
64-Bit Extension Technology Software
Developer’s Guide

Volume 1 of 2

Revision 1.00

NOTE: The 64-bit extension technology software 
developer’s guide consists of volumes 1 and 2. Refer to 
both volumes when evaluating your design needs.

Order Number: 300834-001
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS. 

Intel may make changes to specifications and product descriptions at any time, without notice. 

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."  Improper use of reserved
or undefined features or instructions may cause unpredictable behavior or failure in developer's software code when running on an Intel processor. Intel
reserves these features or instructions for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from their
unauthorized use.

The Intel® IA-32 architecture processors (e.g., Pentium® 4, Intel® XeonTM, and Pentium III processors) may contain design defects or errors known as
errata. Current characterized errata are available on request.

Intel, Intel386, Intel486, Pentium, Intel Xeon are trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

COPYRIGHT © 1997-2004 INTEL CORPORATION 
ii
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



TABLE OF CONTENTS

NOTE: This content listing reflects Volume 1 and Volume 2. Volume 1 houses the TOC, Chapters 1 and 2. Volume 2
houses the rest of the specification.

CHAPTER 1
INTRODUCTION
1.1. 64-BIT EXTENSION TECHNOLOGY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.2. OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.2.1. IA-32e Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.2. 64-Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.3. Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.4. Legacy Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.2.5. System Management Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.3. REGISTER-SET CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
1.3.1. General-Purpose Registers (GPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.3.2. Streaming SIMD Extension (SSE) Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.3.3. System Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.3.3.1. Extended Feature Enable Register (IA32_EFER)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.3.3.2. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.3.3.3. Descriptor Table Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.3.3.4. Debug Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.4. INSTRUCTION-SET CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-7
1.4.1. Address-Size and Operand-Size Prefixes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
1.4.2. REX Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
1.4.2.1. Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
1.4.2.2. REX Prefix Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
1.4.2.3. Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
1.4.2.4. Direct Memory-Offset MOVs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
1.4.2.5. Immediates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
1.4.2.6. RIP-Relative Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
1.4.2.7. Default 64-Bit Operand Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
1.4.3. New Encodings for Control and Debug Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
1.4.4. New Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
1.4.5. Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13
1.4.6. Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
1.5. MEMORY ORGANIZATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-14
1.5.1. Address Calculations in 64-Bit Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
1.5.2. Canonical Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
1.6. OPERATING SYSTEM CONSIDERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-15
1.6.1. CPUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
1.6.2. Register Settings and IA-32e Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
1.6.3. Processor Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
1.6.3.1. IA-32e Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
1.6.3.2. Activating IA-32e mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
1.6.3.3. Virtual-8086 Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
1.6.3.4. Compatibility Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
1.6.4. Segmentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
1.6.4.1. Code Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
1.6.4.2. Segment LOAD Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
1.6.4.3. System Descriptors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
1.6.5. Linear Addressing and Paging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
1.6.5.1. Software Address Translations in 64-Bit Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
1.6.5.2. Paging Data Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
1.6.5.3. Overall Page Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
1.6.5.4. Reserved Bit Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
1.6.6. Enhanced Legacy-Mode Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
1.6.7. CR2 and CR3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
1.6.8. Address Translation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
1.6.9. Privilege-Level Transitions and Far Transfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28
 iii
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.6.9.1. Call Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
1.6.9.2. Privilege-Level Changes and Stack Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30
1.6.9.3. Fast System Calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31
1.6.9.4. Task State Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31
1.6.10. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-32
1.6.10.1. Gate Descriptor Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-33
1.6.10.2. Stack Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34
1.6.10.3. IRET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34
1.6.10.4. Stack Switching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35
1.6.10.5. Interrupt Stack Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35
1.6.10.6. Task Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36
1.6.10.7. CR8 Interactions with APIC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36
1.7. GENERAL RULES FOR 64-BIT MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-36

CHAPTER 2
INSTRUCTION SET REFERENCE (A-L)
2.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
2.1.1. The Instruction Summary Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.1.1. Opcode Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.1.2. Instruction Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.1.1.3. 64-bit Mode Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.1.1.4. Compatibility/Legacy Mode Column in the Instruction Summary Table . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.1.1.5. Description Column in the Instruction Summary Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.1.2. Description Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.1.3. Operation Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.1.3.1. IA-32e Mode Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.1.4. Flags Affected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.1.5. FPU Flags Affected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.1.6. Protected Mode Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.1.7. Real-Address Mode Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.1.8. Virtual-8086 Mode Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.1.9. Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.1.10. SIMD Floating-Point Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
2.2. INSTRUCTION REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10

