
CLASSIFIER SYSTEMS AS 'ANIMAT' ARCHITECTURES FOR
ACTION SELECTION IN MMORPG

Gabriel Robert* ,* * , Pierre Portier** and Agnès Guillot*

 *AnimatLab, Laboratoire d'Informatique de Paris 6, 8 rue du Capitaine Scott, 75015 Paris, France
**Nevrax France, 104 Rue du Faubourg St. Antoine 75012 Paris, France

E-mail : { gabriel.robert ;agnes.guillot} @lip6.fr; portier@nevrax.com

KEYWORDS
Learning classifier systems, action selection,
autonomous agents, video game.

ABSTRACT

Classifier systems (CS) are used as control
architectures for simulated animals or robots in order
to decide what to do at each time. We will explain
why these systems are good candidates for action
selection mechanisms of Non Player Characters.
After having described different classifier systems,
we will introduce a new CS architecture, acting in a
multi-agent environment, which is adapted to the
specific constraints of the ‘Massively Multi-players
Online Role Playing Games’ .

INTRODUCTION

A new Artificial Intelligence approach focuses on
the synthesis of adaptive simulated animals or real
robots (called animats), the inner mechanisms of
which being as much inspired from biology and
ethology as possible (Guillot and Meyer 2000). An
animat has both sensors – which provide information
about its environment or internal states - and
effectors – which make it possible to change its
environment. In order to be able to survive, it is
endowed with a control architecture that connects its
sensors to its effectors, such architecture being
occasionally adapted to changing circumstances
through unsupervised learning.
Massively Multi-players Online Role Playing Games
(MMORPG) are new games in which thousands of
players interact with each other and with non-player
characters (NPC) in the same continuous and
persistent world (e.g., Everquest ©Verant
Interactive, Asheron’s Call ©Turbine Games, or
Dark Age of Camelot ©Mythic Entertainment).
NPCs behaving in these games are comparable to
animats, because these artificial creatures have to
adapt on line to dynamically changing environments,
to new goals assigned by game-designers, and to
unpredictable actions from the players.

The control architectures developed by the animat
community are useful to afford adaptive behaviours
to a NPC. In particular, one kind of model - the so-
called Classifier Systems (CS) - is especially

convenient to design architectures able to efficiently
select which actions the NPC should perform. A CS
is a population of 'condition-action' rules called
classifiers (Holland 1986). A CS can learn which
classifier is better suited than another to achieve a
given task. New rules can also be discovered
through the creation of new classifiers.
In this paper, we will introduce different categories
of CS used in the animat approach that could prove
to be applicable to NPC action selection in video
games. We also propose a new architecture, based
on hierarchical CS and specifically tailored to
Ryzom, a MMORPG developed by Nevrax.

CLASSIFIER SYSTEMS

A CS contains a classifier list, i.e. a pool of
'condition-action' rules, the classifiers (Figure 1). At
initialization time, this list is generally hand-
designed. Three parts characterize a classifier. The
first one, the condition part, corresponds to the
environmental information received by the animat
sensors, and expressed as a string defined by a
ternary alphabet { 0,1,# : false, right, don’ t care} .
The second part is an action command. The last part
is a ‘ fitness’ value, a quantitative measure of the
classifier’s past successes or failures.

Classifier System
Classifier list

 10##101 0001101 12.0

 01011## 1100101 13.0

 ##01#01 0001101 2.0

Fitness attribution

Message board
 1010101

 0011011

Selection
algorithm

Evalutation
function

Evolutionary
 algorithm

Classifiers

Environmental
Messages

executable action

Compare
Matching classifier

Action
consequences

1

2

3 4

5

6

7

8

Figure 1. A Classifier System (see text for
explanation)

