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A multitechnique maximum entropy approach to the determination
of the orientation and conformation of flexible molecules in solution

R. Berardi, F. Spinozzi, and C. Zannoni
Dipartimento di Chimica Fisica e Inorganica, Universita` degli Studi di Bologna, Viale Risorgimento 4,
40136 Bologna, Italy

~Received 9 January 1998; accepted 4 June 1998!

We present a maximum entropy method that allows the simultaneous analysis of different types of
experimental data in order to obtain conformational information on flexible molecules in solution.
We consider various NMR observables~dipolar, quadrupolar, J-couplings, nuclear Overhauser
enhancements!, and dielectric and neutron scattering techniques, and we express them using a
common formalism in terms of orientational–conformational order parameters. We then show how
these observables can be inverted in structural information allowing for continuous or discrete
internal degrees of freedom and for any available prior information. We demonstrate the
potentialities of the method on simulated1HNMR, 2HNMR and dielectric data for some terminally
halogenated alkyl chains and show the improvement in conformational analysis obtained by
simultaneously analyzing different and complementary data sets. ©1998 American Institute of
Physics.@S0021-9606~98!50734-9#
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I. INTRODUCTION

The determination of the conformations of flexible mo
ecules in solution and of their coupling to the overall m
lecular orientation is a classical problem in chemical phys
that is receiving renewed experimental and theoret
attention.1 On the experimental level, progress in the det
mination of homo-2 and heteronuclear3 dipolar couplings,4,5

as well as of quadrupolar couplings6 and nuclear Overhause
enhancements~NOE! data7–10 has vastly improved the col
lection of available NMR tools.11 Other classical technique
like the determination of quantities related to the dipole m
ment, such as the dielectric constant,12,13 have also long
served the quest for conformational determination. On
theoretical side, the extremely difficult task of extracti
conformational information from the data has been tack
with a number of treatments.6,14,15 However, most of these
methods rely on the use of mean field theory and it is
always clear if and how this approximate treatment infl
ences the results. In practice, the effective potential energ
a molecule in a liquid crystal solutionU(v,F), depending
on orientationv and conformationF, is written as

U~v,F!5U int~F!1Uext~v,F!, ~1!

whereU int(F) is the intramolecular energy of the isolate
molecule andUext(v,F) represents the interaction betwe
the molecule and the molecular field created by all the ot
molecules. In general, the internal part represents a prop
of the isolated molecule. For example, considering al
chains, as we are particularly interested in doing here,
first part could contain the internal energy differenceEg be-
tween thetrans andgauchestates of a C–C bond in the ga
phase. The external energyUext(v,F) can in general be di-
vided into an isotropic and an anisotropic term,

Uext~v,F!5Uext
iso~F!1Uext

aniso~v,F!. ~2!
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The first termUext
iso(F) is often treated as a correction dete

mined by the solvent to the intramolecular energyU int(F),
while the second term contains the contribution to the to
energy depending on the orientational order. In various
proaches proposed in the literature,1,2,6,16,17a nonrigid mol-
ecule is considered as a collection of biaxial rigid confor
ers, whose ordering matrix is estimated using mean fi
theory. In the low solute concentration limit of this type
theory ~see, e.g., Ref. 18!, the effective orientational poten
tial acting on a rigid molecule in a uniaxial phase is only
function of the orientational order parameters of the solv
molecules, normally assumed to be rigid and uniaxial and
a biaxiality parameter for the solute. The approaches
have been used in the literature differ in the way the bia
ality parameter is calculated for each conformer. Here
mention only a few of the most important ones: theelastic
continuummodel of Burnell and coworkers~VKB !,17 thebox
shapemodel of Straley,19 the surface tensormodel of Fer-
rarini et al.15 and thechord model of Photinoset al.6 In the
elastic continuum model,17 the molecular structure is ap
proximated with a collection of van der Waals spher
placed at the atomic centers. The potentialUext

aniso(v,F) rep-
resents the elastic energy, with the molecular deforma
represented by the minimum circumference traced by
projection of the solute molecule in the conformerF onto a
plane perpendicular to the director of nematic phase. T
first size and shapemodel has been extended in vario
ways,20,21 in particular taking into account the length of th
projection of the molecule along the director. The mod
seems particularly suited to cases where the nematic sol
is one of the so-calledcompensated mixtureswhere the elec-
tric field gradient vanishes.17,20,21 The Straley model19 as-
sumes that ordering is based on the molecular shape
approximates this as a rectangular box of a certain len
~L!, breadth~B! and width~W!, calculated from the semiaxe
2 © 1998 American Institute of Physics
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of the inertia ellipsoid, containing the molecule in theF
conformation. The model also contains an adjustable par
eter that characterizes the molecule–field interaction.
surface model15 assumes that a local vector normal to ea
surface element of the solute tends to be aligned perpend
lar to the director. The solute–solvent interaction tenso
then evaluated by estimating the surface area along diffe
axes of the molecule. Finally we have thechord model for
alkyl chains,6 where the anisotropic part of the potential co
tains two terms that represent, respectively, the alignmen
the separate C–C bond and the alignment of thechord con-
necting the midpoints of adjacent C–C bonds. These mo
have been employed to extract conformational informat
on various types of chains. In particular Pines a
coworkers,22 Polson and Burnell21 and Luzaret al.23 have
used them to analyze NMR proton–proton dipolar couplin
Di j data for various alkanes ranging from butane to dec
in liquid crystal solution. An assumption central to the
treatments is that the ordering of a conformer can be p
dicted by some single molecule property and its attend
molecular biaxiality. However, this is by no means esta
lished, even for a simple rigid molecule. For instance,
have recently examined the ability of various mean fi
models mentioned before to predict the ordering of sim
rigid biaxial molecules, considering a set of 9,10 substitu
anthracenes in the nematic ZLI1167, and found that none
actually reliably predict the observed biaxiality and its te
perature dependence.24 On a rather different note we hav
proposed25 an approach that uses maximum entropy26 to try
to determine the flattest orientational–conformational dis
bution compatible with a set of experimental data. T
method is a data inversion technique and does not rely
mean field theory and on the specific types of solute–solv
interactions being assumed. Maximum entropy meth
have been applied by various authors to problems
dynamics,27,28 as pioneered by Berne and to the determi
tion of orientational distributions for rigid molecules.29,30We
have applied the method to the analysis of NMR proton
polar coupling data for simple rotameric molecules31–33 and
more recently to the much more complex case of flexi
chains34 in nematic solution. We have found that the a
proach can successfully recover conformer distributions e
for alkyl chains provided certain favorable conditions exi
One is the availability of some prior information, for ex
ample the possibility of using the rotational isomeric st
~RIS! model,35 we have shown how to implement.34 The
other, and actually the only real limiting factor for th
method, is the availability of a sufficiently large number
independent experimental results. NMR dipolar couplin
constitute a particularly useful set of data, but in practice
complications associated with the analysis of the NMR sp
tra as the number of protons grows present serious lim
tions. Moreover, the NMR dipolar couplings do not conta
purely scalar or rank other than second contributions
could provide additional terms needed for a full reconstr
tion of the conformational distribution@cf. Eq. ~8!#. Another
possibility, which is potentially the most promising, is that
performing various experiments using different complem
tary techniques and combining the results from the vari
-
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approaches. For instance, deuterium NMR experiments
vide average nuclear quadrupolar couplings that, e
though mainly related to the C–D bond examined, can
affected by the orientation of the bond itself with respect
the molecular frame and thus, ultimately, by molecular co
formations. For molecules possessing polar groups, the o
all molecular dipole will vary with conformation, and indee
dipole moment analysis has been one of the first techniq
used to attack the conformational problem.12 Other poten-
tially useful observables are3J vicinal spin–spin couplings
nuclear Overhauser enhancements and neutron scatt
~NSC! data. Clearly keeping into account the results com
from different techniques has often been attempted~see, e.g.,
Refs. 36 and 37!. We believe, however, that the most pow
erful way of using various techniques efficiently is not th
of analyzing each set of data independently in the usual w
and only then combining the results. On the contrary,
think that combining the various input data and analyz
them together with the maximum entropy approach co
provide the most effective way of obtaining a
orientational–conformational distribution that complies
the available experimental knowledge. In this paper we w
to provide the basis for such a combined effort and we
velop the required theoretical expressions using a comm
formalism for the various techniques. We shall also dem
strate the approach considering NMR dipolar couplin
NMR quadrupolar and electric dipole information in th
analysis of some terminally halogenated alkyl chains.

II. THEORY

We consider the rather general case of a flexible mu
rotor molecule, treated as a set ofN rigid fragments linked
by N21 bonds25,34 ~cf. Fig. 1, top!. Each rotor has its loca
reference systemMk and the relative conformation of adja
cent fragmentsMk , Mk11 is defined by a dihedral anglefk .
The overall conformational state is then specified by the
F[(f1 , . . . ,fN21), and we assume as reference conform

FIG. 1. Schematic representation of a general multirotor molecule show
the rigid framesMk and dihedral anglesfk ~top!, and the spherical angle
ak , bk ~bottom! defining the orientation of bondk linking the neighboring
framesMk andMk11.
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tion that with all anglesfk50. In the case ofcontinuous
degrees of freedom, each anglefk can assume any real valu
in the range@0,2p#. However, in a number of cases, adis-
crete treatment, exemplified by the rotational isomeric st
model of Flory,35 in which the anglesfk take only some
~typically three! discrete valuesfk

( j ) — or more simplyj k —
is well established. For alkyl chains, these values are
so-called trans, gauche1 and gauche2 states withfk50,
62p/3 as typical values. The Euler anglesv[(a,b,g)38

describe the rotation from the laboratory system LAB, w
the Z axis along the director of the mesophase, to the fi
~‘‘ rigid’’ ! fragmentM1 and define accordingly the molecula
orientation.

A. Orientational–conformational distribution

The most complete information at a one–particle le
on a flexible molecule in a uniform anisotropic solution
given by the singlet orientational–conformational distrib
tion P(v,F), with the normalization condition

E dvdFP~v,F!51. ~3!

