
Trap-Driven Memory Simulation with
Tapeworm II

RICHARD UHLIG, DAVID NAGLE, TREVOR MUDGE, and STUART
SECHREST
University of Michigan, Ann Arbor

Trap-driven simulation is a new approach for analyzing the performance of memory-system
components such as caches and translation-lookaside buffers (TLBs). Unlike the more tradi-
tional trace-driven approach to simulating memory systems, trap-driven simulation uses the
hardware of a host machine to drive simulations with operating-system kernel traps instead of
with address traces. As a workload runs, a trap-driven simulator dynamically modifies access
to memory in such a way as to make memory traps correspond exactly to misses in a simulated
cache structure. Because traps are handled inside the kernel of the host operating system, a
trap-driven simulator can monitor all components of multitask workloads including the
operating system itself. Compared to trace-driven simulators, a trap-driven simulator causes
relatively little slowdown to the host system because traps occur only in the infrequent case of
simulated cache misses. Unfortunately, because they require special forms of hardware
support to cause memory-access traps, trap-driven simulators are difficult to port, and they
are not as flexible as trace-driven simulators in the types of memory configurations that they
can model. Several researchers have recently begun to use trap-driven techniques in their
studies of memory-system design tradeoffs, but little is known about how the speed and
accuracy of the technique varies with the type of simulations conducted, or about the nature of
its drawbacks with respect to portability and flexibility. In this article, we use a prototype
trap-driven simulator, named Tapeworm II, to explore these issues. We expose both the
strengths and the weaknesses of trap-driven simulation with respect to speed, accuracy,
completeness, portability, flexibility, ease-of-use, and memory overhead. Although the results
are drawn from a specific implementation of trap-driven simulation, we believe that many of
our results from Tapeworm hold true for trap-driven simulation in general.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—associative
memories; cache memories; B.3.3 [Memory Structures]: Performance Analysis and Design
Aids—simulation; C.4 [Computer Systems Organization]: Performance of Systems—mea-
surement techniques

This article is an expanded version of a paper that originally appeared at the Sixth
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS-VI), 1994. This work was supported by ARPA contract DAAH04-94-G-
0327, by NSF contract CISE9121887, and by a National Science Foundation Graduate
Fellowship.
Authors’ addresses: R. Uhlig, Intel Microcomputer Research Lab, Oregon, Mail Stop: JF 3-359,
2111 N.E. 25th Avenue, Hillsboro, OR 97124-5961; email: ^ruhlig@ichips.intel.com&; D. Nagle,
Department of ECE, B26 Porter Hall, Carnegie Mellon University, 4902 Forbes Ave., Pitts-
burgh, PA 15213; T. Mudge and S. Sechrest, Department of Electrical Engineering and
Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1049-3301/97/0100–0007 $03.50

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997, Pages 7–41.

Additional Keywords and Phrases: Cache, memory system, simulation, TLB, trace-driven
simulation, trap-driven simulation

1. INTRODUCTION

Trace-driven simulation is one of the most popular methods for evaluating
memory-system architectures consisting of caches and translation-looka-
side buffers (TLBs) [Smith 1982; Holliday 1991]. With trace-driven simula-
tion, a stream of memory references generated by some workload of interest
is first collected from an existing host machine, and then passed to a
simulator that emulates the behavior of some yet-to-be-built cache or TLB.
Figure 1 shows the core execution loops of trace-driven and trap-driven
simulators.1 At its core, a trace-driven simulator executes a loop similar to
that shown on the left side of the figure. The processing steps include
obtaining the next address in the trace, searching for that address in a
simulated cache, and then invoking a replacement policy in the event of a
miss. The trace addresses can come from a file created by a trace-extraction
tool, or they might be generated on-the-fly by an annotated workload
[Agarwal et al. 1986; Borg et al. 1990; Eggers et al. 1990; Holliday 1991;
Smith 1991; Cmelik and Keppel 1994]. The search procedure involves
indexing a data structure that represents the cache and then, depending on
the associativity of the cache, performing one or more comparisons to test
for a hit. Though a simple operation, the search and test must be performed
for every address in the trace.

Trace-driven simulation has worked well in the design of memory sys-
tems supporting single-task applications such as those found in the SPEC
benchmark suite [SPEC 1991, 1993; Gee et al. 1993]. However, a growing
body of work is revealing that memory systems tuned to such workloads do
not perform well on more complex, multitask workloads that frequently
invoke operating-system services [Agarwal et al. 1988; Anderson et al.
1991; Chen and Bershad 1993; Cvetanovic and Bhandarkar 1994; Mogul
and Borg 1991; Nagle et al. 1993; Nagle et al. 1994; Uhlig et al. 1995;
Ousterhout 1989]. Unfortunately, most trace-driven simulation tools are
ill-suited to analyzing workloads of this type because they are often limited
to single, user-level tasks [Holliday 1991; Cmelik and Keppel 1994]. Trace-
collection tools that can monitor multitask and OS-kernel activity rely
either on expensive hardware monitoring equipment, or require a cumber-
some preprocessing step to statically annotate all executable files that a
multitask workload might use [Mogul and Borg 1991; Sites and Perl 1996].
The resulting annotated-executable files consume additional disk space as
well as physical memory, and thus typically require a special host machine

1 This code omits many details of actual simulation, such as the treatment of writes and
assigning penalties for different types of misses (e.g., in a critical-word-first cache). Simula-
tors that evaluate multiple memory configurations in a single trace pass also have a more
complex structure [Mattson et al. 1970; Hill 1987; Thompson and Smith 1989; Sugumar 1993].

8 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

loaded with extra storage. Another problem common to trace-driven simu-
lators is speed; trace-driven simulations are slow because every memory
reference, whether or not it causes a change in simulated cache state, must
be collected and processed.

One way to overcome some of the limitations of traditional trace-driven
simulation is to directly drive a simulator with memory-access traps caused
by a workload as it runs on a host machine [Reinhardt et al. 1993; Nagle et
al. 1993; Talluri and Hill 1994]. A trap-driven simulator begins by restrict-
ing access to all memory locations in a workload’s address space. These
inaccessible locations represent regions of memory that are not currently
resident in some predefined, simulated cache structure. As the workload
executes, the first reference to each location causes a trap (corresponding to
a simulated cache miss), which is directed to a trap handler (see the right
side of Figure 1). The handler counts the miss and then makes the required
memory location accessible. This action effectively caches the memory location
in the simulated cache structure because subsequent references to this loca-
tion will proceed at full hardware speed without trapping. As the simulated
cache fills, new cache lines will begin to conflict with lines already held in the
cache (as occurs in an actual hardware cache). Therefore, in a final step, the
handler emulates cache conflicts by restricting access to a displaced memory
location, in accordance with some replacement policy.

This article is about a trap-driven simulator, named Tapeworm II, that
offers two principal advantages: completeness and speed. Tapeworm simu-
lations are complete because traps originating from any user task, as well
as those generated by OS kernel activity, are captured. Tapeworm simula-
tions are fast because its trap handlers are invoked only in the uncommon
case of a simulated TLB or cache miss. Tapeworm offers other advantages
as well: it requires no preprocessing of a workload before monitoring
begins, and it adds little memory overhead.

Despite these advantages, trap-driven simulation does suffer some draw-
backs. Although capable of simulating TLBs and caches with a range of
sizes, associativities, and replacement policies, trap-driven simulation is
generally less flexible than trace-driven approaches with respect to the
simulation of other architectural structures, such as write buffers or
instruction pipelines. Tapeworm, for example, is able to simulate a range of
TLBs and instruction caches, but is unable to simulate data caches because

Fig. 1. Trace-driven versus trap-driven simulation algorithms.

Trap-Driven Memory Simulation • 9

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

it lacks the necessary support from the particular host machine on which it
runs.2 A second problem is portability; trap-driven simulation requires
some mechanism for controlling access to memory on the host machine, a
feature that may not be fully supported (especially at a fine-grained level)
by the host hardware. Finally, a trap-driven simulator’s presence in a system
can introduce new forms of measurement bias and variability. Though not
strictly a disadvantage, trap-driven simulations are more sensitive to inherent
variations in memory performance in an actual running system, an effect that
is generally not accounted for in trace-driven simulation studies.

The remainder of this article examines the pros and cons of trap-driven
simulation in greater detail. Section 3 gives a detailed description of the
design and implementation of the Tapeworm II trap-driven simulator,
which will serve in Section 4 as our prototype for examining the strengths
and weaknesses of trap-driven simulation in general. We begin with a
discussion of related work in the next section.

2. RELATED WORK

Trace-driven simulation has been used to evaluate memory systems for
decades. In his 1982 survey of cache memories, A. J. Smith [1982] gives
examples of trace-driven memory-system studies that date as far back as
1966. Holliday [1991] has surveyed trace-driven simulation methods for
both uniprocessor and multiprocessor memory-system design, Stunkel et al.
[1991] have studied trace-driven simulation in the specific context of
multiprocessor design, and a more recent survey of trace-driven tools and
techniques can be found in Uhlig and Mudge [1996].

