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A multitechnique maximum entropy approach to the determination
of the orientation and conformation of flexible molecules in solution
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We present a maximum entropy method that allows the simultaneous analysis of different types of
experimental data in order to obtain conformational information on flexible molecules in solution.
We consider various NMR observablédipolar, quadrupolar, J-couplings, nuclear Overhauser
enhancements and dielectric and neutron scattering techniques, and we express them using a
common formalism in terms of orientational—conformational order parameters. We then show how
these observables can be inverted in structural information allowing for continuous or discrete
internal degrees of freedom and for any available prior information. We demonstrate the
potentialities of the method on simulat4dNMR, 2HNMR and dielectric data for some terminally
halogenated alkyl chains and show the improvement in conformational analysis obtained by
simultaneously analyzing different and complementary data sets1998 American Institute of
Physics[S0021-960808)50734-9

I. INTRODUCTION The first termUS%(®) is often treated as a correction deter-
- . , mined by the solvent to the intramolecular enetdy(®P),
The determination of the conformations of flexible mol- while the second term contains the contribution to the total

e o ston ndof e sl o e 11 10 G o e vt o n s 3
P PNYSICS, haches proposed in the literatdrz®67a nonrigid mol-

that is receiving renewed experimental and theoretical ; ; . L
g . : ecule is considered as a collection of biaxial rigid conform-
attention. On the experimental level, progress in the deter-

mination of homc? and heteronucleddipolar coupling$® &' whose ordering matrix is estimated using mean field
as well as of quadrupolar couplifgand nuclear Overhauser theory. In the low solute concentra}tlon I!m|t OT this type of
enhancementéNOE) datd—1° has vastly improved the col- theory(see, e.g., R_ef. 18the ef.fectlve.orl.entatlonal_poten-
lection of available NMR tools! Other classical techniques tial acting on a rigid molecule in a uniaxial phase is only a

like the determination of quantities related to the dipole mo_function of the orientational order parameters of the solvent

ment, such as the dielectric const¥t® have also long molecules, normally assumed to be rigid and uniaxial and of

served the quest for conformational determination. On thé& Piaxiality parameter for the solute. The approaches that
theoretical side, the extremely difficult task of extractingh@ve been used in the literature differ in the way the biaxi-
conformational information from the data has been tackledlity parameter is calculated for each conformer. Here we
with a number of treatmenfst*15 However, most of these Mmention only a few of the most important ones: iastic
methods rely on the use of mean field theory and it is no€ontinuummodel of Burnell and coworkei&/KB)," the box
always clear if and how this approximate treatment influ-Shapemodel of Straley; the surface tensomodel of Fer-
ences the results. In practice, the effective potential energy dgrini et al'® and thechord model of Photinost al® In the

a molecule in a liquid crystal solutiod(w,®), depending €lastic continuum modéf, the molecular structure is ap-

on orientationw and conformatior®, is written as proximated with a collection of van der Waals spheres
placed at the atomic centers. The potentid}i*{ w,P) rep-
U(0,2)=Uin(P) + Uey(,P), (1) resents the elastic energy, with the molecular deformation

where U,(®) is the intramolecular energy of the isolated represented by the minimum circumference traced by the

molecule andJ .(w,®) represents the interaction between projection of th_e solute molec_ule in the confor_mbronto a
the molecule and the molecular field created by all the otheP/ane perpendicular to the director of nematic phase. This
molecules. In general, the internal part represents a properf{fSt Sizé and shapenodel has been extended in various
of the isolated molecule. For example, considering alkylWays: 2'in particular taking into account the length of the
chains, as we are particularly interested in doing here, th@rojection of the molecule along the director. The model
first part could contain the internal energy differefiggbe- ~ S€ems particularly suited to cases where the nematic solvent
tween thetrans andgauchestates of a C—C bond in the gas is one of the so-calledompensated mixtureghere the elec-

phase. The external energi,{(w,®) can in general be di- tric field gradient vanishe¥:*>* The Straley mode? as-

vided into an isotropic and an anisotropic term, sumes that ordering is based on the molecular shape and
o anis approximates this as a rectangular box of a certain length
Uen(@, @) =Ug(®) + UL 0, ®). (2) (L), breadth(B) and width(W), calculated from the semiaxes
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of the inertia ellipsoid, containing the molecule in tde
conformation. The model also contains an adjustable param-
eter that characterizes the molecule—field interaction. The
surface modeéP assumes that a local vector normal to each
surface element of the solute tends to be aligned perpendicu-
lar to the director. The solute—solvent interaction tensor is
then evaluated by estimating the surface area along different
axes of the molecule. Finally we have tbkord model for
alkyl chains® where the anisotropic part of the potential con-
tains two terms that represent, respectively, the alignment of
the separate C—C bond and the alignment ofdherd con-
necting the midpoints of adjacent C—C bonds. These models
have been employed to extract conformational information
on various types of chains. In particular Pines and
coworkers?? Polson and Burnét and Luzaret al?® have
used them to analyze NMR proton—proton dipolar couplings
Dj; data for various alkanes ranging from butane to decangg. 1. schematic representation of a general multirotor molecule showing
in liquid crystal solution. An assumption central to thesethe rigid framesM, and dihedral angles, (top), and the spherical angles
treatments is that the ordering of a conformer can be preax. B« (bottom defining the orientation of bonkl linking the neighboring
dicted by some single molecule property and its attendanffa™esM« andMi.s.

molecular biaxiality. However, this is by no means estab-

lished, even for a 5|.mple rigid ”.‘.O'ecu'e- F_or mStance’.Weapproaches. For instance, deuterium NMR experiments pro-
have recently examined the ability of various mean field

4 _ . . vide average nuclear quadrupolar couplings that, even
models mentioned before to predict the ordering of S'mplj:ough mainly related to the C—D bond examined, can be

rigid biaxial molecules, considering a set of 9,10 substituted,go oy by the orientation of the bond itself with respect to
anthracenes in the nematic ZL11167, and found that none C8e molecular frame and thus ultimately, by molecular con-

actually reliably predict the observeq biaxiality and its tem-¢ormations. For molecules possessing polar groups, the over-
perature dependenééOn a rather different note we have all molecular dipole will vary with conformation, and indeed

proposed an approach that uses maximum entSpy try dipole moment analysis has been one of the first techniques

to determine the flattest orientational—conformational distri-,coq to attack the conformational probl&rOther poten-

bution compatible with a set of experimental data. Theqy yseful observables artd vicinal spin—spin couplings,
methoq is a data inversion techn!que and does not rely ofclear Overhauser enhancements and neutron scattering
mean field theory and on the specific types of solute—solverttNSC) data. Clearly keeping into account the results coming
interactions being assumed. Maximum entropy method$q, gifferent techniques has often been attemptes, e.g.,
have peeYnZBappligd by various authors to problems ifkets 36 and 37 We believe, however, that the most pow-
‘?‘y”am'°$23 ““as pioneered by Berne and to the determinag | way of using various techniques efficiently is not that
tion of orientational distributions for rigid moleculé$®*we analyzing each set of data independently in the usual way
have applied the method to the analysis of NMR p3roton di-and only then combining the results. On the contrary, we
polar coupling data for simple rotameric molecdfes and  think that combining the various input data and analyzing
more recently to the much more complex case of flexiblgngm together with the maximum entropy approach could
chaind* in nematic solution. We have found that the aP-provide the most effective way of obtaining an
proach can successfully recover conformer distributions evepyientational—conformational distribution that complies to
for alkyl chains provided certain favorable conditions exist.ine available experimental knowledge. In this paper we wish
One is the availability of some prior information, for ex- 5 provide the basis for such a combined effort and we de-
ample the possibility of using the rotational isomeric stateve|op the required theoretical expressions using a common
(RIS) model?® we have shown how to impleme#t.The  formalism for the various techniques. We shall also demon-
other, and actually the only real limiting factor for the gstrate the approach considering NMR dipolar couplings,
method, is the availability of a sufficiently large number of NVR quadrupolar and electric dipole information in the

independent experimental results. NMR dipolar couplingsanalysis of some terminally halogenated alkyl chains.

constitute a particularly useful set of data, but in practice the

complications associated with the analysis of the NMR spec-
. . "|l. THEORY

tra as the number of protons grows present serious limita-

tions. Moreover, the NMR dipolar couplings do not contain ~ We consider the rather general case of a flexible multi-

purely scalar or rank other than second contributions thatotor molecule, treated as a setfrigid fragments linked

could provide additional terms needed for a full reconstrucby N—1 bond$%34(cf. Fig. 1, top. Each rotor has its local

tion of the conformational distributiofcf. Eq. (8)]. Another  reference systeriv, and the relative conformation of adja-

possibility, which is potentially the most promising, is that of cent fragmentd/,., M. ; is defined by a dihedral anglg, .

