MHICS, A MODULAR AND HIERARCHICAL CLASSIFIER SYSTEMS
ARCHITECTURE FOR BOTS

Gabriel ROBERT and Agnés GUILLOT
AnimatLab, Laboratoire d'Informatique de Paris 6
8 rue du Capitaine Scott
75015 Paris

France

E-mail : (gabriel.robert; agnes.guillot)@lip6.fr

KEYWORDS

Classifier systems, action selection, autonomous agents,
video game.

ABSTRACT

Classifier systems (CS) are used as control architectures for
simulated animals or robots in order to decide what to do at
each time. We will explain why these systems are good
candidates for the adaptive action selection mechanisms of
a Bot (a simulated player). After introducing MHiCS, our
control architecture adapted to the specific constraints of
multiplayer games, we will present the first results on a
Team Fortress Classic scenario.

INTRODUCTION

A new Artificial Intelligence approach focuses on the
synthesis of adaptive simulated animals or real robots
(called animats), whose mechanisms are inspired from
biology and ethology as much as possible (Guillot and
Meyer 2000). An animat has both sensors — which provide
information about its environment or internal state - and
effectors — which allow it to change its environment. To be
able to survive, it is endowed with a control architecture
that connects its sensors to its effectors, such architecture
being able to adapt to changing circumstances through
unsupervised learning.

A Bot is used for simulating a human player in a
multiplayer video game. With nearly the same information
as human players, they must be able to select the
appropriate actions to fulfil their goals. Bots must have a
correct behaviour but not too perfect to let human players
win.

Bots behaving in these games are similar to animats as
these artificial players have to adapt on line to dynamically
changing environments, to different goals and to
unpredictable actions from the players.

The control architectures developed by the animat
community are useful to give adaptive behaviours to a Bot.
In particular, one kind of model - the so-called Classifier
System (CS) which is a population of 'condition-action'
rules called classifiers (Holland 1986) - is especially
convenient to design architectures able to efficiently select
which actions the Bot should perform. A CS can learn
which classifier is better than another to achieve a given
task. New rules can also be discovered through the creation
of new classifiers thanks to an evolution process like a
genetic algorithm.

Figure 1: Screenshot of a blue team scout in TFC

In this paper, we will describe the main characteristics of
MHICS, the architecture we designed on the basis of CS in
order to cope with video game constraints (Robert et al.
2002). We will then present our first results on a Capture
The Flag (CTF) scenario of Team Fortress Classic (TFC), a
well known modification (MOD) of the First Person
Shooter (FPS) game Half-Life (Valve, ©1999) (Figure 1).

’/_/ Sensor Information
v Y

Group Score (RP: 1) Individual Score (RP: 0.3)
MV: 0.5 MV: 1
If x is not my friend => Approach target(T2S: 6, ET: 4) | |If ... => Move to target flag start (T2S: 98, ET: 12) | | If ... => ... (T2S: 117, ET: 13)

If x is not my friend => shoot target (T2S:6,ET: 4) ||If...=> Move to target flag goal (T2S: 23, ET: 15) | | If ... => ... (T2S: 150, ET: 16)
If I have no target and I have been hit =>look around ~ (T2S: 42, ET: 2)| |If ... => Move to my flag goal ~ (T2S: 172, ET: 13)| | If ., => ... (T2S: 13, ET: 17)
7

Aggressiveness(RP: 2)
MV: 0.3

I. Motivations

p—

I. Common CS

) y A 4 -~ A 4

'5 Shoot target Approach target Move to target flag start Move to target flag goal
I3] EIL: 5994 EI: 5994 EI: 7785 EI: 7827

f. State : active State : inactive State : inactive State : active

= _ X — e

IV. Action Resources Pitch Button Attack Forward move Yaw Jump

MYV: Motivation Value RP: Relative Power

EI: Execution Intensity

Figure 2: An illustration of MHiCS showing how action selection is made across the levels

BOTS AND MULTIPLAYER GAMES

A FPS is a real-time 3D multiplayer game in which each
player (human or Bot) has to move and fight to reach the
goals of the game.

For a few years, different FPS engines have been used in
research lab as they bring a complex and rich test
environment: (e.g. Quake (Id software, ©1996) by (Laird
and Duchi 2000), Unreal (Epic, ©1998) by (Calderon and
Cavazza 2001), Half-Life (Valve, ©1999) by (Khoo and
Zubek 2002) and many MOD of those engines (Quake II,
Unreal Tournament, Counter Strike, etc.)). Different fields
of Al are already involved in the design of a FPS Bot, e.g.
for navigation, body animation, fighting tactic and goal as
well as action selection (Tozour 2002).