The purely conformational distributionP(F) is obtained by
partial integration with respect to the orientational variab

P~F!5E dvP~v,F!. ~4!

The orientational–conformational distribution can be fo
mally considered as an averaged product of Dirac delta fu
tions that counts the particles in the various intervals

P~v,F!5^d~v2v8!d~f12f18!

3d~f22f28! . . . d~fN212fN218 !&v8,F8 ,

~5!

where the symbol̂ . . . &v8,F8 represents the average in th
space of primed variables. Equation~5! can be written using
the representation of the two types of angulard functions in
an orthogonal basis of Wigner matrices38 as

d~v2v8!5 (
L50

`

(
m52L

L

(
n52L

L S 2L11

8p2 DDm,n
L* ~v!Dm,n

L ~v8!,

~6!

and in a Fourier basis as

d~fk2fk8!5
1

2p (
m52`

`

eim~fk2fk8!. ~7!

In this way we obtain the expansion

P~v,F!5 (
L,m,n;a1 , . . . ,aN21

F 2L11

8p2~2p!N21G
3pm,n;a1 , . . . ,aN21

L Wm,n;a1 , . . . ,aN21

L ~v,F!, ~8!

where the mixed Wigner–Fourier basis functionsW are de-
fined as
e

e

t

l

-

s

-
c-

Wm,n;a1 , . . . ,aN21

L ~v,F!

[Dm,n
L* ~v!exp$ ia1f11 . . . 1 iaN21fN21%. ~9!

The expansion coefficientspm,n;a1 , . . . ,aN21

L are theorder pa-

rametersfor the orientational–conformational problem,

pm,n;a1 , . . . ,aN21

L 5E dvdFP~v,F!Wm,n;a1 , . . . ,aN21

L* ~v,F!

~10!

[^Wm,n;a1 , . . . ,aN21

L* ~v,F!v,F&. ~11!

These order parameters form an infinite set that fully
scribes the molecular orientational–conformational order
particular, we find as special cases the usual Saupe orde
matrix components Szz5^P2&5p0,0;0,. . . ,0

2 , Sxx2Syy

5A6 Rê D0,2
2 &5A6 Rep0,2;0 . . . ,0

2 and Sxz5A3/2 RêD0,1
2 &

5A3/2 Rep0,1;0 . . . ,0
2 , whereSi j are elements of the Saup

ordering matrix.39 From the expansion coefficients we ca
compute the orientational order parameters measuring
average orientation of reference frameMk with respect to the
LAB system. These are the order parameters of the sin
fragmentsk. For clarity, we consider simply connected stru
tures and we callV2 the Euler angles measuring the orie
tation of frameM2 with respect toM1 in the reference con-
formation, V3 the orientation of frameM3 with respect to
M1 and so on, untilVk . We also callak and bk the polar
angles, measured with respect to frameMk , defining the
local orientation of the chemical bond associated with
dihedral anglefk , as shown in Fig. 1~bottom!. Using these
definitions and measuring all orientations and angles w
respect to the reference conformation we obtain the pu
orientational order parameters of frameMk as

^Dm,n
L &Mk

5 (
a1 , . . . ,ak21
b1 , . . . ,bk21

pm,a1 ;b1 , . . . ,bk21,0, . . . ,0
L

3Ga1 , . . . ,ak21 ,b1 , . . . ,bk21 ,n
L , ~12!

where we write pm,a1 ;b1 , . . . ,bk21,0, . . . ,0
L to indicate

pm,a1 ;b1 , . . . ,bk21 ,ak , . . . ,aN21

L with all subscripts, if any, from

k to N21 equal to zero.

Ga1 , . . . ,ak21 ,b1 , . . . ,bk21 ,n
L

5 (
r 1 , . . . ,r k21

F )
s51

k21

Ras ,bs

L ~as ,bs!Rr s ,bs

L* ~as ,bs!G
3F )

s52

k21

Dr s21 ,as

L ~Vs!GDr k21 ,n
L ~Vk!, ~13!

Rm,n
L ~a,b![e2 inadm,n

L ~b!, ~14!

and dm,n
L (b) are small Wigner matrices.38 The coefficients

Ga1 , . . . ,ak21 ,b1 , . . . ,bk21 ,n
L are defined in terms of geometrica

parameters that are characteristic of the given molec
skeleton and are not modulated by molecular orientatio
and conformational changes. The orientational order par
eters^Dm,n

L &Mk
are then a linear combination of coefficien

pm,n;a1 , . . . ,aN21

L , weighted by the constant geometricalG co-
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efficients. We can now apply these general transforma
rules to the case of alkyl chains. For simplicity, we fix re
erence frameM1 in a terminal molecular fragment. The re
maining systemsMk are collinear toM1, with the zk axis
parallel to the direction of full molecular elongation and t
xk axis pointing along the symmetry axis of each HĈ
group, on the same side of the H atoms~cf. Fig. 2!. Assum-
ing the CCĈangleu to be equal for all fragments, we defin
c[(p2u)/2, and using Eqs.~12!–~14!, we write thekth
frame order parameter as

^Dm,n
L &Mk

5 (
a1 , . . . ,ak21
b1 , . . . ,bk21

~2 !a21a41 . . . 1a[k/2]

3pm,a1 ;b1 , . . . ,bk21 ,0, . . . ,0
L

3da1 ,b1

L ~c! . . . dak21 ,bk21

L ~c!

3da2 ,b1

L ~c! . . . dn,bk21

L ~c!, ~15!

where@k/2# is the integer part ofk/2. In the case ofdiscrete
conformations, we introduce the singlet distribution functi
P(v,j ) representing the probability of finding a molecu
with orientation within the range@v,v1dv# and conforma-
tion j[( j 1 , . . . ,j N21). In this case the normalization cond
tion becomes

(
j
E dvP~v,j !51. ~16!
e
C

he
ur
is
u

le
et
n
e
t

n

Again, the conformational distributionP( j ) is obtained by
partial integration

P~ j !5E dvP~v,j !. ~17!

The orientational–conformational order parameters are

pm,n; j 1 , . . . ,j N21

L 5E dvP~v,j !Dm,n
L ~v!, ~18!

and they are the expansion coefficients of the orientatio
distribution function for the molecule in a fixed conform
tion j . For alkyl chains described using thediscrete RIS
model @cf. Eq. ~12!#, we have

FIG. 2. The rigid fragment coordinate framesMk , the dihedral anglesfk

and the proton numbering scheme adopted for the terminal di-bromon–
alkanes~1,8-di–bromo–octane shown!. The reference conformation is all–
trans.
^Dm,n
L &Mk

5(
j

pm,n; j 1 , . . . ,j N21

L (
a1 , . . . ,ak21
b1 , . . . ,bk21

~2 !a21a41 . . . 1a[k/2]e$2 ib1f
1
~ j 1!

2 . . . 2 ibk21f
k21
~ j k21!

%

3da1 ,b1

L ~c! . . . dak21 ,bk21

L ~c!da2 ,b1

L ~c! . . . dn,bk21

L ~c!. ~19!
wn
n

le

rib-
ble
b-

ing
The knowledge of these order parameters^Dm,n
L &Mk

is suffi-
cient to calculate any single particle and bond observabl
an alkyl chain. For instance, the order parameter for a
bond in a methylene group, often measured from2HNMR

experiment asSCD, can be written asSCD52 1
2 Szz1

1
2 (Sxx

2Syy)cosx, where Szz5^D0,0
2 &Mk

, Sxx2Syy

5A6 Rê D0,2
2 &Mk

andx is the HCĤbond angle.

B. Multitechnique data combination

We now introduce a rather general formalism for t
simultaneous analysis of experimental data sets meas
with different techniques. To do so, it is necessary to dev
a suitable symmetrization and to determine a scheme of m
titechnique linearly independent combination of observab
The symbolFm,i identifies thei–th observable in the data s
provided by techniquem, and described by the functio
@Fm,i #LAB(v,F) referred to a common laboratory frame. Th
experimental measure of each observable is related to
of
H

ed
e
l-

s.

he

average of the corresponding function over the unkno
single particle orientational–conformational distributio
P(v,F),

^@Fm,i #LAB&5E dvdF@Fm,i #LAB~v,F!P~v,F!. ~20!

The functionsFm,i can be expanded in terms of irreducib
spherical components as

@Fm,i #LAB~v,F!5 (
L50

`

(
m52L

L

@Fm,i #LAB
L,m ~v,F!, ~21!

where the number of tensorial components actually cont
uting to the expansion is dictated by the particular observa
@Fm,i #LAB . For instance, considering second rank NMR o
servables, only the components withL52 can be different
from zero. On the other hand, for measurements com
from scattering techniques~e.g., x–rays or neutrons!, com-
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ponents of every rankL can, in principle, contribute. Trans
forming spherical components to frameM1 , it is possible to
write an equivalent expansion,

@Fm,i #LAB~v,F!5 (
L50

`

(
m52L

L

(
n52L

L

Dm,n
L* ~v!

3@Fm,i #M1

L,n~F!. ~22!

