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Abstract

This work proposes a unified algorithm for identification and

control. Frequency domain data of the plant is weighted to

satisfy the given performance specifications. A model is then

identified from this weighted frequency domain data and a

controller is synthesised using the H∞ loopshaping design

procedure. The cost function used in the identification stage

essentially minimises a tight upper bound on the difference

between the achieved and the designed performance in the

sense of the H∞ loopshaping design paradigm.

1 Introduction

Identification of dynamic models for control has been an
active area of research in the past few years. Given an
unknown true plant P0, the designer wishes to maximise
some performance criterion as expressed by a function
of plant and controller, say, J(P0, C). Since P0 is un-
known, a model P̂ has to be found on the basis of which
a controller can be designed. Since

J(P0, C) ≥ J(P,C)− |J(P,C) − J(P0, C)|

for any controller C and model P , a promising approach
to joint identification and control design will be to solve

max
P,C
{ J(P,C) − |J(P,C) − J(P0, C)| } (1)

assuming that this term can be somehow captured in a
cost function. In practice, this problem is solved itera-
tively. i−th stage of a typical iterative method proceeds
as follows:

1. Given a controller Ci−1, carry out identification
to obtain a new model P̂i which minimises the
mismatch between the designed performance and
achieved performance:

P̂i = arg min
P
|J(P,Ci−1)− J(P0, Ci−1)| (2)

2. Synthesise a controller Ci for a model P̂i, which
maximises the designed performance:

Ci = arg max
C

J(P̂i, C) (3)

If J(P̂i, Ci) − |J(P,Ci) − J(P0, Ci)| is satisfactory,
stop; otherwise go back to step 1.
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If the minimum (maximum) is non-unique, it is as-
sumed that any minimising (maximising) argument is
chosen. The identification stage in successive iteration
may or may not involve new experiments. |J(P,Ci−1)−
J(P0, Ci−1)| is often approximated by a least squares
problem over a finite time or frequency domain data.
Iterative strategies for identification and control are
widely discussed in literature; see [1], [2] and references
therein. Despite their intuitive appeal, these iterative
schemes suffer from lack of performance guarantees. In
these schemes, the cost in (2) (resp. in (3)) is not guar-
anteed to be non-decreasing (resp. non-increasing).

In this paper, some recent results on identification
in the ν−gap metric and on weight selection in H∞
loopshaping are combined together to present a unified
framework for identification and control. The identi-
fication algorithm used here was first proposed in [3].
Instead of using controller Ci−1 as in (2), this algorithm
minimises an upper bound on the (pointwise) mismatch
between the designed and achieved performance for any
controller within a set of controllers. The weight selec-
tion stage uses a convex optimisation based procedure,
proposed in [4], to synthesise weights and a controller
that maximise the H∞ loopshaping performance crite-
rion. Further, a new method of model and weight ad-
justment to minimise the relevant identification cost is
presented here.

The rest of the paper is organised as follows. Section 2
introduces the notation used. Section 3 introduces the
H∞ loopshaping design procedure and its relation with
the ν−gap metric. Section 4 outlines the new algorithm
and section 5 demonstrates it with a simulation example.

2 Notation

C and R represent real and complex numbers respec-
tively. C+ denote the open right half plane, C+ :=
{s ∈ C : re(s) > 0}. Rm×n denotes the space of all real
rational transfer functions with n inputs and m outputs.
The superscript m× n is dropped whenever the dimen-
sion of transfer matrix is irrelevant. L∞ denotes the
normed space of all functions essentially bounded on jR
and having norm ‖f‖L∞ := ess supω σ(f(jω)). H∞ de-
notes the subspace of functions in L∞ that are analytic
and bounded in C+. RL∞ (RH∞) represents the sub-
space of real rational transfer functions in L∞ (H∞).