AAA—ASCII Adjust After Addition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
AAD—ASCII Adjust AX Before Division  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
AAM—ASCII Adjust AX After Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
AAS—ASCII Adjust AL After Subtraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
ADC—Add with Carry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
ADD—Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
ADDPD—Add Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
ADDPS—Add Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
ADDSD—Add Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
ADDSS—Add Scalar Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
ADDSUBPD—Packed Double-Precision Floating-Point Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
ADDSUBPS—Packed Single-Precision Floating-Point Add/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
AND—Logical AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . 2-33
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . 2-35
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values  . . . . . . . . . 2-37
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values . . . . . . . . . . 2-39
ARPL—Adjust RPL Field of Segment Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
BOUND—Check Array Index Against Bounds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
BSF—Bit Scan Forward  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
BSR—Bit Scan Reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
BSWAP—Byte Swap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
BT—Bit Test  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
BTC—Bit Test and Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
BTR—Bit Test and Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
BTS—Bit Test and Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53
CALL—Call Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
 iv
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert 
Doubleword to Quadword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-58

CDQ—Convert Double to Quad  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
CLC—Clear Carry Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60
CLD—Clear Direction Flag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
CLFLUSH—Flush Cache Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
CLI—Clear Interrupt Flag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
CLTS—Clear Task-Switched Flag in CR0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-64
CMC—Complement Carry Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65
CMOVcc—Conditional Move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
CMP—Compare Two Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
CMPPD—Compare Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . 2-71
CMPPS—Compare Packed Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands . . . . . . . . . . . . . . . . . . . . . . . 2-75
CMPSD—Compare Scalar Double-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77
CMPSS—Compare Scalar Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79
CMPXCHG—Compare and Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81
CMPXCHG8B/CMPXCHG16B—Compare and Exchange 8 Bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS  . . . . 2-85
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS . . . . . 2-87
CPUID—CPU Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-89
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision 

Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-99
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision 

Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed 

Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-103
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed 

Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105
CVTPD2PS—Covert Packed Double-Precision Floating-Point Values to Packed 

Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-107
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision 

Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-109
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision 

Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-111
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed 

Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113
CVTPS2PD—Covert Packed Single-Precision Floating-Point Values to Packed 

Double-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-115
CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed 

Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-117
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer . . . . . . . 2-119
CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar 

Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value . . . . . . . 2-123
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value . . . . . . . . 2-125
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar 

Double-Precision Floating-Point Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-127
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer . . . . . . . . 2-129
CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to 

Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-131
CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values to 

Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-133
CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to 

Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-135
CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to 

Packed Doubleword Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-137
 v
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to 
Signed Doubleword Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-139

CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to 
Doubleword Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-141

CWD/CDQ/CQQ—Convert Word to Doubleword/Convert Doubleword 
to Quadword/Convert Quadword to Double Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-143