All observable functions@Fm,i #LAB(v,F) should be symme-
trized according to both molecular symmetry and the ot
transformations characteristic of the measurement. This
eration could reduce the number of observable data. Fo
stance, in the case of a molecule with two identical roto
one needs to symmetrize the NMR dipolar or quadrupo
couplings with respect to a fragment exchange.33 There are at
least two equivalent ways of performing the symmetrizati
The first, more general method, applies projection opera
to accomplish symmetrization with respect to the operati
corresponding to the various degrees of freedom, that is:
local conformational symmetry of the single rotor40,41; the
symmetry of the whole molecule in an arbitrary conform
tional stateF; the symmetry of the mesophase and, fina
that of the experiment. The second method is often used
instance, in NMR spectra interpretation. It is based
equivalent nuclei or pairs of nuclei and implies averag
over these. The two schemes give completely equivalen
sults. An example of this second symmetrization sche
using NMR techniques, will be given in Secs. III A–III C. I
order to perform a combined analysis using functions rep
senting different physical properties~i.e., with different tech-
nique labelsm), it is useful to transform these functions to
dimensionless form. To do this, for each techniquem we find
the maximum absolute value — max$u@Fm,i #LAB(v,F)u%m —
of all functionsi over a certain orientational–conformation
grid and we use this result to renormalize each observ
Fm,i . Using this prescription all functions are scaled with
the dimensionless range@21,1#. In addition, using observ
ables with similar magnitudes is preferable from a pur
numerical point of view. The combined scaling
symmetrization procedure leads to

@Fm,i
S #LAB~v,F!5

wm

max$u@Fm,i #LAB~v,F!u%m

3
1

nS
(
S51

nS

OS@Fm,i #LAB~v,F!, ~23!

where each projection operatorOS corresponds to one of th
nS symmetry operations, andwm is a factor that can in prin-
ciple be used to weight the different techniquesm according
to their sensitivity and reliability. Here we shall usewm

51. We suppose now to haveNm experimental data for the
m –th technique. The total number of symmetrized obse
ables becomesNF5(m51

M Nm , where M is the number of
different techniques considered. The orientationa
conformational information that can be extracted from
whole group of different techniques depends onNF but not
all of these observables will necessarily add new inform
tion. Thus, before considering the different experimental d
r
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n-
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and analyzing them, it is important to determine a set
suitable linearly independent combinations. A systema
way of doing this is through the introduction of a scal
product between two fixed observable functions in the LA
frame.33 For thecontinuouscase we have

~@Fm,i
S #LABu@F m8,i 8

S
#LAB !

5 (
L,m,L8,m8

E dvdF@Fm,i
S* #LAB

L,m ~v,F!

3@F m8,i 8
S

#LAB
L8,m8~v,F!

5(
L,n

8p2

2L11E dF@Fm,i
S* #M1

L,n~F!@F m8,i 8
S

#M1

L,n~F!, ~24!

where the simplification has been carried out using the
thogonality of Wigner matrices.38 The integration with re-
spect to the conformational variables can be computed
merically. For thediscrete conformations case we obtai
instead

~@Fm,i
S #LABu@F m8,i 8

S
#LAB !

5 (
L,m,L8,m8

E dv(
j

@Fm,i
S* #LAB

L,m ~v,j !@F m8,i 8
S

#LAB
L8,m8~v,j !

5(
L,n

8p2

2L11(j
@Fm,i

S* #M1

L,n~ j !@F m8,i 8
S

#M1

L,n~ j !. ~25!

The scalar productsVIJ5(@F I
S#LABu@F J

S#LAB) are the ele-
ments of a symmetricNF3NF overlap matrixV, where we
have introduced the symbolI and J to label the pair (m,i )
and (m8,i 8). The dimensionNG ~with NG<NF) of the func-
tion space spanned by the observables is then found di
nalizing V using standard techniques of linear algebra. T
NK eigenvalues which are zero within a given thresholdt
>0 are discarded and the remainingNG5NF2NK orthogo-
nal eigenvectors corresponding to the eigenvalues larger
t are normalized. We callZ the NF3NG matrix containing
theNG eigenvectors as its columns. Thus we identify a se
NG orthogonal basis functions,

@GI #LAB~v,F!5 (
J51

NF

@F J
S#LAB~v,F!ZJI

5 (
L50

`

(
m52L

L

(
n52L

L

Dmn
L* ~v!@GI #M1

L,n~F!.

~26!

In a similar fashion this transformation rule defines the line
combinationŝ @GI #LAB& of the experimental data to be use
as observables,

^@GI #LAB&5 (
J51

NF

^@F J
S#LAB&ZJI . ~27!

C. Combined techniques maximum entropy
distribution

Following information theory26 we can define the en
tropy functional associated with a certain distribution as
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S@P~v,F!#52E dvdFP~v,F!log@P~v,F!#. ~28!

According to maximum entropy42,43 ~ME!, the best~least bi-
ased! approximation to the true distribution that can be
ferred from the experimental data is

P~v,F!5
1

Z0
expH (

I 51

NG

l I@GI #LAB~v,F!J , ~29!

where we have used the functions@GI #LAB(v,F) corre-
sponding to the linearly independent experimental obse
ableŝ @F I

S#LAB&. Notice that the set of available experimen
determines the numberNF of observableŝ @F I

S#LAB& and
their NG linearly independent combinations^@GI #LAB&. The
normalization termZ0 is defined as

Z0~$l%!5E dvdF expH (
I 51

NG

l I@GI #LAB~v,F!J , ~30!

and $l%[$l1 , . . . ,lNG% is a set of variational parameter
The practical determination of the maximum entropy dis
bution is performed defining a suitable free energylike c
vex functional,42,43

G~$l%!5 ln Z0~$l%!2(
I 51

NG

l I^@GI #LAB&, ~31!

and optimizing the set of$l% parameters until the absolut
minimum of G($l%) is found. The convexity of the pseudo
free energyG($l%) ensures the existence of the optim
solution.43 Equation~29! is the maximum entropy distribu
tion function when noa priori knowledge for the system i
available. The maximum entropy approach does not req
further assumptions in the case that a sufficiently high nu
ber of data exists. On the other hand, since the maxim
entropy method strictly performs an inversion of experime
tal data it cannot be of help if no such information exists.
a consequence of its nature, the maximum entropy distr
tion is inevitably isotropic~i.e., flat! when no experimenta
data ~i.e., NG50) are available. However, as is often th
case, someintrinsic information, or well assessed knowledg
from previous investigations, may be available and the
periments at hand could actually be used to complement
information rather than being required to ignore it.34 This
prior information could be the knowledge of some importa
details on the molecular structure, e.g., van der Waals r
or other geometrical constraints hindering certain confo
ers. Constraints obtained from molecular dynamics simu
tions have also been recently proposed.44 If the intramolecu-
lar energy of the isolated moleculeU int(F) is known we
could even calculate a completeintrinsic45 conformational
probability Pi(F). In general, following a Bayesian
approach,45 we can then write

P~v,F!5~1/Z!Pi~F!Pe~v,FuPi !, ~32!

where thea priori distribution Pi(F) plays the role of a
weight factor for the conformational states, resulting fro
the known intramolecular interactions for the molecular sk
eton. The second termPe is the external ~i.e., posterior!
distribution that we estimate applying the maximum entro
v-
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principle to the analysis of experimental data, while the co
stantZ allows the distributions to be separately normalize
In condensed fluid phases,Pe(v,FuPi) describes how
packing,46 and more generally the solvent, affects the act
configuration (v,F) given the underlying distribution
Pi(F) for the isolated molecule. The application of th
maximum entropy algorithm is then restricted to the part
the full orientational–conformational distribution which
still unknown, namelyPe , described by Eq.~29!. Further-
more, theintrinsic distribution plays the role of a weigh
factor for conformations, and the overlap matrix eleme
@cf. Eq. ~24!# become

VIJ5(
L,n

8p2

2L11E dFPi~F!@F I
S* #M1

L,n~F!@F J
S#M1

L,n~F!.

~33!

All integrals over the conformational variablesF are modi-
fied in a similar fashion to include theintrinsic distribution
Pi(F). Using a discrete RIS approximation the
orientational–conformational distribution@cf. Eq. ~32!# be-
comes

P~v,j !5~1/Z!Pi~ j !Pe~v,j uPi !. ~34!

Again, the three statesgauche6 andtranscan be assumed to
have the samea priori probability. More generally, taking
advantage of previous knowledge allows writing theintrinsic
distribution as

Pi~ j !} f ~ j !expH (
k51

N21

Egk
* d j k ,tJ , ~35!

where Egk
* 5Egk

/kBT is the dimensionless energy of

gauchewith respect totrans for thekth conformational bond
at temperatureT (kB is the Boltzmann constant! and d j k ,t

51 if the state istrans ~t! and zero otherwise. Othera priori
conformational knowledge can be easily built in by means
the filter function f ( j ). For instance, this function can b
taken to be zero or one if a conformation is sterically h
dered or not, leading to the numbernT of accessible confor-
mations (nT<3N21). The maximum entropy analysis ca
also be performed taking into account the extent of exp
mental data uncertainties and their effect on the distribut
function compatible with the available physical observabl
To do so, we assume that allNF experimental observable
functions^@F I

S#LAB
L,m & have been sampled from Gaussian d

tributions of variances i ~estimated from experimental erro
ranges!. We then generateM additional data sets by sam
pling with a Monte Carlo method fromNF Gaussians of
width s i centered at the experimental values^@F I

S#LAB
L,m &. The

sampling intervals are generally6ps i , with p53, while
M550 is usually sufficient for most cases.33 Each generated
data set is then separately analyzed with the maximum
tropy algorithm to obtain a distributionP(m)(v,F). The re-
sulting set ofM11 distributions is finally combined to de
fine the average orientational–conformational distribution

P̄~v,F!5
1

M11 (
m50

M

P~m!~v,F!. ~36!
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Using this prescription it is possible to compute other dis
bution functions for the system studied. For instance, fr
each P(m)(v,F) we can obtain by partial integration th
distributionP(m)(fk) for a single conformational anglefk ,
and after averaging, the distributionP̄(fk). We can also
calculate for each configuration (v,F) a local standard de
viation using the equation

sv,F
2 5

1

M (
m50

M

@P~m!~v,F!2 P̄~v,F!#2, ~37!

and thus we can estimate the uncertainty on our maxim
entropy results. The same procedure can be employed to
culate the error on order parameters.

III. PHYSICAL OBSERVABLES

The combined approach can be used, in principle, w
any experimental technique, providing physical observab
modulated by the conformational distribution. Here, we co
sider various techniques frequently used independently
we briefly describe how their observables can be treated
unified way with a maximum entropy analysis.

