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ABSTRACT 
 
Classifier systems (CS) are used as control 
architectures for simulated animals or robots in order 
to decide what to do at each time. We will explain 
why these systems are good candidates for action 
selection mechanisms of Non Player Characters. 
After having described different classifier systems, 
we will introduce a new CS architecture, acting in a 
multi-agent environment, which is adapted to the 
specific constraints of the ‘Massively Multi-players 
Online Role Playing Games’ . 
 
INTRODUCTION 
 
A new Artificial Intelligence approach focuses on 
the synthesis of adaptive simulated animals or real 
robots (called animats), the inner mechanisms of 
which being as much inspired from biology and 
ethology as possible (Guillot and Meyer 2000). An 
animat has both sensors – which provide information 
about its environment or internal states - and 
effectors – which make it possible to change its 
environment. In order to be able to survive, it is 
endowed with a control architecture that connects its 
sensors to its effectors, such architecture being 
occasionally adapted to changing circumstances 
through unsupervised learning. 
Massively Multi-players Online Role Playing Games 
(MMORPG) are new games in which thousands of 
players interact with each other and with non-player 
characters (NPC) in the same continuous and 
persistent world (e.g., Everquest ©Verant 
Interactive, Asheron’s Call ©Turbine Games, or 
Dark Age of Camelot ©Mythic Entertainment). 
NPCs behaving in these games are comparable to 
animats, because these artificial creatures have to 
adapt on line to dynamically changing environments, 
to new goals assigned by game-designers, and to 
unpredictable actions from the players. 
 
The control architectures developed by the animat 
community are useful to afford adaptive behaviours 
to a NPC. In particular, one kind of model - the so-
called Classifier Systems (CS) - is especially 

convenient to design architectures able to efficiently 
select which actions the NPC should perform. A CS 
is a population of 'condition-action' rules called 
classifiers (Holland 1986). A CS can learn which 
classifier is better suited than another to achieve a 
given task. New rules can also be discovered 
through the creation of new classifiers. 
In this paper, we will introduce different categories 
of CS used in the animat approach that could prove 
to be applicable to NPC action selection in video 
games. We also propose a new architecture, based 
on hierarchical CS and specifically tailored to 
Ryzom, a MMORPG developed by Nevrax.  
 
CLASSIFIER SYSTEMS 
 
A CS contains a classifier list, i.e. a pool of 
'condition-action' rules, the classifiers (Figure 1). At 
initialization time, this list is generally hand-
designed. Three parts characterize a classifier. The 
first one, the condition part, corresponds to the 
environmental information received by the animat 
sensors, and expressed as a string defined by a 
ternary alphabet { 0,1,# : false, right, don’ t care} . 
The second part is an action command. The last part 
is a ‘ fitness’  value, a quantitative measure of the 
classifier’s past successes or failures. 
 

Classifier System
Classifier list

 10##101  0001101  12.0 

 01011##  1100101  13.0 

 ##01#01  0001101    2.0 

Fitness attribution

Message board
 1010101 

 0011011 

Selection
algorithm

Evalutation
function

Evolutionary
 algorithm

Classifiers

Environmental
Messages

executable action

Compare
Matching classifier

Action 
consequences

1

2

3 4

5

6

7

8

 

 
 

Figure 1.  A Classifier System (see text for 
explanation) 

 



When an animat detects some environmental 
features (1), it encodes this information into a 
‘string’  of { 0,1, #}  that it deposits on the message 
board, together with other possibly internal 
messages (e.g. motivation) For example, if an 
animat is near a river and a dragon, its three sensors 
specific for water, food and predator will send the 
message { 1,0,1}  (2). This message is compared to 
the condition part of each classifier in the classifier 
list (3). A selection algorithm chooses one classifier 
among those whose condition part matches to the 
current message (4). The corresponding action 
command is either directly sent to the effectors, or 
deposited on the message board (5). In the latter 
case, the corresponding action message may be 
matched to the condition part of other classifiers, 
and the process returns to step (3). In the former 
case, the behaviour corresponding to the activated 
effectors is displayed in the environment (6).  
A CS has two adaptive mechanisms. On the one 
hand, each time an action command is executed, the 
fitness value of the corresponding classifier is 
incremented or decremented relative to the resulting 
positive or negative outcome (7). If, at step (3), 
several classifiers are selected at the same time, the 
classifier with the highest fitness value has the 
greatest probability of being activated. This 
reinforcement learning process - well-known in 
ethology - allows an animat to efficiently associate 
given classifiers to given tasks. On the other hand, 
new classifiers may be created by an evolutionary 
algorithm (e.g. a genetic algorithm, see Holland 
1975), according to so-called mutations and 
crossovers operators acting on classifiers with high 
fitness values. Other classifiers may be removed 
from the list if they are associated with low fitness 
values (8). 
 