When an animat detects some environmental
features (1), it encodes this information into a
‘string’ of { 0,1, #} that it deposits on the message
board, together with other possibly internal
messages (e.g. motivation) For example, if an
animat is near a river and a dragon, its three sensors
specific for water, food and predator will send the
message { 1,0,1} (2). This message is compared to
the condition part of each classifier in the classifier
list (3). A selection algorithm chooses one classifier
among those whose condition part matches to the
current message (4). The corresponding action
command is either directly sent to the effectors, or
deposited on the message board (5). In the latter
case, the corresponding action message may be
matched to the condition part of other classifiers,
and the process returns to step (3). In the former
case, the behaviour corresponding to the activated
effectors is displayed in the environment (6).
A CS has two adaptive mechanisms. On the one
hand, each time an action command is executed, the
fitness value of the corresponding classifier is
incremented or decremented relative to the resulting
positive or negative outcome (7). If, at step (3),
several classifiers are selected at the same time, the
classifier with the highest fitness value has the
greatest probability of being activated. This
reinforcement learning process - well-known in
ethology - allows an animat to efficiently associate
given classifiers to given tasks. On the other hand,
new classifiers may be created by an evolutionary
algorithm (e.g. a genetic algorithm, see Holland
1975), according to so-called mutations and
crossovers operators acting on classifiers with high
fitness values. Other classifiers may be removed
from the list if they are associated with low fitness
values (8).

Mac Namee and Cunningham (2001) have asserted
that a good action selection mechanism for a video
game must be reactive (i.e., agents behave by means
of event-action rules), proactive (i.e., agents exhibit
goal-directed behaviour), and autonomous (i.e.
agents do not call upon player or game master
intervention), as well as configurable and extensible
by a non-programmer, like a game-designer. It turns
out that a classifier system affords these specific
properties. Indeed, with such control architecture, an
animat is reactive, as some classifiers are simple S-R
rules. An animat is proactive, as the classifiers can
code internal needs and desires. An animat is
autonomous, as it can empirically build, through
learning or evolutionary process, an efficient
classifier list. Finally, a game designer can easily
configure, change or extend the behavioural
repertoire of the animats, because a classifier is
written in a classical video game formalism, i.e., “ if
condition then action” rules.

A huge variety of CSs has been proposed in the
animat literature (see Kovacs 2002, for a review).
We will introduce here the main systems only.
The best known CS are called ZCS (Zeroth level
Classifier System), that has been developed by
Wilson (1994). This CS does not have a message
board. Sensor and motor messages are directly
linked to the condition and action parts of the
classifier list. Wilson also designed XCS (Wilson
1995). Here, the fitness is split in two values, its
strength - that evaluates the efficiency of the
classifier - and its quality – that assesses the
precision of the strength’s evaluation. A classifier’s
overall fitness depends on the latter value. ZCS and
XCS have been tested with success on animats,
which had to survive in a dynamic environment, like
woods with different kind of trees, foods, traps and
predators.
The ACS (Anticipatory Classifier System) of
(Stolzmann et al. 2000) adds an anticipation part to
each classifier. This part is a string describing what
the sensors should detect in the environment after
the activation of this classifier. The fitness of a
classifier is based on its capacity to well anticipate
the consequence of its action in the environment. In
a maze, for example, an animat is able to learn that it
will reach a dead-end after turning right at a
particular location.
In any given CS, the possibility of creating new
classifiers – by hand, or with genetic algorithms -
clearly increases the matching process time and
entails a risk of combinatory explosion. Barry
(1996) accordingly suggested the use of hierarchical
CSs, in order to reduce the search space. This has
been done by Donnart (1996) within the framework
of animat navigation. Basically, his architecture
relied on three interconnected CSs, a first one
responsible for reactive behaviour, the second one
responsible for planning behaviour, and the third one
being in charge of building a cognitive map of the
environment.
The different CSs just described were used in
markovian environments only - i.e., in environments
where a given sensory input corresponds to a given
environmental state. However, a MMORPG is
definitely a non-markovian environment, especially
when it is implemented as a Multi-Agent System.
The corresponding worlds are indeed continuously
changing, according to the numerous actions of the
NPCs and players. Such changes may well not be
detected by the primitive sensors of NPCs, nor by
humans themselves.

CS IN MULTI-AGENT ENVIRONMENTS

When a CS is embedded within a Multi-Agent
System, every CS is seen as an agent that tries to
satisfy its own goals and shares the same
environment with other CS agents. The agents can

communicate, in order to improve their
performance.
On the one hand, some animats acquire information
about other animats indirectly, i.e., through the
environment. This is the case, for example, of the
so-called ”El Farol bar problem” , in which an agent
has to decide whether or not it will enter into the bar,
on the basis of the frequency of consumer visits over
the last weeks (Hercog and Fogarty 2001).
On the other hand, other animats communicate
explicitly, i.e., by exchanging classifiers or rewards.
For example, in OCS (Organisational Classifier
System), several CSs cooperate to solve a collective
task, the design of an electronic circuit (Takadama et
al. 2000). Each OCS represents an electronic
component. By exchanging good rules with the
others OCSs, the agents can collectively decide how
they should be arranged in a spatially optimal
circuit. In another work that simulates soccer, the
players have to decide at each time what to do, on
the basis of both an individual fitness value and a
collective reward, the latter being evaluated
relatively to the efficiency of the whole team (Sanza
et al. 2000).

