded by the
sender ISC microprocessor to one of the system
processors, the system assist processor (SAP), for
execution. The ISC microprocessor also performs link

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON

797

and I/O channel adapter initialization and recovery
from hardware and link errors. The error rate of optical
transceivers requires retransmission of damaged frames to
improve throughput by reducing the number of instances
of more global and therefore much slower recovery.

The ISC, like other S/390 I/O channel adapters,
communicates with the rest of the system over STI links.
Much of the STI traffic consists of memory requests for
fetching and storing data. The data are then transmitted
and received over the ISC link, as described above.

Self-timed interface
Introduced on the G3 server, the S/390 self-timed
interface (STI) uses advances in the density and speed
of CMOS chip technology to implement a new system
interconnect based on relatively narrow and fast point-to-
point links. These links are direct connections between
CMOS VLSI chips and do not require any external cable
driver circuits. Other examples of similar links include
Tandem’s system area network (SAN) called ServerNet†

[7], the IBM RS/6000* SP2* High-Performance Switch [9],
and the IBM RS/6000 SP2 Switch [10]. These links depart
from traditional bit-serial designs capable of relatively
long-distance communications. They also depart from the
very short-distance and wide data buses such as those
connecting processors to their L2 caches. Instead, these
links use narrow parallel data buses at medium distances,
up to tens of meters.

The STI consists of three layers: physical, logical, and
user. Both I/O channel adapters and ICB use the two

lower layers, the physical and logical, while the highest
layer, the user, differs between the two. The physical
layer is the attachment to the interface, and it has ten
independent differential signal pairs in each direction
(dual simplex). Eight of the signals are each a byte of
data, and the ninth is a combination parity and tag line.
The tenth signal is a half-speed clock; data are sampled
on both the rising and falling edges of this clock. The
physical layer also performs the self-timing of the
interface. The skew between the signals introduced by the
differences between the individual cable conductors, the
circuits driving and receiving the signals, and the wiring of
the chip can exceed the clock period of 3 ns (at 333 MB/s).
With this much skew, the clock signal cannot be used
directly to coherently sample the data signals. The
physical layer time-adjusts individual data and parity/tag
signals with respect to the clock, using dynamically
adjustable electronic delay lines [11].

The middle STI layer, the logical layer, uses packets to
transfer information between the two endpoints of the
link. Each packet, shown in Figure 3(a), has a header
(8 or 16 bytes) and a header checking field (longitudinal
redundancy check, LRC). Packets may also have an
optional information field, up to 128 bytes, and a second
LRC to protect the information field. Packets are
temporarily stored in the buffers [Figure 3(b)]. In each
direction there are two transmit packet buffers (shown on
the left) and two receive packet buffers (shown on the
right). Two additional receive header buffers provide a
path for certain control information to avoid deadlocks
that may otherwise be caused by the higher-level layers.
An identical set of buffers (not shown) is provided for
traffic in the opposite direction. STI packet flow control
is “credit-based,” which means that packets are sent only
when there is sufficient buffer space at the receiver, and
these credits are communicated back to the transmitter by
link control words (LCWs). LCWs [Figure 3(c)] are four
bytes long and may be inserted anywhere in the data
stream, including within packets. Each time a packet
header is successfully received, the STI logical layer sends
an acknowledgment LCW back to the transmitter. Using
time-out timers and a one-bit sequence counter, packets
with damaged headers are detected and automatically re-
sent by the logical layer. A second acknowledgment is
sent back to the transmitter when the user layer reads
the packet from the receive packet buffer. It is then the
responsibility of the user layer to resend packets with
damaged information fields. The maximum data rate over
the link can be achieved only if packets are sent back to
back. With the STI credit-based flow control, two packet
buffers allow two exchanges on the link at the same time,
achieving the maximum data rate at link distances of a few
tens of meters.

T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

798

The original third STI layer, called the native STI user
layer, has memory semantics and is used by all I/O
channel adapters such as ISC to directly access system
memory. The basic operation of an I/O channel adapter is
to send memory requests. Each memory request receives a
response. For a memory fetch, the memory address is in
the request, and the response contains the data. For a
memory store, the memory address and the data to be
stored are in the request, and the response simply
contains an indication of the success of the store
operation.