In the CTF we specially apply in this paper, there are two
teams of players. The goal is to take the opponent team’s
flag in its base and to bring it to the team base. In this
scenario, the main difficulty for action selection is to reach
at the same time the team goal (bring back the enemy flag),
the personal goal (killing a maximum of opponents) and
proper motivations set up by the Bot designer (e.g.
aggressiveness). As each human player may have an
unpredictable behaviour, it is a challenge for Bots to learn
because their behaviours will not always have the same
efficiency, and they must be able to dynamically re-
evaluate their knowledge. MHiCS, the control architecture
we will introduce now, aims to solve this particular issue.

MHICS, AN ACTION SELECTION ARCHITECTURE
FOR BOTS

We have already described the details of a Classifier
System in a previous paper, together with our architecture
MHiCS - a Modular and Hierarchical CS architecture
dedicated to virtual player for multiplayer games (Robert et
al. 2002). We will here only sum up its main characteristics,
illustrated on Figure 2.

The modularity of the architecture allows the design of
various kinds of Bots, in which modules could be
assembled in different ways. These modules correspond to
different CSs, dispatched on two hierarchical levels. At
level I, several CSs manage the Bot’s motivations. At level
II, other CSs will refine the action commands of level 1.
Various motivations in the system may have some of these
CSs in common. Two lower levels (IIT and IV) do not
include any CS but concern the execution of the final
action. In our test, level II has been removed to simplify the
first learning experiences.

The Motivation level (level I)

Each Bot has its own motivations — e.g. Team Score,
Individual score, Aggressiveness. A motivation is
associated with two values: Relative Power (RP) and
Motivation Value (MV). Through the RP value, the
designer can attribute a ‘personality’ to the Bot, for
example by giving it high or low aggressiveness. The MV
is a value between 0 and 1, which increases when the
motivation is not satisfied, and decreases otherwise.

Each motivation is associated with a specific CS that is not
shared by other motivations - but different specific CSs can
have similar action commands. The goal of a CS is to
satisfy the motivation that has triggered it, then to minimise
its MV. Each rule (classifier) in a CS has a priority part
used to choose between different classifiers simultaneously
eligible. To accelerate the learning process, this priority is
based on two values: Time to Success (T2S) and Execution
Time (ET). T2S is the average time between the activation
of a classifier (when it is selected and its action part active)
and the next MV decrement. ET is the average time a
classifier takes to be executed.

Several CS belonging to motivations of level 1 can be
triggered at the same time. Their Activation Values (AV)
depend on their RP and MV values (AV = RP*MV). As
some actions (like “shoot to” or “approach target”) need to

be associated with a target (“opponent” or “flag”), each
selected classifier is associated with a target.

Several action commands belonging to different CS can
then be selected on different targets. These action
commands can trigger the CS of level II (not in our actual
implementation) or directly the actions of level III.

The Action level (level I1I)

As several classifiers can be selected at the same time,
several action commands can be executable at level III. To
select which action will be executed, they are sorted by
priority before going through the level IV Action
Resources. This priority is determined by the Execution
Intensity (EI) value of each pair (action, target) selected by
the motivations at level I (or II). EI is computed on the
basis of the AV of the corresponding classifier(s) and on an
execution time:

EI = (AV * 10000) — max (T2S, ET)

In this formula, AV gives priority to classifiers which
satisfy a maximum of motivations. T2S and ET select
different classifiers with the same AV.

The Action Resources level (level IV)

Level IV provides resources for action execution, especially
for behavioural animations like Pitch Yaw, Button Attack,
Forward move, etc.

The action command with the highest EI value has the
primacy to use the required resources. Other executable
actions cannot require these already-used resources, and
have only access to available ones. The behaviour that will
be adopted by the Bot in the environment will be a
combination of all the activated resources.

MHIiCS Base and MHiCS Agent

MHICS is built around two components: MHiCS Base and
MHICS Agent. All the rules of the different CS are stored
in MHiCS Base. This base is unique and shared by all the
active Bots. The purpose is to share knowledge and
learning between the agents and to reduce memory used by
classifiers storage. For each Bot there is a MHICS Agent
component. It is the part of MHiCS which takes track of the
Bot motivation diffusions, active classifiers and actions as
well as all dynamic information computed by the MHiCS
algorithms for this Bot.

The Learning Process

In classical Al, the best next action to be done could be
evaluated by ply research using heuristics. In video games,
good heuristics are not easy to acquire by such means
because of the multiplicity of possible consequences. For
example, if a Bot’s death is disadvantageous for its frag
score, it could be a useful sacrifice for its team’s goal — due
to an efficient re-implementation of this Bot in the game.
MHICS has the convenience of not using heavy heuristics

and ply research. It just selects the best classifier according
to its T2S and ET values updated online at each time step.
When a motivation decreases, T2S is updated for all
classifiers that have been activated by this motivation since
the last MV decrement. Each time an action stops its
execution, the ET value is updated for all classifiers that
have activated this action. After an update, the new value
for the T2S and the ET of a classifier stored in the MHiCS
Base is replaced by the weighted average between the
previous stored values and the new one. Making such an
average between old and new values smoothes the
adaptation process.