Figure 2. A snapshot of Ryzom

MHiCS, A PROTOTYPE FOR AN ACTION
SELECTION ARCHITECTURE OF NPC IN
MMORPG

All the above-mentioned CSs were not especially
dedicated to NPCs in MMORPG. This is why we are
developing a specific architecture, inspired from
previous works, in order to fit the different needs
and constraints of these new games. It will be
applied to Ryzom, a MMORPG developed since
2000 by ©Nevrax (Figure 2).
Ryzom is a MMORPG elaborated with NeL (Nevrax
Library), a free software library developed under
General Public License. Like others MMORPG,
Ryzom is a game playable only through Internet, in
which players incarnate a character in a huge virtual
world. The game is persistent and will be shared by

thousands of players simultaneously. The player’s
goals may be concrete - like exploring the world,
killing monsters, searching for food - or more
abstract - like increasing his competencies, being
member of a community, becoming famous, etc. The
NPCs will be merchants and craftsmen, making and
selling artefacts, they will be people animating
towns, wild animals living in forests and deserts,
tribes and monsters that provide challenge to
players, etc. They will manage multiple goals that
may be conflicting, like sleeping, eating, hunting,
protecting territory, finding resources and the like.
Finally, they must be endowed with an appropriate
action selection system, able to manage different
goals in a massively multi-agent environment.

MHiCS is a Modular and Hierarchical CS
architecture dedicated to these NPCs (Figure 3). The
modularity of the architecture will allow the design
of various kinds of NPCs, in which modules could
be assembling in different ways. These modules will
correspond to different CSs, distributed in two
hierarchical levels. At level I, several CSs will
manage the motivations of the NPC. At level II,
other CSs will refine the action commands of level I.
Various motivations in the system may have some of
these CSs in common. Two lower levels (III and IV)
do not include any CS, but concern the execution of
the final action.

The Motivation level
Each NPC owns different motivations - like self-
protection, hunger, flocking. Each motivation is
associated with a specific CS that is not shared by
other motivations - but different specific CSs can
have similar action commands.
A motivation is associated with two values, its
Relative Power (RP) and its Motivation Value
(MV). Through the RP values, the programmer can
attribute a ‘personality’ to the NPCs. For instance, if
a given individual has a hunger RP of 4, while
another has a hunger RP of 10, the latter will have,
during its whole life, a stronger tendency to practice
all the actions linked to hunger than the former one.
MV is a value between 0 and 1, giving the current
strength of the motivation. If a NPC is eating, its
hunger MV decreases to 0, otherwise it increases to
1.
Several CS belonging to motivation of level I can be
triggered at the same time. Their activation values
depend on their RP and MV values. Several action
commands belonging to different CS can then be
selected. These action commands will trigger the CS
of level II.

The Common CS level
Each CS of level II can be activated by more than
one motivation of level I. If a CS is selected by a

 M V : M otivation Value MI : Motivation Intensity EI : Execution Intensity

If x threats me and I am stronger => A TTA CK (1)
If x threats me and I am as strong => A TTA CK (0.5)
If x threats me and I am less strong => FLEE (0.9)

Self-protection (Relative Power : 10)
M V : 0.8

If ... => TRA CK (0.75)
If ... => A TTA CK (0.9)
If ... => EA T (1)

Hunger (RP : 4)
MV : 0.3

I f ... => ... (0.6)
I f ... => ... (0.75)
I f ... => ... (0.1)

Flocking (RP : 6)
MV : 0.65

If I am as st rong => light hit (0.7)
If I am less strong => strong hit (0.9)
If I am at shooting range => shoot (0.8)
If I am good at hand-to-hand and not at short range => run to (1)

ATTACK
M I : 0.4 Self-protection + 0.27 Hunger

If ... => look around (..)
If ... =>... (..)

TRACK
MI : ...