performing various experiments using different complemen-The overall conformational state is then specified by the set

tary techniques and combining the results from the variouP=(¢,, ... ,¢pn-1), and we assume as reference conforma-

q)N~l

Xk
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tion that with all angles¢,=0. In the case otontinuous W,ﬁm a, ... ay (@P)
degrees of freedom, each anglgcan assume any real value Ly _ _
in the rangd 0,277]. However, in a number of casesdés- =Dn(w)exgliarg,+ ... +iay-1én-1} 9

crete treatment, exemplified by the rotational isomeric stat

model of Flory® in which the anglesp, take only some

(typically thred discrete valueg{)) — or more simplyj, —

is well established. For alkyl chains, these values are the e

so-calledtrans, gauché and gauche states withg,=0, Pmnia;...., aN—l:f dodPP(w,2)Wrna,, .. ay_,(@:P)

+27/3 as typical values. The Euler anglezﬁ(oz,ﬁ,y)38 (10)

describe the rotation from the laboratory system LAB, with W o 11

the Z axis along the director of the mesophase, to the first =(Win, ap, ... (“” Jo0)- (1D

(“rigid” ) fragmentM, and define accordingly the molecular these order parameters form an infinite set that fully de-

orientation. scribes the molecular orientational—conformational order. In
particular, we find as special cases the usual Saupe ordering
matrix components SZZ (Py)= p00 0.0 S~ Sy

A. Orientational—conformational distribution =6 RdD02> V6 Repf oo o and S= 312 R&Dj )

= \/_2 Reps 1o o WhereS; are elements of the Saupe

ordering matrix® From the expansion coefficients we can

compute the orientational order parameters measuring the

average orientation of reference fraivig with respect to the

LAB system. These are the order parameters of the single
fragmentsk. For clarity, we consider simply connected struc-

f dwdPP(w,®)=1. (3 tures and we calf2, the Euler angles measuring the orien-

tation of frameM, with respect toM in the reference con-

The purely conformational distributioR(®) is obtained by  formation, Q4 the orientation of framéM; with respect to

partial integration with respect to the orientational variablesM1 and so on, unti),. We also calle, and B, the polar
angles, measured with respect to framde, defining the

P(CD)zf doP(w,®). (4 local orientation of the chemical bond associated with the

dihedral anglep, , as shown in Fig. 1bottom). Using these

The orientational—conformational distribution can be for-definitions and measuring all orientations and angles with

mally considered as an averaged product of Dirac delta funaespect to the reference conformation we obtain the purely

®The expansion coefficients, n.a, . ... o, are theorder pa-
rametersfor the orientational—conformational problem,

The most complete information at a one—particle level_.
on a flexible molecule in a uniform anisotropic solution is
given by the singlet orientational—conformational distribu-
tion P(w,®), with the normalization condition

tions that counts the particles in the various intervals orientational order parameters of frarkl, as
Plw,®)=(8(0—0")d($1—¢7)
< v (Dp M . Ea plr_n,al;bl,...,bk_l,O,...,O
X 8(ha=b2) .- S(bn-1— bN-1))wr o+ by b1
5
© X G; o L R SR (12

where the symbo(....), ¢ represents the average in the . L Lo
space of primed variables. Equati¢B) can be written using WNere we write ppo . p 0.0 (0 indicate

the representation of the two types of angufdfunctions in prlrn,al;bl, S - R an_1 with all subscripts, if any, from

an orthogonal basis of Wigner matricss kto N—1 equal to zero.
o L L L
2L+1 Ga,. ... b
5((0_0)/):2 ( 5 )Dll’_n*n(w)Dh]n(wr), ap, By—1:by, by 1.0
Som==L ==L\ 87 ’ : k-1
C = Z [H th’:_ls,bs(as’BS)RIF_S*,bs(aSlBS)
and in a Fourier basis as fir--Mken [ 5=l
L
B b= S, et ™ H ROSERR } Dy, 13
Tm=—o
L — —inaql
In this way we obtain the expansion Rmn(a.B)=e""dp, (B), (14
oL+1 and d,Ln n(B) are small Wigner matrice¥. The coefficients
Plw,®)= _ E ﬁ] al ayg_g.by... . b0 Q€ defined in terms of geometrical
Lmniag,....a 8m"(2m) parameters that are characterlsnc of the given molecular

L L (,®) ®) skeleton and are not modulated by molecular orientational
and conformational changes. The orientational order param-
where the mixed Wigner—Fourier basis functiotare de-  eters(Dp, )y, are then a linear combination of coefficients
fined as p,"n‘n;al ..... a,_, Weighted by the constant geometriGato-
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efficients. We can now apply these general transformation X2 X4 Xg
rules to the case of alkyl chains. For simplicity, we fix ref- M 1 My f Ms T Mg
erence frameM; in a terminal molecular fragment. The re- Z2 Z4 Z6 Z3
. ; : . Hs Hy HgHg HysHq2 HygH17
maining systemdM, are collinear toM, with the z, axis o M 0 M 0s M o M
parallel to the direction of full molecular elongation and the g Q{\'/&% 3 \v/\% G(\v/\% C{\
Xx axis pointing along the symmetry axis of each HCH \,\/ ,\/ ,\/ ,\/ Br
group, on the same side of the H atofo§ Fig. 2. Assum- Hy Hg Hg Hy HioH11 HigHis
ing the CCCangle# to be equal for all fragments, we define 71 z3 zZs z7
y=(7—0)/2, and using Eqs(12)—(14), we write thekth I M, M; Ms l My
frame order parameter as X] X3 Xs X7
L astast .. . +a FIG. 2. The rigid fragment coordinate frambg, , the dihedral angleg,
(Dmnm,= > (—)%27 k2] and the proton numbering scheme adopted for the terminal di-bromo—
:1 """ 2&*1 alkanes(1,8-di—bromo—octane showriThe reference conformation is all—
Toeon 1

trans

><pan,al;bl,...,bk_l,o,...,o
L L Again, the conformational distributioR(j) is obtained by
Xdg b (). .dg b, () partial integration

Xdg b, (#) - db (), (15)

where[ k/2] is the integer part ok/2. In the case ofliscrete _ ) _
conformations, we introduce the singlet distribution function The orientational—conformational order parameters are

P(j)zf doP(w,)). 17

P(w,j) representing the probability of finding a molecule . .
with orientation within the rangew,» +dw] and conforma- Pmnijy. ..., jN,lzf dwP(w,j)Dg (), (18)
tionj=(jq,...,jn_1)- In this case the normalization condi-
tion becomes and they are the expansion coefficients of the orientational
distribution function for the molecule in a fixed conforma-
2 fde(w,j)=1. (16) tion j. For alkyl chains described using tltkscrete RIS
] model[cf. Eq. (12)], we have

I B (k1)
<D;,n>Mk:E phq,n;il ,,,,, in-1 > (—)%tat o Fapegelibad T mibea g ST
J a, ...y Ak-1
bl ,,,,, bk71
Xdg, b, (9. . (W), 5, (). dip () (19
ap b My by ap.0 VY by A

The knowledge of these order paramet(sl])%n),\,,k is suffi-  average of the corresponding function over the unknown

cient to calculate any single particle and bond observable ofingle particle orientational—conformational distribution
an alkyl chain. For instance, the order parameter for a CH (@, ),
bond in a methylene group, often measured frafNMR

experiment asScp, can be written aScp=— 3S,,+ 3(Six
~Sy)cosy,  where S, =(Dioum,,  Su—Sy
=6 RgDj )y, andy is the HCHbond angle.

(7 iline) = [ A0, sol0,0)P (0 ®). (20

The functionsF, ; can be expanded in terms of irreducible
spherical components as

B. Multitechnique data combination

o L
We now introduce a rather general formalism for the [Fuilias(w,®)= > D> []:Mi]t,Ané(w@), (21
simultaneous analysis of experimental data sets measured ’ L=0m=-L '

with different techniques. To do so, it is necessary to devise

a suitable symmetrization and to determine a scheme of mulvhere the number of tensorial components actually contrib-
titechnique linearly independent combination of observablesuting to the expansion is dictated by the particular observable
The symbolF,, ; identifies theé—th observable in the data set [ F, ;] ag - For instance, considering second rank NMR ob-
provided by techniquew, and described by the function servables, only the components with=2 can be different
[Foilias (@, ®) referred to a common laboratory frame. The from zero. On the other hand, for measurements coming
experimental measure of each observable is related to tHeom scattering technique®.g., x—rays or neutropscom-
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ponents of every rank can, in principle, contribute. Trans- and analyzing them, it is important to determine a set of
forming spherical components to frarvg, , it is possible to  suitable linearly independent combinations. A systematic
write an equivalent expansion, way of doing this is through the introduction of a scalar
product between two fixed observable functions in the LAB
frame2® For thecontinuouscase we have

(75 el 75 i Jiae)

L

e L
[Fuiliag(w,®)= > > X Drl;:,(n(w)
L=0m=-L n=-L
X[ iluin (D). (22)
= 2 | ded®[F]E(0,P)