For P ∈ R, P∼(s) := PT (−s).
P = ND−1 (= D̃−1Ñ) is called a normalised right

(left) coprime factorisation of plant P ∈ R if N , D
are right coprime (D̃, Ñ are left coprime) and N∗N +
D∗D = I (ÑÑ∗ + D̃D̃∗ = I). Gi := [NT

i D
T
i ]T and

G̃i := [−D̃i Ñi] are respectively called the normalised
right and normalised left graph symbols of plant Pi.

3 H∞ loopshaping and the ν−gap metric

H∞ loopshaping combines the traditional loopshaping
wisdom with robust stabilisation of normalised co-prime
factors. Given a model P of a plant, a pre-compensator
W1 and a post-compensator W2 are selected so that
Ps := W2 P W1 has the desired loopshape. The loop-
shape is determined from the closed loop performance
specifications. Typically, this means choosing compen-
sators (or weights) W1 and W2 such that σ(Ps)(jω)� 1
over some low frequency range, σ(Ps) � 1 over some
high frequency range and σi(Ps) have a moderate roll off
rate around crossover frequency. Unlike classical loop-
shaping, the designer need not shape phase explicitly.
The loopshaping constraints considered here are

α(ω) < σi(Ps(jω)) < β(ω) ∀ω ∈ Ω (4)

where α and β are non-negative, real scalar functions
and Ω = {ω1, ω2, . . . , ωm} specifies a set (or a grid) of
frequencies of interest. The loopshaping weights W1 and
W2 are often selected to be diagonal, stable and inversely
stable transfer matrices. It is not always easy to see how
the weights affect the singular values of Ps. Often the
designer has to rely on a process of trial and error to ar-
rive at satisfactory weighting transfer functions. Follow-
ing an algorithm proposed in [4], a method is suggested
in section 4.2 for selection of weights which alleviates
these difficulties.

The performance measure chosen for synthesising a
controller C stabilising Ps is

b (Ps, C) = ‖H(Ps, C)‖−1
∞ (5)

where the closed loop transfer function H(Ps, C) is de-
fined by

H(Ps, C) =
[
Ps
I

]
(I − CPs)−1

[
−C I

]
(6)

b (Ps, C) represents the robustness of the closed loop
against bounded perturbations of normalised coprime
factors of the shaped plant Ps. The best achievable ro-
bust stability margin is defined by

bopt(Ps) := max
C stabilising

b(Ps, C)

and can be explicitly computed [5]. The same reference
also provides a characterisation of all controllers C∞
achieving b (Ps, C∞) = ε < bopt(Ps). bopt(Ps) is an indi-
cator of success of the loopshaping design stage; a large

(resp. small) bopt(Ps) indicates compatibility (resp. in-
compatibility) between the designed loopshape and ro-
bust stability. As a rule of thumb, b (Ps, C∞) > 0.3
would be considered adequate in most cases. The fi-
nal controller is given by re-aligning weights with the
controller; Cs = W1C∞W2. Besides robust stability,
another motivation for the use of b (Ps, C) as a perfor-
mance measure comes from the fact that the size of each
of the four closed loop transfer matrices in H(P,Cs) can
be bounded from above at each frequency ω in terms
of b (Ps, C∞), σ(Ps)(jω), σ(Ps)(jω) and the condition
numbers of W1(jω), W2(jω). More details on H∞ loop-
shaping may be found in [6]. H∞ loopshaping has been
used successfully in a variety of applications; see [7] and
references therein.

A metric called ν−gap metric was suggested in [8] as
a natural dual to b (Ps, C). The ν−gap between two
plants P1, P2 ∈ R can be defined as

δν(P1, P2) = inf
Q,Q−1∈L∞

‖G1 −G2Q ‖∞ if I(P1, P2) = 0

= 1 otherwise (7)

where I(P1, P2) := wno det (G∗2G1) = wno det (G̃1G̃
∗
2)

and wno (g) denotes the winding number of g(s) eval-
uated on the standard Nyquist contour indented to the
right around any poles on jR. For a real rational trans-
fer matrix X such that X,X−1 ∈ RL∞, winding num-
ber wno det (X) is the excess of number of zeros of
X in C+ over the number of poles of X in C+. When
I(P1, P2) = 0, δν(P1, P2) equals L2 -gap, defined by