Figure 4(a) shows the STI header for I/O channel
adapter memory requests. The first eight bytes contain
mostly STI logical layer controls and routing information,
and the second eight bytes contain the memory command.
Included within the command are the memory op code
(store or fetch) and the memory address. Figure 4(b)
shows the STI header for I/O channel adapter memory
responses, where the second eight bytes of the header
contain the memory response codes, one of which is
used to indicate the successful completion of a memory
operation, while other codes indicate failures such as an
invalid memory address.

During an I/O input (read) operation, the I/O channel
adapter receives data from an I/O interface (such as the
ISC) and typically buffers this information. Memory
addresses and control information within the I/O channel
adapter are used to generate the STI headers, and the
buffered data is placed in the information field. Each
request packet sent to memory requires a response packet
containing the response code, as shown in Figure 4(c).
During an I/O output (write) operation, the I/O channel
adapter is instructed to send data over the I/O interface.
As in input operations, memory addresses and control
information within the I/O channel adapter are used to
generate the STI headers. Header-only packets containing
the op code and memory address are sent from the I/O
channel adapter, and the response contains both a header
and the requested data in the information field. Again,
each request packet sent to memory requires a response
packet containing not only the data but also the response
code, as shown in Figure 4(d).

Additional packet exchanges allow I/O channel adapters
to manipulate interrupt and busy bits in the hub chip.
Processors can also initiate packet exchanges, either to
send eight bytes of control information to the I/O channel
adapters or to sense eight bytes of information from the
I/O channel adapters. The ISC uses the interrupt and busy
bits to signal the completion of work, and the processors
use the control commands to prepare the ISC addresses,
initiate messages, and log error information. We describe
below how the ICB appears to the processors to use
the same commands as those used by the ISC.

ICB
The most basic concept for the ICB was to take advantage
of the high bandwidth and low latency of the STI to pass
messages more directly in a Parallel Sysplex while keeping
the upper interfaces common with the ISC. Certainly,
OS/390 and coupling facility instances see no differences
between ISC and ICB other than that they are different
channel types with different performance capabilities. The
same instructions are used for both ISC and ICB, and the
microcode that implements these instructions has only
very small differences between the two. However, the
microcode to initialize and recover the ICB is much
different from that for the ISC.

As described in the previous sections, the native STI
user layer requires a function similar to that of an I/O
channel adapter to drive memory requests and actually
move the data. One of the many implementations we
considered was to develop a new chip that would look like
a channel-to-channel I/O adapter, that is, a pair of ISCs
attached back to back. This chip would connect two or
more hub chips and would drive the memory requests to
all attached servers. The major advantage to this approach
was that native STI user-layer protocols could be used,
and no change to the hub chip would be required. On the
other hand, having a single component that is an integral
part of multiple servers posed some severe problems.
Where would such a chip be packaged, which server would
be responsible for its maintenance, and how could errors
be isolated to a single server? Also, adding a new chip
adds to the product cost, slows the performance, and

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON

799

decreases reliability, and that is in direct conflict with
the design goals of the ICB. We decided that the only
workable solution was to put the channel function into
the hub chip.

Since adding new chips was not an option, we set out
to determine whether we could design an “ISC” channel
adapter compact enough that six would fit in a hub chip
while requiring only very small changes to the rest of the
chip. The design not only had to be compatible with the
upstream hub chip logic, but also had to use the logical
and physical STI layers without any changes. Within
the restrictions placed on the design by the STI logical
layers, we had to develop a whole new channel interface
architecture using a newly defined set of STI packets. All
of the features and design considerations of any other
S/390 I/O channel adapter had to be addressed, including
initialization, recovery, and error isolation at both the ICB
and the link levels. There was obviously no space for any
microprocessors, so the entire mainline protocol had to be
handled by hardware state machines, and we had to find
an alternative way to process secondary messages. We
added six copies of the new ICB logic, one for each STI
port, between the STI logical layer and the upstream hub
logic, as shown on the left side of Figure 5. When the STI
port operates in native mode with I/O channel adapters
attached, the ICB function is disabled, and all packets
flow directly between the upstream hub logic and the STI

logical layer. When the ICB is enabled, the new set of
packets defined by the ICB user layer is transferred over
STI. These new packets are intercepted by the ICB
channel, as shown on the right side of Figure 5. To allow
the processors to communicate with the ICB, a path was
added to send it the control and sense commands, similar
to those which are sent over STI to ISC.