All observable function$F,, ] ag(w,P) should be symme- LmL’m’
trized according to both molecular symmetry and the other S oL'm
transformations characteristic of the measurement. This op- X[}—u’,i’]LA’B (@,®)
eration could reduce the number of observable data. For in- 2
stance, in the case of a molecule with two identical rotors, :2
one needs to symmetrize the NMR dipolar or quadrupolar Ch2b+1
couplings with respect to a fragment exchafg€here are at  where the simplification has been carried out using the or-
least two equivalent ways of performing the symmetrizationthogonality of Wigner matrice¥ The integration with re-
The first, more general method, applies projection operatorspect to the conformational variables can be computed nu-
to accomplish symmetrization with respect to the operationsgnerically. For thediscrete conformations case we obtain
corresponding to the various degrees of freedom, that is: thstead
local conformational symmetry of the single rdtdt: the S s
symmetry of the whole molecule in an arbitrary Conforma-([fmi]'-AB“]:M’,i’]'-AB)
tional stated®; the symmetry of the mesophase and, finally,

f AR DF,,  Tul(@), (24

that of the experiment. The second method is often used, for = >, dwz [f?i]tArg(w,j)[fi, i,]b;g“'(w,j)
instance, in NMR spectra interpretation. It is based on L,mL’,m’ J ’

equivalent nuclei or pairs of nuclei and implies averaging 82 S

over these. The two schemes give completely equivalent re- =§1 2L+1; [f?i]hf(J)[fﬂr,ir]'MT(J)- (29

sults. An example of this second symmetrization scheme,
using NMR techniques, will be given in Secs. Ill A=Ill C. In The scalar product¥,;=([F ) asl[F5lias) are the ele-
order to perform a combined analysis using functions reprements of a symmetritl X N - overlap matrixV, where we
senting different physical propertiéise., with different tech- have introduced the symbdland J to label the pair f,i)
nique labelsu), it is useful to transform these functions to a and (u’,i"). The dimensiorNg (with Ng=<N) of the func-
dimensionless form. To do this, for each techniguere find  tion space spanned by the observables is then found diago-
the maximum absolute value — M{#f¥, i1 as(,P)[}, —  nalizing V using standard techniques of linear algebra. The
of all functionsi over a certain orientational—conformational N, eigenvalues which are zero within a given thresheld
grid and we use this result to renormalize each observables0 are discarded and the remainiNg=N r— Ny orthogo-
F,.i- Using this prescription all functions are scaled within nal eigenvectors corresponding to the eigenvalues larger than
the dimensionless rande-1,1]. In addition, using observ- 7 are normalized. We call the N =X Ng matrix containing
ables with similar magnitudes is preferable from a purelythe Ng eigenvectors as its columns. Thus we identify a set of
numerical point of view. The combined scaling— Ng orthogonal basis functions,

symmetrization procedure leads to Ny

w, [gI]LAB(vaD):JZl [fJS]LAB(waq))ZJl
max{|[-7:,u,,i]LAB(waq))|}M

[}—;SL,i]LAB(wv(D):

0 L L

Ly -3 3 S Di@IGli®).
Xn_E OS[fM,i]LAB(quD)u (23) L=0 m=-L n=-L

& o

where each projection operat6¥ corresponds to one of the |n a similar fashion this transformation rule defines the linear

ns symmetry operations, anal, is a factor that can in prin-  combinations({[ G, ], ag) Of the experimental data to be used
ciple be used to weight the different techniquesiccording  as observables,

to their sensitivity and reliability. Here we shall use, Ny

=1. We suppose now to have, experimental data for the (G ]ng) = 2 <[}-s] \Z 27)
u—th technique. The total number of symmetrized observ- HLABI = JILAB/EIL:

ables becomeNf=EZ":1Nﬂ, whereM is the number of

different techniques considered. The orientational— . ) _

conformational information that can be extracted from the dils'f:ﬂ(l?)rl?'[:)clrr]led techniques maximum entropy

whole group of different techniques dependsip but not

all of these observables will necessarily add new informa-  Following information theor$f we can define the en-
tion. Thus, before considering the different experimental datéropy functional associated with a certain distribution as
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principle to the analysis of experimental data, while the con-
SP(w,®)]= —f dod®P(w,P)logP(w,P)]. (28  stantz allows the distributions to be separately normalized.
) _ 43 ~In condensed fluid phase®R¢(w,®|P;) describes how
According to maximum entrofy (ME), the bestleast bi-  packing®® and more generally the solvent, affects the actual
ased approximation tp the true d|s_tr|but|on that can be in- configuration ¢, ®) given the underlying distribution
ferred from the experimental data is P,(®) for the isolated molecule. The application of the
1 Ng maximum entropy algorithm is then restricted to the part of
Plw,®)== exp| > MG g0, ®) (290  the full orientational—-conformational distribution which is
Zo =1 still unknown, namelyP,, described by Eq(29). Further-
where we have used the functiof§,] s(w,®) corre-  More, theintrinsic distribution plays the role of a weight
sponding to the linearly independent experimental observiactor for conformations, and the overlap matrix elements
ables([ 73] ). Notice that the set of available experiments [¢f- EQ. (24)] become
determines the numbeX ~ of observableg[F}], A5) and

2
their Ng linearly independent combinatiod§G, ] ag). The V=2, SLJ dOP;(D)[ F* 15D FSIL (D).
normalization tern, is defined as Cn2L+1 ! ! a3
Ng

ZO({A})=f dwdd exp >, x,[gdLAB(w,q))}, (300  Allintegrals over the conformational variablds are modi-
=1 fied in a similar fashion to include thietrinsic distribution

and {\}={\1,... \y;} is @ set of variational parameters. Pi(®). Using a discrete RIS approximation the
The practical determination of the maximum entropy distri-Ofientational—conformational distributidief. Eq. (32)] be-

bution is performed defining a suitable free energylike con£0MeS
: 2,43 . . .
vex functional P(w.))=(LZ)Pi(})Pe(w,j|P)). 34

Ng . -

TAD=In Zo(AD = 2 MG lias), (31  Again, the three stategauche andtranscan be assumed to
=1 have the samea priori probability. More generally, taking

advantage of previous knowledge allows writing thiginsic

and optimizing the set ofA} parameters until the absolute “ "% ™
P 9 ofA} p distribution as

minimum of I'({\}) is found. The convexity of the pseudo-
free energyl’'({A}) ensures the existence of the optimal N-1
solution*® Equation(29) is the maximum entropy distribu- Pi(j)o<f(j)ex Z E* ) t}, (35)
tion function when naa priori knowledge for the system is S

available. The maximum entropy approach does not require

. _ . . .
further assumptions in the case that a sufficiently high num\-Nhere Egk Egk/kBT 's the dimensionless energy of a

ber of data exists. On the other hand, since the maximurgauchewith respect tdransfor the kth conformational bond
entropy method strictly performs an inversion of experimen-2t temperaturel’ (kg is the Boltzmann constanand §;,
tal data it cannot be of help if no such information exists. As= 1 if the state idrans(t) and zero otherwise. Otherpriori
a consequence of its nature, the maximum entropy distribuconformational knowledge can be easily built in by means of
tion is inevitably isotropid(i.e., flah when no experimental the filter functionf(j). For instance, this function can be
data (i.e., N;=0) are available. However, as is often the taken to be zero or one if a conformation is sterically hin-
case, som@trinsic information, or well assessed knowledge dered or not, leading to the numbey of accessible confor-
from previous investigations, may be available and the exmations iy=<3“"1). The maximum entropy analysis can
periments at hand could actually be used to complement thiglso be performed taking into account the extent of experi-
information rather than being required to ignoré?ifThis ~ mental data uncertainties and their effect on the distribution
prior information could be the know|edge of some importantfunction Compatible with the available physical observables.
details on the molecular structure, e.g., van der Waals radil0 do so, we assume that all - experimental observable
or other geometrical constraints hindering certain conformfunctions([ F7]iAz) have been sampled from Gaussian dis-
ers. Constraints obtained from molecular dynamics simulatributions of variancer; (estimated from experimental error
tions have also been recently propoéétf.the intramolecu-  ranges. We then generaté additional data sets by sam-
lar energy of the isolated moleculg;,(®) is known we pling with a Monte Carlo method fronN, Gaussians of
could even calculate a compleietrinsic®® conformational ~ Width o centered at the experimental valygg]-A5). The
probability P;(®). In general, following a Bayesian Sampling intervals are generally po;, with p=3, while
approach? we can then write M =50 is usually sufficient for most cas&sEach generated
data set is then separately analyzed with the maximum en-
P(w,®)=(112)Pi(®)Pe(w,P[P)), (32 tropy algorithm to obtain a distributioR™ (w,®). The re-
where thea priori distribution PI((I)) p|ays the role of a Sulting set ofM + 1 distributions is flna”y combined to de-
We|ght factor for the conformational states, resumng fromfine the average orientational—conformational distribution
the known intramolecular interactions for the molecular skel- M
e_ton_. The second terr_ﬁe is the e>_<terna| (i.e.,_posterior) E(w,(IJ)Z E PM (o, d). (36)
distribution that we estimate applying the maximum entropy M+ 17=0
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Using this prescription it is possible to compute other distri- 2

bution functions for the system studied. For instance, from  ([qe]?%)=[aklZ’ > [Dﬁ},(mé)
eachP(M(w,®) we can obtain by partial integration the fn=-2

distribution P(™( ¢,) for a single conformational anglé,, T ,

and after averaging, the distributidd(¢,). We can also _%[Dn,*z(wéHan—z(wé)]]
calculate for each configurationo(®) a local standard de-

viation using the equation 2

2%
v X al,.Z,aj,l Poa,:by,... b _1.0,....0
0% o=y 2 [PM(w,®)—Plo,®), (37) Pt
B X G2* (40)
1""'aj—l'bl""'bj—l’”’

and thus we can estimate the uncertainty on our maximum , ) )
entropy results. The same procedure can be employed to caihere nowe, are the Euler angles that describe the rotation
culate the error on order parameters. from the systenM; (in which we suppose the spkjto M, .
We see that only a finite subset of order orientational—
conformational parameters is sufficient to fully describe the
average quadrupolar splittings. The quadrupolar tensor biaxi-
IIl. PHYSICAL OBSERVABLES ality 7, is usually small and it is common practice, at least
Ifr aliphatic chains, to use),=0 in HNMR calculations.