Mac Namee and Cunningham (2001) have asserted 
that a good action selection mechanism for a video 
game must be reactive (i.e., agents behave by means 
of event-action rules), proactive (i.e., agents exhibit 
goal-directed behaviour), and autonomous (i.e. 
agents do not call upon player or game master 
intervention), as well as configurable and extensible 
by a non-programmer, like a game-designer. It turns 
out that a classifier system affords these specific 
properties. Indeed, with such control architecture, an 
animat is reactive, as some classifiers are simple S-R 
rules. An animat is proactive, as the classifiers can 
code internal needs and desires. An animat is 
autonomous, as it can empirically build, through 
learning or evolutionary process, an efficient 
classifier list. Finally, a game designer can easily 
configure, change or extend the behavioural 
repertoire of the animats, because a classifier is 
written in a classical video game formalism, i.e., “ if 
condition then action”  rules.  

A huge variety of CSs has been proposed in the 
animat literature (see Kovacs 2002, for a review). 
We will introduce here the main systems only. 
The best known CS are called ZCS (Zeroth level 
Classifier System), that has been developed by 
Wilson (1994). This CS does not have a message 
board. Sensor and motor messages are directly 
linked to the condition and action parts of the 
classifier list. Wilson also designed XCS (Wilson 
1995). Here, the fitness is split in two values, its 
strength - that evaluates the efficiency of the 
classifier - and its quality – that assesses the 
precision of the strength’s evaluation. A classifier’s 
overall fitness depends on the latter value. ZCS and 
XCS have been tested with success on animats, 
which had to survive in a dynamic environment, like 
woods with different kind of trees, foods, traps and 
predators.  
The ACS (Anticipatory Classifier System) of 
(Stolzmann et al. 2000) adds an anticipation part to 
each classifier. This part is a string describing what 
the sensors should detect in the environment after 
the activation of this classifier. The fitness of a 
classifier is based on its capacity to well anticipate 
the consequence of its action in the environment. In 
a maze, for example, an animat is able to learn that it 
will reach a dead-end after turning right at a 
particular location. 
In any given CS, the possibility of creating new 
classifiers – by hand, or with genetic algorithms - 
clearly increases the matching process time and 
entails a risk of combinatory explosion. Barry 
(1996) accordingly suggested the use of hierarchical 
CSs, in order to reduce the search space. This has 
been done by Donnart (1996) within the framework 
of animat navigation. Basically, his architecture 
relied on three interconnected CSs, a first one 
responsible for reactive behaviour, the second one 
responsible for planning behaviour, and the third one 
being in charge of building a cognitive map of the 
environment.  
The different CSs just described were used in 
markovian environments only - i.e., in environments 
where a given sensory input corresponds to a given 
environmental state. However, a MMORPG is 
definitely a non-markovian environment, especially 
when it is implemented as a Multi-Agent System. 
The corresponding worlds are indeed continuously 
changing, according to the numerous actions of the 
NPCs and players. Such changes may well not be 
detected by the primitive sensors of NPCs, nor by 
humans themselves.  
 
CS IN MULTI-AGENT ENVIRONMENTS 
 
When a CS is embedded within a Multi-Agent 
System, every CS is seen as an agent that tries to 
satisfy its own goals and shares the same 
environment with other CS agents. The agents can 



communicate, in order to improve their 
performance.  
On the one hand, some animats acquire information 
about other animats indirectly, i.e., through the 
environment. This is the case, for example, of the 
so-called ”El Farol bar problem” , in which an agent 
has to decide whether or not it will enter into the bar, 
on the basis of the frequency of consumer visits over 
the last weeks (Hercog and Fogarty 2001).  
On the other hand, other animats communicate 
explicitly, i.e., by exchanging classifiers or rewards. 
For example, in OCS (Organisational Classifier 
System), several CSs cooperate to solve a collective 
task, the design of an electronic circuit (Takadama et 
al. 2000). Each OCS represents an electronic 
component. By exchanging good rules with the 
others OCSs, the agents can collectively decide how 
they should be arranged in a spatially optimal 
circuit. In another work that simulates soccer, the 
players have to decide at each time what to do, on 
the basis of both an individual fitness value and a 
collective reward, the latter being evaluated 
relatively to the efficiency of the whole team (Sanza 
et al. 2000). 
 