Early work on trace-collection tools that capture complete system activity
generally involved designing special monitoring hardware for an existing
machine, or modifying its microcode [Clark 1983; Alexander et al. 1985;
Agarwal et al. 1986]. Similar approaches have been adopted in some more
recent tools [Flanagan et al. 1992; Nagle et al. 1992; Torrellas et al. 1992],
but researchers have noted that these hardware-based approaches are
typically costly to implement and suffer from problems of portability.
Recent work overcomes these limitations by extending software-based
code-annotation techniques [Eggers et al. 1990; Smith 1991; Srivastava and
Eustace 1994] to include multiprocess and OS activity [Mogul and Borg
1991; Chen et al. 1994; Perl and Sites 1996]. A promising new approach,
used by SimOS, makes OS monitoring easier by running the kernel
executable inside a user-level process that acts as a virtual hardware
platform [Rosenblum et al. 1995]. When combined with fast emulation
techniques that use dynamic binary translation [Cmelik and Keppel 1994],
SimOS is able to drive memory-system simulators with address traces that
include complete system activity [Witchel and Rosenblum 1996].

2 We explain in Section 4.4 the problems that we encountered simulating data caches in our
prototype implementation of Tapeworm II. It should be noted, however, that there are no
inherent limitations to trap-driven simulation that prevent data-cache simulation (as work on
the Wisconsin Wind Tunnel has shown [Reinhardt et al. 1993]).

10 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

A few simulators avoid memory-reference traces altogether and are
driven, instead, by kernel traps. An early example of this approach is the
first generation Tapeworm, which performs TLB simulation [Nagle et al.
1993]. This system intercepts kernel traps to the software-managed TLB
miss handlers of an R2000-based workstation to drive a TLB simulator.
Because all user and kernel misses are intercepted, Tapeworm is able to
fully consider multitask and OS effects. Talluri and Hill [1994] describe a
similar trap-driven TLB simulator that runs on SPARC-based worksta-
tions. Another early trap-driven simulator, the Wisconsin Wind Tunnel
(WWT) simulator, causes traps by modifying the error-correcting code
(ECC) check bits in a SPARC-based CM-5 [Reinhardt et al. 1993]. Unlike
Tapeworm, which performs only uniprocessor simulations but includes
multitask and OS kernel references, WWT is designed to investigate
multiprocessor cache coherence algorithms but is limited to user-level
activity of a single task.

Other work shares properties of both trace-driven and trap-driven simu-
lation [Martonosi et al. 1992; Cmelik and Keppel 1994; Lebeck and Wood
1995]. Like traditional annotation-based trace collectors, these hybrid
approaches annotate a program to invoke simulation handlers on every
memory reference. They differ from standard annotation in their support
for an optimization where a null handler is called on memory references
known to be satisfied by a simulated cache or TLB.

This article advances previous work in two significant ways. It describes
the design of a second-generation Tapeworm which combines the OS-
capable features of the original Tapeworm TLB simulator with a WWT-like
mechanism for setting fine-grained memory traps. The resulting simulator
is capable of both instruction-cache and TLB simulation and captures
multitask and OS kernel activity. In addition, using Tapeworm II as a
prototype, we investigate the pros and cons of trap-driven simulation in
general. We cover, in particular, the flexibility, speed, accuracy, and porta-
bility of trap-driven simulation, issues that have not been well explored by
early work on this new memory-simulation method. We use a benchmark
suite (described in Section 4) to illustrate certain points in our comparisons
with trace-driven simulation, but a detailed report of simulation results
obtained with Tapeworm II is beyond the scope of this article. Tapeworm
and Tapeworm II have, however, been used in several case studies of
interactions between operating-system structure and memory architecture
[Nagle et al. 1993, 1994; Uhlig et al. 1995].

3. TAPEWORM II DESIGN AND IMPLEMENTATION

We outlined the essential ideas behind trap-driven simulation in the
introduction. In this section we expand our description of trap-driven
simulation by describing the Tapeworm II design in detail. In particular,
we cover how Tapeworm controls memory access, how it handles traps, and
how it interacts with the host operating system.

Trap-Driven Memory Simulation • 11

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

3.1 Hardware-Dependent Tapeworm Primitives

We begin by describing a collection of primitive functions that Tapeworm
requires from the host hardware on which it runs. To enhance portability,
Tapeworm collects these functions into a single interface, shown in Table I.
This interface is ideal, in the sense that if a given port of these primitives is
fully supported, then Tapeworm will be able to simulate the full range of
memory configurations for which it was designed. For some hosts, however,
it may not be possible to support the full semantics of the interface without
modifications to the host hardware (this was the case with our prototype
implementation of these primitives on a DECstation 5000/200). A partial
implementation of the primitives still proved useful, although the range of
simulations we could perform was somewhat restricted (e.g., Tapeworm II
supports TLB and I-cache simulation, but cannot simulate D-caches).

The first three routines, tw_set_access(), tw_get_access() , and
tw_trap() , form the core of this interface; they enable Tapeworm to
control the trapping mechanisms of the host hardware. To support the
maximum flexibility in memory simulations, an implementation of
tw_set_access() should support a wide range of values in the pa,
size , and state parameters. To enable multitask and OS memory simula-
tions, values of pa referring to any user or kernel memory location should

Table I. Hardware-Dependent Tapeworm Primitivesa

a This is an idealized interface. For reasons discussed below, the prototype implementation of
Tapeworm II does not support the full functionality of this interface.

12 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

be permitted. To enable both TLB and cache simulations, values of size
ranging from as small as a cache line (4 or 8 words) to as large as a page (4
KB or 8 KB) should be supported. Finally, all three access (trap) states,3

noAccess , readAccess , and fullAccess , should be supported to enable
both I- and D-cache simulations.

Because most host hardware does not directly support fine-grained
access control, implementing the full functionality of these primitives is
difficult. We have experimented with different ad hoc approaches: (1)
flipping page-valid bits in the OS page-table structure (to cause page-fault
traps), (2) dynamically replacing/restoring instruction breakpoints in a
workload’s text segment (to cause program-debugging traps), and (3) mod-
ifying error-correcting code (ECC) bits in the host machine’s main memory
(to force memory-error traps). The latter method was first proposed and
implemented by Reinhardt et al. [1993]. Each of these approaches has its
limitations. Although page-valid bits enable access control to both data and
text (program) memory, they can only control access at the granularity of a
page. Breakpoints enable finer-grained access control, but they only work
on text memory and they require some mechanism for saving the original
breakpointed instructions. Finally, ECC-bit modification is very platform-
dependent, and not all machines support error-correcting memory. Despite
their limitations, these techniques for controlling memory access enabled
us to build a prototype trap-driven simulator without requiring the design
of any additional hardware.

The final routine in the interface, tw_get_counts() is used to obtain
event counts, which are combined with the base metrics obtained by
Tapeworm’s trap handlers (i.e., miss counts), to compute a variety of other
performance metrics. To support the computation of a range of performance
metrics, this routine should report counts of memory load and store
references, as well as instruction fetches and number of instructions
executed. As with the access-control routines, we were forced to use ad hoc
methods (a logic analyzer connected to the host machine running the
Tapeworm II prototype) to obtain the event counts necessary for imple-
menting the tw_get_counts() routine.

These hardware-dependent primitives form an interface that is very
similar to the memory-protection model supported by most microprocessor
memory-management units. The important difference is that protection is
provided at a finer granularity. Similar fine-grained access-control inter-
faces have been proposed for systems that implement distributed shared
memory [Appel and Li 1991; Reinhardt et al. 1994]. This interface differs
slightly in its orientation to trap-driven simulation, including the addition
of the event-counting routine tw_get_counts() .

3Access states refer to those set by a trap-driven simulator using tw_set_access() . These
levels of access are always lower than the page-level access rights granted to a workload by
the host VM system.

Trap-Driven Memory Simulation • 13

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

3.2 Tapeworm Trap Handling

With the hardware-dependent primitives defined, we can now present a
more detailed description of the Tapeworm trap handlers for a simple
simulation case. Figure 2 shows the hardware for a simple direct-mapped
cache. The address (a) that is used to access the cache is divided into three
parts. The middle part (aset) is used to select a cache set, the high-order bits
of the address (atag) are used to compare against the cache tags, and the
low-order bits (aoffset) are used to select the appropriate instruction from
the cache line. Notice that the combination of bits atag and aset completely
define the memory line. We therefore sometimes refer to the concatenation
of these bits as aline. The memory equivalence class of an address, denoted
by [a], is:

@a# 5 $all addresses, b, such that~aset 5 bset!% (1)

The cache in Figure 2 has 256 (FF in hex) memory-equivalence classes,
the elements of which are shown as a row of memory locations to the right
of each cache set. The concept of a memory equivalence class is important
because it specifies precisely the subset of memory locations that a given
cache structure can hold. A direct-mapped cache, for example, is con-
strained to hold at most one line from each memory-equivalence class at a
time, whereas a set in an N-way set-associative cache may hold up to N
lines from a given memory-equivalence class.

With these definitions in place, we can now explain how a trap-driven
simulator models a direct-mapped cache. Figure 3 shows that Tapeworm
represents a direct-mapped cache with a simple data structure (cache[])
that holds the starting addresses of cached memory lines, and a variable
(misses) that counts the number of references that miss the simulated
cache during the run of a workload.

Fig. 2. Direct-mapped cache hardware. 4-KB cache with 16-byte lines.

14 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

Tapeworm’s main task is to continually update these data structures so
that they mirror what the state of a hypothetical hardware cache would be
if it were running the same workload. Tapeworm accomplishes this by
constraining access to the host memory in a way that causes a trap to occur
whenever the workload makes a memory reference that would result in a
change of simulated cache state. In the simplest case, references that hit a
cache do not change its state, but references that miss a cache do change its
state because they are followed by a line refill that overwrites one of the
cache sets.