The combined approach can be used, in principle, wit h tities directl df h ; th
any experimental technique, providing physical observable € guantities directly measured from the spectrum are the
quadrupolar splittinga v (i.e., the separation of a deuteron

modulated by the conformational distribution. Here, we con-

sider various techniques frequently used independently an(Ejioumeh related to the averaged spherical components as

we briefly describe how their observables can be treated in a 3 12 20
unified way with a maximum entropy analysis. Ane=5(ladz2=|5| ([Adias)- (41)
A. NMR quadrupolar splittings If the bond orientationw, is modulated by some conforma-

The first observables we examine are the nuclear quadriional degrees of freedom, the tensgrcontains information

po'ar sp"ttinQS, measured from NMR Spectra in anisotropicon both molecular orientatiom and (_30nf0rmati0na| struc-
So|vents4v6l16137!47_49A nucleusk with Spin |k>1' notab|y a ture ®. If frameSMl andMq are eqU|Va|ent, we have

deuteron®H, has an electric quadrupole moment different 3eV,Q,
from zero. For a nuclear spih, in a given local chemical Avk=m<P2(cos 6)), (42
environment(e.g., alyphatic or aromatic C—D bond, gtthe KeTk
quadrupole coupling tensay, is* where 6, is the angle between the C—D bond and magnetic
field directions, and/, is thez component oV, measured in
_ eQ v (39) frame M. As already mentioned in Sec. Il B, the symme-
= A2l —1) trization of noninteracting quadrupolar couplifig,]?% is

. usually performed considering the setrgf equivalentdeu-
v_vherer ‘."mdvk are the quadrupole moment and the ek.ecmcterons. In this case, the symmetrized dimensionless quadru-
field gradient tensor at the site of nuclekjsneasured with :

; polar coupling becomes
respect to the molecular reference framg, which makes
qc diagonal and  with  biaxiality 7=([dklyy 5120 _[2\"?2h1 (21— 1)
—[ailx) /[ k] 22- The tens_,oqu is_ traceless and thu_s it can [aK]Cas (@, @) = 3 eV, Qy
be measured only in anisotropic phases. In particular, for
uniaxial liquid crystals, the only relevant component is X—Z 2.0 o
([ak]zz), whereZ is the laboratory magnetic field direction Np=1 [q{k}p]LAB(“” ),

that we take to be parallel to the mesophase director. Using ) .
irreducible spherical components we can write where{k}p is one of thenp equivalent deuterons.

Np

(43

2

B. NMR dipolar couplings
[0 ) =[a i 3 Dé?;(w)[Dﬁ?a[wq(@)] poIar EompIng | |
n=-2 The dipolar coupling tensar;; between a pair of nuclei

T i andj with gyromagnetic ratioy; andy; can be written ds
- %[Dﬁfz[wq@)]wﬁfz[wq@)]]},

hy, )
(39) T”:_—(3r”®r|]_r”|), (44)

where w, represents the Euler angles that describe the rotavhereh is the Planck constant,is the 3x 3 identity matrix,
tion from the systenM; to the systemM,. For a single andr;;=r;—r; is the internuclear vector of length; defin-
deuteron the NMR spectrum contains a doublet, and the avng the relative position of nucléiandj with respect to the
erage value of this quadrupolar component obtained from thiaboratory reference frame. Since the traceTgf is zero,
splitting can be written as NMR dipolar effects cannot be measured in isotropic fluid
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phases. Anisotropic uniaxial solvents are commonly used toause the spectral complication increases with the number of
record NMR spectra of probe molecules, and the averagedoupled protons. An important development is the possibility
([Tij1zz) are the only nonzero components measurable irof using low ordered lyotropic solvents to limit the number
these uniaxial phases, wheFeis the laboratory magnetic of observable couplingSNear magic angle spinning has also
field direction, which is supposed to be collinear to the me-been proposed as a way of reducing dipolar couplings in a
sophase director. These averages are related to the dipolemntrolled way and obtaining order parameters for large mol-

couplingsDj; as ecules in liquid crystal® These methods have opened the
application of conformational investigations based on dipolar
Dij=([Tijlz2 =3[ Tij 1R coupling observables to proteins and other macromolecules.
Recently the possibility of studying CH dipolar couplings
__hv ¥i[ Pa(cos 6;) (45  has also been practically demonstratedpart from this
472 \ fi3j ' practical limitation on the number of couplings, another limit

of Dj; (and of theAw,) is that they vanish in isotropic solu-
tion. However, quadrupolar and dipolar couplings are by no
means the only NMR observables sensitive to internal mo-
tions. In what follows we examine two more.

whereP; is the second Legendre polynomial afig is the
angle between the internuclear veatgrand the direction of
the magnetic field. In general, bath and 6;; will depend on
molecular orientation and conformanon thus dipolar cou-
plings can be useful for recovering geometrical distribution o _ _ _
functions. The spherical componert$;; 17z (w,®) mea- €. NMR vicinal spin—spin couplings

sured in the laboratory frame are related to those referred to  The vicinal nuclear spin—spin couplirh; between a

the first molecular systerml, pair of nucleii andj separated by three chemical bonds,
depends on the dihedral angleimplicitly defined by these
[Tij125% (0, @)= Z Do (@) Ty T (@) bonds. A semiempirical relation was first introduced by
Karplus? as

12 31 (o 2 o1b | o
:_(§> h7'712 D2 () Jj(#)=acos 6+b cosh+c (50)

4% o5 wherea, b andc are empirical constants. Similar expressions
D2%[ i (D)] were developed for thH—C—C—_I—_Igroup, including a cor-
“'03—”_ (46) rection due to the electronegativity of carbon substitughts.
rij(P) The dihedral angled is related to the conformatiom
through simple geometrical transformations. In particular,

The factor[ T 13" (® Id b ded in Fouri i
e factorf ”]Ml( ) could be expanded in Fourier series for alkyl chains they simply differ by a phase factor. In gen-

to give eral, the averaged observable coupling constant can be writ-
. ten as
[Tyl @)= 2 Tl e, :
EEERE, Nilf—oc '
=)= 2 [%1(e"%)

Xexgiajpi+ ... tiay_1dn-1), (47
where the coefficientsﬁTij]gi1 ’’’’’ a, , are fixed once the

skeleton form is given. Substituting in EG6) and averag-
ing, we obtain the average dipolar couplings in terms of an
infinite set of order parameters

2 [3~J|1]npoo 0,. L0 (51

where the componenfs°"1”]n contain all the empirical con-
stants and the phase difference betw@eand ¢, . Notice

2 il ) the direct dependence aﬂij on the internal order param-
<[T|J]LAB 2 E pO,Tw;al ..... an_1 eters. Finally, the vicinal spin—spin coupling constants are
n=-2ag,..., an_1=—® . . .
symmetrized with respect to the exchange of equivalent
X[Tij]gf _____ . (48  nuclear pairs, giving
Similarly to Eq. (43), the spherical components of dipolar 1
y 10 Eq.(43) the sp P P BRI —— E[ 3y, )(®). (52

couplings are symmetrized with respect to equivalent nuclear
pairs(see Sec. |l Band scaled to dimensionless variables,

max{|[*3;1(®)[} e

This type of measurement can provide information for mol-

2\ 2472 min{rﬁ} 1k ecules in isotropic solution and on the purely internal con-
[T5IEAs (@, @)= 3] T hyy e formation distribution not accessible with the two previous
. techniques.