A. NMR quadrupolar splittings

The first observables we examine are the nuclear qua
polar splittings, measured from NMR spectra in anisotro
solvents.4,6,16,37,47–49A nucleusk with spin I k>1, notably a
deuteron2H, has an electric quadrupole moment differe
from zero. For a nuclear spinI k in a given local chemica
environment~e.g., alyphatic or aromatic C–D bond, etc.! the
quadrupole coupling tensorqk is11

qk5
eQk

2\I k~2I k21!
Vk , ~38!

whereQk andVk are the quadrupole moment and the elec
field gradient tensor at the site of nucleusk, measured with
respect to the molecular reference frameMq , which makes
qk diagonal and with biaxiality hk[(@qk#yy

2@qk#xx)/@qk#zz. The tensorqk is traceless and thus it ca
be measured only in anisotropic phases. In particular,
uniaxial liquid crystals, the only relevant component
^@qk#ZZ&, whereZ is the laboratory magnetic field directio
that we take to be parallel to the mesophase director. U
irreducible spherical components we can write

@qk#LAB
2,0 ~v,F!5@qk#Mq

2,0 (
n522

2

D0,n
2* ~v!H Dn,0

2* @vq~F!#

2
hk

A6
@Dn,2

2* @vq~F!#1Dn,22
2* @vq~F!##J ,

~39!

wherevq represents the Euler angles that describe the r
tion from the systemM1 to the systemMq . For a single
deuteron the NMR spectrum contains a doublet, and the
erage value of this quadrupolar component obtained from
splitting can be written as
-

m
al-

h
s
-
nd
a
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t
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r

g

a-

v-
e

^@qk#LAB
2,0 &5@qk#Mq

2,0 (
n522

2 H Dn,0
2* ~vq8!

2
hk

A6
@Dn,2

2* ~vq8!1Dn,22
2* ~vq8!#J

3 (
a1 , . . . ,aj 21

b1 , . . . ,bj 2152

2

p0,a1 ;b1 , . . . ,bj 21,0, . . . ,0
2*

3Ga1 , . . . ,aj 21 ,b1 , . . . ,bj 21 ,n
2* , ~40!

where nowvq8 are the Euler angles that describe the rotat
from the systemM j ~in which we suppose the spink! to Mq .
We see that only a finite subset of order orientationa
conformational parameters is sufficient to fully describe
average quadrupolar splittings. The quadrupolar tensor bi
ality hk is usually small and it is common practice, at lea
for aliphatic chains, to usehk50 in 2HNMR calculations.
The quantities directly measured from the spectrum are
quadrupolar splittingsDnk ~i.e., the separation of a deutero
doublet! related to the averaged spherical components as

Dnk5
3

2
^@qk#ZZ&[S 3

2D 1/2

^@qk#LAB
2,0 &. ~41!

If the bond orientationvq is modulated by some conforma
tional degrees of freedom, the tensorqk contains information
on both molecular orientationv and conformational struc
ture F. If framesM1 andMq are equivalent, we have

Dnk5
3eVkQk

4\I k~2I k21!
^P2~cosuk!&, ~42!

whereuk is the angle between the C–D bond and magne
field directions, andVk is thez component ofVk measured in
frame Mq . As already mentioned in Sec. II B, the symm
trization of noninteracting quadrupolar coupling@qk#LAB

2,0 is
usually performed considering the set ofnP equivalentdeu-
terons. In this case, the symmetrized dimensionless qua
polar coupling becomes

@qk
S#LAB

2,0 ~v,F!5S 2

3D 1/22\I k~2I k21!

eVkQk

3
1

nP
(
P51

nP

@q$k%P
#LAB

2,0 ~v,F!, ~43!

where$k%P is one of thenP equivalent deuterons.

B. NMR dipolar couplings

The dipolar coupling tensorT i j between a pair of nucle
i andj with gyromagnetic ratiosg i andg j can be written as4

T i j 52
hg ig j

8p2r i j
5 ~3r i j ^ r i j 2r i j

2 I !, ~44!

whereh is the Planck constant,I is the 333 identity matrix,
and r i j 5r j2r i is the internuclear vector of lengthr i j defin-
ing the relative position of nucleii and j with respect to the
laboratory reference frame. Since the trace ofT i j is zero,
NMR dipolar effects cannot be measured in isotropic flu
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phases. Anisotropic uniaxial solvents are commonly use
record NMR spectra of probe molecules, and the avera
^@Ti j #ZZ& are the only nonzero components measurable
these uniaxial phases, whereZ is the laboratory magnetic
field direction, which is supposed to be collinear to the m
sophase director. These averages are related to the di
couplingsDi j as

Di j [^@Ti j #ZZ&5~ 2
3!

1/2^@Ti j #LAB
2,0 &

52
hg ig j

4p2 K P2~cosu i j !

r i j
3 L , ~45!

whereP2 is the second Legendre polynomial andu i j is the
angle between the internuclear vectorr i j and the direction of
the magnetic field. In general, bothr i j andu i j will depend on
molecular orientation and conformation, thus dipolar co
plings can be useful for recovering geometrical distribut
functions. The spherical components@Ti j #LAB

2,0 (v,F) mea-
sured in the laboratory frame are related to those referre
the first molecular systemM1 ,

@Ti j #LAB
2,0 ~v,F!5 (

n522

2

D0,n
2* ~v!@Ti j #M1

2,n~F!

52S 3

2D 1/2hg ig j

4p2 (
n522

2

D0,n
2* ~v!

3
Dn,0

2* @v i j ~F!#

r i j
3 ~F!

. ~46!

The factor@Ti j #M1

2,n (F) could be expanded in Fourier serie

to give

@Ti j #M1

2,n~F!5 (
a1 , . . . ,aN2152`

`

@Ti j #a1 , . . . ,aN21

2,n

3exp$ ia1f11 . . . 1 iaN21fN21%, ~47!

where the coefficients@Ti j #a1 , . . . ,aN21

2,n are fixed once the

skeleton form is given. Substituting in Eq.~46! and averag-
ing, we obtain the average dipolar couplings in terms of
infinite set of order parameters

^@Ti j #LAB
2,0 &5 (

n522

2

(
a1 , . . . ,aN2152`

`

p0,n;a1 , . . . ,aN21

2*

3@Ti j #a1 , . . . ,aN21

2,n . ~48!

Similarly to Eq. ~43!, the spherical components of dipola
couplings are symmetrized with respect to equivalent nuc
pairs ~see Sec. II B! and scaled to dimensionless variables

@Ti j
S#LAB

2,0 ~v,F!5S 2

3D 1/24p2 min$r i j
3 %

hg ig j

1

nP
(
P51

nP

3@T$ i j %P
#LAB

2,0 ~v,F!, ~49!

where$ i j %P is one of thenP equivalent pairs and min$rij
3% is

the minimum attainable distance for any of these pairs. T
standard application of the method has been to proto
proton dipolar couplings but this has a strong limitation b
to
ed
in

-
lar

-

to

n

ar

e
–
-

cause the spectral complication increases with the numbe
coupled protons. An important development is the possibi
of using low ordered lyotropic solvents to limit the numb
of observable couplings.5 Near magic angle spinning has als
been proposed as a way of reducing dipolar couplings i
controlled way and obtaining order parameters for large m
ecules in liquid crystals.50 These methods have opened t
application of conformational investigations based on dipo
coupling observables to proteins and other macromolecu
Recently the possibility of studying CH dipolar coupling
has also been practically demonstrated.2 Apart from this
practical limitation on the number of couplings, another lim
of Di j ~and of theDnk) is that they vanish in isotropic solu
tion. However, quadrupolar and dipolar couplings are by
means the only NMR observables sensitive to internal m
tions. In what follows we examine two more.

C. NMR vicinal spin–spin couplings

The vicinal nuclear spin–spin coupling3Ji j between a
pair of nuclei i and j separated by three chemical bond
depends on the dihedral angleu implicitly defined by these
bonds. A semiempirical relation was first introduced
Karplus51 as

3Ji j ~u!5a cos2 u1b cosu1c, ~50!

wherea, b andc are empirical constants. Similar expressio
were developed for theH–C–C–Hgroup, including a cor-
rection due to the electronegativity of carbon substituent52

The dihedral angleu is related to the conformationfk

through simple geometrical transformations. In particul
for alkyl chains they simply differ by a phase factor. In ge
eral, the averaged observable coupling constant can be
ten as

3Ji j [^@3Ji j #&5 (
n522

2

@3Ji j #n^e
infk&

5 (
n522

2

@3Ji j #np0,0;0, . . . ,n, . . . ,0
0* , ~51!

where the components@3Ji j #n contain all the empirical con-
stants and the phase difference betweenu and fk . Notice
the direct dependence of3Ji j on the internal order param
eters. Finally, the vicinal spin–spin coupling constants
symmetrized with respect to the exchange of equival
nuclear pairs, giving

@3Ji j
S#~F!5

1

max$u@3Ji j #~F!u%

1

nP
(
P51

nP

@3J$ i j %P
#~F!. ~52!

This type of measurement can provide information for m
ecules in isotropic solution and on the purely internal co
formation distribution not accessible with the two previo
techniques.

D. Nuclear Overhauser effect

A nuclear Overhauser effect~NOE! is a change in the
intensity of a certain observed NMR line for a nucleusi
occurring when the population of another nucleusj is satu-
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rated or inverted by suitable irradiation.7,8,10,11,53Here we
consider only a simple subsystem of two 1/2 spins to k
the equations manageable. We assume the coupling bet
the two nuclei to occur with a dipole–dipole mechanism~cf.
Sec. III B! so that the dynamic spin Hamiltonian is

H dip8 ~ t !5(
i , j

(
m522

2

I i j
2,m* $@Ti j #LAB

2,m ~v t ,F t!