● ICB packets and DMA
Packets defined by the ICB user layer have channel
semantics rather than memory semantics. The headers
contain only eight bytes each, and most of the bits are
controls required by the STI logical layer. Some of the
unused bits in the headers are used to indicate the type
of message area (MCB, MRB, or data), the buffer set
number, a sequence count, a continue bit, and a new flow-
control packet type which is described later. Also, the flow
of packets does not consist of the request/response pairs
used by I/O channel adapters in the native STI user layer.
Instead, multiple command, data, and response packets
are streamed together to transmit MCBs, MRBs, and data
areas. The data rate achieved by ICB packets is higher
than that of native STI user-layer packets because ICB
headers are shorter by eight bytes and because a response
is not required for each individual ICB packet. The ICB
request/response protocol is defined on a message basis.

T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

800

The flow of packets is controlled by the ICB DMA and
is shown in Figure 6. After a processor sends a command
to start a message, the ICB generates a memory fetch
command that has the same format as native STI user-
layer commands sent from the STI logical layer to the
upstream hub chip logic. The memory addresses and count
information used in the memory fetch commands are
generated from addresses and control registers within the
ICB (some of them are contained in the command from
the processor). The rest of the information required to
generate the memory commands is set by mechanisms
described later. The memory fetch command is sent to the
upstream hub logic, and when the response is received,
the reason code is checked to determine whether the
memory fetch was successful. If it was, the 16-byte header
of the memory response packet is discarded and a new
eight-byte ICB header is generated. The new ICB packet
sent over the link consists of the new header and the
information field from the memory response packet.

When the ICB receives a packet from the STI logical
layer, it examines the header to see whether it is an ICB
packet or a native STI user-layer packet. Native user-layer
packets are used to signal more primitive conditions from
one server to another, and they are described below. If it
is an ICB packet, the ICB examines the eight-byte header
to determine the type of packet (MCB, MRB, data area)
and the buffer set number. The eight-byte header is
discarded, and a 16-byte header with the native STI user-
layer format is generated by ICB. From information in
the original eight-byte header, a memory store packet is
generated. The memory addresses and count information
used in the memory store commands are generated from
address and control registers within the ICB, and the
new packet consists of the new packet header and the
information field from the received ICB packet. When
the response is received, the reason code is checked to
determine whether the memory store was successful. If it
was, the response packet is discarded and not sent over
the link.

Since multiple packets are required for all but the
shortest MCBs and MRBs, the ICB generates multiple
sequential memory fetch requests. To conserve bits in the
STI header, counts are not used. Instead, a single bit in
the header identifies the end of the message area. Since
the STI logical layers guarantee delivery of all packet
headers, a single bit is all that is required.

● Elimination of ICB buffers
One of the largest users of chip real estate in the ISC is
the group of high-speed receive-frame buffers. It was
impossible to fit almost nine thousand bytes of high-speed
buffering for each of the six ICBs on the hub chip. We
knew that the flow control and packet buffers of the STI
logical layer could help us eliminate these buffers, but we

still needed a way to keep received packets moving
through the ICB logic without waiting for a processor to
calculate memory addresses. For example, if the ICB did
not have the memory addresses needed to generate
memory store requests for all packets as they were
received, and instead it had to interrupt a processor to
calculate the address, the entire link would stop, waiting
for a processor to respond to the interrupt before the
packet information field could be sent to memory as
described above. In early implementations of the ISC,
waiting for a processor yielded reasonable performance,
since frames are buffered and the traffic on the link does
not stop. However, in the ICB, after the first two packets
are received (256 bytes), the receive buffers in the STI
logical layer are full, and all traffic on the link must stop
while waiting for these packets to be moved to memory.
We realized that in order to keep the STI link running
at top speed, every received packet must be processed
immediately by the ICB. This means that the memory
addresses for all received packets must be known to the
ICB prior to their arrival.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON

801

We next examined every type of ICB packet received
on the link. Primary MCBs received by coupling facilities
(receiver ICBs) could be sent to memory immediately,
since the addresses for these packets are prepared by the
coupling facility code and are known to the ICB. Likewise,
when the coupling facility receives responses to its
secondary messages, the memory addresses are already
established. This design point was followed in all ISC
implementations except for the very earliest prototype
hardware. On the OS/390 side (sender ICBs), we found
problems with receiving both MRBs for primary messages
and MCBs for secondary messages. In both cases, the ISC
design depended on the receive buffers for temporary
storage of the frame, while processors, sometimes the ISC
microprocessor, were interrupted to handle them. Finally,
we found that handling data area frames required an
entirely new design.