X[Tijypltas(@,®), (49)

where{ij}p is one of thenp equivalent pairs and m{rﬁ-} is
the minimum attainable distance for any of these pairs. The A nuclear Overhauser effe€NOE) is a change in the
standard application of the method has been to protonintensity of a certain observed NMR line for a nucleus
proton dipolar couplings but this has a strong limitation be-occurring when the population of another nucléus satu-

D. Nuclear Overhauser effect
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rated or inverted by suitable irradiatiéf:}****Here we fined by Eq.(44). The ¢ in the second term comes from
consider only a simple subsystem of two 1/2 spins to keephe assumed uniaxiality of the liquid crystal solvent around
the equations manageable. We assume the coupling betwethe laboratoryZ axis. The standard, motional narrowing,
the two nuclei to occur with a dipole—dipole mechani@h  Redfield type relaxation treatmé&ht*leads to the expression
Sec. lll B) so that the dynamic spin Hamiltonian is for the NOE effect in terms of the spectral densiti]éﬁ‘)

2 X (w) defined as
Héip(t):;j m:z—z |izj'm*{[Tij]ﬂnB(wt-(Dt)

m2y—a-2 | dgrdetem
([T 1% (@,®)) 0.0 Bl (53 I () =4 fo dte™ G, (54

with the sum running on independent nuclear pgirand A
with |i2j,m and [Tij]E;L“B the spherical components of the i.e., as Fourier transforms at frequeneyof the orientation—
nuclear spin operator and the dipole ten3gr already de- conformation dependent dipole—dipole correlation functions,

CM () =([Tij JEAs (@0, P T IEAB (@1, P0) — ([ Tij 1ERe (@, P))w o{ [ 5 1eAE (0, 9)) 1 0O
2
= 2 (D (@) Ty (Po)Df () [ THI(P0)

Ny ,Np=—

~(D5h (@I T T (®)) 4 6( Db (@ TH T ()) 000}

C3(hyy|2 D (00)DE Jwij(®o)] D (0)Di dwij(Py)]
‘i( 4772) 2z ri(®o) r (P

D (@)DR* f w; ()] D7 (©)DE dwij(®)]
- (@) o (@) o M

(595

wherer;;(®y), w;;j(P) are the modulus and the orientation of thénternuclear vector with respect to the molecular frame
M, in the conformationd, at timet, and the averagé. . .) is over the joint distributiorP(wq,®(,0;w,,®,,t), including
molecular tumblingw, and conformationakP, variables. For instance in an AX spin pair°

NOE-1= 2. 6317 (@i + @) = I (@~ @)

Y 632 (wi+ wj) + 33 () + I (w;— ) +12] V(@)

(56)

where ; , {oi are the Larmor frequencies of nucleij and whereri(jm) is an effective correlation time for the motion of
j™(5) is the so-called random field providing additional that pair of nuclef® Notice that at this level we are not
relaxation channef® More generally, the NOE effect will concerned Wlth th_e_ details of t_he (_lenamlcs, Wh!Ch is in |ts_elf
be a result of multispin relaxation and procedures based on&Problem of significant complication even for simple biaxial
full Redfield relaxation matriR rather than on simple ana- 1gid molecules” Indeed we expect that suitable ratios of
lytic formulas that might have to be used. Thus to be asPectral densities for nuclear pairs sharing a similar dynam-
general as possible, we concentrate here on the correlatidps could be_conS|dered in applications. We now consider
functions (or spectral densitigsrom which R can be built. ~Several special cases, _ _ .

The correlation functions depend on the overall tumbling of ~ (i) Slow orientational tumbling motion, slow internal
the moleculew, and on the internal dynamicb, . A general ~ motion:

treatment of this problem is certainly beyond the scope of 2

this work, but we wish to point out the richness of this type (m) 2% 2 72Na

of experiment, by considering the correlation functions in Ci na,%:—z {(Bimin,(@0) D, (@0 Tij Jy, (Po)
some simple limiting cases, where the motions are so rela- «20p 2

tively fast or slow that they reduce to time independent, X[Tij]Ml((D0)>wo~‘bo_<D0'na(w°)

static valuesCi(jm) (respectively the initial or long time valie 2n 2

on the experiment time scale. The spectral density can there- ><[Tii]M161(61)0)>wo~<1>o<Dovnb(“’f’)

fore be approximated as e
X[Tij]Mlb(q’o)>wo,¢05m,o}- (58)

Ji(jm)(“’)*Ji(jm)(o)%"mzci(jm) Ti(jm) ) (57) We can now write this equation in terms of order parameters,
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as defined in Eq(11). To do this we couple the Wigner 2
matrices defining the produ[:T”]Z”a(@())[T ]Z“b(CIDO) and C.(,m)~ nE_ , {(D&x, (wo)Dm 1, (©0)) g
expanding the result in Fourier series, e

X<[le na(q) )[T ]Mnb(q) >‘1>0

[Ty T (D) THTy(Po) (D35 (90) gL Ti Tor*(P0)yr o D3, (00)y
h TH 12D m
—(-) aZ( 7|7J) 2 C(2,21.:0,0 X([ ij ( 0))(1)0 of
4 L o0
nb n, d @ij (Po) ] :LZO ZL > . Poro.... 0
C(2,2L;—ng4,np) € (Do) =0n=-Lag,...aN-1=
] e XPOhay, - ay [Yile™ .
= 2 [Wile™ 2 -
oA SIS T
xexpliaj+ ... +iay_1dn_1}- (59 fam TS A AN

In a similar way we can couple the product of the two ori-
entational Wigner matrice®Y, (wo)Dp, n (o). Combin-

ing the results, we can define a new funct[dﬁu]" (D)
and expand it in Fourier series,

2Ny
ng?f);a1 ..... ay_ 1[Tij]aln ay_y| Omo- (63)

This expression, to our knowledge a new result, shows the
wealth of orientational-conformational order parameters ob-
tainable from the experiment. In an isotropic phase the equa-

2
2% Ng 2n
> , P (wo)Dmnb(‘”O)[Tu]M (Po)[Tj T, (o) tion reduces to

na,nb=f

=2

L=0n

Mr—

Ds: wo)[ Y (Do), (60)

3\ (hyy\?/ 1

(m)% —_ ') —_—

Ci (10)( 4772> ST 64
%

(Y3 (@) = 22(—)m’“bC(2,2L;—m,m)
np=—

_ n+nb Ny
XC(2.2L =n=np.np)[¥ij ]y (P) where we have not indicated explicitly the dependence on

o conformationd for rj; andw;; since no confusion can arise.
= > (Y15 e This expression is equivalent to that obtained by Tr8jamd
g, AN-1T T T reduces to the usual ones for a rigid moleéifethe two
Xexpliagdy+ . .. +idn_1Pn_1)- (61)  huclei belong to the same fragment.

(i) Slow tumbling motion, fast internal motion:
Finally, the correlation functions can be written by using the

order parameters as

2

C m)N D2* D2
(m)N Z0 n—E—L ap, ... %,Fﬂo pla’ﬁ;al ----- an-—1 ! ”axf%—z i m’na(wO) m'nb(wO)
<Yyl o (T T (P0) g ol [TH TP g )
- ﬁ E - ~(D (@0 T T4 (D)) y( Do, (@)
nsloa, ... = Ongiag, ..., an—_1 o
) X[ T ]M (P0)) wy,040m,o}- (65)
X[Tylar® o Omo: (62)

In the further special case of negligible rotational— o o _ _ _
conformational coupling, In the limit of negligible rotational—conformational coupling,
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2

(m)
Cij -~
Ny ,Np=
2 4 oo
na.p=—2 L=0 ag, ..., aN—_1
by, ...y bn-17 "7

L Ox 0 20, *12,Np
><pO,nafnb;O ..... Pooa,, ..., ay_1P0.0b,, ... bN,l[-I—iJ']a1 ..... aN,l[TiJ' by

2 o
_ 2% 0%
2 E po,na 0,0, ()OO,O;al ..... an-—1
Ng=-212ag,..., aN-1= "%

m

where the componenﬁﬁ'ij]g’1 .....

Berardi, Spinozzi, and Zannoni

Y (D, (00)D7 0, (00))y = (DF,(90))u D, (@0)) g Prma L Tii I (@) (LT T (Do),

(_)m*an(Z,ZL;m,—m)C(Z,Z,L;nay_nb)

Sm,o (66)

,,,,,,

ay 1 have been introduced Notice that this type of contribution vanishes in isotropic

in Eq (47) This is the case, for examp|e, of a S|ow|y tum- |IC1UIdS but not in a |IQUId CrySta|, even if this has not been

bling macromoleculéi.e., with nearly fixed orientatigrwith

some rapid conformation motions. In an isotropic phase this

equation reduces to

C.(.m)%i hyvi|? Dg,o(wij) 2
i 10| 4n? 2
q)O
D2 ;i) 2 DZ*(w,_) 2
+2 <%> 1o (2202 ’
i e i e

0 0

(67)

a case also treated by Tropb.

(iii) Fast tumbling motion, slow internal motion: This

exploited until now.