δL2(P1, P2) := ‖G̃2G1‖∞ = sup
ω
κ(P1, P2) (8)

where κ(P1, P2)(jω) is the pointwise chordal distance,

κ(P1, P2)(jω) :=σ
(
(I+P2P

∗
2 )−

1
2 (P2−P1)(I+P ∗1 P1)−

1
2

)
(jω)

It is known that [8] any controller stabilising P1 and
achieving b (P1, C) > α stabilises the plant set

{P2 : δν(P1, P2) ≤ α}

More importantly, δν(P1, P2) is a measure of the ‘close-
ness’ of the closed loop performance of P1 and P2 for
a given controller. The following result can be easily
derived from the proof of theorem 3.8 in [9]:

Lemma 1 Suppose a controller C stabilises a given pair
of plants P1, P2. Then

1

σ(H(P1, C))(jω)
≥ 1

σ(H(P2, C))(jω)
− κ(P1, P2)(jω) (9)

From (5)-(9), it follows that any controller C that sta-
bilises P2 with a good b (P2, C) also stabilises P1, without
any significant deterioration in performance (in terms of
b (P1, C)), provided δν(P1, P2) is small.



To pose a control oriented identification problem with
finite data, some relevant quantities need to be defined.
As a posteriori information in the identification pro-
cess, suppose that a block matrix of (not necessarily
uniformly spaced) frequency response samples of the
true plant P0(s) ∈ Rp×n at measurement frequencies
ωi, i = 1, 2, . . . ,m is given:

PΩ :=
[
P0(jω1) P0(jω2) . . . P0(jωm)

]
(10)

Define δΩ(P1, P2) := max
i∈[1,m]

κ(P1, P2)(jωi) if I(P1, P2) = 0

= 1 otherwise (11)

Next, for any model P1 and a controller C stabilising
both the plant P0 and model P1, define a performance
measure over finite frequency set,

bΩ (Pk, C) :=
{

max
i∈[1,m]

σ (H(Pk, C)) (jωi)
}−1

, k = 0, 1

(12)
Then from (9), it is easy to show that

bΩ (P0, C) ≥ bΩ (P1, C)− δΩ(P0, P1) (13)

holds.

4 A unified Algorithm for identification and H∞
loopshaping control

4.1 Outline of the algorithm

From (13), a sensible - although intractable - joint iden-
tification and control problem would be

max
C,W1,W2,P̂

bΩ ( P̂ , C )− δΩ(W2P0W1, P̂ ) (14)

where the weighting transfer function matrices W1,W2

and the model P̂ are constrained to appropriate sets,
C belongs to the set of controllers stabilising P̂ and
W2P0W1(jω) satisfies the loopshaping constraints (4).
Comparing with (1), note that the second term in (14)
is independent of controller.

Here, an algorithm which minimises a cost similar
to (14) is outlined. Details of its numerical implemen-
tation are discussed in the subsequent sections.

Given: PΩ as in (10), a controller Cinit stabilising P0

(possibly 0 for a stable plant) and the loopshaping spec-
ifications (4).

1. Find stable, minimum phase diagonal weighting
transfer matrices W1,0,W2,0 such that the ‘shaped’
frequency response samples W2,0P0W1,0(jωi) sat-
isfy (4) for all ωi, i ∈ [1,m].

2. Solve
min
P∈S

δΩ(W2,0 P0W1,0, P ) (15)

where S is an appropriate model set. Let λ1 be
the achieved minimum cost and let P̂1 ∈ S be any
model which achieves it.

3. Given P̂1, solve

min
W1∈W1
W2 ∈W2

max
i

κ(W2P0W1,−(W−1
1 P

∼
W−1

2 )∼)(jωi)

(16)

subject to (4) being satisfied. Here P =
−(W1,0P̂

∼
1 W2,0)∼ and W1,W2 are appropriate

model sets such that W1,0 ∈ W1, W2,0 ∈ W2. Let
W2,1,W1,1 be the weights obtained on solving (16)
and let λ2 be the achieved minimum cost.