Two different design approaches were developed to
ensure that the ICB had the memory addresses before the
packets were received. The first is to send the memory
address from a processor to the ICB before the packet is
received; the second is to delay transmission of packets
until the memory addresses have been calculated. The
first approach to preparing for packet arrival, originally
designed for the ICB, was also applied to the ISC [5]. As
will be seen, use of this approach for both ISC and ICB
not only improves the ISC performance but is also the
greatest factor in the commonality between the microcode
and the coupling facility control code. The second
approach is unique to the ICB, and it adds a link
exchange to start data transfer for messages requiring
read or write data.

In the early designs, a processor sent commands to the
ISC instructing it to send a primary MCB. Later, when the
MRB was received, it was put in a receive buffer, and a
processor was interrupted to generate a command to the
ISC to move the MRB to memory. In the ICB, without
buffers, this meant that the link would stop while the
processor detected the interrupt and moved the MRB to
memory. The solution was to develop a new command
from the processor that combined the functions of the
command to send the MCB and the command to receive
the MRB. The new command causes the ICB to send the
MCB, and the command includes the memory address
of the MRB. The ICB is therefore always prepared for
the reception of the MRB before it arrives. This new
command was also retrofitted into the ISC to reduce
latency, improve performance, and allow more common
microcode between ISC and ICB.

Early ISC designs also required processor involvement
in moving data areas for primary messages. During read
operations, when a data frame was received by a sender
ISC, a processor was interrupted to move the data frame
from the ISC receive buffer to memory. Additional

signaling to the ISC microprocessor was required when
the data move to memory was successfully completed.
Write operations at the sender ISC required a processor
to send individual commands to move each data area from
memory over the link. Interrupts to a processor were used
to signal that the data area was successfully received by
the receiver ISC. Similarly, the coupling facility code had
to move each data area individually. Moving 16 data areas
required the use of a processor at both ends of the link
16 times.

To solve this problem, hardware was developed to move
multiple data areas whose memory addresses are stored
in a list in memory. At the sender ICB, if the processor
is to move one or more data areas, it generates a list of
memory addresses and sends the ICB a new command
containing the memory address of the list, along with
parameters including the direction of data transfer, the
number of data areas to transfer, and the lengths of the
data areas. When the ICB receives the list processor
command, it fetches the first address in the list and moves
the data area. After the count has been exhausted, the
next address of the list is fetched, and the data area for
this address is moved. At the receiver ICB, the same list
processor is used, but is invoked differently. After the
coupling facility control code decodes a received message
and determines that data areas are to be moved, it
generates the list of addresses and issues a special
instruction to move the data. The microcode that
implements this instruction generates the command,
including the address of the list, and sends it to the ICB.
The ICB fetches addresses and moves data areas in the
same way as described previously. The list processor was
such a performance improvement for multiple data area
moves that it, like the new command to prepare for the
receipt of the MRB, was also added to the ISC design.
Changes in both the microcode and coupling facility code
from the previous way of handling multiple data areas
were quite extensive, so adding the list processor to the
ISC was significant in creating code commonality between
the ISC and the ICB.

However, the list processor alone did not solve all of
the design problems for the ICB. Consider a message
containing write data areas. In the ISC, the first write data
area is sent immediately after the MCB and is temporarily
stored in a receive buffer. Only after the coupling facility
code processes the MCB can the list of addresses be
generated to move any of the data areas to memory.
Typically, it takes several microseconds for the coupling
facility code to generate this list. In the ICB, if the first
few data area packets were to be sent immediately after
the MCB, the link would stop, since the memory addresses
for the data area would not yet have been received by the
ICB. A similar but much less severe problem exists for
messages with read data. In this case, the processor

T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

802

executing the Send Message instruction may experience
enough delay between sending the command to move the
MCB and the command for the list processor that the first
few data area packets are received and stop the link until
the list processor command is sent to the ICB.