In the limiting cases that we have shown, the spectral
densities can be viewed in terms of averages over the un-
known single particle orientational—conformational distribu-
tion function P(w,®) of a suitable combination of the
Wigner—Fourier basis functiofef. Eq. (8)]. We realize that
practical application of NOE in this context might be diffi-
cult, especially in separating out the dynamics, but the ex-
periment is particularly rich in information and worth explor-

ing.

could be the case of a small molecule that undergoes sonfe Dielectric constant and electric dipole moment

relatively slow conformational change compared to the over-

all fast tumbling and
2

cM~ >

Na Np=

XTI (@Ol TH T 2(Po)a,

, {DR(90)) 0 Dininy(00)) g

—(D5h (@0 Ty T (Po))uy o

X (Do, (@ TH I P0)) g wpOmet-  (69)

In the limit of negligible rotational—conformational coupling,
2

C"~ X Tyl (@ol T (P0)a,
NgNp=—

~([Ti T (@) [T T (Po)) g Smol

X <Dr2nfna( w0)>w0<D2m,nb(wO)>w0

2%
pm,na;O ..... 0

2 0% Ny .,Np
X pm,nb;O ..... OOO,O;a1 ..... aN_l[\PiJ]al

..... an_1
2 o
— 2%
nﬁZﬁ aly___%ilzw Pon,:0.....0
2
0 2,n
X poj’(r);a:L ..... aN_l[Tij]al :a. coanoq 5m,0- (69)

The dependence of permanent electric dipole morpent
on the intramolecular rotations has been one of the first tools
employed to study molecular conformatioti$? The fluid
phase observables relatedgoand to the square dipole mo-
ment tensorM=u® u are, in general, the components of
second rank dielectric tenset In particular, for an aniso-
tropic uniaxial solution of molecules with momept and
using the continuum theory of a particle in an ellipsoidal
cavity surrounded by an infinite dielectric in presence of a
low intensity electric field, it is possible to writg®®

) (M)
4mp  e—nle— €] KeT’

o0
€— € €

(70

wheree€” is the dielectric tensor for a field at high frequency,
p=N/V is the number of molecules per unit volunig, is

the Boltzmann constant; is the absolute temperature and

is the depolarization tensor for the cavity. When the electric
field is parallel or perpendicular to the phase director it is
possible to compute from dielectric measurements the two
componentg M) and(M, ) of the square dipole moment.
The relation between Cartesian and spherical representation
is

(M%) == DY Mp)+2(M,)), (79
(MEEBY=BYAM)—(ML)). (72

The spherical components referred to laboratory frame are
related to those measured with respect to syd#ems
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2 so-calledadditivity hypothesis of bond or fragment dipole
M E’,Ss(w,(b) = E Dgf](w)Mﬁ,i"l(CD). (73 moments is justified. The overall molecular dipole moment is
n=-2 then computed as a linear combination of group dipoles, lo-
Since the dipole momenut and its squareM are global calized in the chemical bonds or in some of the constituent
molecular properties they are invariant under molecular symmolecular groupsp=2; ;. A large body of data on these
metry operations. The renormalization is performed dividinggroup dipole moments has appeared in the literattiith
each functionM f;SB by the square of the maximum value the additivity hypothesis we can finally write the relation
taken by the dipolar moment over the angular sgaegp]. between the average square dipole moment measured in the
This calculation can be simply expressed if the use of the. AB frame and the order parameters

2L 1 N 1 1
(i) (i)
2L,0\ . la la
(MEDH=>2 X C(l,l,Z-.Q-”_Q)_Z . , > R V220 IV V7
n=-2L q=-1 =1 40 al) alh) al ! I
1 o i-1 91 0 -1
(i) (i) (J) (i
b{, ..., b 1), bl =1
XpZL* Gl*
b)) L p) (i) (J) (maxi,j}) (maxi, j}) (i) (i) pi) (i) 4(0)
Onby +b3 Pemini 13 " Pringi 1 Prmingi 141 Brmasdi,j} 07 a.ay" ...y algby b’y .2y
XGy ) 0 ph i) aiL=01 (74
n—gal, ..., ity bf gy

(i) , . .
where[ ], represents the spherical component of theScattering vecto® has moduluQ =4 sin 6\, \ being the
i neutron wavelength andthe full scattering angle. The

complete static orientational and conformational information
is contained in the structure factgexp(Q-r;;)). Using the
tngayleigh expansion

dipole moment tensor of the fragmednmneasured in the cor-
respondent framé,;, C(1,1,2L;q,n—q) are the Clebsch—
Gordan coefficients and th@ coefficients are defined in Eq.
(13). We can see that the average square dipole momen
only depend on a closed set of orientational—conformational

order parameters. It is worth noting that the apparently un- o
wieldy Eq.(74) is actually very simple to implement numeri- expiQ-r;j)= > it(2L+1)] L(inj)PL(Q- fij), (76)
cally and to code. £=0

F. Neutron scattering

Scattering techniques are very powerful tools and they'nerei. are Bessel functions of fractional order ad are
provide structural information at both the molecular and-€9endre polynomials, it is possible to link the cross section
structural level. Furthermore, they allow the determination oft® the molecular orientational—conformational stag®).
orientational order parameters of rank higher than four, usull Particular, for uniaxial phases only even ranks contribute
ally not accessible using other experimental techniques. Her@d we have
we consider as an example the coherent contribution to the
total neutron scattering due to a single molec{ilgramo-

lecular scatteringg and show that it can be analyzed using thpda(Q) = do(Q.0) (w,P)

maximum entropy approach to provide information on the do do LAB

orientational—conformational distribution. Thetramolecu- N, w 2L

lar contributiqn is experimeptally determined taking_advan— _ E bib 2 E (—)-(4L+1)

tage of the different scattering lengths of H and D isotopes ij=1 L=0n=-2L

by comparison of scattering data measured for different mix- .

tures of the fully protonated and the fully deuterated forms of X P2 (C0S )] [Qrij(P)]

a molecule(see, for example, Ref. §1The coherent differ- X D2 () D2 [, (D)]

ential cross sectiondg/d(Q) for the elastic neutron scatter- ' ' b

ing of a single molecule containirg, nuclei is given by the 2 - do(Q,6)]2-n

Debye formula referred to laboratory frame => 2 DI (w) a0 | (@) (77
L=0 n=-2L M,

do(Q)\ < .
<d—Q —”221 bibj(exp(iQ-ry))), (75

where 6 is now the angle between scattered beam and phase
whereaq is the scattering probability) is a solid angleb; is  director, and the Euler anglem;rij define the orientation of
the coherent scattering length for theth nucleus and;; rj with respect to frame M;. The functions

=rj—ri=ryr; is the internuclear vector of length;. The  [(do(Q,6)/dQ)]{;;"(®) are then defined as
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2L,n
(®)
Ml

do(Q,6)
dQ

=(—)"(4L+1)P, (cos6)
N

X 2, bibjja[Qr (®)IDRF Lo (®)]. (79

We can write the Fourier expansion of these functions,

d(T(Q,H) 2L,n

—a | (@)
o,
- o0 dO'(Q,a) 2L,n
_alv---%—l—*” dQ L a

.....

1

xexpliayp,+ - +iay_1édn-1},

N—-1

(79
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pole (ED) observables and to examine the resulting syner-
gies. In practice, the test entails the simulation of observable
data([]-",s],_AB> starting from a known distribution function

P w,®), followed by the maximum entropy analysis of
these pseudoexperimental data to see if a faithful distribution
function is retrieved. Notice that the problem is numerically
far from trivial but clearly represents a necessary step for the
analysis to be meaningful. The input distribution corresponds
to a certain set of orientational order paramepﬂ:ﬁ’sw’_ 0

for fragmentM; and a given conformational distribution
and, for simplicity, we supposey(w,®) to be factorized in

a purely orientational part, depending an and a purely
conformational part, depending dn. In practice, we choose

p{gn abn,nD;,n(w>]. (82

For thediscretecase, we take instead

1
Ps(w,CI))ZZ—OPs(CD)eX

and thus we can find the relation between the average cross

section and an infinite set of order parameters,

< do(Q,6) >
dQ LAB
9] 2L )
— 2L
<o n oL al,_,_%flzf pO,n;al ..... an—1
da(Q,6)]?"
T (80)
YRR an_1

Considering the symmetrization scheme of Sec. Il B we no
tice that the cross section defined by Ef@5) is essentially

an average over all the pairs of atoms in the molecule. Sinc

any symmetry operation can be interpreted as an exchange
positionsr; of equivalent atoms, the cross sections are invari
ant under application of the projection operators of Sec. || B

The maximum absolute value of the cross section used t

normalize this observable is easily obtained, leading to

do(Q,6)S “2do(Q, 0)
a0 ) a0 | (P

Na
= LAB

b;
1

(0,®)= (
LAB !