4. Find the controller C∞ which achieves b(P̂2, C∞) =
bopt(P̂2). Here, P̂2 = −(W−1

1,1P
∼
W−1

2,1 )∼. The final
controller is given by Cs = W1,1C∞W2,1.

Assuming that global minimum exists (and is found)
for each of the optimisation problems (15)-(16), a nice
property of the above algorithm is non-increasing cost:

Lemma 2 Let λ1 and λ2 be the achieved cost in the
optimisations (15) and (16) respectively. Then

λ2 ≤ λ1

Proof : Since, W1,0 ∈ W1, W2,0 ∈ W2,

λ2 = min
W1∈W1
W2 ∈W2

max
i

κ(W2P0W1,−(W−1
1 P

∼
W−1

2 )∼)(jωi)

≤ max
i

κ(W2,0P0W1,0,−(W−1
1,0P

∼
W−1

2,0 )∼)(jωi)

= max
i

κ(W2,0P0W1,0, P̂1)(jωi) = λ1

where the last step uses P = −(W1,0P̂
∼
1 W2,0)∼.

If λ1 is deemed sufficiently small, step 3 is not re-
quired. On the other hand, if λ2 is deemed to be too
large at the end of step 3, it is possible to iterate through
steps 2 and 3 till the cost becomes sufficiently small.
Similarly, if bopt(P̂2) is too small for the final model P̂2,
it may be necessary to relax the loopshaping specifica-
tions and return to step 1 again.

Note that the controller design and model identifi-
cation stages in the above procedure are interleaved,
since the weights form part of the final controller Cs.
Step 4 of this procedure is standard and is described
in many robust control textbooks, e.g. [10]. The choice
of model sets and numerical implementation in the first
three steps is described in the subsequent sections.

4.2 Weight Selection

Given a true plant P0, a controller Cinit stabilising P0

and any stable minimum phase transfer functions W1

and W2, recall that

H(P0, Cinit) ∈ H∞ ⇔ H(W2P0W1,W
−1
1 CinitW

−1
2 ) ∈ H∞

In the weight selection procedure of [4], the aim is to
find stable, minimum phase weights W1 and W2 such
that



1. bΩ(W2P0W1,W
−1
1 CinitW

−1
2 ) is maximised and

2. the ‘shaped’ plant Ps(s) := (W2P0W1)(s) satisfies
the loopshaping specifications (4).

The following procedure is taken from [4].

1. Let Γq denote the set of real diagonal q × q matri-
ces. For ease of notation, let Pωi = P0(jωi) ∈ Cp×q
and let Cωi = Cinit(jωi). It is assumed that p ≥ q.
The case when p < q can be handled using a dual
problem; see [4]. Given PΩ as in (10) and the loop-
shaping constraints (4), solve the following quasi-
convex optimisation problem at each frequency ωi,
i = 1, 2, . . . ,m:

inf
Xi ∈Γq, Yi ∈Γp

γi (17)

subject to[
0 Pωi
0 I

]∗ [
Xi 0
0 Yi

] [
0 Pωi
0 I

]
<

γi

[
I Pωi
Cωi I

]∗ [
Xi 0
0 Yi

] [
I Pωi
Cωi I

]
(18)

α2(ωi)Yi < P ∗ωiXiPωi < β2(ωi)Yi (19)
Xi > 0, Yi > 0 (20)

Let X̂i, Ŷi i = 1, 2, . . . ,m be the solutions of the
pointwise optimisation problems (17)-(20) and let
γ̂i be the optimum cost at each i. Let γ̂ = maxi γ̂i.

2. Construct diagonal transfer function matrices
W1,0(s), W2,0(s) that are units in RH∞ by fit-
ting minimum phase stable transfer function to each
magnitude function on the diagonal of Ŷ −

1
2

i and X̂
1
2
i

respectively.