To solve the data area start-up problem, the ICB added
a new packet, consisting of only an eight-byte header,
called a data request packet. This packet creates a new
exchange on the link, but at ten meters, the added latency,
and therefore the loss in performance, is negligible.
During messages containing write data areas, the sender
ICB is delayed until a data request packet is received. At
the receiver ICB, when the coupling facility code issues
the instruction to move the data areas, the ICB sends the
data request packet when it receives the list processor
command. Data packets are thus transmitted only when
the receiving end of the link is prepared with the memory
addresses. Similarly, when messages with read data areas
are sent, the receiver ICB waits until it receives a data
request from the sender ICB before sending data area
packets. When the sender ICB receives the list processor
command, it sends a data request to the receiver ICB.
Only when both a data request packet and a list processor
command have been received does the receiver ICB
start transmitting packets. Once data transfer starts,
it continues from list entry to list entry without any
additional protocols on the link. Recall that the ISC
requires link data acknowledgments between multiple data
areas. Without link acknowledgments, the sizes of the data
areas specified by the list parameters may be different,
and scatter/gather operations are transparent to the link.
An example of a scatter operation is a write command
from an OS/390 instance to a coupling facility in which
a contiguous data area in the OS/390 instance memory is
scattered into several smaller areas in the coupling facility
memory. A gather operation is just the opposite: Several
data areas in the coupling facility memory are gathered
into a single contiguous area in the OS/390 instance
memory during a read operation.

All of the features described above allow the ICB to
be implemented without receive buffers. The ICB takes
advantage of the limited distance of the link to tolerate
both the low-level STI logical layer link acknowledgments
and the added exchange of the data request packet.

● Secondary messages
Fast processing of secondary commands, particularly cache
invalidation commands, is important to Parallel Sysplex
performance, and one of the functions of the ISC
microprocessor is to execute these commands. Since ISC
microprocessor performance has not improved with new
CMOS server generations, this microprocessor becomes a
less attractive way of processing secondary commands as
the server processors become faster.

In the ICB, we reengineered secondary command
processing. Since the ICB is part of the hub chip,
secondary command performance automatically improves,
or scales, with new server generations. Adding a
microprocessor to the ICB was clearly not an option
because of the chip real estate required. Another option
we investigated was adding a hardware state machine to
the ICB for processing these commands. It quickly became
apparent that such a state machine was far too complex to
attempt. It also required a fair amount of chip real estate
to temporarily store the MCB, MRB, and address and
state information, but it was smaller than adding a
microprocessor. At the same time, we still needed a
mechanism to transmit the fence commands to a SAP.

Instead of adding a microprocessor or a special state
machine, we considered using the processors (PUs);
obviously, their performance scales. First, we had to
determine whether the level of processor cache disruption
was acceptable. Since secondary message processing is not
very complicated, the cache effects were negligible. Next,
the ICB needed memory addresses to move the secondary
MCBs to memory and to fetch the responses. Since
secondary commands are received only by sender ICBs, we
used the same hardware facilities used by the receiver
ICBs to receive primary messages and send their
responses. Finally, we needed a rapid way to interrupt a
processor. One of the proposals was to broadcast the
interrupt to multiple processors. This way, the least busy
processor could handle the interrupt. Unfortunately, the
code path length and the processor cycles consumed in
overinitiative made this proposal unworkable. We decided
on a design that assigned interrupts from each individual
ICB to a processor. Only one processor handled the
hardware interrupts for a particular ICB, and the ICB
workload could be distributed evenly among all available
processors.

At the end of each S/390 instruction (end-op), the
processors determine whether there are any hardware
interrupts from the ICBs. Since the synchronous version of
the Send Message instruction may take a relatively long
time to execute (longer than any other instruction), we
made it interruptible from the time the commands are
sent to the ICB until the time at which the message
response is received from the coupling facility. If hardware
interrupts are pending, the processor looks at the MCB,
already moved to memory by the ICB, and determines
whether it is a cache invalidate or list notification
message. If it is, the processor executes the command,
builds the response in memory, and sends a command to
the ICB signaling it to send the MRB. If the secondary
message is a fencing command, initiative is passed
to a SAP.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON

803

● SAP-to-SAP packets
The ICB packets described above (MCB, MRB, data,
and data request) are not in themselves sufficient to
implement the ICB. A separate group of packets called
SAP-to-SAP packets allow additional signaling and are
required for initialization and recovery protocols. These
packets allow a SAP in one server to set a group of
SAP interrupt bits in the hub chip in the other server.
As shown on the right side of Figure 5, when the ICB
receives these packets, it determines that they are not ICB
packets and passes them directly to the upstream hub chip
logic. Similarly, when these packets are sent down from a
SAP, they are sent directly to the STI logical layer for
transmission on the link. Specific uses for these signals
are described below.