Figure 3 shows how a trap-driven simulator can detect changes in cache
state. The figure represents memory as a collection of pages, which in this
example are each divided into 16-byte regions on which access levels of no
access or full access4 can be set. Notice that the current setting of full
access on the 16-byte regions starting at 0x2000, 0x1020, 0x8030, and
0xFF0 , correspond exactly to the type of accesses that would result in hits
for the cache shown in Figure 2. References that would miss the simulated
cache, however, are marked as not accessible in the memory of the host
machine and would cause a trap into the simulator if referenced. Notice
that the simulator permits access to at most one line in each memory-
equivalence class, in keeping with the constrained way that a direct-
mapped cache can hold memory lines.

4Full access means the maximum access given to the page of the memory location by the host
operating system. For text pages, full access is typically read-only, whereas for data pages it
may be read-write access.

Fig. 3. Data structures and host memory for direct-mapped cache simulation.

Trap-Driven Memory Simulation • 15

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

Figure 3 shows the state of the simulator data structures and the host
memory at one particular point in time during the run of the workload. We
can see by inspection that the particular pattern of traps that have been set
for this particular cache structure at this particular point in time will have
the desired effect: the next reference to a memory location that is not
contained in the simulated cache will cause a trap. But what happens after
the trap? That is, what actions must be taken by the trap handler to ensure
that future references that change the state of the simulated cache will also
cause traps? We need a more precise specification of the pattern of access
rights on memory that are permitted throughout an entire workload run for
a given cache configuration. To this end, we introduce the concept of access
constraints.

We model the host physical memory system as a set of elements P that
consists of the byte addresses of all memory locations in the host machine.
The size of this set, denoted by uP u, is the total number of physical memory
locations that are subject to the simulator’s access controls. The subset C ,
P represents the memory locations that may be accessed without causing a
trap. We can now express the access constraints for the simulation of a
direct-mapped cache as follows.

The cache-size constraint:

uC u # cacheSize (2)

The line-size constraint:

~a, b [P!$~aline 5 bline! f ~a [C N b [C!% (3)

The direct-mapping constraint:

~a [P!$ u@a# ù C u # lineSize% (4)

The cache-size constraint says that at most cacheSize memory locations
in the domain of the trap-driven simulator can be accessed without causing
a trap. The line-size constraint says that all the memory locations in the
same memory line must all be accessible or not accessible as a group.
Finally, the direct-mapping constraint says that at most one line from each
memory equivalence class is accessible at a time. The set C is exactly the
set of memory locations that can be accessed by the workload without
causing a change of cache state and a corresponding kernel trap. The
operation of the trap handler can now be simply stated as follows: a trap
handler maintains the validity of some set of access constraints during the
run of a workload.

We now give a detailed example of how a trap handler responds to an
incoming trap in a way that satisfies the access constraints of Equations 2
through 4. Figure 4 shows the trap that occurs after a reference to location
0xB024 . This trap corresponds to the cache miss that would occur in an
actual cache such as the one shown in Figure 2. In an actual cache, the

16 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

required line, starting at 0xB020 , would be loaded from memory and
inserted in cache set 02, displacing the line starting at 0x1020 . The trap
handler invoked by tw_trap() simulates this change in cache state by
rearranging the access rights of the host physical memory in accordance
with the access constraints and then records the new line in its cache data
structures. These actions are depicted in Figure 4, which shows the trap
handler removing access to region (0x1020 to 0x102F), the displaced cache
line, and permitting access to region (0xB020 to 0xB02F), which repre-
sents the newly accessed line. The trap handler updates the cache data
structure, counts the miss, and when it returns to the running workload,
the access state of the host memory will be in conformance with all three
access constraints. That is, no more than 4 KB of physical memory
addresses can be accessed without a kernel trap (Equation 2, the cache-size
constraint), addresses belonging to the same memory line all have the same
access rights (Equation 3, the line-size constraint), and at most one line
from each memory equivalence class can be accessed (Equation 4, the
direct-mapping constraint).

Trap handlers can be written in a flexible way that supports a range of
cache configurations. Figure 5, for example, shows a trap handler that can

Fig. 4. Example trap in detail.

Trap-Driven Memory Simulation • 17

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

simulate a variable cache size and a variable line size (specified by the
parameters cacheSets and lineSize). Changing these trap-handler param-
eters changes, in effect, the access constraints that they enforce, and thus
automatically repartitions memory into a new set of equivalence classes. Note
that the size of the simulated cache is not constrained by the cache(s) of the
host machine; they may be larger or smaller than the actual caches of the host.

3.3 OS-Dependent Tapeworm Primitives

At the beginning of a Tapeworm simulation, the simulated cache is empty,
a condition that Tapeworm models by initially setting traps on all workload
memory locations. To accomplish this, Tapeworm works with the OS
virtual-memory (VM) system. When a task faults on the first access to
one of its pages, the VM system registers the page with Tapeworm using
tw_add_page() (see Table II), which restricts access to each memory loca-
tion in the page. As the workload begins to access the new page, the first
reference to each location causes a trap into the kernel, which is directed to
the Tapeworm trap handlers. A parallel routine, tw_remove_page() , is used
by the VM system to remove pages from the Tapeworm domain when they
are unmapped due to task termination or paging to secondary storage.
tw_remove_page() clears all traps on a page and flushes the contents of the
page from the simulated cache. This mimics the same actions performed by
the VM system on the host machine’s real cache.

If the VM system maps more than one virtual page to a given physical
page, Tapeworm increments a reference count for that physical page, but
does not otherwise change access rights to the page. This enables a new
task to benefit from shared entries brought into the cache by another task,
as would happen in a real system. Similarly, tw_remove_page() decre-
ments the reference count, and flushes the page from the simulated cache
when the reference count reaches zero.

Tapeworm supports cache simulation for workloads consisting of multiple
tasks. To control which tasks are included in a given simulation, each is
assigned two Tapeworm attributes (simulate and inherit), which are set
by calling tw_attributes() , and are stored in an extended version of the
OS task data structure. If simulate is zero (the default value), the task
runs without any intervention from Tapeworm. When nonzero, simulate
causes all current and future pages used by the task to be added to the

Fig. 5. Trap handler for direct-mapped cache simulation.

18 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

Tapeworm domain via a tw_add_page() call. A second attribute, in-
herit , defines the initial value of simulate for all children of the task.
After a task fork, a child task inherits the Tapeworm attributes of its
parent as follows:

child .simulate 4 parent .inherit

child .inherit 4 parent .inherit

Different settings of the (simulate , inherit) pair are useful for common
simulation situations. For example, if the attribute pair (simulate 5 0,
inherit 5 1) is set on a shell task, then any workload that is started from
this shell, and all of the workload’s children will be registered with
Tapeworm. The shell task itself, however, is excluded from the simulation.
This inheritance mechanism simplifies the simulation of workloads with
complex task fork trees, such as sdet , kenbus (see Table III), or a
multistage optimizing compiler. Another common attribute pair, (simu-
late 5 1, inherit 5 0) is used when only the task itself, but not its
children, are to be simulated. This combination is useful for registering
kernel pages with Tapeworm.

3.4 Design Summary

Embedding Tapeworm II inside a running system so that it can interact
with the host trapping hardware and operating system is an essential
characteristic of its design, one that distinguishes it from other trap-driven
simulators. By running in kernel mode, the Tapeworm code can control
access to all physical memory, and can thus capture the complete activity of
all user-level tasks in the system, as well as the OS kernel itself. By
interacting with the VM code in the host OS, Tapeworm can start the
monitoring process just at the moment that a workload begins to execute,

Table II. OS-Dependent Tapeworm Routines

Trap-Driven Memory Simulation • 19

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

avoiding the need to manually preprocess or annotate workload executable
files. Finally, because Tapeworm understands task creation, forking, and
termination, it can flexibly and dynamically control which tasks in a
running system are monitored, and which are ignored.

4. TAPEWORM EVALUATION

We have implemented the Tapeworm II design for TLB and instruction-
cache simulation in the Mach 3.0 operating system kernel running on a
MIPS R3000-based DECstation 5000/200.5 In the remaining sections of this
article, we use this prototype to draw some general conclusions regarding
the flexibility, speed, accuracy, and portability of trap-driven simulation.

To validate the accuracy of Tapeworm results we use a hardware-
monitoring system, called Monster, based on a DAS 9200 logic analyzer
[Nagle et al. 1992]. This system allows us to unobtrusively count total
instructions and stall cycles. For comparisons with trace-driven simulation,
we use the Cache2000 memory simulator [MIPS 1988] driven by Pixie-
generated traces [Smith 1991]. Note that Pixie generates only user-level
address traces for a single task, which limits to some extent our ability to
compare results with Tapeworm.

Throughout this evaluation, we use the workloads summarized in Table
III and Table IV. With the exception of the SPEC92 benchmarks xlisp ,
espresso , and eqntott , the common characteristic of each of these
workloads is that they consist of multiple tasks and/or spend a significant
fraction of their time executing OS services.

5Ports of Tapeworm also exist for the DECstation 3100 and for x86-based PCs.

Table III. Workload Summarya

a Benchmarks were compiled with the Ultrix MIPS C compiler version 2.1 (level 2 optimiza-
tion).