If W1,0 and W2,0 interpolate Ŷ −
1
2

i and X̂
1
2
i exactly, it

can be easily shown that

α(ωi) < σk((W2,0P0W1,0)(jωi)) < β(ωi) ∀ i ∈ [1,m]
∀ k ∈ [1, q]

Note that, with W1,0(jωi) = Ŷ
− 1

2
i and W2,0(jωi) =

X̂
1
2
i , (18) is equivalent to

σ(H(W2,0P0W1,0,W
−1
1,0CinitW

−1
2,0 ))(jωi) <

√
γi ∀ i ∈ [1, m]

(21)

Proof of this fact may be found in [4]. In practice,

an approximate, low order fit to Ŷ
− 1

2
i and X̂

1
2
i should

still ensure that Ps = W2,0P0W1,0 adheres to the loop-

shaping specifications. While approximating Ŷ −
1
2

i and

X̂
1
2
i , it must be kept in mind that Ps(jω) should have a

moderate roll-off rate around crossover frequency.
It is possible to include additional constraints on opti-

misation (17) for better numeric conditioning of Xi, Yi;
see [4] for details.

4.3 Identification in the ν−gap metric

A method for identification in ν−gap metric was pre-
sented in [3]. An outline of the same is given here for
easy reference. SISO case is discussed here for simplic-
ity; extension to MIMO case is straightforward. Let Sn
denote the set of Finite Impulse Response (FIR) models
of degree less than n. Next, define a candidate model
set for approximation of coprime factors

S1,2 = {f : f = [f1 f2]T , f1 ∈ Sn1 , f2 ∈ Sn2}

Lastly, let Rn denote the set of real rational transfer
functions of order less than n.

1. Let ωmax = maxi ωi. Take ωs = 2π
Ts

> 2ωmax
1 and

let

ejθi =
1 + jωi Ts

2

1− jωi Ts
2

Let Ps, ωi = W2,0(jωi)PωiW1,0(jωi) and define Fi =[
Ps, ωi (1 + P ∗s, ωiPs, ωi)

− 1
2

(1 + P ∗s, ωiPs, ωi)
− 1

2

]
.

Here, W1,0(s) and W2,0(s) are stable, minimum
phase weights obtained using the algorithm de-
scribed in section 4.2.

2. Solve L2 -gap approximation problem:

min
P∈Rn

max
i

κ(W2,0P0W1,0, P )(ejθi)

= min
f ∈S1,2

max
i

inf
Qi

σ
(
Fi − f(ejθi)Qi

)
(22)

Note that, for a fixed Q̂i ∈ C, i = 1, · · · ,m,

min
f ∈S1,2

max
i

σ
(
Fi − f(ejθi)Q̂i

)
(23)

is an LMI optimisation in parameters of f . On the
other hand, for a fixed f̂ ∈ S1,2, at each θi,

inf
Qi

σ
(
Fi − f̂(ejθi)Qi

)
(24)

is a linear least squares problem in Qi ∈ C and
has a (pointwise) closed form solution. Using these
facts, (22) may be solved iteratively in f and Qi
and the cost is non-increasing through iterations;
see [3] for details.

3. Let f̂ =
[
f1 f2

]T be the result of L2 -gap approx-
imation. Then the discrete time model is given by
P̂d = f1 f

−1
2 . Note that Q doesn’t appear in P̂d.

Hence it is not parameterised and is evaluated only
pointwise in (24). The continuous time model is
obtained by bilinear transformation:

P̂x = P̂d

(
1 + s Ts

2

1− s Ts
2

)
1ωs should not be too large as compared to ωmax as this may

place the poles and zeros of model too close to each other and may
cause numerical difficulties in optimisation.