 
 

Figure 2.  A snapshot of Ryzom 
 
MHiCS, A PROTOTYPE FOR AN ACTION 
SELECTION ARCHITECTURE OF NPC IN 
MMORPG 
 
All the above-mentioned CSs were not especially 
dedicated to NPCs in MMORPG. This is why we are 
developing a specific architecture, inspired from 
previous works, in order to fit the different needs 
and constraints of these new games. It will be 
applied to Ryzom, a MMORPG developed since 
2000 by ©Nevrax (Figure 2). 
Ryzom is a MMORPG elaborated with NeL (Nevrax 
Library), a free software library developed under 
General Public License. Like others MMORPG, 
Ryzom is a game playable only through Internet, in 
which players incarnate a character in a huge virtual 
world. The game is persistent and will be shared by 

thousands of players simultaneously. The player’s 
goals may be concrete - like exploring the world, 
killing monsters, searching for food - or more 
abstract - like increasing his competencies, being 
member of a community, becoming famous, etc. The 
NPCs will be merchants and craftsmen, making and 
selling artefacts, they will be people animating 
towns, wild animals living in forests and deserts, 
tribes and monsters that provide challenge to 
players, etc. They will manage multiple goals that 
may be conflicting, like sleeping, eating, hunting, 
protecting territory, finding resources and the like. 
Finally, they must be endowed with an appropriate 
action selection system, able to manage different 
goals in a massively multi-agent environment. 
 
MHiCS is a Modular and Hierarchical CS 
architecture dedicated to these NPCs (Figure 3). The 
modularity of the architecture will allow the design 
of various kinds of NPCs, in which modules could 
be assembling in different ways. These modules will 
correspond to different CSs, distributed in two 
hierarchical levels. At level I, several CSs will 
manage the motivations of the NPC. At level II, 
other CSs will refine the action commands of level I. 
Various motivations in the system may have some of 
these CSs in common. Two lower levels (III and IV) 
do not include any CS, but concern the execution of 
the final action.  

 
The Motivation level 
Each NPC owns different motivations - like self-
protection, hunger, flocking. Each motivation is 
associated with a specific CS that is not shared by 
other motivations - but different specific CSs can 
have similar action commands.  
A motivation is associated with two values, its 
Relative Power (RP) and its Motivation Value 
(MV). Through the RP values, the programmer can 
attribute a ‘personality’  to the NPCs. For instance, if 
a given individual has a hunger RP of 4, while 
another has a hunger RP of 10, the latter will have, 
during its whole life, a stronger tendency to practice 
all the actions linked to hunger than the former one. 
MV is a value between 0 and 1, giving the current 
strength of the motivation. If a NPC is eating, its 
hunger MV decreases to 0, otherwise it increases to 
1.  
Several CS belonging to motivation of level I can be 
triggered at the same time. Their activation values 
depend on their RP and MV values. Several action 
commands belonging to different CS can then be 
selected. These action commands will trigger the CS 
of level II. 
 
The Common CS level 
Each CS of level II can be activated by more than 
one motivation of level I. If a CS is selected by a  
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Figure 3. An illustration of MHiCS (see text for explanation). For the sake of clarity, the CS are only depicted by 
their classifier list, and the condition and action parts of the classifiers are not translated in strings of { 0,1,#} .

single motivation only, it inherits a Motivational 
Intensity (MI) value, which is function of both the 
MV of the motivation and the fitness value of the 
level I classifier which has triggered the CS of level 
II. If a CS (e.g. on Fig.3, Attack) is activated by 
several motivations, its MI value depends on the 
MV of all the motivations (e.g. on Fig. 3, Self-
protection 0.8 and Hunger 0.3), and on the fitness 
values of all the level I classifiers that have 
triggered this CS (on Fig. 3, bold classifiers at level 
I: 0.5 and 0.9). A classifier that is activated by 
several motivations will have more chances to be 
triggered than a classifier activated by a single 
motivation. 
 