(81)

IV. TEST RESULTS

1

Ps(w.j)= Z Ps(i)ex (83

p[ > ar"n'nD,';]‘n(w)].
L,mn
Since alkyl chains are a prototype structure for conforma-
tional problems we have considered here three substituted
alkanes that are representative of a class of molecules that
could be studied using the combined techniques, namely
1,4—di—bromo-butane (DBB); 1,6—di—bromo—hexane
(DBE) and 1,8—di—bromo—octani®BO). The most severe
test for an analysis technique like maximum entropy, which
starts from a flat distribution, is to assume the conforma-
tional part to represent a single conformer, since it would
require an infinite number of observable basis functions to
reconstruct such a deltalike distributipef. Eq. (7)]. Thus,
e three molecules have been simulated in two rigid confor-
ational states, namely a fully elongated chéie., all—
trans) and the so-called endkink For the all4rans mono-
rotamer the conformational distributid?y(j) of Eq. (83) is
E’S(t, ...,t)=1 and zero otherwise, while for the endrk
conformer, P¢(j) is nonzero only forj=(g tg™t, ... t).
Following Pines, Ref. 22, the dihedral anglg for gauche
conformations has been fixed 10112.5°, a slightly differ-
ent value from the classical RIS angte27/3. The bond
distances and angles amc=1.53;r-4=1.08, rcg=1.40
A, CCC=112 and HCH-109°. For the terminal groups
containing Br we have used a tetrahedral geometry. The ori-

One of the ubiquitous problems of conformational dataentational part of Eq(83) has been chosen so that the prin-
analysis is to make sure that the method employed can retuipal orientational order parameters for thMe; frame are

the conformational information if and only if it is contained

(P,)=0.60 and<D§,2}=O.05. The order parameters for each

in the experimental data set. In other words, a method shoulftagment are therg,,=0.60 andScp=—0.29. Using both
ideally have some self—test capability. Here we wish to showdistributions, and after symmetrization with respect to all
how the maximum entropy method can check its capabilityequivalent pairs, we have calculatAd; andD;; couplings.
to actually recover the structural information contained inDue to the symmetry of the altrans and end-kink mono-

experimental data, and we present the results of a series

aftamers, the square dipole momeritd/) and(M, ), are

maximum entropy analyses that we have performed on averero. All simulated observables are listed for the two con-
age values of NMR and dipole observable functions generformers in Tables | and Il. Going from DBB to DBO, we
ated from a known distribution function. The purpose offind, respectively, 2, 3, 4 quadrupolar splittings, and 10, 21,
these tests was to examine the benefit, if any, of the maxi36 dipolar couplings. Considering the two average dipole
mum entropy combined techniques approach. In particulamoments, the number of observables for each bromo-alkane
we have chosen to combirttINMR (dipolar couplings  is thenN =14, 26 and 42. We now turn to the maximum
2HNMR (quadrupolar splittingsand dielectric, electric di- entropy analyses of these simulated observablesaTieri
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TABLE I. Multitechnique maximum entropy combined analygease ¢ of simulated quadrupolar splittings
Avw; (in KHz), dipolar couplingsDj; (in Hz) and square dipole momentd;), (M) (in Debyg for DBB,
DBE and DBO in the alltrans conformation(monorotamer Simulated data have been computed using a
distribution[cf. Eq.(83)] giving order parameterS,,= 0.60 andS-p= — 0.29 for each fragment. The root mean
square error of ME results, the total number of symmetrized observiilesd independent linear combina-
tionsNg (dimensionless threshole=0.01) are reported. The intrinsic distributi®(j) [cf. Eq. (35)] has been
defined in terms of d@rans-gaucheenergy barriefEg=2.1 kJ/mol, T=300 K and using the filter function

described in the text for discarding 4ll . . ,g*g™, . . .) sterically forbidden sequences.

DBB DBE DBO

Simulated Analyzed Simulated Analyzed Simulated Analyzed
All-trans Ny=14 Ng=14 N;=26 Ng=23 Ny=42 Ng=33
Av, —81.63 —81.63 —81.63 —81.48 —81.67 —81.68
Av, —81.58 —81.58 —81.58 —81.47 —81.58 —81.58
Avg —81.58 —81.52 —81.58 —-81.57
Avg —81.58 —81.58
rms error 0.00 0.14 0.01
D3 7726.30 7726.30 7692.52 7693.09 7692.52 7692.89
D34 566.93 566.93 559.76 548.97 559.76 559.55
D,s 125.63 125.63 108.86 91.45 108.87 108.46
D,s —4377.53 —4377.53 —4341.66 —4333.45 —4341.66 —4342.17
D,z —1146.03 —1146.03 —1142.31 —1140.41 —1142.31 —1143.26
D,g —337.06 —337.06 —337.06 —336.42 —337.06 —336.80
Do —580.73 —580.73 —580.73 —581.86 —580.73 —580.87
D310 —547.17 —542.21 —547.17 —544.30
Dy —380.14 —381.92 —380.14 —383.41
D1, —205.28 —208.19 —165.34 -161.91
D313 —164.69 —162.38 —206.15 —206.48
D14 . —162.57 —161.75
Dy.s —137.76 —138.06
D216 —86.93 —88.04
D17 —77.28 —-77.92
Dys 7760.07 7760.07 7760.07 7763.63 7760.07 7758.94
Dye 573.98 573.98 573.98 574.78 573.98 574.46
D,z 142.05 142.05 142.05 155.90 142.04 142.37
Dyg —4413.41 —4403.78 —4413.38 —4413.32
Dygo —1149.76 —1148.37 —1149.76 —1148.92
D40 —337.54 —336.54 —337.54 —337.16
D411 —582.54 —580.39 —582.54 —582.66
D412 - —551.67 —550.07
D413 —382.93 —385.32
D14 —166.02 —165.89
Dy41s . —207.03 —206.27
Dg 7 7760.07 7768.17 7760.07 7760.30
Dgg . 574.10 562.11 574.10 573.48
Do - 142.40 122.00 142.40 141.59
De.10 - —4413.41 —4413.13
De11 —1149.76 —1149.22
De.12 —337.50 —337.41
D13 —582.47 —581.71
Dggo 7760.07 7759.85
Ds.10 573.98 574.38
Dg 11 142.05 141.95
rms error 0.00 27.07 4.02
(M H>1/2 0.00 0.00 0.00 0.00 0.00 0.00
(M )P 0.00 0.00 0.00 0.00 0.00 0.00
rms error 0.01 0.05 0.05

distribution functionP;(j) has been defined for the three radii, ry<r{")+r{"), the conformation is rejected. We used
bromo—alkanes as E@35), using for all rotors a fixed bar- r8’)=1.7, r,(4”)=1.2, r(B",)=1.7 A. No further assumptions,
rier Eq=2.1 kJ/mol andl =300 K. Sterically forbidden con- such as the often used united atoms approximation, which
formations in alkyl chains have been discarded after a suiteollapses a methylene in a single group, is used. In practice,
able filter functionf(j) has been implementédin practice,  with this filter function all the(...,g"g",...) sequences

if the distance ; between a pair of ator{¥,|} belonging to  are discarded because of steric hindrance, and the number of
fragmentsM,, M, and separated by at least four atomsnonforbidden conformers for DBB, DBE and DBO g
(la—b|=4) is lower than the sum of their van der Waals =7, 99 and 577. The combination and orthogonalization
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TABLE II. Multitechnigue ME combined analysésase 9l of simulated data for an enétink monorotamercf.

Table | for additional details

DBB DBE DBO

Simulated Analyzed Simulated Analyzed Simulated Analyzed
End—kink N =14 Ng=14 N=26 Ng=23 N =42 Ng=33
Av, —81.63 —81.63 —81.67 —81.70 —81.67 —81.59
Av, -2.62 -2.62 —42.10 —-42.13 —42.10 —42.09
Avg —42.10 —42.12 —42.10 —42.17
Avg —81.58 —81.58
rms error 0.00 0.03 0.06
D3 7726.30 7726.30 7692.52 7693.70 7692.52 7678.87
Dy, —1142.19 —1142.19 —292.86 —292.77 —292.85 —291.81
D5 —1435.16 —1435.16 —660.87 —660.46 —660.85 —653.14
Dys 677.99 677.99 —1833.43 —1834.09 —1833.43 —1835.30
D7 159.19 159.19 —496.26 —496.19 —496.26 —494.82
D,g -1.73 -1.73 —279.37 —279.14 —169.40 —169.65
Do —-22.33 —22.33 —243.30 —243.11 —301.54 —304.03
D310 . —388.77 —397.38 —543.02 —538.09
Dy —374.33 —364.80 —403.32 —411.12
D,1» —122.34 —125.40 —145.12 —138.23
D13 —101.05 —101.83 —147.46 —145.98
D14 - —174.68 —175.78
D15 —163.15 —163.80
D16 —76.07 —78.58
D2,17 —67.86 —68.86
Dys 704.85 704.85 4232.46 4234.19 4232.46 422751
Dye 854.07 854.07 714.03 715.01 714.03 709.56
Dy 2280.49 2280.49 1211.29 1212.30 1211.28 1206.82
Dys . —247.82 —247.50 —1866.08 —1870.18
Dy —1325.45 —1325.51 —490.59 —490.93
D410 —827.60 —-827.91 —582.57 —587.12
D411 —2775.05 —-2776.17 -1678.79 —-1675.21
D412 —291.15 —307.69
D413 —372.14 —360.32
D414 —373.09 —398.07
Dyi1s —465.08 —434.37
D¢ 7 4232.46 4233.95 4232.46 4234.90
Dgg —1138.92 —-1137.81 —282.42 —279.28
Dgo —1439.78 —1439.28 —648.71 —645.90
Ds.10 . —2795.11 —2792.78
D11 —1984.62 —1985.77
Dg 12 —559.78 —559.68
Dg13 —466.69 —467.09
Dgo 7760.07 7759.49
Dg 10 574.00 574.73
Dg11 142.09 136.39
rms error 0.01 9.67 29.22
(M H>1/2 0.00 0.00 0.00 0.00 0.00 0.00
(M )12 0.00 0.00 0.00 0.00 0.00 0.00
rms error 0.01 0.05 0.05