● STI link initialization in ICB mode
The STI physical layer was originally designed to operate
in a master/slave mode with the hub chip as master and
the bridge chip as slave. The ICB operates in a peer
mode, in which both ends of the link are hub chips, and
this mode caused us to substantially redesign the link
initialization process. For example, since each end of the
ICB is in a different server, and the power for each is
independent, the initialization microcode had to be
changed to be tolerant of a powered-down server. When
the other end of the link powers up, the STI physical layer
detects this condition, and the ICB initialization process is
restarted.

When STI links are connected to bridge chips, the hub
chip sends sense commands to determine the topology of
the I/O subsystem; the hub chip sends the sense command
and receives the response. In the ICB, this sense
command tells the initialization code that hub chips are
interconnected and are therefore candidates for becoming
an ICB link. Hub chips were always capable of sending
the sense commands, but changes had to be made to
allow them to respond to these sense commands. The
initialization microcode also had to be changed to
recognize this new response code from a hub chip.

● ICB initialization
The absence of message buffers in the ICB also affects the
way that packets are handled during ICB initialization.
When an ICB is initialized, several SAP-to-SAP packets
are exchanged to synchronize the initialization process at
both ends of the link. For example, both ends must agree
that the ICB is active and ready to receive initialization
packets. In preparation for the exchange of initialization
packets, a SAP loads their hardware system area addresses
into the ICB. The initialization packets exchange node
descriptor information, and the format of these packets is
the same as that for MCBs and MRBs. The initialization
packets include indicators that the node is either a sender

or a receiver ICB. When an initialization packet is
received, the ICB moves it to the address in the hardware
system area, and raises an interrupt to a SAP. The SAP
examines the node descriptor information, replies by
building a node descriptor response in a hardware system
area, and commands the ICB to send it over the link.

● Unprepared buffer sets
Sometimes one or more primary-message buffer sets in
the receiver ICB are not prepared to receive messages.
This condition exists when the coupling facility code is not
yet initialized, or when a buffer set is still recovering from
a previously detected error. In either case, the MCB target
address in coupling facility memory either is not known
because the coupling facility code has not yet started, or is
unavailable because the coupling facility code has not yet
processed the previous error. In these cases, an alternate
memory address is used. When an MCB is received for a
buffer set that is not prepared, the ICB moves it to the
alternate address in a hardware system area and interrupts
a SAP. This is the same memory location as that used
in initialization mode. If the SAP determines that the
coupling facility cannot process the message, it sends a
special MRB response back to the sender ICB. If the SAP
determines that the coupling facility code has processed
the previous error and is able to process the message, the
SAP moves the MCB from the hardware system area to
the coupling facilities’ buffer set area in memory. It then
prepares the ICB memory address for subsequent
messages and alerts the coupling facility.

RAS features
Like any other S/390 channel adapter, the ICB requires
comprehensive error detection and recovery, essential
in achieving a high level of reliability, availability, and
serviceability. All of the restrictions that come with our
design approach, that is, making as few changes to the
hub chip as possible, make error handling particularly
challenging. For example, we had to use the error-
detection and recovery mechanisms provided by the STI
logical layer and the upstream hub chip logic while adding
checking of our own that is unique to the ICB.

The STI logical layer detects all errors associated with
packet delivery, and in some cases it automatically resends
packets with damaged headers. While this function
performs useful error recovery, it makes the ICB design
more complicated, since packets are not necessarily
received by the ICB from the STI logical layer in the same
order that they are transmitted. To detect this condition,
we added a sequence count in the ICB packet headers.
When the ICB receives a packet with the wrong sequence
number, it assumes that the correct packet is being retried
and simply waits for the next packet to be received. The

T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

804

next packet received must have the correct sequence
number.