EXPERIMENTS AND RESULTS

The experiments aim to test the MHiCS capacity to modify,
through a learning process, the T2S and ET of each
classifier in order to decrease the MV of their classifiers
system.

In the test application (CTF scenario of TFC) there are 2 (1
vs. 1) or 8 (4 vs. 4) players. The game duration is set to 20
minutes. Our Bots have been tested by human players but,
for quantitative results, we have compared them to HPB
Bots developed by Botman, whose code is used by most of
Half-Life MOD Bots - ours included. In HPB Bots, all the
rules are hard-coded without learning capacities. They use a
waypoint navigation system and a schedule to manage the
different actions.

Here the red team is composed of HPB Bots and the blue
team of MHiCS Bots. Each time a Bot from a team captures
the opponent team’s flag (by bringing it back to the team
base), the team increases its score with 10 points.

A MHICS Bot has three motivations: Aggressiveness (RP:
2), Team Score (RP: 1) and Individual score (RP: 0.3).
Aggressiveness MV increases when the Bot gets hurt and
decreases when it kills an opponent. Team Score MV
increases when opponent Team Score increases and
decreases when the Team Score increases. Individual score
MYV increases with time and decreases when a Bot kills an
opponent.

Its classifiers have six different condition parts: Bot has
flag, Bot has a target, Team has flag, Enemy team has flag,
Damage recently taken and Target is my friend; and eight
different action parts: approach target, shoot target, look
around, move to 4 different waypoints (opponent team flag
start, opponent team flag goal, my team flag start, my team
flag goal) and move to opponent team flag. As in a human
team, a Bot can always know where the opponent team flag
is.

There are three specific classifiers for the Aggressiveness
CS, 10 for the Individual Score CS and 14 for the Team
Score CS. In the experiments we will focus on the learning
of this last CS. Four are for moving to each different
waypoint when the Bot has the Flag, five when someone
else in the team has the flag and five when no one in the

team has the flag. Each classifier starts with the same T2S
(1s) and ET (0s) values.

IN
&
3

a
S
3

-

w
&
3

—e— Move to my team
flag goal

—=— Move to my team
flag start

@
S
3

N
&
3

—a— Move to opponent|
team flag

, —x— Move to opponent|

N
S
3

Max (T2, ET) in

team flag goal
—x— Move to opponent]
team flag start

150

100 L

. [

Yaiaas

Time

Figure 3: Max (T2S, ET) values of each classifier which
condition is “Team has flag==False” in the game 2 of the
first experiment

We have run each experiment on five games with the same
initial conditions.

In the first experiment, one HPB Bot competes with one
MHICS Bot. The purpose is to demonstrate the MHiCS
Bot’s capacity to learn how to increase its Team Score in
spite of the opponent’s actions and its Aggressiveness
motivation that might conflict with the Team Score
motivation.

1vs. 1

140

120

80

@ MHICS Bots
60 | @ HBP Bots

Score

40 |

20 1

Game 1 Game2 Game3 Game4 Game5b

Figure 4: Score of both teams in the first experiment

Figure 3 shows two phases in the learning process. In the
first phase the CS will select each classifier to find which
one can satisfy the Team Score motivation. When for the
first time the flag is successfully captured, Team Score
motivation decreases and the T2S value is updated for each
classifier. Here the classifier with the action part Move to
opponent team flag has the minimum T2S value. As this
classifier is a good one, it will continue to be selected and
to adjust its T2S and ET values.

On the 5 games, the MHiCS Bots won 4 with an average
Team Score of 92 over 52 (Figure 4) whereas they were
starting with no initial knowledge on how to increase the
team score and often captured their first flag after the
opponent team had already captured many.

140

e —e—Move to my team

/' f [flag goal
—a—Move to my team

flag start
Al | —&—Move to opponent

team flag
—»—Move to opponent

team flag goal

—*— Move to opponent
team flag start

3
S

!

Max (T2S, ET)in s

I
I
P

n
S

o

Time

Figure 5: Max(T2S, ET) values of each classifier which
condition is “Team has flag==False” in the game 4 of the
second experiment

In the second experiment, 4 HPB Bots compete with 4
MHiCS Bots. The purpose is to demonstrate that, in a
multi-agent environment, MHiCS Bots can still learn how
to increase the score, with the same update signal (the
motivation decrease) given to all team members whatever
the actions already done (even though only one Bot can
bring back the flag).