algorithm of Sec. Il B, with théntrinsic distributionP;(j) as  plings, and(c) dipolar data. The fourth on@) was a maxi-
weight factor and a dimensionless thresheld 0.01, pro- mum entropy combined analysis of all three data sets. In all
videsNg=14, 23 and 33 independent basis functions for thecases, the agreement between infgt, pseudoexperimen-
three bromo—alkanes. We see that, except for DBB, at leasal) observables and recalculated ones was very doout
two redundant parameters have been eliminated by this omean squarérms) error generally less tham 1%], demon-
thogonalization procedure. For each bromo—alkane, we havarating that the analysis is feasible and sufficiently well con-
performed four different maximum entropy analyses. Theditioned from a numerical point of view also for complex
first three considered only one set of observables, nafagly molecules. The recalculated values$f and Scp from the
2HNMR quadrupolar splittings(b) *HNMR dipolar cou- (@), (b) and (d) maximum entropy analyses were excellent
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FIG. 3. The four maximum entropy analys@ases a—dof simulated all—
trans (top platg and endkink (bottom plat¢ observables for DBB as de-

FIG. 4. The four maximum entropy analys@sases a—dof simulated all—
trans (top plate and endkink (bottom plat¢ observables for DBE as de-

scribed in the text. For every analysis we show the six most probable conscribed in the tex{cf. Fig. 3 for additional detai)s

formers with their total probabilitymP(j) (the multiplicity m is given
between curly bracketsThe most frequently occurring conformational se-

quences are labeled a$i]=(t,....t), [ii]=(g™tt,...t), [iii]
=(tg™t,... 1), [iv]l=(g*g"t,... 1), [v]=(g7tg*,... 1) and [vi]  mP(j) to measure the relative abundance of each conforma-
=(g7g"g", ... ).

(error less than 0.1%), especially for the combined d¢dge
and only the analysis of electric dipole momefitase ¢

tional sequence. To simplify the notation, the multiplicity
factor has been automatically includedR(j) in the follow-
ing discussion. In Fig. 3 we report the maximum entropy
results for simulated altrans (top) and end*kink (bottom
DBB. We see that the four analysés-d of all-trans data

could not recover the input order parameters. In Tables | antlave all retrieved thérans conformer as the most probable.

Il we report the results of analyséd) for the alltransand

The sharpest distribution corresponds to the combined analy-

end—kink simulated data. We now discuss the conforma-sis (d) with P(t,...t)=0.864, closely followed by the
tional information recovered from the analysis. Analyzing*HNMR case(b) with P(t, ... t)=0.783. Columngc) and

and summarizing structural information for various mol- (d) list only four conformers because the inclusion of prac-
ecules is not a trivial task. We have then chosen to presetically zero ED data forced the rejection of all sequences
the principal features of the maximum entropy distributionwith a not zero total dipole moment. Turning now to the
showing the five most probable conformations recoverednaximum entropy analyses of the simulated ekidk con-
(see Figs. 3—pand labeling the relevant sequences. The disformer (Fig. 3, botton), we see that the most probable con-
cretej states can be divided in three classes according téormation recovered for DBB is actually enkiink only for

their degeneracyn, that is: (i) m=1 for the all+4rans con-
formation, i.e.j=(t, ... t); (i) m=2 for center—symmetric
sequences where eaghuchestate appears imirror sitesj,

and IN—Kk> e.g., ji=(g"tg",....g"tg")
=(g"tg~,..., 0 tg"); (i) m=4 for nonsymmetric se-
guences, e.g., j=(t,...tg"g")=(t,...tg7g")

=(g'g™t,...)=(g"gt,...t). We use the product

caseda), (b) and(d) and that ED data alone are not sufficient
to counterbalance thiatrinsic bias for elongated configura-
tions accounted for by;(j). For a similar reason, the dif-
ference between the combined analy®§g tg*t,...t)
=0.803, and théHNMR caseP(g tg™t,... t)=0.537 is
higher than that for analyzed atlans data. Similar conclu-
sions can be drawn from the analyses of simulated data for
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all-trans (a) (b) (© (d) niques without the use of approximate mean field models to
describe flexible molecules in liquid crystal solution.
VPV RV V¥ N < VIR VOV PN e e

0210 (1)[i] 0.658 (1)[i] 0.139 (4)(iii] 0.717 ()il

¢ V. CONCLUSIONS
.’\.)\ - 4 L
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OO 0OBM 0081 (D) 0.062 i mental technique can provide sufficiently detailed data to

,k(r'\,,gr. *W‘ .Q-Q‘S_g_. W,X% give a complete representation of the orientational—
0084 G 0.028 i 00702 0021 @iv) conformational distribution for a flexible solute in liquid
crystals and that reliable conformation information for com-
¢ . \\(\ﬁ . k}% \_(\—( . . . . .
o~ 5\‘ e ¢ Vv ~ . plex molecules in anisotropic solution, particularly mol-
0058 (4) 0.024 (4) 0.060 ()] 0021 @ ecules of biological interest, can only come by carefully
s lanning various experiments using different techniques on
AAKS AR ¥ b " :
% Y\)\( 'Y’Y'\)( o T he o e the same system. Here we have proposed a unified theoreti-
cal framework to simultaneously analyze data from different
techniques using the maximum entropy method in terms of
the least biased overall orientational—conformational distri-
P P X . . . .
.Y«Ye\'}g‘ W‘;}t‘ "(*'fk,,g" .k';\';\}{*- bution. Given a molecule of. interest aqd a basic molecular
skeleton, the present technique can, first of all, assess the
0.140 (4)[v] 0.296 (4)[v] 0.139 (4)[iii} 0.484 (9)v] P . . .
feasibility of the project by constructing simulated data for

AN .N‘\’&‘ AN AN certain conformations, adding noise to a desired level if ap-

0.056 ()[V) 0012 ()[v] 0.060 (4) 0.020 (4)
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0097 (1)1 0.089 ¢t 0081 (i) 0.108 ([} propriate, and analyzing these pseudoexperimental data as
the experimental ones with the help of any prior existing
J\’, . A - -¢ = . . . . . . .
g Yha SN ,e—? e - information. Various candidate techniques can be tried until
00 B 0086 (DL 0.0702) 0081 @ a promising combination of experiments is found. We have
NN o ¢ X Mo demonstrated the method on terminally dibrominated alkanes
SO \h)l&( RAA S data considering simulateétiNMR, 2HNMR and dielectric

0.047 (4) 0.040 (4) 0.060 { 0.049 P .
a @ observables. Summarizing, we notice that for these mol-

'krkrl‘)f AJ\,J\‘,&, ';{—*)"s—g, YN ecules, 'THNMR data are the most useful, followed by

HNMR and dielectric. Dielectric data alone are not really

informative enough to provide a reliable conformational dis-

tribution, in particular for the longest alkyl chaifbBO).

FIG. 5. The four maximum entropy analys@ases a—dof simulated all— Nevertheless Combining dielectric data wWiHNMR cou-

trans (top plate and endkink (bottom plate observables for DBO as de- . - . .

scribed in the textcf. Fig. 3 for additional details plings considerably improves the maximum entropy results.
This synergistic effect is smaller if we merdeNMR split-

tings to'HNMR couplings. Other techniques can be brought

. into play and we expect NOE data, already very useful in
DBE and DBO(Figs. 4 and j Except for the(c) case, the isotropic solution, to be particularly important. We hope the

trans conformer is the most probable for analyses of Simu_availabilit of a relatively simple data analysis framework
lated alltrans DBE (Fig. 4, top. Again, the sharpest result is y y P Y

i such as the present one will stimulate the combined experi-
that of combined casg), closely followed by theHNMR ments needed to provide the much needed leap in the inves-

(b) case. The synergy of combined techniques is more eV"figation of conformational and rotational—-conformational
dent for the endkink observablegFig. 4, bottom. The re- distribution in solution

trieved probability almost doubles,P(g tg*t,...t) '

=0.680, including?HNMR and ED data to the analysis of

'HNMR data which only givesP(g tg*t,... t)=0.342. ACKNOWLEDGMENTS
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