2^@Ti j #LAB
2,0 ~v,F!&v,Fdm,0%, ~53!

with the sum running on independent nuclear pairsij and
with I i j

2,m and @Ti j #LAB
2,m the spherical components of th

nuclear spin operator and the dipole tensorT i j already de-
al
l
on
-
a
t

o

o
pe
in

el
n

e

p
en

fined by Eq.~44!. The dm,0 in the second term comes from
the assumed uniaxiality of the liquid crystal solvent arou
the laboratoryZ axis. The standard, motional narrowin
Redfield type relaxation treatment53,54leads to the expressio
for the NOE effect in terms of the spectral densitiesJi j

(m)

3(v̂) defined as

Ji j
~m!~ v̂ !54p2E

0

`

dtei v̂tCi j
~m!~ t !, ~54!

i.e., as Fourier transforms at frequencyv̂ of the orientation–
conformation dependent dipole–dipole correlation functio
e

Ci j
~m!~ t !5^@Ti j #LAB

2,m ~v0 ,F0!@Ti j* #LAB
2,m ~v t ,F t!&2^@Ti j #LAB

2,0 ~v,F!&v,F^@Ti j* #LAB
2,0 ~v,F!&v,Fdm,0

5 (
na ,nb522

2

$^Dm,na

2* ~v0!@Ti j #M1

2,na~F0!Dm,nb

2 ~v t!@Ti j* #M1

2,nb~F t!&

2^D0,na

2* ~v!@Ti j #M1

2,na~F!&v,F^D0,nb

2 ~v!@Ti j* #M1

2,nb~F!&v,Fdm,0%

5
3

2S hg ig j

4p2 D 2

(
na ,nb522

2 H K Dm,na

2* ~v0!Dna,0
2* @v i j ~F0!#

r i j
3 ~F0!

Dm,nb

2 ~v t!Dnb,0
2 @v i j ~F t!#

r i j
3 ~F t!

L
2K Dm,na

2* ~v!Dna,0
2* @v i j ~F!#

r i j
3 ~F!

L
v,F

K Dm,nb

2 ~v!Dnb,0
2 @v i j ~F!#

r i j
3 ~F!

L
v,F

dm,0 ,J , ~55!

wherer i j (F t), v i j (F t) are the modulus and the orientation of theij internuclear vector with respect to the molecular fram
M1 in the conformationF t at time t, and the averagê. . . & is over the joint distributionP(v0 ,F0 ,0;v t ,F t ,t), including
molecular tumbling,v, and conformational,F, variables. For instance in an AX spin pair,55,53

NOE215
g i

g j

6Ji j
~2!~ v̂ i1v̂ j !2Ji j

~0!~ v̂ j2v̂ i !

6Ji j
~2!~ v̂ i1v̂ j !13Ji j

~1!~ v̂ i !1Ji j
~0!~ v̂ j2v̂ i !112j i

~1!~ v̂ i !
, ~56!
f
t
elf
ial
of
m-

der

l

rs,
wherev̂ i , v̂ j are the Larmor frequencies of nucleii, j and
j i
(m)(v̂) is the so-called random field providing addition

relaxation channels.53 More generally, the NOE effect wil
be a result of multispin relaxation and procedures based
full Redfield relaxation matrixR rather than on simple ana
lytic formulas that might have to be used. Thus to be
general as possible, we concentrate here on the correla
functions~or spectral densities! from which R can be built.
The correlation functions depend on the overall tumbling
the moleculev t and on the internal dynamicsF t . A general
treatment of this problem is certainly beyond the scope
this work, but we wish to point out the richness of this ty
of experiment, by considering the correlation functions
some simple limiting cases, where the motions are so r
tively fast or slow that they reduce to time independe
static valuesCi j

(m) ~respectively the initial or long time value!
on the experiment time scale. The spectral density can th
fore be approximated as

Ji j
~m!~ v̂ !'Ji j

~m!~0!'4p2Ci j
~m!t i j

~m! , ~57!
a

s
ion

f

f

a-
t,

re-

wheret i j
(m) is an effective correlation time for the motion o

that pair of nuclei.56 Notice that at this level we are no
concerned with the details of the dynamics, which is in its
a problem of significant complication even for simple biax
rigid molecules.57 Indeed we expect that suitable ratios
spectral densities for nuclear pairs sharing a similar dyna
ics could be considered in applications. We now consi
several special cases,

~i! Slow orientational tumbling motion, slow interna
motion:

Ci j
~m!' (

na ,nb522

2

$^Dm,na

2* ~v0!Dm,nb

2 ~v0!@Ti j #M1

2,na~F0!

3@Ti j* #M1

2,nb~F0!&v0 ,F0
2^D0,na

2* ~v0!

3@Ti j #M1

2,na~F0!&v0 ,F0
^D0,nb

2 ~v0!

3@Ti j* #M1

2,nb~F0!&v0 ,F0
dm,0%. ~58!

We can now write this equation in terms of order paramete
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as defined in Eq.~11!. To do this we couple the Wigne
matrices defining the product@Ti j #M1

2,na(F0)@Ti j* #M1

2,nb(F0) and

expanding the result in Fourier series,

@Ti j #M1

2,na~F0!@Ti j* #M1

2,nb~F0!

5~2 !na
3

2S hg ig j

4p2 D 2

(
L50

4

C~2,2,L;0,0!

3C~2,2,L;2na ,nb!
Dnb2na,0

L @v i j ~F0!#

r i j
6 ~F0!

5 (
a1 , . . . ,aN2152`

`

@C i j #a1 , . . . ,aN21

na ,nb

3exp$ ia1f11 . . . 1 iaN21fN21%. ~59!

In a similar way we can couple the product of the two o
entational Wigner matricesDm,na

2* (v0)Dm,nb

2 (v0). Combin-

ing the results, we can define a new function@Y i j #M1

L,m,n(F)

and expand it in Fourier series,

(
na ,nb522

2

Dm,na

2* ~v0!Dm,nb

2 ~v0!@Ti j #M1

2,na~F0!@Ti j* #M1

2,nb~F0!

5 (
L50

4

(
n52L

L

D0,n
L* ~v0!@Y i j #M1

L,m,n~F0!, ~60!

@Y i j #M1

L,m,n~F!5 (
nb522

2

~2 !m2nbC~2,2,L;2m,m!

3C~2,2,L;2n2nb ,nb!@C i j #M1

n1nb ,nb~F!

5 (
a1 , . . . ,aN2152`

`

@Y i j #a1 , . . . ,aN21

L,m,n

3exp$ ia1f11 . . . 1 iaN21fN21%. ~61!

Finally, the correlation functions can be written by using t
order parameters as

Ci j
~m!' (

L50

4

(
n52L

L

(
a1 , . . . ,aN2152`

`

p0,n;a1 , . . . ,aN21

L*

3@Y i j #a1 , . . . ,aN21

L,m,n

2U (
na522

2

(
a1 , . . . ,aN2152`

`

p0,na ;a1 , . . . ,aN21

2*

3@Ti j #a1 , . . . ,aN21

2,na U2

dm,0 . ~62!

In the further special case of negligible rotationa
conformational coupling,
Ci j
~m!' (

na ,nb522

2

$^Dm,na

2* ~v0!Dm,nb

2 ~v0!&v0

3^@Ti j #M1

2,na~F0!@Ti j* #M1

2,nb~F0!&F0

2^D0,na

2* ~v0!&v0
^@Ti j #M1

2,na~F0!&F0
^D0,nb

2 ~v0!&v0

3^@Ti j* #M1

2,nb~F0!&F0
dm,0%

5 (
L50

4

(
n52L

L

(
a1 , . . . ,aN2152`

`

p0,n;0, . . . ,0
L*

3p0,0;a1 , . . . ,aN21

0* @Y i j #a1 , . . . ,aN21

L,m,n

2U (
na522

2

(
a1 , . . . ,aN2152`

`

p0,na ;0, . . . ,0
2*

3p0,0;a1 , . . . ,aN21

0* @Ti j #a1 , . . . ,aN21

2,na U2

dm,0 . ~63!

This expression, to our knowledge a new result, shows
wealth of orientational–conformational order parameters
tainable from the experiment. In an isotropic phase the eq
tion reduces to

Ci j
~m!' S 3

10D S hg ig j

4p2 D 2K 1

r i j
6 L

F0

, ~64!

where we have not indicated explicitly the dependence
conformationF for r i j andv i j since no confusion can arise
This expression is equivalent to that obtained by Tropp56 and
reduces to the usual ones for a rigid molecule7 if the two
nuclei belong to the same fragment.

~ii ! Slow tumbling motion, fast internal motion:

Ci j
~m!' (

na ,nb522

2

$^Dm,na

2* ~v0!Dm,nb

2 ~v0!

3^@Ti j #M1

2,na~F0!&v0 ,F0
^@Ti j* #M1

2,nb~F!&v0 ,F0
&v0

2^D0,na

2* ~v0!@Ti j #M1

2,na~F0!&v0 ,F0
^D0,nb

2 ~v0!

3@Ti j* #M1

2,nb~F0!&v0 ,F0
dm,0%. ~65!

In the limit of negligible rotational–conformational coupling
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Ci j
~m!' (

na ,nb522

2

$^Dm,na

2* ~v0!Dm,nb

2 ~v0!&v0
2^D0,na

2* ~v0!&v0
^D0,nb

2 ~v0!&v0
dm,0%^@Ti j #M1

2,na~F0!&F0
^@Ti j* #M1

2,nb~F0!&F0

5 (
na ,nb522
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(
a1 , . . . ,aN21
b1 , . . . ,bN21

52`
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~2 !m2nbC~2,2,L;m,2m!C~2,2,L;na ,2nb!

3p0,na2nb ;0, . . . ,0
L* p0,0;a1 , . . . ,aN21

0* p0,0;b1 , . . . ,bN21

0 @Ti j #a1 , . . . ,aN21

2,na @Ti j* #b1 , . . . ,bN21

2,nb

2U (
na522
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(
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`

p0,na ;0, . . . ,0
2* p0,0;a1 , . . . ,aN21

0* @Ti j #a1 , . . . ,aN21
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dm,0 , ~66!
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where the components@Ti j #a1 , . . . ,aN21

2,m have been introduced

in Eq. ~47!. This is the case, for example, of a slowly tum
bling macromolecule~i.e., with nearly fixed orientation! with
some rapid conformation motions. In an isotropic phase
equation reduces to

Ci j
~m!'