4vs. 4

100

80 4

60 1 T MHCS Bots

40 1 @ HBP Bots

Score

20 1

0 41
Game1 Game2 Game3 Game4 Gameb

Figure 6: Score of both teams in the second experiment

With a greater number of opponents, Bots sometimes
encounter difficulties in capturing the flag. Figure 5 shows
how MHICS handles this kind of situation. After learning
that the classifier with the action part Move to opponent
team flag is the most efficient, Bots encounter difficulties
with this action. A second classifier with the action part
Move to opponent team flag start becomes active and gives
good results too. But the Bots encounter also difficulties
with this new classifier. After testing without success the
classifier with the action part Move fo opponent team start,

the classifier Move to opponent team flag is successfully
selected just before the end of the game. This example
shows the capacity of the MHICS architecture to
dynamically adapt the classifier priority.

On the 5 games, the MHiCS Bots won 4 (Figure 6) with an
average Team Score of 68 over 50.

DISCUSSION AND CONCLUSION

s

As a classifier is basically an “if condition then action’
rule, the CS of a Bot could be initialized by a game
designer with quite a good starting classifiers set. In this
paper, this first step has been automatically done by
MHIiCS, which has learned how to improve a given set of
rules in order to increase the team score in a Team Fortress
Classic scenario. The comparison of MHIiCS Bots with
hand-tuned HPB Bots reveals the efficiency of this
automatic process.

In further experiments, a similar learning process will be
used with the purpose of dynamically adapting Bots
behaviours to specific players’ tactics.

Classifier systems incorporate individual learning but they
also integrate collective learning processes - i.e. evolution.
Genetic algorithms allow the discovery of new useful
classifiers and the elimination of bad ones. New classifiers
are created by genetic operators like crossover and
mutation, which exchange or transform the condition or
action parts of old classifiers. Bad classifiers are rejected on
the basis of appropriate fitness criterion.

Here this criterion will focus on the evaluation of max
(T2S, ET) values on which the learning process is based.
As shown in Figure 3 and Figure 5, these values are subject
to great variations. To better assess the quality of a
classifier, these variations will be taken into account, as
some CSs already do (XCS, Wilson 1995; Lanzi 1999), by
selecting classifiers associated with the most consistent
values and removing classifiers associated with the most
fluctuating ones.

Other improvements are also under consideration like the
addition of other kinds of learning or planning abilities
(YACS, Gérard 2002). With such abilities, Bots would be
able to take advantage of generating plans to achieve given
goals during a latent learning phase — i.e. without reward -
and to learn much faster in complex environments.

LINKS

HPB Bot: http://www.planethalflife.com/botman/
TFC: http://www.planethalflife.com/tfc/

REFERENCES

Calderon C. and M. Cavazza. 2001. "Using games engines to
implement intelligent virtual environments". In Game-On
2001, Q. Mehdi, N. Gough, and D. Al-Dabass (Eds.).SCS
Europe Bvba, 71-75.

Gérard, P. 2002. "YACS : a new Learning Classifier System using
Anticipation". Soft Computing, No.6(3-4), 216-228.

Guillot A. and J.A. Meyer. 2000. "From SAB94 to SAB2000 :
What's new, animat ?". In From Animals to Animats 6, J. A.
Meyer, A. Berthoz, D. Floreano, H. Roitblat, and S. W.
Wilson (Eds.).The MIT Press/Bradford Books, 3-12.

Holland, J. H. 1986. "Escaping brittleness: the possibilities of
general purpose algorithms applied to parallel rule-based
systems". Machine Learning Journal, No.2, 593-623.

Khoo, A. and R. Zubek. 2002. "Applying Inexpensive Al
Techniques to Computer Games". IEEE Intelligent Systems,
No.17(4), 48-53.

Laird J.E. and J.C. Duchi. 2000. "Creating Human-like Synthetic
Characters with Multiple Skill Levels: A Case Study using
the Soar Quakebot". In Papers from the 2000 AAAI Spring
Symposium on Arti cial Intelligence and Computer Games,
54-58.

Lanzi, L. 1999. "An Analysis of Generalization in the XCS
Classifier System". Evolutionary Computation, No.7(2), 125-
149.

Robert G., P. Portier and A. Guillot. 2002. "Classifier systems as
'Animat' architectures for action selection in MMORPG". In
Game-On 2002, Q. Mehdi, N. Gough, and M. Cavazza
(Eds.).SCS Europe Bvba, 121-125.

Tozour P. 2002." First-Person Shooter AI Architecture” In Al
Game Programming Wisdom Jenifer Niles (Eds.). Hingham,
Massachusetts 02043, 387-396.

Wilson, S. W. 1995. "Classifier Fitness Based on Accuracy".
Evolutionary Computation, No.3(2), 149-175.