20 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

4.1 Flexibility

In the previous section we showed how to count only misses in direct-
mapped cache simulations. To be useful, trap-driven simulation methods
must, of course, be able to determine the performance of a much broader
range of memory structures (defined by cache size, line size, associativity,
replacement policy, indexing policy, etc.) in terms of a variety of other
metrics (such as miss ratios, misses per instruction, etc.). Trap-driven
simulation methods can, in fact, be used to simulate these other cases, as
well as other more general monitoring and simulation optimizations.

In showing how other memory configurations can be simulated, it is
helpful to recall the concept of access constraints, introduced in Section 3.2.
Simulating other aspects of caching structures—associativity, for exam-
ple—can be accomplished by defining a new set of access constraints, and
then implementing a trap handler that enforces the new constraints. We
can replace the direct-mapping constraint of Equation 4 with a new
constraint that enables multiple lines in a given memory-equivalence class
to occupy a given cache set:

The set-associativity constraint:

~a [P!$ u@a# ù C u # ~cacheAssoc z lineSize!% (5)

The trap handler that enforces this constraint would set cacheAssoc 5 2 to
allow 2 memory lines to occupy the same cache set, thus implementing a
2-way set-associative cache.

Adding associativity requires a new policy decision to be made: which
line should be replaced when a given cache set becomes full? For some

Table IV. Workload Characteristicsa

a The Monster monitoring system was used to obtain instruction counts and the fraction of
time spent in different tasks. All experiments were performed on a Mach 3.0 kernel (version
mk77) with a user-level BSD UNIX server (version uk38) and the DECstation X display server
(version 7, release 5). Run Time is the total elapsed time in seconds. User Task Count is the
total number of tasks created (not including the X or BSD server) during the execution of the
workload.

Trap-Driven Memory Simulation • 21

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

common replacement policies, such as Random or first-in-first-out (FIFO),
no changes to the access constraints are required. For others, such as least
recently used (LRU) or not most recently used (NMRU), a somewhat more
restrictive set of access constraints is required to obtain information about
access order.

We have used the access-constraint method to define and implement
Tapeworm trap handlers that support a flexible range of cache sizes,
line sizes, associativities, replacement policies, and indexing policies
(virtual or physical), as well as multilevel caches. We have also imple-
mented set (congruence-class) sampling as defined by Puzak [1985] and
Kessler [1991], as well as the single-pass, multiconfiguration stack algo-
rithms first proposed by Mattson et al. [1970]. We compute other perfor-
mance metrics given miss counts from the trap handlers and data from the
tw_get_counts() call. For example, we compute misses per instruc-
tion by dividing miss counts with the value returned from a call to
tw_get_counts(instFetch) . More detailed descriptions of the access
constraints and trap handlers required to implement these and other
simulation configurations and performance metrics can be found in Uhlig
[1995b].

Although we have achieved a high degree of flexibility in trap-driven
simulations with our implementation of Tapeworm II, there are some cases
that cause difficulties. In particular, Tapeworm has trouble simulating
memory structures that require an accurate accounting of time, such as
write buffers. Although our prototype of Tapeworm II does not support
data-cache simulation, this is not an inherent limitation of trap-driven
simulation as work by Reinhardt et al. [1993] has shown.

4.2 Speed

We compare the speed of simulators using a slowdown metric, which we
define as the ratio of simulation overhead to the run-time of an uninstru-
mented workload. Depending on the simulator, we compute slowdown as
follows.

Slowdown 5 ~Tapeworm Overhead!/~Normal Workload Run Time! (6)

Slowdown 5 ~Cache2000 Overhead!/~Normal Workload Run Time! (7)

where Overhead is the time added to a workload run by Tapeworm or
Cache2000. In the case of Cache2000 simulations, this overhead includes
the time to generate addresses from a pixie-annotated workload. Normal
Workload Run Time is for an unmodified workload running on a host machine.

Figure 6 plots Tapeworm and Cache2000 slowdowns against cache size
for the mpeg_play workload.6 The simulations are of direct-mapped in-

6 The other workloads in our suite exhibit similarly-shaped slowdown curves, although their
position against the y-axis (i.e., their absolute slowdowns) vary. The mpeg_play slowdowns
are among the highest in our workload suite.

22 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

struction caches with 4 word lines (4 bytes/word). Because the Pixie and
Cache2000 combination can measure only a single-task workload, Tape-
worm was configured to set traps only on memory locations in the
mpeg_play task to enable a fair comparison.7 Two different Tapeworm
simulations are shown: one with user-only references from just the
mpeg_play task and another with references from all workload compo-
nents, including the kernel and user-level servers (BSD and X). The Pixie 1
Cache2000 combination can measure only a single-task workload. In all
cases, slowdowns were computed relative to the total wall-clock run time
for all workload components. The Pixie 1 Cache2000 simulations were
performed under Ultrix 4.1 on a DECstation 5000/133. The Tapeworm
simulations were performed under Mach 3.0 on a DECstation 5000/200.
Slowdowns in each case were computed relative to the respective host
machine to make them comparable. For both simulators, slowdowns de-
crease as cache sizes increase. Cache2000 slowdowns are approximately 30
for the smallest caches and decrease to just under 25 for the largest caches,
whereas Tapeworm slowdowns start at about 3–4 for small caches and
decrease to 0 as cache size is increased. To understand this behavior,
consider the following expression for the overhead of the Cache2000 simu-
lations.

Cache2000 Overhead 5 ~Misscount!~Misstime! 1 ~Hitcount!~Hittime! (8)

where Misscount and Hittime represent the number of simulated cache
misses and hits, and Misstime and Hittime are the average amount of time
required to process simulated cache hits and misses, respectively. These

7 The plot also shows Tapeworm slowdowns when all workload components are monitored. The
resulting slowdowns are about 2 to 2.5 times greater.

Fig. 6. Comparison of trace-driven and Tapeworm slowdowns.

Trap-Driven Memory Simulation • 23

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

processing times are different because a simulated cache hit requires only
an address generation and search operation (about 60 cycles in Cache2000),
but a simulated cache miss also requires data structures to be updated with
the missing cache line (about 260 cycles in Cache2000). This explains why
the Cache2000 slowdowns decrease with increasing cache size; larger caches
exhibit more hits than misses, and hits require less time to process. In
contrast, Tapeworm adds overhead only when executing its trap handler.

Tapeworm Overhead 5 ~Trapcount!~Traptime! (9)

where Trapcount is the number of Tapeworm traps and Traptime is the
average time to process a single trap. The Tapeworm trap handler can
displace workload instructions from the host I-cache, thus increasing the
number of workload I-cache misses. We include the cost of host I-cache
pollution as part of the average time to handle a Tapeworm trap. Pollution
of the host D-cache is also included as part of the average trap-handling
time, but this effect is minor.

The original implementation of the Tapeworm miss handler was written
entirely in C and required over 2,000 cycles per miss to execute, similar to
the 2,500 cycles required for the same operation in the Wisconsin Wind
Tunnel Simulator [Lebeck and Wood 1994]. This cost was so high in
comparison with the trace-driven hit and miss times that Tapeworm
slowdowns were comparable to Cache2000 slowdowns when simulating
small cache structures that frequently trapped.

To improve performance, the handler was optimized by rewriting it
entirely in assembly code and by bypassing the usual kernel entry and exit
code. The new code uses no execution stack and saves fewer registers,
requiring approximately 300 cycles to handle simulated misses in direct-
mapped caches with 4-word line sizes (see Table V for the components of
this time).

The expression for Tapeworm overhead explains the shape of the Tape-
worm slowdown curves shown in Figure 6. Small caches frequently miss,
resulting in a change of cache state and a Tapeworm trap. The resulting

Table V. Tapeworm Miss Handling Timea

a This table shows the instructions required to handle different components of a Tapework
trap for the simulation of direct-mapped caches with 4-word line sizes. A 25-MHz DECstation
5000/200 required 299 cycles to execute the 188 instructions in the handler.

24 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

overall slowdowns for a 1-KB cache are about 3 to 4. As the number of
misses decreases for larger caches, the number of traps also decreases to
negligible amounts, and slowdowns approach 0 for caches as small as 8 KB
to 16 KB.

Large fractions of the time in the Tapeworm trap handler could be
further reduced with the help of better host hardware support. The 59
instructions required by the kernel entry and exit consist mostly of instruc-
tions that save and restore registers and that redirect a trap from the
general exception vector to the Tapeworm trap handler. This cost could be
reduced if the host hardware supported a dedicated vector for access-fault
traps. The 33 instructions required to obtain a faulting address and the 46
instructions required to set an access trap are due mostly to an awkward
interface to the ECC diagnostic logic on the DECstation 5000/200, and
could be reduced substantially with a cleaner design. An additional benefit
of a cleaner design would be the reduction of the number of working
registers required by the trap handler, thus further reducing the cost of
kernel entry and exit.

We have introduced a simple model to explain Cache2000 and Tapeworm
slowdowns. In the following sections, we use this model to explain Tape-
worm slowdowns in greater detail over a broader range of simulated cache
and TLB configurations. Because the following sections do not include
comparisons with Cache2000, Tapeworm slowdowns for the remainder of
this chapter include all system activity (the mpeg_play task, the Mach 3.0
kernel, and the user-level BSD and X servers).