3

10S hg ig j

4p2 D 2FU K D0,0
2 ~v i j !

r i j
3 L

F0

U2

12U K D1,0
2* ~v i j !

r i j
3 L

F0

U2

12U K D2,0
2* ~v i j !

r i j
3 L

F0

U2G ,

~67!
a case also treated by Tropp.56

~iii ! Fast tumbling motion, slow internal motion: Th
could be the case of a small molecule that undergoes s
relatively slow conformational change compared to the ov
all fast tumbling and

Ci j
~m!' (

na ,nb522

2

$^^Dm,na

2* ~v0!&v0
^Dm,nb

2 ~v0!&v0

3@Ti j #M1

2,na~F0!@Ti j* #M1

2,nb~F0!&F0

2^D0,na

2* ~v0!@Ti j #M1

2,na~F0!&v0 ,F0

3^D0,nb

2 ~v0!@Ti j* #M1

2,nb~F0!&v0 ,F0
dm,0%. ~68!

In the limit of negligible rotational–conformational coupling
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~m!' (

na ,nb522

2

$^@Ti j #M1

2,na~F0!@Ti j* #M1

2,nb~F0!&F0

2^@Ti j #M1

2,na~F0!&F0
^@Ti j* #M1

2,nb~F0!&F0
dm,0%

3^Dm,na
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2 ~v0!&v0
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na ,nb522
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a1 , . . . ,aN2152`

`

pm,na ;0, . . . ,0
2*

3pm,nb ;0, . . . ,0
2 p0,0;a1 , . . . ,aN21

0* @C i j #a1 , . . . ,aN21

na ,nb

2U (
na522

2

(
a1 , . . . ,aN2152`

`

p0,na ;0, . . . ,0
2*

3p0,0;a1 , . . . ,aN21

0* @Ti j #a1 , . . . ,aN21

2,na U2

dm,0 . ~69!
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Notice that this type of contribution vanishes in isotrop
liquids but not in a liquid crystal, even if this has not be
exploited until now.

In the limiting cases that we have shown, the spec
densities can be viewed in terms of averages over the
known single particle orientational–conformational distrib
tion function P(v,F) of a suitable combination of the
Wigner–Fourier basis function@cf. Eq. ~8!#. We realize that
practical application of NOE in this context might be diffi
cult, especially in separating out the dynamics, but the
periment is particularly rich in information and worth explo
ing.

E. Dielectric constant and electric dipole moment

The dependence of permanent electric dipole momenm
on the intramolecular rotations has been one of the first to
employed to study molecular conformations.58,12 The fluid
phase observables related tom and to the square dipole mo
ment tensorM[m^ m are, in general, the components
second rank dielectric tensore. In particular, for an aniso-
tropic uniaxial solution of molecules with momentm, and
using the continuum theory of a particle in an ellipsoid
cavity surrounded by an infinite dielectric in presence o
low intensity electric field, it is possible to write59,60

e2e`

4pr
5

e

e2n@e2e`#

^M&
kBT

, ~70!

wheree` is the dielectric tensor for a field at high frequenc
r5N/V is the number of molecules per unit volume,kB is
the Boltzmann constant,T is the absolute temperature andn
is the depolarization tensor for the cavity. When the elec
field is parallel or perpendicular to the phase director it
possible to compute from dielectric measurements the
componentŝMi& and ^M'& of the square dipole momen
The relation between Cartesian and spherical representa
is

^M LAB
0,0 &52~ 1

3!
1/2~^Mi&12^M'&!, ~71!

^M LAB
2,0 &5~ 2

3!
1/2~^Mi&2^M'&!. ~72!

The spherical components referred to laboratory frame
related to those measured with respect to systemM1 as
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M LAB
2,0 ~v,F!5 (

n522

2

D0,n
2* ~v!MM1

2,n~F!. ~73!

Since the dipole momentm and its squareM are global
molecular properties they are invariant under molecular s
metry operations. The renormalization is performed divid
each functionM LAB

2,0 by the square of the maximum valu
taken by the dipolar moment over the angular space@v,F#.
This calculation can be simply expressed if the use of
th
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so-calledadditivity hypothesis of bond or fragment dipol
moments is justified. The overall molecular dipole momen
then computed as a linear combination of group dipoles,
calized in the chemical bonds or in some of the constitu
molecular groups,m5( imi . A large body of data on thes
group dipole moments has appeared in the literature.12 With
the additivity hypothesis we can finally write the relatio
between the average square dipole moment measured i
LAB frame and the order parameters
^M LAB
2L,0&5 (

n522L

2L

(
q521

1

C~1,1,2L;q,n2q! (
i , j 51

N

(
a1

~ i ! , . . . ,ai 21
~ i !

b1
~ i ! , . . . ,bi 21

~ i !
521

1

(
a1

~ j ! , . . . ,aj 21
~ j !

b1
~ j ! , . . . ,bj 21

~ j !
521

1

@m i #Mi

1,a1
~ i !

@m j #M j

1,a1
~ j !

3p
0,n;b

1
~ i !1b

1
~ j ! , . . . ,b

min$ i , j %
~ i ! 1b

min$ i , j %
~ j ! ,b

min$ i , j %11
~max$ i , j %! , . . . ,b

max$ i , j %
~max$ i , j %! , . . . ,0

2L*
Gq,a

2
~ i ! , . . . ,a

i 21
~ i ! ,b

1
~ i ! , . . . ,b

i 21
~ i ! ,a

1
~ i !

1*

3Gn2q,a
1
~ j ! , . . . ,a

j 21
~ j ! ,b

1
~ j ! , . . . ,b

j 21
~ j ! ,a

1
~ j !

1*
,L50,1 ~74!
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where @m i #Mi

1,a1
( i )

represents the spherical component of

dipole moment tensor of the fragmenti measured in the cor
respondent frameMi , C(1,1,2L;q,n2q) are the Clebsch–
Gordan coefficients and theG coefficients are defined in Eq
~13!. We can see that the average square dipole mom
only depend on a closed set of orientational–conformatio
order parameters. It is worth noting that the apparently
wieldy Eq.~74! is actually very simple to implement numer
cally and to code.

F. Neutron scattering

Scattering techniques are very powerful tools and th
provide structural information at both the molecular a
structural level. Furthermore, they allow the determination
orientational order parameters of rank higher than four, u
ally not accessible using other experimental techniques. H
we consider as an example the coherent contribution to
total neutron scattering due to a single molecule~intramo-
lecular scattering! and show that it can be analyzed using t
maximum entropy approach to provide information on t
orientational–conformational distribution. Theintramolecu-
lar contribution is experimentally determined taking adva
tage of the different scattering lengths of H and D isotop
by comparison of scattering data measured for different m
tures of the fully protonated and the fully deuterated forms
a molecule~see, for example, Ref. 61!. The coherent differ-
ential cross section (ds/dV) for the elastic neutron scatte
ing of a single molecule containingNa nuclei is given by the
Debye formula referred to laboratory frame

K ds~Q!

dV L 5 (
i , j 51

Na

bibj^exp~ iQ•r i j !&, ~75!

wheres is the scattering probability,V is a solid angle,bi is
the coherent scattering length for thei–th nucleus andr i j

5r j2r i[r i j r̂ i j is the internuclear vector of lengthr i j . The
e
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scattering vectorQ has modulusQ54p sinu/l, l being the
neutron wavelength and 2u the full scattering angle. The
complete static orientational and conformational informat
is contained in the structure factor^exp(iQ•r i j )&. Using the
Rayleigh expansion

exp~ iQ•r i j !5 (
L50

`

i L~2L11! j L~Qri j !PL~Q̂• r̂ i j !, ~76!

where j L are Bessel functions of fractional order andPL are
Legendre polynomials, it is possible to link the cross sect
to the molecular orientational–conformational state (v,F).
In particular, for uniaxial phases only even ranks contrib
and we have

ds~Q!

dV
[Fds~Q,u!

dV G
LAB

~v,F!

5 (
i , j 51

Na

bibj (
L50

`

(
n522L

2L

~2 !L~4L11!

3P2L~cosu! j 2L@Qri j ~F!#

3D0,n
2L* ~v!Dn,0

2L* @v r i j
~F!#

5 (
L50

`

(
n522L

2L

D0,n
2L* ~v!Fds~Q,u!

dV G
M1

2L,n

~F!, ~77!

whereu is now the angle between scattered beam and ph
director, and the Euler anglesv r i j

define the orientation of
r i j with respect to frame M1. The functions
@(ds(Q,u)/dV)#M1

2L,n(F) are then defined as
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Fds~Q,u!

dV G
M1

2L,n

~F!

5~2 !L~4L11!P2L~cosu!

3 (
i , j 51

Na

bibj j 2L@Qri j ~F!#Dn,0
2L* @v r i j

~F!#. ~78!

We can write the Fourier expansion of these functions,

Fds~Q,u!

dV G
M1

2L,n

~F!

5 (
a1 , . . . ,aN2152`

` Fds~Q,u!

dV G
a1 , . . . ,aN21

2L,n

3exp$ ia1f11•••1 iaN21fN21%, ~79!

and thus we can find the relation between the average c
section and an infinite set of order parameters,

K Fds~Q,u!

dV G
LAB

L
5 (

L50

`

(
n522L

2L

(
a1 , . . . ,aN2152`

`

p0,n;a1 , . . . ,aN21

2L*

3Fds~Q,u!

dV G
a1 , . . . ,aN21

2L,n

. ~80!

Considering the symmetrization scheme of Sec. II B we
tice that the cross section defined by Eq.~75! is essentially
an average over all the pairs of atoms in the molecule. S
any symmetry operation can be interpreted as an exchang
positionsr i of equivalent atoms, the cross sections are inv
ant under application of the projection operators of Sec. II
The maximum absolute value of the cross section use
normalize this observable is easily obtained, leading to

Fds~Q,u!S

dV G
LAB

~v,F!5S (
i 51

Na

bi D 22Fds~Q,u!

dV G
LAB

~v,F!.

~81!