DAA—Decimal Adjust AL after Addition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-144
DAS—Decimal Adjust AL after Subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-145
DEC—Decrement by 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-146
DIV—Unsigned Divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148
DIVPD—Divide Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-150
DIVPS—Divide Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-152
DIVSD—Divide Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-154
DIVSS—Divide Scalar Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-156
EMMS—Empty MMX State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-158
ENTER—Make Stack Frame for Procedure Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-159
F2XM1—Compute 2x–1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-160
FABS—Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-161
FADD/FADDP/FIADD—Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-162
FBLD—Load Binary Coded Decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-164
FBSTP—Store BCD Integer and Pop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-166
FCHS—Change Sign  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-168
FCLEX/FNCLEX—Clear Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-169
FCMOVcc—Floating-Point Conditional Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-170
FCOM/FCOMP/FCOMPP—Compare Floating Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-171
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS  . . . . . . . 2-173
FCOS—Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-174
FDECSTP—Decrement Stack-Top Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-175
FDIV/FDIVP/FIDIV—Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-176
FDIVR/FDIVRP/FIDIVR—Reverse Divide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-178
FFREE—Free Floating-Point Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-180
FICOM/FICOMP—Compare Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-181
FILD—Load Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-183
FINCSTP—Increment Stack-Top Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-185
FINIT/FNINIT—Initialize Floating-Point Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-186
FIST/FISTP—Store Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-187
FISTTP—Store Integer with Truncation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-189
FLD—Load Floating Point Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-191
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant  . . . . . . . . . . . . . . . . . . . . . 2-193
FLDCW—Load x87 FPU Control Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-194
FLDENV—Load x87 FPU Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-196
FMUL/FMULP/FIMUL—Multiply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-198
FNOP—No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-200
FPATAN—Partial Arctangent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-201
FPREM—Partial Remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-202
FPREM1—Partial Remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-203
FPTAN—Partial Tangent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-204
FRNDINT—Round to Integer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-205
FRSTOR—Restore x87 FPU State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-206
FSAVE/FNSAVE—Store x87 FPU State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-208
FSCALE—Scale  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-210
FSIN—Sine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-211
FSINCOS—Sine and Cosine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-212
FSQRT—Square Root. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-213
FST/FSTP—Store Floating Point Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-214
FSTCW/FNSTCW—Store x87 FPU Control Word  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-216
FSTENV/FNSTENV—Store x87 FPU Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-218
FSTSW/FNSTSW—Store x87 FPU Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-220
 vi
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSUB/FSUBP/FISUB—Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-222
FSUBR/FSUBRP/FISUBR—Reverse Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-224
FTST—TEST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-226
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values  . . . . . . . . . . . . . . . . . . 2-227
FWAIT—Wait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-228
FXAM—Examine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-229
FXCH—Exchange Register Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-230
FXRSTOR—Restore x87 FPU, MMX, SSE, and SSE2 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-231
FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-233
FXTRACT—Extract Exponent and Significand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-241
FYL2X—Compute y * log2x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-242
FYL2XP1—Compute y * log2(x +1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-243
HADDPD—Horizontal Add Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . 2-244
HADDPS—Horizontal Add Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . 2-246
HLT—Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-248
HSUBPD—Horizontal Subtract Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . 2-249
HSUBPS—Horizontal Subtract Packed Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . 2-251
IDIV—Signed Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-253
IMUL—Signed Multiply  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-255
IN—Input from Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-257
INC—Increment by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-258
INS/INSB/INSW/INSD—Input from Port to String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-260
INT n/INTO/INT 3—Call to Interrupt Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-262
INVD—Invalidate Internal Caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-265
INVLPG—Invalidate TLB Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-266
IRET/IRETD—Interrupt Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-267
Jcc—Jump if Condition Is Met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-269
JMP—Jump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-272
LAHF—Load Status Flags into AH Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-275
LAR—Load Access Rights Byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-276
LDDQU—Load Unaligned Double Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-277
LDMXCSR—Load MXCSR Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-279
LDS/LES/LFS/LGS/LSS—Load Far Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-281
LEA—Load Effective Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-283
LEAVE—High Level Procedure Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-284
LES—Load Full Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-285
LFENCE—Load Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-286
LFS—Load Full Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-287
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-288
LGS—Load Full Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-289
LLDT—Load Local Descriptor Table Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-290
LIDT—Load Interrupt Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-291
LMSW—Load Machine Status Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-292
LOCK—Assert LOCK# Signal Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-293
LODS/LODSB/LODSW/LODSD/LODSQ—Load String  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-294
LOOP/LOOPcc—Loop According to ECX Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-296
LSL—Load Segment Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-297
LSS—Load Full Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-298
LTR—Load Task Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-299

CHAPTER 3
INSTRUCTION SET REFERENCE (M-Z)

MASKMOVDQU—Store Selected Bytes of Double Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
MASKMOVQ—Store Selected Bytes of Quadword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . 3-5
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . 3-7
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . 3-9
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . 3-11
 vii
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