Another level of recovery is triggered by a message
time-out. All messages are timed by hardware timers in
the ICB hardware, and when a time-out condition is
detected, an interrupt is raised to a SAP. Because of the
out-of-order packet delivery caused by STI link errors, the
ICB must perform link synchronization before presenting
the interrupt to a SAP. This process suspends the sending
of any new packets until all outstanding packets have been
acknowledged. When all of the acknowledgments have
been received, all STI logical layer packet retries have
been completed. When the ICB sends the time-out
interrupt to the SAP, the microcode knows that no “stale”
packets are on the link. A buffer-invalidate sequence is
then performed using SAP-to-SAP signaling. Again, the
STI guarantees delivery of all packets, making the
invalidate process simpler than in the ISC.

The STI logical layer also detects errors that cannot be
recovered by resending packets. These include errors in
the packet information field, loss of synchronism between
the clock and data bits, and protocol errors associated
with packet flow control, such as receiving multiple
acknowledgments for the same packet. The errors that
affect all buffer sets are reported directly to a SAP, while
errors that can be isolated to a single buffer set are
intercepted by the ICB.

The ICB performs additional protocol checking unique
to its user-layer packet definition. One kind of error is the
receipt of packets that are not defined by the ICB, such as
data area packets whose information fields do not contain
exactly 128 bytes. A more complex form of error is the
receipt of a packet at the wrong time. Each buffer set
has state information that describes the progress of its
message exchange, and each received packet is checked
with respect to this state. Also, the ICB updates these
states as frames are both sent and received. For example,
if a buffer set has started a message for a read operation
and a data request packet is subsequently received,
a data request packet protocol error is detected. In read
operations, the data request packet should have been
sent from the reading side of the link, not the receiving
side. In general, most of these protocol errors indicate
a design error, and the recovery microcode logs as much
information as possible to assist in problem determination.

The ICB also detects a few sequencing errors from the
processors. These errors are always caused by design
errors and are very difficult to isolate without these simple
error checkers. One example is the so-called “double”
error. If a processor sends the same command twice
before the message exchange completes, a double error
is detected.

Finally, the ICB intercepts errors detected by the
memory subsystem and reports them to a SAP. This is

in contrast to native STI attachments, where memory
subsystem error responses are passed along to the I/O
channel adapter. Memory errors include uncorrectable
errors found in the memory when fetching data, memory
addresses that do not exist, and invalid memory op codes.
With the exception of the uncorrectable memory error,
these errors usually point to a design problem.

● Trace
Dedicated trace hardware provides important information
for debugging problems. Having dedicated hardware
allows the trace function to operate all the time and does
not adversely affect performance. Microcode trace
schemes are also extensively used, but they slow
performance, so developers usually remove as many
trace points as possible as the design becomes more
stable. The ICB trace hardware is a multiple circular
buffer, tracking the progress of each of the four buffer
sets independently. Each buffer set has eight entries, and
events such as packets sent and received, commands from
the processors, and memory requests and responses can all
be traced. Each entry includes a time stamp. Many design
errors affect only one buffer set, causing it to stop in the
middle of a message exchange while the other buffer sets
continue to operate. For this most common type of design
error, a single trace area is not as useful as having
independent areas, because the events for the buffer
sets without the error consume all of the trace space,
overwriting the most useful information (that pertaining
to the stopped buffer set).

Conclusions
Parallel processing beginning with symmetrical
multiprocessors (SMPs) has always exploited higher
bandwidths and lower latencies. The better the memory
subsystem, the better the SMP performance. Parallel
processing with clusters of SMPs is also starting to exploit
the high bandwidth and low latencies provided by self-
timed bus technologies, and Parallel Sysplex, the S/390
cluster offering, has the ICB for its new interconnect. The
ICB offers great cost and reliability benefits by having an
optimized hardware structure that does not require any
additional chips in the processor MCM, and performance
studies show that the resources required from the
processors are small. The ICB will naturally scale with
future generations of processors as chip and STI link
speeds increase.

Acknowledgments
The ICB evolved over several years and required the
efforts of many workers in the Poughkeepsie, Boeblingen,
and Endicott laboratories. Special acknowledgment goes
to Lothar Klein and Elke Nass for their microcode skills,
and to Norbert Schumacher for his hub chip design and

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON

805

simulation work. We also thank Audrey Helffrich, Patrick
Sugrue, and Walter Von Dehsen for their review of this
paper.

*Trademark or registered trademark of International Business
Machines Corporation.

†ServerNet is either a registered trademark or a trademark of
Tandem Computers Incorporated in the U.S. and/or other
countries.