4.2.1 Line Size and Slowdown. The slowdowns shown in Figure 6 are
for the simulation of a direct-mapped cache with a 4-word line size.
Simulating larger line sizes increases the amount of time in the handler
because access must be changed on larger clusters of memory. On the other
hand, increasing the line size decreases the number of cache misses
because larger lines better exploit the temporal and spatial locality in
memory-reference streams. These two opposing effects are shown in the
upper-left graph of Figure 7. The figure shows that each doubling of the
line size reduces the number of cache misses by 30 to 45%, with diminish-
ing reductions in misses as the line size increases. On the other hand, each
doubling of line size increases the miss-handling time by 25 to 80%, with
larger relative increases in time as line size increases. Changing memory
access on a cluster of 4 words requires about 100 cycles. For small line
sizes, this is a relatively small component of the miss-handling time, which
is dominated by the kernel entry and exit code. However, as line sizes grow
large, the fraction of miss-handling time spent changing memory access
begins to dominate, and each doubling of the line size nearly doubles the
time to handle a miss.

Recall that the overall Tapeworm overhead is the product of the number
of traps and the time required to handle each trap. For direct-mapped
caches, traps occur if and only if a reference misses the simulated cache.
The resulting slowdowns are shown in the middle-left graph of Figure 7,

Trap-Driven Memory Simulation • 25

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

which shows that initially, increasing the line size reduces overall simula-
tion slowdowns because the number of misses is substantially reduced, but
the relative increase in miss handling times is relatively small. However,
for the largest line sizes, slowdowns begin to increase because the relative
reduction in misses begins to diminish, whereas the cost of handling a miss
increases geometrically. The “U-shape” of these Tapeworm slowdowns

8 The figures to the left show Tapeworm slowdowns for direct-mapped caches with varying line
sizes, and those to the right show different degrees of associativity (with a line size fixed at
eight words). The top plots superimpose miss counts and cycles per miss on the same graph,
whereas the middle plots show the combined effect of these terms on overall slowdown. The
bottom center plot shows slowdowns for different sampling ratios when simulating small,
direct-mapped I-caches with a line size of eight words.

Fig. 7. Tapeworm slowdowns for different simulation configurations.8

26 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

versus line size is very similar to those of the performance of actual
hardware caches that exhibit cache pollution due to large lines [Przybylski
1990].

4.2.2 Associativity and Slowdown. For a very simple replacement pol-
icy, such as Random, the simulation of cache associativity does not appre-
ciably change trap-handling times in the Tapeworm II prototype. However,
caches with higher degrees of associativity typically exhibit fewer cache
misses, resulting in overall decreases in simulation slowdowns. These
effects are shown in the top and middle graphs on the right side of Figure 7.
Trap-handling times and number of traps (misses) for caches ranging in
associativity from 1-way (direct-mapped) to 8-way are shown. The product
of these two terms shows that trap-driven slowdowns decrease with in-
creasing simulated associativity. Because the greatest reductions in miss
counts come from 2-way set-associativity, overall slowdowns do not de-
crease substantially for associativities of 4-way or greater.

4.2.3 Set Sampling and Slowdown. Many researchers have shown that
it is possible to obtain good estimates of overall performance by sampling
only a subset of all references made by a workload [Puzak 1985; Laha et al.
1988; Kessler 1991; Wood et al. 1991]. Trap-driven simulation supports
very efficient implementations of sampling because memory locations that
are not in a time or set sample never cause any traps. The bottom plot of
Figure 7 illustrates the benefits of set sampling as implemented by Tape-
worm. Notice that sampling 1/Nth of the cache sets reduces slowdowns by a
full factor of N. This same reduction in simulation time is difficult to
achieve with trace-based tools that use code annotation techniques. In an
implementation of time sampling in MemSpy, for example, Martonosi et al.
[1993] show that a sampling ratio of 10% results in a speedup of only 2 due
to the base overhead of static code annotations that slow a running
workload both when sampling is enabled and disabled.

When 1/8th set sampling is used, Tapeworm overheads for even the
smallest 1-KB I-caches result in less than a doubling of workload run
times. Larger caches (.32 KB) add less than 20 to 30% to run-times.
Slowdowns that are this low make it possible to monitor cache performance
while the host workstation is in actual use, opening up new possibilities for
real-time memory-system analysis.

Although set sampling improves simulation speeds, it also increases the
amount of measurement variance. We examine this effect in greater detail
in later sections on simulation accuracy.

4.3 Completeness and Accuracy

Measurements of performance delivered by a memory-system simulator are
typically subject to two basic types of error: variance and bias. Variance
refers to differences in measured performance over multiple trial runs of
the same workload on the same memory-system configuration, and Bias
refers to consistent, systematic over- or under-estimates of true perfor-

Trap-Driven Memory Simulation • 27

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

mance during multiple experimental trials. Memory-system simulators are
subject to many sources of measurement variation and bias, some of which
are due to natural effects occurring in real systems, whereas others are
induced by the method of instrumentation and simulation itself. An ideal
memory-system simulator is sensitive to real naturally occurring effects,
but avoids the induced artificial sources of measurement error. In this
section, we show that trap-driven simulation is not inherently any more or
less accurate than trace-driven simulation, but it is more sensitive to
certain real-system effects that can cause true variability in performance.

4.3.1 Sources of Measurement Variation. With trace-driven simula-
tions, the same trace from a given workload is typically used repeatedly to
obtain performance measurements for different memory configurations. As
a result, trace-driven simulations exhibit no variance if the simulation for a
given memory configuration is repeated. The precise sequence of traps that
drive a Tapeworm simulation, however, is impossible to reproduce from run
to run because of dynamic-system effects. For example, the distributions of
physical page frames allocated to a task are different from run to run,
which changes the sequence of traps to the simulator. This is precisely the
same effect that causes performance variations in actual, physically in-
dexed caches [Kessler and Hill 1992; Sites and Agarwal 1988]. Measure-
ment variance can also be caused by Tapeworm itself when it employs set
sampling; cache-miss estimates vary depending on the number and selec-
tion of cache sets that are included in a given sample.

Table VI shows the combined effect of page allocation and set sampling
on the measured performance of our workload suite. The table summarizes
measurements from 16 trial simulation runs of a 16 K-byte, physically
indexed cache when sampling 1/8th of the cache sets. Standard deviations

Table VI. Variation in Measured Memory System Performancea

a These measurements include 16 trials apiece, and were taken using 1/8 set sampling, and
consider all activity including the kernel and servers. The simulations are of 16 K-byte, 4-word
line, direct-mapped, physically-indexed caches. x is the mean number of misses, and s is the
standard deviation of the trial set. Numbers in parenthesis are the percent of the mean value
for s and Range, and the percent difference from the mean value for Minimum and Maximum.

28 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

of the different measurement trials are rather large, ranging from about
10% to as high as 70% of the mean values. In some cases, minimum and
maximum values differ from the mean by as much as a factor of two.

To isolate the measurement variation caused by set sampling, we re-
moved page-allocation effects by simulating a virtually indexed, rather
than a physically indexed cache. The memory references applied to a
virtually indexed cache from run to run of the same workload are unaf-
fected by virtual-to-physical page allocation. After removing variation due
to page allocation, new trials were performed with and without set sam-
pling. The results are shown in Figure 8 for espresso . Tapeworm removed
all other sources of variation by considering only activity from the
espresso process (no kernel or servers) and by simulating virtually
indexed caches (4-word line, direct-mapped). The two sets of data points are
for measurements with and without sampling and consist of 16 trials each.
The error bars on the plot represent one standard deviation. Results
without sampling show zero variance over multiple trials of the experi-
ment. Notice that results without sampling consistently predict slightly
higher miss counts than those with sampling. This measurement bias,
discussed more completely in the next section, is due to an increased time
dilation effect from the higher slowdown of the unsampled experiments.

Figure 9 shows how page allocation, working in isolation, can vary cache
performance. We removed sampling variation and then simulated the same
workload (mpeg_play in this example) in both a physically indexed and a
virtually indexed cache. Simulations of the virtually indexed cache exhib-
ited zero variation because the sequence of references to the cache is

Fig. 8. Variation due to set sampling.

Trap-Driven Memory Simulation • 29

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

independent of the distribution of physical page frames assigned by the OS
from run to run. This is essentially the assumption made by most trace-
driven cache simulators. The table in the figure shows how page allocation
alone can vary cache performance. Tapeworm removed all other sources of
variation by considering only activity from the mpeg_play process (no
kernel or servers), and by not sampling. Each data point is the average of 4
trials. The error bars on the plot represent one standard deviation. Note
that the 4 K-byte, physically indexed cache simulation results do not vary.
This is because the page size on this machine is 4 K bytes; any page
allocation will appear the same because all pages overlap in caches that are
4 K bytes or smaller.

With the physically indexed cache, the greatest degree of variation (as a
percentage of the mean) appears at a cache size of 32 K bytes, which is
roughly the size of the program text used by mpeg_play . This observation
is consistent with Kessler’s [1991] probabilistic model of cache conflicts.
Kessler’s model predicts that with random page allocation, the probability
of cache conflicts peaks when the size of the cache roughly equals the
address space size of the workload, and decreases for larger and smaller
caches. Figure 10 illustrates this effect more clearly for other workloads
and over a wider range of cache sizes and associativities. The plots in the
figure show variability in performance over multiple runs of the same
workload in a physically indexed I-cache. Performance varies because the
allocation of virtual pages to physical cache page frames is different from
run to run. Variability is reported on the y-axis in terms of one standard
deviation of CPIinstr, the I-cache contribution to CPI. The plot shows that

Fig. 9. Variation due to page allocation.