MFENCE—Memory Fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
MINPD—Return Minimum Packed Double-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . 3-14
MINPS—Return Minimum Packed Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . 3-16
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value  . . . . . . . . . . . . . . . . . . . . . . 3-18
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . 3-20
MONITOR—Setup Monitor Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
MOV—Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
MOV—Move to/from Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
MOV—Move to/from Debug Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . 3-29
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . 3-31
MOVD/MOVQ—Move Doubleword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33
MOVDDUP—Move One Double-Precision Floating-Point Value and Duplicate . . . . . . . . . . . . . . . . . . 3-35
MOVDQA—Move Aligned Double Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
MOVDQU—Move Unaligned Double Quadword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39
MOVDQ2Q—Move Quadword from XMM to MMX Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low  . . . . . . . . . . . . . . . . 3-42
MOVHPD—Move High Packed Double-Precision Floating-Point Value . . . . . . . . . . . . . . . . . . . . . . . . 3-43
MOVHPS—Move High Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . 3-45
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High . . . . . . . . . . . . . . . . . 3-47
MOVLPD—Move Low Packed Double-Precision Floating-Point Value. . . . . . . . . . . . . . . . . . . . . . . . . 3-48
MOVLPS—Move Low Packed Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . 3-50
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask  . . . . . . . . . . . . . . . . . . . . 3-52
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask  . . . . . . . . . . . . . . . . . . . . . 3-53
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-54
MOVNTI—Store Doubleword/Quadword Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint  . . . . . 3-57
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint . . . . . . 3-59
MOVNTQ—Store of Quadword Using Non-Temporal Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-61
MOVQ—Move Quadword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-63
MOVQ2DQ—Move Quadword from MMX to XMM Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-65
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String  . . . . . . . . . . . . . . . . . . 3-66
MOVSD—Move Scalar Double-Precision Floating-Point Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68
MOVSHDUP—Move Packed Single-Precision FP Values High and Duplicate  . . . . . . . . . . . . . . . . . . 3-70
MOVSLDUP—Move Packed Single-Precision FP Values Low and Duplicate . . . . . . . . . . . . . . . . . . . 3-72
MOVSS—Move Scalar Single--Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-74
MOVSX/MOVSXD—Move with Sign-Extension  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-76
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . 3-78
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . 3-80
MOVZX—Move with Zero-Extend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-82
MUL—Unsigned Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-84
MULPD—Multiply Packed Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-86
MULPS—Multiply Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-88
MULSD—Multiply Scalar Double-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90
MULSS—Multiply Scalar Single-Precision Floating-Point Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-92
MWAIT—Monitor Wait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-94
NEG—Two's Complement Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-95
NOP—No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-97
NOT—One's Complement Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-98
OR—Logical Inclusive OR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-100
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . 3-102
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . 3-104
OUT—Output to Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-106
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-107
PACKSSWB/PACKSSDW—Pack with Signed Saturation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-109
PACKUSWB—Pack with Unsigned Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-111
PADDB/PADDW/PADDD—Add Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-113
PADDQ—Add Packed Quadword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-115
 viii
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation. . . . . . . . . . . . . . . . . . . . 3-117
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation . . . . . . . . . . . . . 3-119
PAND—Logical AND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-121
PANDN—Logical AND NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-123
PAUSE—Spin Loop Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-125
PAVGB/PAVGW—Average Packed Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-126
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal . . . . . . . . . . . . . . . . . . . . . . 3-128
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than. . . . . . . . 3-130
PEXTRW—Extract Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-132
PINSRW—Insert Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-134
PMADDWD—Multiply and Add Packed Integers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-136
PMAXSW—Maximum of Packed Signed Word Integers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-138
PMAXUB—Maximum of Packed Unsigned Byte Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-140
PMINSW—Minimum of Packed Signed Word Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-142
PMINUB—Minimum of Packed Unsigned Byte Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-144
PMOVMSKB—Move Byte Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-146
PMULHUW—Multiply Packed Unsigned Integers and Store High Result. . . . . . . . . . . . . . . . . . . . . . 3-147
PMULHW—Multiply Packed Signed Integers and Store High Result . . . . . . . . . . . . . . . . . . . . . . . . . 3-149
PMULLW—Multiply Packed Signed Integers and Store Low Result. . . . . . . . . . . . . . . . . . . . . . . . . . 3-151
PMULUDQ—Multiply Packed Unsigned Doubleword Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-153
POP—Pop a Value from the Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-155
POPA/POPAD—Pop All General-Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-157
POPF/POPFD—Pop Stack into EFLAGS Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-158
POR—Bitwise Logical OR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-159
PREFETCHh—Prefetch Data Into Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-161
PSADBW—Compute Sum of Absolute Differences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-162
PSHUFD—Shuffle Packed Doublewords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-164
PSHUFHW—Shuffle Packed High Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-166
PSHUFLW—Shuffle Packed Low Words  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-168
PSHUFW—Shuffle Packed Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-170
PSLLDQ—Shift Double Quadword Left Logical  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-172
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-173
PSRAW/PSRAD—Shift Packed Data Right Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-175
PSRLDQ—Shift Double Quadword Right Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-177
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-178
PSUBB/PSUBW/PSUBD—Subtract Packed Integers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-180
PSUBQ—Subtract Packed Quadword Integers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-182
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation  . . . . . . . . . . . . . . . . 3-184
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Unsigned Saturation . . . . . . . . . . 3-186
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—

Unpack High Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-188
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—