References
1. J. M. Nick, B. B. Moore, J.-Y. Chung, and N. S. Bowen,

“S/390 Cluster Technology: Parallel Sysplex,” IBM Syst. J.
36, No. 2, 172–201 (1997).

2. J. M. Nick, J. Chung, and N. S. Bowen, “Overview of IBM
System/390 Parallel Sysplex—A Commercial Parallel
Processing System,” Proceedings of the IEEE Symposium
on Parallel and Distributed Processing, 1996, pp. 488 – 495.

3. C. L. Rao, G. M. King, and B. A. Weiler, “Integrated
Cluster Bus Performance for the IBM S/390 Parallel
Sysplex,” IBM J. Res. Develop. 43, No. 5/6, 855– 862 (1999,
this issue).

4. C. L. Rao and C. Taaffe-Hedglin, “Parallel Sysplex
Performance,” CMG Trans. No. 87, pp. 3–7 (Winter
1995).

5. T. A. Gregg, “S/390 CMOS Server I/O: The Continuing
Evolution,” IBM J. Res. Develop. 41, No. 4/5, 449 – 462
(July/September 1997).

6. IBM Corporation, MVS/ESA Programming: Sysplex Services
Guide, Order No. GC28-1495-02, June 1995; available
through IBM branch offices. Chapter 6 describes
coupling-facility cache structures, Chapter 7 describes list
structures, and Chapter 8 describes lock structures.

7. R. W. Horst, “TNet: A Reliable System Area Network,”
IEEE Micro 15, No. 1, 37– 45 (February 1995).

8. W. E. Baker, R. W. Horst, D. P. Sonnier, and W. J.
Watson, “Flexible ServerNet-Based Fault-Tolerant
Architecture,” Proceedings of the 25th IEEE International
Symposium on Fault-Tolerant Computing. Digest of
Papers—International Symposium on Fault-Tolerant
Computing, 1995, pp. 2–11.

9. IBM Corporation, The SP2 High-Performance Switch—
SJ34-2, Order No. G321-5564; available through IBM
branch offices.

10. IBM POWERparallel Technology Briefing, URL: http:
//www.rs6000.ibm.com/resource/technology/sp_sw2/
spswp2_1.html.

11. J. M. Hoke, P. W. Bond, T. Lo, F. S. Pidala, and
G. Steinbrueck, “Self-Timed Interface for S/390 I/O
Subsystem Interconnection,” IBM J. Res. Develop. 43,
No. 5/6, 829 – 846 (1999, this issue).

Received January 4, 1999; accepted for publication
June 3, 1999

Thomas A. Gregg IBM System/390 Division, P.O. Box 950,
Poughkeepsie, New York 12602 (tomgregg@us.ibm.com). Mr.
Gregg is a Senior Technical Staff Member in the S/390 System
Design group. He received an SC.B. degree in engineering
from Brown University in 1972 and continued under a
university fellowship, receiving an SC.M. degree in electrical
engineering in 1974. He joined IBM at the Poughkeepsie
Laboratory in 1973. Mr. Gregg has held various technical
positions in the area of I/O subsystem design. He holds
numerous patents utilized in IBM ESCON and Parallel
Sysplex channel products, and has received nine IBM
Invention Achievement Awards. He received an IBM
Corporate Award and an IBM Outstanding Innovation Award
for work on ESCON products, and three IBM Outstanding
Innovation Awards for work on Parallel Sysplex. He is a
member of the IEEE.

Kulwant M. Pandey IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (pandey@us.ibm.com).
Ms. Pandey is a Senior Engineer working on coupling
hardware design. She received a B.S. degree from Birla
Institute of Technology, India, in 1973, and an M.S. degree in
electrical engineering from Columbia University. Since joining
IBM in 1973, she has been involved in hardware design,
management, and simulation of cache controllers, channels,
and coupling. She has received an IBM Outstanding
Innovation Award and several Outstanding Technical
Achievement Awards. At present, Ms. Pandey is involved
in hardware design of ISC and ICB.

Richard K. Errickson IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (rerricks@us.ibm.com).
Mr. Errickson received a Bachelor of Science degree in
computer engineering from Lehigh University and joined IBM
in 1985. He is a developer of microcode for the I/O subsystem
for S/390 processors.

T. A. GREGG, K. M. PANDEY, AND R. K. ERRICKSON IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

806