IV. TEST RESULTS

One of the ubiquitous problems of conformational da
analysis is to make sure that the method employed can re
the conformational information if and only if it is containe
in the experimental data set. In other words, a method sh
ideally have some self–test capability. Here we wish to sh
how the maximum entropy method can check its capab
to actually recover the structural information contained
experimental data, and we present the results of a serie
maximum entropy analyses that we have performed on a
age values of NMR and dipole observable functions gen
ated from a known distribution function. The purpose
these tests was to examine the benefit, if any, of the m
mum entropy combined techniques approach. In particu
we have chosen to combine1HNMR ~dipolar couplings!,
2HNMR ~quadrupolar splittings! and dielectric, electric di-
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pole ~ED! observables and to examine the resulting syn
gies. In practice, the test entails the simulation of observa
data^@F I

S#LAB& starting from a known distribution function
Ps(v,F), followed by the maximum entropy analysis o
these pseudoexperimental data to see if a faithful distribu
function is retrieved. Notice that the problem is numerica
far from trivial but clearly represents a necessary step for
analysis to be meaningful. The input distribution correspon
to a certain set of orientational order parameterspm,n;0, . . . ,0

L

for fragment M1 and a given conformational distributio
and, for simplicity, we supposePs(v,F) to be factorized in
a purely orientational part, depending onv, and a purely
conformational part, depending onF. In practice, we choose

Ps~v,F!5
1

Z0
Ps~F!expH (

L,m,n
am,n

L Dm,n
L ~v!J . ~82!

For thediscretecase, we take instead

Ps~v,j !5
1

Z0
Ps~ j !expH (

L,m,n
am,n

L Dm,n
L ~v!J . ~83!

Since alkyl chains are a prototype structure for conform
tional problems we have considered here three substit
alkanes that are representative of a class of molecules
could be studied using the combined techniques, nam
1,4–di–bromo–butane ~DBB!; 1,6–di–bromo–hexane
~DBE! and 1,8–di–bromo–octane~DBO!. The most severe
test for an analysis technique like maximum entropy, wh
starts from a flat distribution, is to assume the conform
tional part to represent a single conformer, since it wo
require an infinite number of observable basis functions
reconstruct such a deltalike distribution@cf. Eq. ~7!#. Thus,
the three molecules have been simulated in two rigid con
mational states, namely a fully elongated chain~i.e., all–
trans! and the so-called end–kink. For the all–trans mono-
rotamer the conformational distributionPs( j ) of Eq. ~83! is
Ps(t, . . . ,t)51 and zero otherwise, while for the end–kink
conformer, Ps( j ) is nonzero only forj5(g2tg1t, . . . ,t).
Following Pines, Ref. 22, the dihedral anglefg for gauche
conformations has been fixed to6112.5°, a slightly differ-
ent value from the classical RIS angle62p/3. The bond
distances and angles are:r CC51.53; r CH51.08, r CBr51.40
Å, CCĈ5112 and HCĤ5109°. For the terminal groups
containing Br we have used a tetrahedral geometry. The
entational part of Eq.~83! has been chosen so that the pri
cipal orientational order parameters for theM1 frame are
^P2&50.60 and̂ D0,2

2 &50.05. The order parameters for ea
fragment are thenSzz50.60 andSCD520.29. Using both
distributions, and after symmetrization with respect to
equivalent pairs, we have calculatedDn i andDi j couplings.
Due to the symmetry of the all–trans and end–kink mono-
rotamers, the square dipole moments,^Mi& and ^M'&, are
zero. All simulated observables are listed for the two co
formers in Tables I and II. Going from DBB to DBO, w
find, respectively, 2, 3, 4 quadrupolar splittings, and 10,
36 dipolar couplings. Considering the two average dip
moments, the number of observables for each bromo–alk
is thenNF514, 26 and 42. We now turn to the maximu
entropy analyses of these simulated observables. Thea priori
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TABLE I. Multitechnique maximum entropy combined analyses~case d! of simulated quadrupolar splittings
Dn i ~in KHz!, dipolar couplingsDi j ~in Hz! and square dipole moments^Mi&, ^M'& ~in Debye! for DBB,
DBE and DBO in the all–trans conformation~monorotamer!. Simulated data have been computed using
distribution@cf. Eq.~83!# giving order parametersSzz50.60 andSCD520.29 for each fragment. The root mea
square error of ME results, the total number of symmetrized observablesNF and independent linear combina
tionsNG ~dimensionless thresholdt50.01) are reported. The intrinsic distributionPi( j ) @cf. Eq. ~35!# has been
defined in terms of atrans–gaucheenergy barrierEg52.1 kJ/mol,T5300 K and using the filter function
described in the text for discarding all( . . . ,g6g7, . . . ) sterically forbidden sequences.

DBB DBE DBO
Simulated Analyzed Simulated Analyzed Simulated Analyzed

All– trans NF514 NG514 NF526 NG523 NF542 NG533

Dn2 281.63 281.63 281.63 281.48 281.67 281.68
Dn4 281.58 281.58 281.58 281.47 281.58 281.58
Dn6 ••• ••• 281.58 281.52 281.58 281.57
Dn8 ••• ••• ••• ••• 281.58 281.58
rms error 0.00 0.14 0.01
D2,3 7726.30 7726.30 7692.52 7693.09 7692.52 7692.8
D2,4 566.93 566.93 559.76 548.97 559.76 559.55
D2,5 125.63 125.63 108.86 91.45 108.87 108.46
D2,6 24377.53 24377.53 24341.66 24333.45 24341.66 24342.17
D2,7 21146.03 21146.03 21142.31 21140.41 21142.31 21143.26
D2,8 2337.06 2337.06 2337.06 2336.42 2337.06 2336.80
D2,9 2580.73 2580.73 2580.73 2581.86 2580.73 2580.87
D2,10 ••• ••• 2547.17 2542.21 2547.17 2544.30
D2,11 ••• ••• 2380.14 2381.92 2380.14 2383.41
D2,12 ••• ••• 2205.28 2208.19 2165.34 2161.91
D2,13 ••• ••• 2164.69 2162.38 2206.15 2206.48
D2,14 ••• ••• ••• ••• 2162.57 2161.75
D2,15 ••• ••• ••• ••• 2137.76 2138.06
D2,16 ••• ••• ••• ••• 286.93 288.04
D2,17 ••• ••• ••• ••• 277.28 277.92
D4,5 7760.07 7760.07 7760.07 7763.63 7760.07 7758.9
D4,6 573.98 573.98 573.98 574.78 573.98 574.46
D4,7 142.05 142.05 142.05 155.90 142.04 142.37
D4,8 ••• ••• 24413.41 24403.78 24413.38 24413.32
D4,9 ••• ••• 21149.76 21148.37 21149.76 21148.92
D4,10 ••• ••• 2337.54 2336.54 2337.54 2337.16
D4,11 ••• ••• 2582.54 2580.39 2582.54 2582.66
D4,12 ••• ••• ••• ••• 2551.67 2550.07
D4,13 ••• ••• ••• ••• 2382.93 2385.32
D4,14 ••• ••• ••• ••• 2166.02 2165.89
D4,15 ••• ••• ••• ••• 2207.03 2206.27
D6,7 ••• ••• 7760.07 7768.17 7760.07 7760.30
D6,8 ••• ••• 574.10 562.11 574.10 573.48
D6,9 ••• - 142.40 122.00 142.40 141.59
D6,10 ••• ••• ••• ••• 24413.41 24413.13
D6,11 ••• ••• ••• ••• 21149.76 21149.22
D6,12 ••• ••• ••• ••• 2337.50 2337.41
D6,13 ••• ••• ••• ••• 2582.47 2581.71
D8,9 ••• ••• ••• ••• 7760.07 7759.85
D8,10 ••• ••• ••• ••• 573.98 574.38
D8,11 ••• ••• ••• ••• 142.05 141.95
rms error 0.00 27.07 4.02
^M i&

1/2 0.00 0.00 0.00 0.00 0.00 0.00
^M'&1/2 0.00 0.00 0.00 0.00 0.00 0.00
rms error 0.01 0.05 0.05
e
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distribution functionPi( j ) has been defined for the thre
bromo–alkanes as Eq.~35!, using for all rotors a fixed bar
rier Eg52.1 kJ/mol andT5300 K. Sterically forbidden con-
formations in alkyl chains have been discarded after a s
able filter functionf ( j ) has been implemented.34 In practice,
if the distancer kl between a pair of atoms$k,l % belonging to
fragmentsMa , Mb and separated by at least four atom
(ua2bu>4) is lower than the sum of their van der Waa
it-

radii, r kl<r k
(v)1r l

(v) , the conformation is rejected. We use
r C

(v)51.7, r H
(v)51.2, r Br

(v)51.7 Å. No further assumptions
such as the often used united atoms approximation, wh
collapses a methylene in a single group, is used. In prac
with this filter function all the( . . . ,g6g7, . . . ) sequences
are discarded because of steric hindrance, and the numb
nonforbidden conformers for DBB, DBE and DBO isnT

57, 99 and 577. The combination and orthogonalizat
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TABLE II. Multitechnique ME combined analyses~case d! of simulated data for an end–kink monorotamer~cf.
Table I for additional details!.