Unpack Low Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-190
PUSH—Push Word or Doubleword Onto the Stack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-192
PUSHA/PUSHAD—Push All General-Purpose Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-194
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-195
PXOR—Logical Exclusive OR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-196
RCL/RCR/ROL/ROR-—Rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-198
RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values . . . . . . . . . . . . . . 3-201
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . 3-203
RDMSR—Read from Model Specific Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-205
RDPMC—Read Performance-Monitoring Counters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-206
RDTSC—Read Time-Stamp Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-207
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix . . . . . . . . . . . . . . . . . . . . . . . . 3-208
RET—Return from Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-210
ROL/ROR—Rotate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-212
RSM—Resume from System Management Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-213
 ix
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision 
Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-214

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-Precision 
Floating-Point Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-216

SAHF—Store AH into Flags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-218
SAL/SAR/SHL/SHR—Shift  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-219
SBB—Integer Subtraction with Borrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-222
SCAS/SCASB/SCASW/SCASD—Scan String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-224
SETcc—Set Byte on Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-226
SFENCE—Store Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-229
SGDT/SIDT—Store Global/Interrupt Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-230
SHL/SHR—Shift Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-232
SHLD—Double Precision Shift Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-233
SHRD—Double Precision Shift Right  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-235
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . 3-237
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-239
SIDT—Store Interrupt Descriptor Table Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-241
SLDT—Store Local Descriptor Table Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-242
SMSW—Store Machine Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-243
SQRTPD—Compute Square Roots of Packed Double-Precision Floating-Point Values . . . . . . . . . . 3-245
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values  . . . . . . . . . . 3-247
SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value . . . . . . . . . . . . . 3-249
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value. . . . . . . . . . . . . . 3-251
STC—Set Carry Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-253
STD—Set Direction Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-254
STI—Set Interrupt Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-255
STMXCSR—Store MXCSR Register State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-256
STOS/STOSB/STOSW/STOSD/STOSQ—Store String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-258
STR—Store Task Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-260
SUB—Subtract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-261
SUBPD—Subtract Packed Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . . . . . . . 3-263
SUBPS—Subtract Packed Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-265
SUBSD—Subtract Scalar Double-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-267
SUBSS—Subtract Scalar Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-269
SWAPGS—Swap GS Base Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-271
SYSCALL—Fast System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-273
SYSENTER—Fast System Call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-275
SYSEXIT—Fast Return from Fast System Call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-276
SYSRET—Return From Fast System Call  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-277
TEST—Logical Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-279
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point Values 

and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-281
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point Values 

and Set EFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-283
UD2—Undefined Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-285
UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values . . . . . . 3-286
UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values . . . . . . . 3-288
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values . . . . . . . 3-290
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values  . . . . . . . 3-292
VERR, VERW—Verify a Segment for Reading or Writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-294
WAIT/FWAIT—Wait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-295
WBINVD—Write Back and Invalidate Cache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-296
WRMSR—Write to Model Specific Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-297
XADD—Exchange and Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-298
XCHG—Exchange Register/Memory with Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-300
XLAT/XLATB—Table Look-up Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-302
XOR—Logical Exclusive OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-303
 x
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values. . . . . . . . . . . . . . . . . . . . 3-305
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values  . . . . . . . . . . . . . . . . . . . . 3-307

CHAPTER 4
SOFTWARE OPTIMIZATION GUIDELINES
4.1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-1
4.2.  64-BIT MODE OPTIMIZATION GUIDELINES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-1
4.2.1. Coding Rules Affecting 64-bit Mode Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.2.1.1. Use Legacy 32-Bit Instruction When the Data Size is 32 Bits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.2.1.2. Use the Extra Registers to Reduce Register Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.2.1.3. Use 64-Bit by 64-Bit Multiplies That Produce 128-Bit Results Only When Necessary . . . . . . . . . . . . 4-2
4.2.1.4. Sign Extension to Full 64-Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.2.2. Alternate Coding Rules for 64-Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4.2.2.1. Use 64-Bit Registers Instead of Two 32-Bit Registers for 64-Bit Arithmetic . . . . . . . . . . . . . . . . . . . . 4-3
4.2.3. Other Coding Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4.2.3.1. Use 32-Bit Versions of CVTSI2SS and CVTSI2SD When Possible . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4.2.3.2. Using Software Prefetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

APPENDIX A 
MSR CHANGES
A.1. MSR CHANGES  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-1

APPENDIX B 
MACHINE CHECK ARCHITECTURE SUPPORT
B.1. MACHINE CHECK ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-1
B.2. 64-BIT MODE SPECIFIC EXTENSIONS/MODIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-1
B.3. INTERPRETING THE MCA ERROR CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-1