30 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

increased cache associativity reduces performance variation. This happens
for two reasons: increased associativity increases the size of the cache
required for page allocation to have any affect at all,9 and associativity
reduces cache conflict misses, which are the type of cache misses that are
affected by page-allocation decisions [Kessler 1991].

Variation due to page allocation is comparable to, if not larger than, that
of set sampling. This suggests that the error introduced by sampling is a
reasonable trade for increased speed when simulating physically indexed
caches. Of course, the combined effect of both sources of variance is greater
than either in isolation, which may require a larger number of trials to be
performed to increase the level of confidence in the mean value. Even when
few experimental trials are conducted, sampling can be an effective method
for quickly approximating the cache requirements of a workload when some
experimental error is considered to be acceptable.

In addition to page allocation, we have observed other sources of mem-
ory-system performance variation due to OS effects, such as substantial
increases in TLB misses due to kernel and server memory fragmentation in
a long-running system.

9Increased associativity increases cache size, but does not increase the number of cache sets.
Therefore an 8-KB, 2-way set-associative cache is indexed in the same way as a 4-KB,
direct-mapped cache.

Fig. 10. Variability in I-cache performance versus size and associativity.

Trap-Driven Memory Simulation • 31

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

In summary, trap-driven simulation results, as produced by the Tape-
worm prototype, are subject to both artificial sources of variation (set
sampling), as well as natural sources of variation (page-allocation effects
and memory fragmentation). Because Tapeworm is part of an actual
running system, it is also sensitive to other system effects, such as link
order in a system that implements dynamic linking, or randomness in the
order of task scheduling.

Tapeworm’s sensitivity to natural sources of performance variation,
which may necessitate multiple experimental trials, is not a liability.
Performance variations due to page allocation and memory fragmentation
are real system effects that should be understood and taken into account
when making design decisions. If necessary, however, Tapeworm simula-
tions can be configured to remove these effects and produce measurements
with less variation, like those from traditional trace-driven simulators. An
example of this is shown in Table VII.

4.3.2 Sources of Measurement Bias. With sufficient experimental tri-
als, the variance errors of a workload can be quantified and analyzed. In
the absence of other sources of error, the resulting mean value will provide
a good estimate of true system performance. In this section we examine
more serious forms of measurement error that systematically over- or
under-estimate true system performance. Sources of measurement bias are
hard to correct for because they are more difficult for the simulator to
account for and remove. Nevertheless, we use certain Tapeworm features to
isolate and identify the magnitude of sources of measurement bias when-
ever possible.

If a simulation method completely omits memory references made by
certain portions of a workload, the accuracy of the resulting simulations
will clearly be affected. The most common form of omission is to restrict
memory references to a single task. This occurs, for example, when the

Table VII. Measurement Variation Removeda

a These measurements were made as in Table VI, but with variation due to sampling and page
allocation removed. This was accomplished by configuring Tapeworm for simulation of
virtually-indexed caches without set sampling.

32 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

Cache2000 simulator is driven by Pixie-collected traces. We illustrate the
importance of including all workload components (user, server, and ker-
nel)10 by using Tapeworm to measure their individual contributions to the
total number of I-cache misses.

Table VIII shows I-cache miss counts (in millions) and miss ratios (in
parentheses) for each of our workloads in a 4 K-byte cache. The table shows
the number of misses from the kernel, the BSD and X servers, and the user
tasks when each is allowed to run in a dedicated cache.11 From Traces gives
the miss ratios predicted by a trace-driven simulation using Pixie and
Cache2000, whenever possible (i.e., for the single–task workloads). The All
Activity column gives results when each of these workload components
shares a single cache. Due to cache interference among the individual
workload components, the sum of the individual miss columns is less than
the All Activity column. This difference is shown in the last column,
entitled Interference. All miss ratios are relative to the total number of
instructions in the workload, not just the instructions in a given workload

10 By user task, we mean any of several tasks that are children of the shell from which the
workload was initiated. We collect tasks together in our simulations with the Tapeworm
inheritance attribute. A server task is the X display server or the BSD server, which exists
prior to the initiation of a workload. We refer to the server tasks and the kernel as the system
components of the workload.
11 The cache is shared by multiple user tasks in the case of kenbus , sdet , and ousterhout .

Table VIII. Miss Count and Miss Ratio Contributions for Different Workload Componentsa

a This table gives the number of misses (in millions) and the miss ratios (in parentheses) for
different workload components. The data were collected by running separate trials in which
each workload was run in a dedicated direct-mapped cache of 4 K-bytes, with a 4-word line.
Whenever possible (e.g., for the single-task workloads), From Traces gives the miss ratios
predicted by a trace-driven simulation using Pixie1Cache 2000. All Activity gives total miss
counts when all workload components share the same cache. Note that because of cache
interference effects, the values in this column are greater than the sum of the individual
components. This difference is shown in the last column, entitled Interference. All miss ratios
are relative to the total number of instructions in the workload, not just the instructions in a
given workload component. Hence, the miss ratios from each individual component, plus
interference, all sum to the total miss ratio given under All Activity.

Trap-Driven Memory Simulation • 33

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

component. Hence, the miss ratios from each individual component, plus
interference, all sum to the total miss ratio given under All Activity.

Note, first, that the SPEC92 benchmarks eqntott and espresso exhibit
very low miss counts overall. This is consistent with previous observations
that many of the SPEC92 benchmarks require only small I-caches to run
well [Gee et al. 1993]. The servers and kernel contribute the majority of
total misses, but even with their contribution, the total number of misses is
negligible. Other workloads, such as mpeg_play , jpeg_play , sdet , and
ousterhout exhibit the same predominance of server and kernel misses,
but with much higher overall miss ratios. In ousterhout , for example, the
total miss ratio is over 10%, mostly due to the system components and
interference effects. A simulator that considers only the user-task compo-
nent of ousterhout would incorrectly estimate the I-cache miss ratio to be
less than 1%. The only workload in our suite with a greater fraction of
misses coming from a user task is xlisp which performs much better in a
cache that is only slightly larger.

The amount of memory used by Tapeworm is small in comparison with
many trace-driven tools. In particular, Tapeworm does not cause a program
to increase in size due to code annotation, nor does it require large regions
of host memory to be reserved for trace buffers. As a result, Tapeworm does
not suffer from measurement bias due to memory dilation, a problem often
encountered by trace-driven simulation tools [Chen et al. 1994]. Small
amounts of host memory are, however, required for the Tapeworm code and
data structures. About 256 K-bytes of physical memory are allocated to
Tapeworm at boot time. This removes 64 pages from the free memory pool,
resulting in a possible increase in paging activity. This effect could be offset
by adding a small amount of additional memory to the host machine.

Because Tapeworm slows execution of a system, it is subject to the same
form of time dilation errors present in memory traces. One effect of time
dilation is that it causes more clock interrupts to occur during the run of a
workload, leading to increased cache conflict misses. Figure 11 shows the
magnitude of error induced by time dilation. Notice that error grows most
steeply from slowdowns of 0 to 2, and then levels off for larger slowdowns.
In the table, increases in cache misses due to time dilation were measured
for the mpeg_play workload including all system activity (kernel and
servers), running in a physically addressed 4 K-byte, direct-mapped I-cache
with 4-word lines. Time dilation was varied by changing the degree of
sampling. Most Tapeworm slowdowns are under 4 where bias tends to be
under 10%. Because the amount of slowdown varies from workload to
workload, time dilation cannot be removed by a simple adjustment to the
clock interrupt frequency as is done in Borg et al. [1990] and Chen [1994].
The most effective way to remove measurement bias due to time dilation is
to use set sampling to reduce simulation slowdowns. Although multiple
experimental trials may be required, the resulting mean value will be free
of time dilation bias.

Until now we have described forms of measurement bias shared by both
trace-driven and trap-driven simulators. One source of bias that is specific

34 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

to trap-driven simulation is due to the masking of certain Tapeworm
memory traps. In the DECstation 5000/200, single-bit ECC errors raise a
hardware interrupt line to cause a kernel trap. If interrupts are disabled, a
kernel trap cannot occur, resulting in a reduction of simulated cache misses
seen by Tapeworm. Because only the kernel runs with interrupts masked,
this limitation affects only kernel references. Unfortunately, we have no
way to quantify this effect, but only a very small fraction of kernel code
(,1%) is affected. Special code around these regions helps Tapeworm to
account for their cache effects, and better host-hardware support for
controlling memory access (see Section 3.1) would avoid this problem
altogether.

4.3.3 Accuracy Summary. With respect to artificial sources of mea-
surement variation and bias, trap-driven simulation is subject to many of
the same sources of error as trace-driven simulation. In particular, varia-
tion due to set sampling, bias due to time dilation, and memory dilation are
forms of error with which both methods must contend. The magnitude of
these errors, however, is sometimes less with trap-driven simulation (e.g.,
with memory dilation), and trap-driven simulators are often able to employ
certain techniques to minimize the effect of other sources of error (e.g.,
using set sampling to reduce slowdowns and hence error due to time
dilation).

12 Increases in cache misses due to time dilation were measured for the mpeg_play workload
including all system activity (kernel and servers), running in a physically-addressed 4 K-byte,
direct-mapped I-cache with 4-word lines. Time dilation was varied by changing the degree of
sampling.

Fig. 11. Error due to time dilation.12

Trap-Driven Memory Simulation • 35

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

4.4 Portability

Our implementation of the Tapeworm hardware-dependent primitives ex-
posed one of the main weaknesses of trap-driven simulation: portability. As
noted in Section 3.1, we have explored three different methods for imple-
menting the access-control primitives in Tapeworm.