The Action level 
All motivations diffuse their MI in the CS involved 
at level II. As a consequence, several classifiers can 
be selected at the same time, and several action 
commands can be executable at level III. Each 
action command is associated with an Execution 
Intensity (EI), depending on the fitness value of the 
corresponding classifier, the MI of the 
corresponding CS(s), and the RP of the 
corresponding motivation(s). For example (see 
Fig.3), the action command ‘Run to’ , ordered by a 
classifier with a fitness value of 1 (bold classifier at 
level II), belonging to a CS with a MI of 0.4 
(through Self-protection, RP=10) + 0.27 (through 
Hunger, RP=4), will have an EI of 
1[(0.4*10)+(0.27*4)] = 5.08. 
 
The Action Resources level 
Level IV provides resources for action execution. In 
particular, it supplies resources for behavioural 
animations (for eating, running, etc.), and for the 

management of motion speed, attraction forces 
from X, repulsion forces from Y, etc. 
The action command with the highest EI value has 
the primacy to recruit the needed resources. Other 
executable actions cannot require these already-
used resources, but have only access to free ones. 
The behaviour that will be displayed by the NPC in 
the environment will be a combination of all the 
activated resources.  
 
Evaluation and creation of CSs 
The CS fitness values are computed on line and 
depend on the executed actions. If these actions 
satisfy the motivations that have triggered them at 
level I, all the classifiers that were implied in the 
action execution, at whatever level, will have their 
fitness value increased. In the opposite case, their 
fitness value will be decreased. If there are no 
classifiers matching to a particular environmental 
context, new ones will be discovered off line by a 
genetic algorithm. 
 
The MAS environment 
Each NPC equipped with MHiCS will be 
considered as an agent in a MAS environment. It 
will be able to communicate with other NPCs, for 
example to indicate the value of its internal 
variables (MV, MI, EI), in order to influence the 
motivations or the EI of other agents. It will also be 
able to exchange efficient classifiers or modules 
with other NPCs, in order to increase its learning 
process or its intrinsic skills.  
Communication will be also possible between 
NPCs and players. On the one hand, players could 
train NPCs to achieve a given task, through the 
reinforcement of some classifiers. On the other 



hand, through the players’  actions, NPC could learn 
to detect the players’  motivations or personalities, 
and decide to cooperate or to compete with them. 
 
A preliminary test of MHiCS 
Such a complex architecture must be tested step by 
step, in order to check the operational efficiency of 
each mechanism.  
The first step – the only one already done –checked 
the diffusion of the motivations through a small 
number of CSs, in a simplified environment having 
the same characteristics as Ryzom. The 
corresponding experiments involved the simulation 
of prey, predators and ‘preydators’  – which behave 
either as predators or prey – in a closed 
environment. Each MHiCS included 2 motivations 
at level I, 4 CSs at level II, 4 actions at level III. 
Level IV was not implemented, the actions being 
simulated directly with their resources (see Robert 
2002, for the detailed results).  
In such conditions, we observed how easy it was to 
attribute a personality to NPCs thanks to RP values. 
Actually, significant differences in the duration of 
the displacements were exhibited by our three kinds 
of NPCs, characterized by different Exploration RP 
values. More importantly, we observed that the 
diffusion of the motivations entailed a correct 
chaining of actions for all NPCs. It also turned out 
that bad parameter fitting could induce unwanted 
effects, like dithering, i.e., a rapid oscillation 
between two actions. This issue - a classical one in 
action selection – could easily be solved at level IV, 
by locking by hand undesirable motions. But, for 
the design of autonomous NPCs, an adaptive 
solution has to be designed. 
Such issues are being tackled in the second series of 
check tests that are under current development. 
Additionally, learning and evolutionary processes 
are implemented in the same experimental 
conditions as above. Future extensions will concern 
several NPCs in a Multi-Agent system, with the 
implementation of interaction mechanisms between 
NPCs and real players. 
 
CONCLUSION 
 
In this paper, we argue that classifier systems are 
particularly appropriate to be used as action 
selection architectures for autonomous NPCs. They 
are written in a classical video-game formalism and 
they integer adaptive capacities that allow NPCs to 
behave without human intervention. CSs have 
provided many sophisticated cognitive abilities in 
animats, like generalisation, specialisation, latent 
learning or planning (Lanzi 1999; Gérard 2002). To 
our knowledge, only a single video game – a 
classical one – currently integrates such a model 
(Conflict Zone, ©Masa). The aspiration of MHiCS 
is to demonstrate its relevance for more promising 
kind of games, the MMORPG. 
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