APPENDIX C  
DEBUG SUPPORT
C.1. LAST BRANCH RECORD STACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C.1.1. 64-bit Mode Specific Extensions/Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C.2. DEBUG - BRANCH TRACE STORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1
C.2.1. 64-bit Mode Extensions/Modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1

APPENDIX D
PERFORMANCE MONITORING SUPPORT
D.1. 64-BIT MODE SPECIFIC EXTENSIONS/MODIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
 xi
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



 xii
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FIGURES
Figure 1-1. Prefix Ordering in 64-bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Figure 1-2. Register-Register Addressing (No Memory Operand), REX.X is Not Used . . . . . . . . . . . . . . . . . . . 1-10
Figure 1-3. Memory Addressing Without a SIB Byte, REX.X is Not Used, ModRM Reg Field!  . . . . . . . . . . . . . 1-10
Figure 1-4. Memory Addressing With a SIB Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Figure 1-5. Register Operand Coded in Opcode Byte, REX.X and REX.R Are Not Used . . . . . . . . . . . . . . . . . 1-11
Figure 1-6. Paging Data Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
Figure 2-1. Bit Offset for BIT[EAX,21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Figure 2-2. Memory Bit Indexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Figure 2-3. Version Information in the EAX Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91
xiii
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



xiv
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



TABLES
Table 1-1. IA-32e Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Table 1-2. Register Set Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Table 1-3. Extended Feature Enable MSR (IA32_EFER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Table 1-5. GDTR & IDTR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Table 1-6. LDTR & TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Table 1-4. IA32_EFER Bit Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Table 1-7. IA-32e Mode Address-Size Overrides Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Table 1-8. 64-Bit Extensions Operand-Size Overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Table 1-9. REX Prefix Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Table 1-10. Special Cases of REX Encodings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Table 1-11. Direct Memory Offset Form of MOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Table 1-12. RIP-Relative Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Table 1-13. Instruction Pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
Table 1-14. Processor Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Table 1-15. IA-32e Mode Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Table 1-16. Code Segment Descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
Table 1-17. LDT & TSS Descriptors in 64-bit Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
Table 1-18. IA-32e mode Page Map Level 4 Entry (PML4 - 4K Pages)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
Table 1-19. IA-32e mode Page Directory Pointer Table Entry (PDPTE - 4K Pages)  . . . . . . . . . . . . . . . . . . . . . 1-22
Table 1-20. IA-32e mode Page Directory Entry (PDE - 4K Pages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Table 1-21. IA-32e mode Page Table Entry (PTE - 4K Pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Table 1-23. IA-32e mode Page Directory Pointer Table Entry (PDPTR - 2MB Pages) . . . . . . . . . . . . . . . . . . . . 1-24
Table 1-24. IA-32e mode Page Directory Entry (PDE - 2MB Pages)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Table 1-22. IA-32e mode Page Map Level 4 Entry (PML4 - 2MB Pages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Table 1-25. IA-32e Mode Page Level Protection Matrix  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25
Table 1-26. Reserved Bit Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Table 1-28. IA-32e Mode CR3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Table 1-27. Legacy Mode Page Directory Entry for 4MB Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Table 1-29. 4KB Page Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28
Table 1-30. CR3 Page Directory Pointer Offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28
Table 1-33. Call Gates in IA-32e Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
Table 1-31. 2MB Page Translation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
Table 1-32. CR3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
Table 1-34. IA-32e Mode Call Gate Fields  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30
Table 1-35. 64-Bit-Mode Stack Layout After CALLF with CPL Change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30
Table 1-36. STAR, LSTAR, and CSTAR Model-Specific Registers (MSRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31
Table 1-37. TSS Format in IA-32e Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-32
Table 1-38. Interrupt and Trap Gate in IA-32e Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-33
Table 1-39. IA-32e Mode Interrupt and Trap Gate Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34
Table 1-40. IA-32e Mode Stack Layout After Interrupt With CPL Change  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35
Table 1-41. Task Priority Register - CR8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36
Table 2-1. Register Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Table 2-2. Interrupt Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Table 2-3. Exception Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Table 2-4. Floating Point Exception Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Table 2-5. CPUID Function Leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-89
Table 2-6. Highest CPUID Source Operand for Processor Supporting 64-Bit Extensions Technology. . . . . . . 2-91
Table 2-7. Processor Type Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92
Table 2-8. CPUID Feature Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92
Table 2-9. Cache Parameter Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-95
Table 2-10. Brand String Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-96
Table 2-11. Processor Brand String Returned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97
Table 2-12. Layout of the Legacy FXSAVE Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-233
Table 2-13. State Save Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-236
Table 2-14. Layout of the 64-bit FXSAVE Map When REX.W Is Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-236
Table 2-15. Layout of the 64-bit FXSAVE Map When REX.W Is Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-237
Table 3-1. SWAPGS Operation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-271
xv
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Table 3-2. SYSCALL Operation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-273
Table 3-1. SYSENTER/EXIT Operation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-275
Table 3-2. SYSEXIT Operation Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-276
Table 3-3. SYSCALL/SYSRET Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-277
Table A-1. New MSRs for Processors Supporting 64-Bit Extensions Technology. . . . . . . . . . . . . . . . . . . . . . . . A-1
Table A-2. MSRs That Have Changed Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Table C-1. DS Save Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
Table C-2. Branch Trace Record Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-2
Table D-1. PEBS Record Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1
xvi
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CHAPTER 1
INTRODUCTION