The first method, modifying page-valid bits, worked well. The only
difficulty was distinguishing between invalid-page traps caused by Tape-
worm, and true page faults (due to a page not being memory resident). This
problem was solved by adding an extra bit to page-table entries to indicate
the true resident status of each page.

Implementing access control with ECC bits in Tapeworm II was far more
difficult. First, this trap was routed to a generic exception vector and had to
be identified from among many other sources of traps, interrupts, and
exceptions. A clumsy interface to the memory-control ASIC required a
dozen load, shift, add, and mask instructions to piece together the memory
address of an ECC error (i.e., the pa value of the tw_trap() call). Once
this value was obtained, the corresponding virtual address (i.e., the va
value) had to be found by searching an inverted page table. These code
sequences, along with the complex sequence of interactions with a memory-
controller ASIC for recoding ECC bits and flushing cache entries,13 re-
quired several working registers. This, in turn, required saving and restor-
ing additional workload registers before and after each trap, further
increasing the trap-handling time.

A more serious problem was caused by writes to memory locations
marked inaccessible by recoded ECC bits. These writes caused new (valid)
ECC bits to be recomputed and stored to memory without checking the old
(invalid) ECC bit values. This behavior effectively changed a memory
location’s access state from no-access to full-access without notification to
Tapeworm. Fortunately, the ECC method could still be used on read-only
text pages, but this limited simulations to I-caches with two access states:
no-access and read-only. As noted by Reinhardt et al. [1993], it is possible
to avoid this problem on a machine with an allocate-on-write policy14 by
flushing memory locations from the cache when setting their state to
no-access. In such a system, a write to the uncached location causes the
data to first be read (allocated) from main memory into the cache before the
write completes. The ECC bits of this allocate operation will be checked in
the same way as any other read to main memory, thus forcing a trap to
occur. Although this solution enables D-cache simulation, it still only
supports two access states: no-access and full-access.

Other problems with ECC caused difficulties when porting Tapeworm II
to other machines. For example, our port of Tapeworm from a DECstation
5000/200 to a DECstation 5000/240 was hindered due to differences be-
tween the way that DMA is implemented on the two machines. Another

13 On the DECstation 5000/200, ECC is only checked on cache-line refills after a cache miss.
14 The DECstation 5000/200 uses a write-though policy with no allocate-on-write.

36 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

minor limitation is that ECC bits are checked on 4-word cache-line refills,
effectively limiting the simulation of cache line sizes to multiples of 4
words.

We have recently implemented a third method for controlling fine-
grained memory access: dynamically swapping breakpoint instructions in
place of original instructions. Although its applicability is limited to text
pages only, this method substantially simplifies trap handling because
instruction breakpoints are far easier to set and clear, and the breakpoint
traps report the faulting instruction address in an easily accessible hard-
ware register. Our implementation of this method requires about one third
as many machine cycles as the ECC method, but adds more memory
overhead to store breakpointed instructions.15 Because our implementation
of the breakpoint method is on a different architecture (an Alpha-based
workstation) as part of a different trap-based monitoring tool, it is difficult
to directly compare these results with those obtained by the ECC method.
We therefore report results from only the ECC method in this article,
although they do not represent the fastest trap-driven simulations that we
have measured.

Despite these various implementation problems, we were able to imple-
ment enough of the Tapeworm primitive operations to construct a usable
trap-driven simulator prototype. Although limited to TLBs and I-caches,
this prototype enabled us to evaluate the feasibility of trap-driven simula-
tion without resorting to hardware modifications. We believe that the speed
and accuracy obtained using this prototype are promising enough to justify
special hardware support for trap-driven simulation.

The most useful form of support would be better fine-grained access
control, such as that provided by the Tera [Alverson et al. 1990]. Such
support would be useful for other applications as well, such as debugging
and distributed shared memory [Appel and Li 1991]. Recent work by
Reinhardt et al. [1996] shows that fine-grained access control hardware can
be implemented, at relatively low cost in design time, as a plug-in board
that monitors bus transactions to the host processor. More streamlined
hardware mechanisms for handling traps would provide another boost to
trap-driven simulation performance. Such support could include trap vector
addresses dedicated to memory-access traps, shadow or scratch registers
for the trap-handling code, and easier access to data such as the virtual and
physical addresses causing an access trap. Newer implementations of
several microprocessor families provide better support of this type [Huck
and Hays 1993; Sun Microsystems 1994; Digital 1992]. Finally, on-chip
performance counters, also provided by many newer microprocessors,
would help to implement the tw_get_counts() routine in a more conve-
nient way.

15 The ECC implementation does not require any extra storage because although our method
for causing a trap corrupts data (i.e., flipping a single bit), the original value can be recovered
using the SECDED (single error correcting, double error detecting) code employed by the
memory controller.

Trap-Driven Memory Simulation • 37

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

5. SUMMARY AND FUTURE WORK

Using Tapeworm II as a prototype, we have shown that cache and TLB
simulations driven by kernel traps can greatly simplify the problem of
evaluating cache and TLB performance under workloads including multiple
tasks and operating system loads; Tapeworm requires no preprocessing of a
workload to be measured, and adds little memory overhead. Moreover, our
measurements show that trap-driven simulations can be performed with
relatively small system slowdowns, compared with trace-driven simulation.
Tapeworm slowdowns start at 10 in the worst case (with a 1-KB cache), and
approach 0 for larger or more associative caches. Tapeworm can efficiently
employ sampling techniques to further reduce slowdowns in direct propor-
tion to the sampling ratio, but at the expense of higher measurement
variance.

Unlike trace-driven simulators, which always obtain the same simulation
result with a given trace, trap-driven simulators are sensitive to dynamic-
system effects, such as page allocation and memory fragmentation, which
cause variations in performance from run to run. This is a positive feature
of trap-driven simulation because it provides better insight into the true
behavior of real machines. One of the most useful features of the Tapeworm
II prototype is its ability to monitor all system activity (with the exception
of small regions of uninterruptible kernel code). As a result, it is not subject
to bias due to omission of workload components. Our measurements
showed that this form of error was among the most significant.

The main weaknesses of trap-driven simulation are its portability and
flexibility. It remains an open question whether trap-driven simulation will
be able to make continued advances in these regards. The outcome will
depend, in large part, on the willingness of computer architects to make
minor modifications in future designs to better support trap-driven simula-
tion. Even with such support, trap-driven simulation is not suited to
certain forms of architectural simulation, such as instruction-pipeline
simulation, or simulations that require detailed, cycle-by-cycle accounting
of time.

Many other applications would also benefit from fine-grained access
control. Program debugging, garbage collection, persistent storage, and
distributed shared memory could all be made faster and more efficient
[Appel and Li 1991; Reinhardt et al. 1994; Schoinas et al. 1994]. These
applications, and the promise of very fast trap-driven memory simulation,
suggest that architects should give more serious consideration to support-
ing fine-grained access control and fast trapping support in future proces-
sors and computer systems.

ACKNOWLEDGMENTS

We thank Joel Emer and Bill Grundmann for essential information on the
DECstation 5000/200 and its memory-controller ASIC. Many thanks also to
Alessandro Forin for his help with Mach 3.0 and its trap handlers.
Chih-Chieh Lee implemented the 486 Tapeworm port.

38 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

REFERENCES

AGARWAL, A., SITES, R. L., AND HOROWITZ, M. 1986. ATUM: A new technique for capturing
address traces using microcode. In Proceedings of the 13th International Symposium on
Computer Architecture (Tokyo, Japan), IEEE, 119–127.

AGARWAL, A., HENNESSY, J., AND HOROWITZ, M. 1988. Cache performance of operating
system and multiprogramming workloads. ACM Trans. Comput. Syst. 6, 4, 393–431.

ALEXANDER, C. A., KESHLEAR, W. M., AND BRIGGS, F. 1985. Translation buffer performance
in a UNIX environment. Comput. Arch. News 13, 5, 2–14.

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B., PORTERFIELD, A., AND SMITH, B.
1990. The tera computer system. In Proceedings of the 1990 International Conference on
Supercomputing, 1–6.

ANDERSON, T. E., LEVY, H. M., BERSHAD, B. N., AND LAZOWSKA, E. D. 1991. The interaction of
architecture and operating system design. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems
(Santa Clara, CA) ACM, New York, 108–119.

APPEL, A. AND LI, K. 1991. Virtual memory primitives for user programs. In Proceedings of
the Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems (Santa Clara, CA) ACM, New York, 96–107.

BORG, A., KESSLER, R., AND WALL, D. 1990. Generation and analysis of very long address
traces. In Proceedings of the 17th Annual International Symposium on Computer Architec-
ture (Seattle, WA, June) IEEE, 282–291.

CHEN, B. AND BERSHAD, B. 1993. The impact of operating system structure on memory
system performance. In Proceedings of the 14th Symposium on Operating System Principles.

CHEN, B., WALL, D., AND BORG, A. 1994. Software methods for system address tracing:
implementation and validation. Tech. Rep. Carnegie-Mellon University, DEC Western
Research Lab, DEC Network Systems Laboratory.

CLARK, D. 1983. Cache performance in the VAX-11/780. ACM Trans. Comput. Syst. 1,
24–37.