Animation

Light hit
EI : -

State : inactive

Run to
EI : 5.08

State : active

Strong hit
EI : -

State : inactive

SpeedHit power X attraction

L ook around
EI : 4.06

State : inactive

I.
 M

ot
iv

at
io

ns
II

. C
om

m
on

 C
S

II
I.

 A
ct

io
ns

IV. Action Resources

Sensor Informations

Figure 3. An illustration of MHiCS (see text for explanation). For the sake of clarity, the CS are only depicted by
their classifier list, and the condition and action parts of the classifiers are not translated in strings of { 0,1,#} .

single motivation only, it inherits a Motivational
Intensity (MI) value, which is function of both the
MV of the motivation and the fitness value of the
level I classifier which has triggered the CS of level
II. If a CS (e.g. on Fig.3, Attack) is activated by
several motivations, its MI value depends on the
MV of all the motivations (e.g. on Fig. 3, Self-
protection 0.8 and Hunger 0.3), and on the fitness
values of all the level I classifiers that have
triggered this CS (on Fig. 3, bold classifiers at level
I: 0.5 and 0.9). A classifier that is activated by
several motivations will have more chances to be
triggered than a classifier activated by a single
motivation.

The Action level
All motivations diffuse their MI in the CS involved
at level II. As a consequence, several classifiers can
be selected at the same time, and several action
commands can be executable at level III. Each
action command is associated with an Execution
Intensity (EI), depending on the fitness value of the
corresponding classifier, the MI of the
corresponding CS(s), and the RP of the
corresponding motivation(s). For example (see
Fig.3), the action command ‘Run to’ , ordered by a
classifier with a fitness value of 1 (bold classifier at
level II), belonging to a CS with a MI of 0.4
(through Self-protection, RP=10) + 0.27 (through
Hunger, RP=4), will have an EI of
1[(0.4*10)+(0.27*4)] = 5.08.

The Action Resources level
Level IV provides resources for action execution. In
particular, it supplies resources for behavioural
animations (for eating, running, etc.), and for the

management of motion speed, attraction forces
from X, repulsion forces from Y, etc.
The action command with the highest EI value has
the primacy to recruit the needed resources. Other
executable actions cannot require these already-
used resources, but have only access to free ones.
The behaviour that will be displayed by the NPC in
the environment will be a combination of all the
activated resources.

Evaluation and creation of CSs
The CS fitness values are computed on line and
depend on the executed actions. If these actions
satisfy the motivations that have triggered them at
level I, all the classifiers that were implied in the
action execution, at whatever level, will have their
fitness value increased. In the opposite case, their
fitness value will be decreased. If there are no
classifiers matching to a particular environmental
context, new ones will be discovered off line by a
genetic algorithm.

The MAS environment
Each NPC equipped with MHiCS will be
considered as an agent in a MAS environment. It
will be able to communicate with other NPCs, for
example to indicate the value of its internal
variables (MV, MI, EI), in order to influence the
motivations or the EI of other agents. It will also be
able to exchange efficient classifiers or modules
with other NPCs, in order to increase its learning
process or its intrinsic skills.
Communication will be also possible between
NPCs and players. On the one hand, players could
train NPCs to achieve a given task, through the
reinforcement of some classifiers. On the other

hand, through the players’ actions, NPC could learn
to detect the players’ motivations or personalities,
and decide to cooperate or to compete with them.

A preliminary test of MHiCS
Such a complex architecture must be tested step by
step, in order to check the operational efficiency of
each mechanism.
The first step – the only one already done –checked
the diffusion of the motivations through a small
number of CSs, in a simplified environment having
the same characteristics as Ryzom. The
corresponding experiments involved the simulation
of prey, predators and ‘preydators’ – which behave
either as predators or prey – in a closed
environment. Each MHiCS included 2 motivations
at level I, 4 CSs at level II, 4 actions at level III.
Level IV was not implemented, the actions being
simulated directly with their resources (see Robert
2002, for the detailed results).
In such conditions, we observed how easy it was to
attribute a personality to NPCs thanks to RP values.
Actually, significant differences in the duration of
the displacements were exhibited by our three kinds
of NPCs, characterized by different Exploration RP
values. More importantly, we observed that the
diffusion of the motivations entailed a correct
chaining of actions for all NPCs. It also turned out
that bad parameter fitting could induce unwanted
effects, like dithering, i.e., a rapid oscillation
between two actions. This issue - a classical one in
action selection – could easily be solved at level IV,
by locking by hand undesirable motions. But, for
the design of autonomous NPCs, an adaptive
solution has to be designed.
Such issues are being tackled in the second series of
check tests that are under current development.
Additionally, learning and evolutionary processes
are implemented in the same experimental
conditions as above. Future extensions will concern
several NPCs in a Multi-Agent system, with the
implementation of interaction mechanisms between
NPCs and real players.