4. The procedure for approximation does not guar-
antee that the true ‘shaped’ plant and the model
will satisfy the winding number condition, i.e. a
controller stabilising the shaped plant with an ade-
quate stability margin may still fail to stabilise P̂x.
A model P̂1 such that I(W2,0P0W1,0, P̂1) = 0 can be
obtained from P̂x and any controller Cx stabilising
the shaped plant by a procedure described in [3].
Note that this procedure is not specific to the iden-
tification algorithm described so far; it may be used
even if a model P̂x obtained by any other identifi-
cation method is de-stabilised by a controller that
stabilises the true plant. If the true plant and P̂x are
both stable or are both stabilised by the same con-
troller, this procedure is not required and P̂1 = P̂x.
See [3] for details of this procedure.

At the end of this identification procedure described
above, a model P̂1 is obtained which is a suboptimal
solution to

inf
P∈R

I(P,P0)=0

δΩ(W2,0P0W1,0, P ) (25)

It is instructive to compare this with (14).

4.4 Weight and Model Re-adjustment

This section outlines a procedure to adjust weights and
model simultaneously to reduce cost δΩ(W2P0W1, P )
further, with the adjusted weights still satisfying loop-
shaping constraints (4). Let P̂1 be the model and W1,0,
W2,0 be the weights obtained at the end of the 2nd step
of the algorithm in section 4.1. The solution to (16)
rests on the following result:

Lemma 3 Given P = −(W1,0P̂
∼
1 W2,0)∼ and fre-

quency response samples P0(jωi), suppose W1,1 ∈ W1

and W2,1 ∈ W2 is any pair of diagonal transfer function
matrices which is solution to

min
W1 ∈,W1
W2 ∈,W2

max
i

κ(W2P0W1,−(W−1
1 P

∼
W−1

2 )∼)(jωi) (26)

subject to (4) being satisfied. Then W1,1 and W2,1 also
solve

min
W1 ∈,W1
W2 ∈,W2

max
i

σ (H(W2P0W1,W
−1
1 P

∼
W−1

2 ) )(jωi) (27)

subject to (4) being satisfied. Here H(P,C) is as defined
in (6).

Proof : The proof follows from the following relation
from [9]: Given P,C at any frequency ω,

1
σ (H(P,C))(jω)

=
√

1− (κ(P,−C∼)(jω) )2

Let Cωi = P
∼

(jωi) = −(W1,0P̂
∼
1 W2,0)(jωi). Con-

sider the following problem at each frequency ωi, i =
1, 2, . . . ,m:

inf
Xi ∈Γn, Yi ∈Γp

γi (28)

subject to[
0 Pωi
0 I

]∗ [
Xi 0
0 Yi

] [
0 Pωi
0 I

]
<

γi

[
I Pωi
Cωi I

]∗ [
Xi 0
0 Yi

] [
I Pωi
Cωi I

]
(29)

α2(ωi)Yi < P ∗ωiXiPωi < β2(ωi)Yi (30)
Xi > 0, Yi > 0 (31)

Similar to (21), (29) can be shown to be equivalent to
the constraint

σ (H(W2P0W1,W
−1
1 P

∼
W−1

2 ) )(jωi) <
√
γi ∀ i ∈ [1, m]

with Xi = W ∗2W2(jωi), Yi = W−1
1 W−∗1 (jωi). Thus the

optimisation (28) subject to constraints (29)-(31) is si-
multaneously affine in W−1

1 W−∗1 (jωi) and W ∗2W2(jωi).
Hence (28) may be solved as an LMI optimisation prob-
lem in Xi, Yi at each ωi and then minimum phase stable
diagonal weights could be fitted to X

1
2
i , Y −

1
2

i , as in sec-
tion 4.2. Alternatively, the matrix functions W−1

1 W−∗1

and W ∗2W2 may be affinely parameterised. If the pa-
rameterisation includes W−1

1,0W
−∗
1,0 and W ∗2,0W2,0, non-

increasing cost from (15) to (16) is ensured, as stated in
lemma 2.

Let W1,1 and W2,1 be the weights obtained by this
procedure. Then W1,1 and W2,1 also solve (26), as
mentioned in lemma 3. The final model is given by
P̂2 = −(W−1

1,1P
∼
W−1

2,1 )∼. Note that, in this step, both
the weights and the model are adjusted to reduce the
worst case chordal distance between the weighted plant
and the model, while the changed weights are such that
the weighted plant still satisfies (4).