CMELIK, B. AND KEPPEL, D. 1994. Shade: A fast instruction-set simulator for execution
profiling. In Proceedings of the 1994 SIGMETRICS Conference on Measurement and Model-
ing of Computer Systems (Nashville, TN) ACM, New York, 128–137.

CVETANOVIC, Z. AND BHANDARKAR, D. 1994. Characterization of Alpha AXP performance
using TP and SPEC Workloads. In Proceedings of the 21st Annual International Symposium
on Computer Architecture (Chicago, IL), IEEE, 60–70.

DIGITAL 1992. Alpha Architecture Handbook. USA, Digital Equipment Corporation.
EGGERS, S., KEPPEL, D., KOLDINGER, E., AND LEVY, H. 1990. Techniques for efficient inline

tracing on a shared-memory multiprocessor. In Proceedings of the 1990 SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (Boulder, CO), 37–47.

FLANAGAN, K., GRIMSRUD, K., ARCHIBALD, J., AND NELSON, B. 1992. BACH: BYU address
collection hardware. Brigham Young University Tech. Rep. TR-A150-92.1.

GEE, J., HILL, M., PNEVMATIKATOS, D., AND SMITH, A. J. 1993. Cache Performance of the
SPEC92 Benchmark Suite. IEEE Micro (Aug.), 17–27.

HILL, M. 1987. Aspects of cache memory and instruction buffer performance. Ph.D. disser-
tation, The University of California at Berkeley.

HOLLIDAY, M. 1991. Techniques for cache and memory simulation using address reference
traces. Int. J. Comput. Simul. 1, 129–151.

HUCK, J. AND HAYS, J. 1993. Architectural support for translation table management in
large address space machines. In Proceedings of the 20th Annual International Symposium
on Computer Architecture (San Diego), IEEE, 39–50.

KESSLER, R. 1991. Analysis of multi-megabyte secondary CPU cache memories. Ph.D.
dissertation, University of Wisconsin-Madison.

KESSLER, R. AND HILL, M. 1992. Page placement algorithms for large real-indexed caches.
ACM Trans. Comput. Syst. 10, 4, 338–359.

LAHA, S., PATEL, J., AND IYER, R. 1988. Accurate low-cost methods for performance evalua-
tion of cache memory systems. IEEE Trans. Comput. 37, 11, 1325–1336.

Trap-Driven Memory Simulation • 39

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

LEBECK, A. AND WOOD, D. 1994. Fast-Cache: A new abstraction for memory-system simula-
tion. University of Wisconsin-Madison Tech. Rep. 1211.

LEBECK, A. AND WOOD, D. 1995. Active Memory: A new abstraction for memory-system
simulation. In Proceedings of the 1995 SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems (Ottawa, Ont., May 15–19).

MARTONOSI, M., GUPTA, A., AND ANDERSON, T. 1992. MemSpy: Analyzing memory system
bottlenecks in programs. In Proceedings of the 1992 SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems (Newport, RI, June 1–5). ACM, New York.

MARTONOSI, M., GUPTA, A., AND ANDERSON, T. 1993. Effectiveness of trace sampling for
performance debugging tools. In Proceedings of the 1993 SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems (Santa Clara, CA, May 10–14), ACM, New
York, 248–259.

MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER, I. L. 1970. Evaluation techniques for
storage hierarchies. IBM Syst. J. 9, 2, 78–117.

MIPS 1988. RISCompiler Languages Programmer’s Guide. MIPS.
MOGUL, J. C. AND BORG, A. 1991. The effect of context switches on cache performance. In

Proceedings of the Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Santa Clara, CA) ACM, New York, 75–84.

NAGLE, D., UHLIG, R., AND MUDGE, T. 1992. Monster: A tool for analyzing the interaction
between operating systems and computer architectures. University of Michigan Tech. Rep.
CSE-TR-147-92.

NAGLE, D., UHLIG, R., STANLEY, T., SECHREST, S., MUDGE, T., AND BROWN, R. 1993. Design
tradeoffs for software-managed TLBs. In Proceedings of the 20th Annual International
Symposium on Computer Architecture (San Diego), IEEE, 27–38.

NAGLE, D., UHLIG, R., MUDGE, T., AND SECHREST, S. 1994. Optimal allocation of on-chip
memory for multiple-API operating systems. In Proceedings of the 21st International
Symposium on Computer Architecture (Chicago, IL, April), 358–371.

OUSTERHOUT, J. 1989. Why aren’t operating systems getting faster as fast as hardware.
WRL Tech. Note (TN-11).

PATEL, K., SMITH, B. C., AND ROWE, L. A. 1992. Performance of a software MPEG video
decoder. Tech. Rep., University of California, Berkeley.

PERL, S. AND SITES, R. 1996. Studies of Windows NT performance using the dynamic
execution traces. In Proceedings of the Second Symposium on Operating Systems Design and
Implementation (Seattle, WA, Oct.), 169–183.

PRZYBYLSKI, S. 1990. The performance impact of block sizes and fetching strategies. In
Proceedings of the 16th Annual International Symposium on Computer Architecture (Seattle,
WA), IEEE, 160–169.

PUZAK, T. 1985. Analysis of cache replacement algorithms. Ph.D. dissertation, University of
Massachusetts.

REINHARDT, S., HILL, M., LARUS, J., LEBECK, A., LEWIS, J., AND WOOD, D. 1993. The
Wisconsin Wind Tunnel: Virtual prototyping of parallel computers. In Proceedings of the
1993 SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems (Santa Clara, CA, May), ACM, New York, 48–60.

REINHARDT, S., LARUS, J., AND WOOD, D. 1994. Tempest and Typhoon: User-level shared
memory. In Proceedings of the 21st Annual International Symposium on Computer Architec-
ture (Chicago, IL, April), 325–337.

REINHARDT, S., PFILE, R., AND WOOD, D. 1996. Decoupled hardware support for distributed
shared memory. In Proceedings of the 23rd Annual International Symposium on Computer
Architecture, 1996 (to appear).

ROSENBLUM, M., HERROD, S., WITCHEL, E., AND GUPTA, A. 1995. Complete computer simula-
tion: the SimOS approach. IEEE Parallel Distrib. Technol. (Fall).

SCHOINAS, I., FALSAFI, B., LEBECK, A., REINHARDT, S., LARUS, J., AND WOOD, D. 1994. Fine-
grain access control for distributed shared memory. In Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Operating Systems
(San Jose, CA, Oct.), ACM Press, New York, 297–306.

40 • R. Uhlig et al.

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

SITES, R. L. AND AGARWAL, A. 1988. Multiprocessor cache analysis with ATUM. In Proceed-
ings of the 15th Annual International Symposium on Computer Architecture (Honolulu,
Hawaii, May–June), IEEE, 186–195.

SMITH, A. J. 1982. Cache memories. Comput. Surv. 14, 3, 473–530.
SMITH, M. D. 1991. Tracing with Pixie. Tech. Rep. Stanford University, Stanford, CA.
SPEC 1991. The SPEC benchmark Suite. SPEC Newsl. 3, 3–4.
SPEC 1993. SPEC: A five year retrospective. SPEC Newsl. 5, 4, 1–4.
SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program

analysis tools. In Proceedings of the SIGPLAN ’94 Conference on Programming Language
Design and Implementation (June), 196–205.

STUNKEL, C., JANSSENS, B., AND FUCHS, W. K. 1991. Collecting address traces from parallel
computers. In Proceedings of the 24th Annual Hawaii International Conference on System
Sciences (Hawaii), 373–383.

SUGUMAR, R. 1993. Multi-configuration simulation algorithms for the evaluation of com-
puter designs. Ph.D. dissertation, University of Michigan.

SUN MICROSYSTEMS 1994. Nested traps in UltraSPARC. http://www.sun.com/stb/Proces-
sors/UltraSPARC/WhitePapers/NestedTraps/NestedTraps.html. Sept.

TALLURI, M. AND HILL, M. 1994. Surpassing the TLB performance of superpages with less
operating system support. In Proceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (San Jose, CA), ACM,
New York, 171–182.

THOMPSON, J. AND SMITH, A. 1989. Efficient (stack) algorithms for analysis of write-back
and sector memories. ACM Trans. Comput. Syst. 7, 1, 78–116.

TORRELLAS, J., GUPTA, A., AND HENNESSY, J. 1992. Characterizing the caching and synchro-
nization performance of multiprocessor operating system. In Proceedings of the Fifth
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Boston, Oct.), ADM, 162–174.

UHLIG, R. 1995. Trap-driven Memory Simulation. Ph.D. Dissertation, University of Michi-
gan, Aug.

UHLIG, R. AND MUDGE, T. 1996. Trace-driven memory simulation: A survey. Submitted for
publication to ACM Comput. Surv., Fall.

UHLIG, R., NAGLE, D., MUDGE, T., SECHREST, S., AND EMER, J. 1995. Instruction fetching:
Coping with code bloat. In Proceedings of the 22nd International Symposium on Computer
Architecture (Santa Margherita Ligure, Italy, June).

WITCHEL, E. AND ROSENBLUM, M. 1996. Embra: Fast and flexible machine simulation. In
Proceedings of the 1996 SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems (Philadelphia, May).

WOOD, D., HILL, M., AND KESSLER, R. 1991. A model for estimating trace-sampled miss
ratios. In Proceedings of the 1991 SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (San Diego, CA, May), 79–89.

Received May 1996; revised October 1996; accepted November 1996

Trap-Driven Memory Simulation • 41

ACM Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, January 1997.