CONCLUSION

In this paper, we argue that classifier systems are
particularly appropriate to be used as action
selection architectures for autonomous NPCs. They
are written in a classical video-game formalism and
they integer adaptive capacities that allow NPCs to
behave without human intervention. CSs have
provided many sophisticated cognitive abilities in
animats, like generalisation, specialisation, latent
learning or planning (Lanzi 1999; Gérard 2002). To
our knowledge, only a single video game – a
classical one – currently integrates such a model
(Conflict Zone, ©Masa). The aspiration of MHiCS
is to demonstrate its relevance for more promising
kind of games, the MMORPG.

REFERENCES

Barry A. 1996. "Hierarchy Formation within Classifier

Systems A Review". In Proceedings of the First
International Conference on Evolutionary
Algorithms and their Application EVCA'96, E. G.
Goodman, V. L. Uskov, and W. F. Punch (Eds.),
195-211.

Donnart, J. Y. and J. A. Meyer. 1996. "Hierarchical-map
building and self-positioning with MonaLysa".
Adaptive Behavior, No.5(1), 29-74.

Gérard, P. 2002. "YACS : a new Learning Classifier
System using Anticipation". Soft Computing,
No.6(3-4), 216-228.

Guillot A. and J.A. Meyer. 2000. "From SAB94 to
SAB2000 : What's new, animat ?". In From Animals
to Animats 6, J. A. Meyer, A. Berthoz, D. Floreano,
H. Roitblat, and S. W. Wilson (Eds.), 3-12.

Hercog, L. M. and T. C. Fogarty. 2001. "Social
Simulation Using a Multi-agent Model Based on
Classifier Systems: The Emergence of Vacillating
Behaviour in the ``El Farol'' Bar Problem".
Computer Science, No.2321, 88-114.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

Holland, J. H. 1986. "Escaping brittleness: the
possibilities of general purpose algorithms applied to
parallel rule-based systems". Machine Learning
Journal, No.2, 593-623.

Kovacs, T. 2002. "Learning Classifier Systems
Resources". Journal of Soft Computing, No.6(3-4),
240-243.

Lanzi, L. 1999. "An Analysis of Generalization in the
XCS Classifier System". Evolutionary Computation,
No.7(2), 125-149.

Mac Namee, B. and P. Cunningham.2001. "A Proposal
for an Agent Architecture for Proactive Persistent
Non Player Characters". Department. Technical
Report, TCD-CS-2001-20, Trinity College, Dublin.

Robert, G.2002. "Contribution des méthodologies animat
et multi-agent à l'élaboration des jeux en ligne,
persistants et massivement multi-joueurs.".
http://animatlab.lip6.fr/Robert/index_fr.html

Sanza C. ; C. Panatier ; and Y. Duthen. 2000.
"Communication and Interaction with Learning
Agents in Virtual Soccer". In Proceedings of Virtual
Worlds 2000, J.-C. Heudin (Ed.), 147-158.

Stolzmann W. ; M. Butz, V ; J. Hoffmann ; and D.E.
Goldberg. 2000. "First Cognitive Capabilities in the
Anticipatory Classifier System". In From Animals to
Animats 6, J. A. Meyer, A. Berthoz, D. Floreano, H.
Roitblat, and S. W. Wilson (Eds.), 287-296.

Takadama K. ; T. Terano ; and K. Shimohara. 2000.
"Learning Classifier Systems Meet Multiagent
Environments". In Third International Workshop on
Learning Classifier Systems (IWLCS-2000), L.
Lanzi, W. Stolzmann, and S. W. Wilson (Eds.), 192-
210.

Wilson, S. W. 1994. "ZCS: A Zeroth Level Classifier
System". Evolutionary Computation, No.2(1), 1-18.

Wilson, S. W. 1995. "Classifier Fitness Based on
Accuracy". Evolutionary Computation, No.3(2),
149-175.