1.1. 64-BIT EXTENSION TECHNOLOGY
This document describes the enhancements made to Intel® IA-32 architecture to support 64-bit address extensions.
The enhancements include new operating modes and new or enhanced instructions. Chapter 1 documents software-
visible changes of the 64-bit extensions. Chapter 2 documents each instruction and any associated changes of each
instruction in various operating modes.

The 64-bit extension technology is an enhancement to Intel IA-32 architecture. An IA-32 processor equipped with 64-
bit extension technology is compatible with existing IA-32 software, enables future software to access larger memory
address space, and allows co-existence of software written for 32-bit linear address space with software capable of
accessing 64-bit linear address space. 

A processor with 64-bit extension technology fully supports existing IA-32 features. In addition, it introduces a new
operating mode, referred to as IA-32e mode in the rest of this document. The IA-32e mode includes two sub-modes:
one sub-mode, referred to as compatibility mode, enables a 64-bit operating system to run most existing legacy 32-bit
software unmodified; another sub-mode, referred to as 64-bit mode, enables a 64-bit operating system to run applica-
tions written specifically to access 64-bit address space. 

In the 64-bit sub-mode of 64-bit extension technology, applications can access the following features:

• 64-bit flat linear addressing

• 8 new general-purpose registers (GPRs)

• 8 new registers for streaming SIMD extensions (SSE, SSE2 and SSE3)

• 64-bit-wide GPRs and instruction pointers

64-bit extensions also adds uniform byte-register addressing, a fast interrupt-prioritization mechanism, and a new
instruction-pointer relative-addressing mode.

1.2. OPERATING MODES
A processor with 64-bit extension technology can run in either legacy IA-32 mode or IA-32e mode. Legacy IA-32
mode allows the processor to run in protected mode, real address mode or virtual 8086 mode.

IA-32e mode is the mode a processor uses when running a 64-bit operating system. A processor with 64-bit extension
technology will initially operate in legacy, paging-enabled, protected mode and will transition to IA-32e mode once a
bit in the IA32-EFER register is set and PAE mode is enabled (see Section 1.3.3.1.). Table 1-1 shows the supported
operating modes within 64-bit extension technology and the differences between each mode.
1-1
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.2.1. IA-32e Mode 
IA-32e mode consists of two sub-modes: 64-bit mode and compatibility mode. IA-32e mode can only be entered by
loading a 64-bit capable operating system. The procedures to enter into IA-32e mode is described in Section 1.3.3.1.
and Section 1.6.3.2.

1.2.2. 64-Bit Mode 
64-bit mode is used by 64-bit applications running under a 64-bit operating system. It supports the following features:

• Architectural support for 64-bits of linear address; however IA-32 processors supporting 64-bit extension
technology may decide to implement less then 64-bits, see Section 1.3.3.3.and Section 1.5.2..

• Register extensions accessible through a set of new opcode prefixes (REX) 

• Existing general purpose registers are widened to 64-bits (RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP)

• Eight new general purpose registers (R8–R15)

• Eight new 128-bit streaming SIMD extension (SSE) registers (XMM8–XMM15)

• A 64-bit instruction pointer (RIP)

• A New RIP-relative data addressing mode

• Can use flat address space with single code, data, and stack space

• Extended and new instructions

• Physical address support greater than 64 GB; however the actual physical address size of IA-32 processors
supporting 64-bit extension technology is implementation specific.