If δΩ(W2,1P0W1,1, P̂2) is still deemed too large, the
next logical step would be to minimise

min
P∈S

δΩ(W2,1 P0 W1,1, P ) (32)

using the procedure outlined in section 4.3. Provided
P̂2 ∈ S, solution of (32) will not increase worst case
chordal distance. Further iterations of steps 2 and 3 of
the procedure in section 4.1 are possible, though simula-
tion experience indicates that any iterations beyond (32)
will be rarely required.

4.5 Effect of Noise

So far in this discussion, noise-free frequency response
samples of the true plant P0 are assumed to be avail-
able. In practice, it is far more likely that noisy fre-
quency response samples will be available as a result of
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Figure 1: Singular Value Plots - True plant, ν−gap Approx-
imation

an identification experiment. In this case, the proce-
dure outlined above may be carried out using the noisy
samples. Suppose, Pn,ωi represents a noisy frequency
response sample at frequency ωi. Let P̂ be the model
and W1,1, W2,1 be the weights obtained using the pro-
cedure detailed above (with P0(ωi) replaced with Pn,ωi)
and let C be the designed controller. Then it is easy to
show that

bΩ(W2,1P0W1,1, C) ≥
bΩ(P̂ , C)− κ(W2,1(jωi)Pn,ωiW1,1(jωi), P̂ (jωi))− ε

where ε = κ ((W2,1P0W1,1)(jωi),W2,1(jωi)Pn,ωiW1,1(jωi)) .

The term κ(W2,1(jωi)Pn,ωiW1,1(jωi), P̂ (jωi)) may be
minimised using the algorithm in section 4.1. The size
of ε needs to be controlled at identification experiment
stage. If ε is small (or equivalently, the effect of noise
around the crossover frequencies is small), the possible
deterioration of robustness margin due to noise is small.

5 Simulation Example

Consider an unstable continuous time plant

P0(s) =
[ 1
s+2

1
s

1
s−1

3
s2+s+1

]
Frequency response samples (matrices) of this plant at
50 frequencies, logarithmically spaced between 0.1 rad/s
and 100 rad/s are used for estimation and weight selec-
tion. For choosing weights, the loopshaping specifica-
tions (4) were

σk(Ps(jωi)) ≥ 10 ∀ωi ≤ 1 rad/s, k = 1, 2
σk(Ps(jωi)) ≤ 0.1 ∀ωi ≥ 50 rad/s, k = 1, 2

Given an initial stabilising controller, weights
W1,1,W2,1 each of degree 4 and a model P̂2 of order
9 is obtained using the first 3 steps of the algorithm in
section 4.1. This yields maxi κ(W2,1P0W1,1, P̂ )(jωi) =
0.0550. Then (32) is solved to obtain a model P̂3 of order

9 which yields a further reduction in worst case chordal
distance. The final maxi κ(W2,1P0W1,1, P̂3)(jωi) =
0.0296 and δν(W2,1P0W1,1, P̂3) = 0.0334. Also,
bopt(P̂3) = 0.2982 and the controller Cfinal which
achieves bopt(P̂3) yields b(W2,1P0W1,1, Cfinal) = 0.2761.

Figure 5 shows the singular values of shaped plant
frequency response samples (solid line) and the singular
values of model (dashed line). dash-dot line indicates
the singular values of the unweighted plant.

6 Conclusion

An algorithm for identification and control using H∞
loopshaping is presented. The implementation of the fi-
nal, controller design stage in the algorithm is available
in commercial software. The earlier steps of weight se-
lection, identification and weight and model adjustment
are based on LMI optimisation and can as such be imple-
mented easily using any LMI solver. It is believed that
this algorithm has a potential to reduce substantially the
time normally required to identify a model from data
and then to synthesise a controller which yields satisfac-
tory closed loop performance with the true system.
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