DBB DBE DBO
Simulated Analyzed Simulated Analyzed Simulated Analyzed

End–kink NF514 NG514 NF526 NG523 NF542 NG533

Dn2 281.63 281.63 281.67 281.70 281.67 281.59
Dn4 22.62 22.62 242.10 242.13 242.10 242.09
Dn6 ••• ••• 242.10 242.12 242.10 242.17
Dn8 ••• ••• ••• ••• 281.58 281.58

rms error 0.00 0.03 0.06

D2,3 7726.30 7726.30 7692.52 7693.70 7692.52 7678.8
D2,4 21142.19 21142.19 2292.86 2292.77 2292.85 2291.81
D2,5 21435.16 21435.16 2660.87 2660.46 2660.85 2653.14
D2,6 677.99 677.99 21833.43 21834.09 21833.43 21835.30
D2,7 159.19 159.19 2496.26 2496.19 2496.26 2494.82
D2,8 21.73 21.73 2279.37 2279.14 2169.40 2169.65
D2,9 222.33 222.33 2243.30 2243.11 2301.54 2304.03
D2,10 ••• ••• 2388.77 2397.38 2543.02 2538.09
D2,11 ••• ••• 2374.33 2364.80 2403.32 2411.12
D2,12 ••• ••• 2122.34 2125.40 2145.12 2138.23
D2,13 ••• ••• 2101.05 2101.83 2147.46 2145.98
D2,14 ••• ••• ••• ••• 2174.68 2175.78
D2,15 ••• ••• ••• ••• 2163.15 2163.80
D2,16 ••• ••• ••• ••• 276.07 278.58
D2,17 ••• ••• ••• ••• 267.86 268.86
D4,5 704.85 704.85 4232.46 4234.19 4232.46 4227.51
D4,6 854.07 854.07 714.03 715.01 714.03 709.56
D4,7 2280.49 2280.49 1211.29 1212.30 1211.28 1206.8
D4,8 ••• ••• 2247.82 2247.50 21866.08 21870.18
D4,9 ••• ••• 21325.45 21325.51 2490.59 2490.93
D4,10 ••• ••• 2827.60 2827.91 2582.57 2587.12
D4,11 ••• ••• 22775.05 22776.17 21678.79 21675.21
D4,12 ••• ••• ••• ••• 2291.15 2307.69
D4,13 ••• ••• ••• ••• 2372.14 2360.32
D4,14 ••• ••• ••• ••• 2373.09 2398.07
D4,15 ••• ••• ••• ••• 2465.08 2434.37
D6,7 ••• ••• 4232.46 4233.95 4232.46 4234.90
D6,8 ••• ••• 21138.92 21137.81 2282.42 2279.28
D6,9 ••• ••• 21439.78 21439.28 2648.71 2645.90
D6,10 ••• ••• ••• ••• 22795.11 22792.78
D6,11 ••• ••• ••• ••• 21984.62 21985.77
D6,12 ••• ••• ••• ••• 2559.78 2559.68
D6,13 ••• ••• ••• ••• 2466.69 2467.09
D8,9 ••• ••• ••• ••• 7760.07 7759.49
D8,10 ••• ••• ••• ••• 574.00 574.73
D8,11 ••• ••• ••• ••• 142.09 136.39

rms error 0.01 9.67 29.22

^M i&
1/2 0.00 0.00 0.00 0.00 0.00 0.00

^M'&1/2 0.00 0.00 0.00 0.00 0.00 0.00

rms error 0.01 0.05 0.05
th
ea

o
a
h

all
-

n-
x

nt
algorithm of Sec. II B, with theintrinsic distributionPi( j ) as
weight factor and a dimensionless thresholdt50.01, pro-
videsNG514, 23 and 33 independent basis functions for
three bromo–alkanes. We see that, except for DBB, at l
two redundant parameters have been eliminated by this
thogonalization procedure. For each bromo–alkane, we h
performed four different maximum entropy analyses. T
first three considered only one set of observables, namely~a!
2HNMR quadrupolar splittings,~b! 1HNMR dipolar cou-
e
st
r-
ve
e

plings, and~c! dipolar data. The fourth one~d! was a maxi-
mum entropy combined analysis of all three data sets. In
cases, the agreement between input~i.e., pseudoexperimen
tal! observables and recalculated ones was very good@root
mean square~rms! error generally less than61%], demon-
strating that the analysis is feasible and sufficiently well co
ditioned from a numerical point of view also for comple
molecules. The recalculated values ofSzz andSCD from the
~a!, ~b! and ~d! maximum entropy analyses were excelle
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~error less than 0.1%), especially for the combined case~d!,
and only the analysis of electric dipole moments~case c!
could not recover the input order parameters. In Tables I
II we report the results of analyses~d! for the all–trans and
end–kink simulated data. We now discuss the conform
tional information recovered from the analysis. Analyzi
and summarizing structural information for various mo
ecules is not a trivial task. We have then chosen to pre
the principal features of the maximum entropy distributi
showing the five most probable conformations recove
~see Figs. 3–5! and labeling the relevant sequences. The d
crete j states can be divided in three classes according
their degeneracym, that is: ~i! m51 for the all–trans con-
formation, i.e.,j5(t, . . . ,t); ~ii ! m52 for center–symmetric
sequences where eachgauchestate appears inmirror sitesj k

and j N2k , e.g., j5(g1tg1, . . . ,g1tg1)
[(g2tg2, . . . ,g2tg2); ~iii ! m54 for nonsymmetric se-
quences, e.g., j5(t, . . . ,tg1g1)[(t, . . . ,tg2g2)
[(g1g1t, . . . ,t)[(g2g2t, . . . ,t). We use the produc

FIG. 3. The four maximum entropy analyses~cases a–d! of simulated all–
trans ~top plate! and end–kink ~bottom plate! observables for DBB as de
scribed in the text. For every analysis we show the six most probable
formers with their total probabilitymP( j ) ~the multiplicity m is given
between curly brackets!. The most frequently occurring conformational s
quences are labeled as@ i #[(t, . . . ,t), @ i i #[(g1tt, . . . ,t), @ i i i #
[(tg1t, . . . ,t), @ iv#[(g1g1t, . . . ,t), @v#[(g2tg1, . . . ,t) and @v i #
[(g1g1g1, . . . ,t).
d

-

nt

d
-
to

mP( j ) to measure the relative abundance of each confor
tional sequence. To simplify the notation, the multiplici
factor has been automatically included inP( j ) in the follow-
ing discussion. In Fig. 3 we report the maximum entro
results for simulated all–trans ~top! and end–kink ~bottom!
DBB. We see that the four analyses~a–d! of all–trans data
have all retrieved thetrans conformer as the most probable
The sharpest distribution corresponds to the combined an
sis ~d! with P(t, . . . ,t)50.864, closely followed by the
1HNMR case~b! with P(t, . . . ,t)50.783. Columns~c! and
~d! list only four conformers because the inclusion of pra
tically zero ED data forced the rejection of all sequenc
with a not zero total dipole moment. Turning now to th
maximum entropy analyses of the simulated end–kink con-
former ~Fig. 3, bottom!, we see that the most probable co
formation recovered for DBB is actually end–kink only for
cases~a!, ~b! and~d! and that ED data alone are not sufficie
to counterbalance theintrinsic bias for elongated configura
tions accounted for byPi( j ). For a similar reason, the dif
ference between the combined analysis,P(g2tg1t, . . . ,t)
50.803, and the1HNMR caseP(g2tg1t, . . . ,t)50.537 is
higher than that for analyzed all–trans data. Similar conclu-
sions can be drawn from the analyses of simulated data

n-

FIG. 4. The four maximum entropy analyses~cases a–d! of simulated all–
trans ~top plate! and end–kink ~bottom plate! observables for DBE as de
scribed in the text~cf. Fig. 3 for additional details!.
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DBE and DBO~Figs. 4 and 5!. Except for the~c! case, the
trans conformer is the most probable for analyses of sim
lated all-transDBE ~Fig. 4, top!. Again, the sharpest result i
that of combined case~d!, closely followed by the1HNMR
~b! case. The synergy of combined techniques is more
dent for the end–kink observables~Fig. 4, bottom!. The re-
trieved probability almost doubles,P(g2tg1t, . . . ,t)
50.680, including2HNMR and ED data to the analysis o
1HNMR data which only givesP(g2tg1t, . . . ,t)50.342.
For DBO ~Fig. 5!, the most likely sequences recovered
the combined analyses of simulatedtrans and kink data are
P(t, . . . ,t)50.717 andP(g2tg1t, . . . ,t)50.484. All the
conformational probability obtained, and in particular the
der of the single conformer in the probability scale, do n
change by choosing theEg value in the typical range
@2.1–2.5# kJ/mol calculated from experimental studies of b
tane dissolved in liquid solvents.62 In any case, the inclusion
of theprior information to the maximum entropy method b
setting theEg value drastically changes the conformer pro
ability distribution because the intrinsic functionPi deter-
mines to a large extent what is obtained. These results
useful to confirm that the maximum entropy method can
multaneously analyze experimental data from different te

FIG. 5. The four maximum entropy analyses~cases a–d! of simulated all–
trans ~top plate! and end–kink ~bottom plate! observables for DBO as de
scribed in the text~cf. Fig. 3 for additional details!.
-

i-

-
t

-

-

re
i-
-

niques without the use of approximate mean field models
describe flexible molecules in liquid crystal solution.

V. CONCLUSIONS

It is becoming increasingly clear that no single expe
mental technique can provide sufficiently detailed data
give a complete representation of the orientationa
conformational distribution for a flexible solute in liqui
crystals and that reliable conformation information for co
plex molecules in anisotropic solution, particularly mo
ecules of biological interest, can only come by carefu
planning various experiments using different techniques
the same system. Here we have proposed a unified theo
cal framework to simultaneously analyze data from differe
techniques using the maximum entropy method in terms
the least biased overall orientational–conformational dis
bution. Given a molecule of interest and a basic molecu
skeleton, the present technique can, first of all, assess
feasibility of the project by constructing simulated data f
certain conformations, adding noise to a desired level if
propriate, and analyzing these pseudoexperimental dat
the experimental ones with the help of any prior existi
information. Various candidate techniques can be tried u
a promising combination of experiments is found. We ha
demonstrated the method on terminally dibrominated alka
data considering simulated1HNMR, 2HNMR and dielectric
observables. Summarizing, we notice that for these m
ecules, 1HNMR data are the most useful, followed b
2HNMR and dielectric. Dielectric data alone are not rea
informative enough to provide a reliable conformational d
tribution, in particular for the longest alkyl chain~DBO!.
Nevertheless, combining dielectric data with1HNMR cou-
plings considerably improves the maximum entropy resu
This synergistic effect is smaller if we merge2HNMR split-
tings to1HNMR couplings. Other techniques can be broug
into play and we expect NOE data, already very useful
isotropic solution, to be particularly important. We hope t
availability of a relatively simple data analysis framewo
such as the present one will stimulate the combined exp
ments needed to provide the much needed leap in the in
tigation of conformational and rotational–conformation
distribution in solution.
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