• New interrupt priority control mechanism

64-bit mode is enabled by the operating system on a code-segment basis. Its default address size is 64 bits; and its
default operand size is 32 bits. Note that these defaults can be overridden on an instruction-by-instruction basis using
the new REX opcode prefixes. The REX prefix allows a 64-bit operand to be specified when operating in 64-bit mode.
By using this mechanism, many existing instructions have been modified or redefined to allow usage of the larger
64-bit registers and 64-bit addresses. 

1.2.3. Compatibility Mode 
Compatibility mode permits legacy 16-bit and 32-bit applications to run, without recompilation, under a 64-bit oper-
ating system. (However, legacy applications which were run in Virtual 8086 mode or use hardware task management
will not work.) Like 64-bit mode, compatibility mode is enabled by the operating system on an individual code
segment basis. This means that 64-bit applications may be running on the processor (in 64-bit mode) at the same time
as legacy 32-bit applications (not recompiled for 64-bits) are running in compatibility mode.

Table 1-1.  IA-32e Modes
Mode

O
pe

ra
tin

g 
Sy

st
em

 
R

eq
ui

re
d

A
pp

lic
at

io
n 

R
ec

om
pi

le
 

R
eq

ui
re

d

D
ef

au
lt

A
dd

re
ss

 
Si

ze
 (B

its
)

D
ef

au
lt 

O
pe

ra
nd

 
Si

ze
 (b

its
)

R
eg

is
te

r 
Ex

te
ns

io
n

G
PR

 W
id

th
 (b

its
)

Su
pp

or
te

d 
by

 S
M

M

IA-32e 
mode

64-Bit Mode 64-Bit OS Yes 64 32 Yes 64 Yes*

Compatibility 
Mode

No 32 32 No 32 Yes

16 16 16, 8

* SMM supports transitions to/from 64-bit OS and legacy OSs. However, PAE and 64-bit linear address are not available inside the 
SMM environment.
1-2
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility mode is like legacy protected mode. Applications can only access the first 4GB of linear-address space,
standard IA-32 instruction prefixes, and registers. The REX prefixes do not apply in compatibility mode. (The
encoding of the REX prefixes are treated as a legacy IA-32 instruction). Compatibility mode also must use 16-bit and
32-bit address and operand sizes. Compatiblity mode, like legacy protected mode, also allows applications to access
up to 64GB of physical memory using PAE (Physical Address Extensions). 

The following elements of legacy protected mode are not available or supported while in compatibility mode:

• Virtual 8086 mode, task switches and stack parameter copy features are not available in compatibility mode. 

• From the operating system’s viewpoint: system data structures, address translation, interrupt and exception
handling; use 64-bit mechanisms instead of 32-bit mechanisms to handle these structures or events.

1.2.4. Legacy Modes 
Legacy modes includes protected mode, real address mode, and virtual 8086 mode. Existing software written for one
of these legacy IA-32 modes is fully compatible when run on processors supporting 64-bit extension technology.

1.2.5. System Management Mode
System management mode (SMM) provides the same execution environment for system management interrupt (SMI)
handler as in legacy IA-32 architecture. SMM supports transitions from and to other operating modes (including IA-
32e and legacy modes). An SMI handler can access any physical memory pages via the PSE mechanism. However,
the SMM environment does not support 64-bit linear address because PAE is not supported. Upon the delivery of an
SMI, the processor will switch to SMM and save the processor state according to the SMM save map in SM RAM.
Thus an SMI handler will execute in the same environment as defined in legacy IA-32 architecture.
1-3
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.3. REGISTER-SET CHANGES
This section describes the register set changes. Table 1-2 compares the registers and data structures visible to appli-
cations in 64-bit mode with those visible to applications running in legacy IA-32 environments. Legacy environments
include those present in existing IA-32 processors, legacy modes in a processor supporting 64-bit extension tech-
nology, and IA-32e compatibility mode. Compatibility mode applications are not aware of the existence of 64-bit
mode nor of 64-bit operating system. Thus application that needs to run successfully in compatibility mode should
be designed to run in legacy IA-32 protected mode environment.

1.3.1. General-Purpose Registers (GPRs)
There are eight general purpose registers (GPRs) in the IA-32 architecture when operating in legacy or compatibility
modes. AX, BX, CX, DX, DI, SI, BP, SP are available when the operand size is 16 bits. EAX, EBX, ECX, EDX, EDI,
ESI, EBP, ESP are available when the operand size is 32 bits.

In 64-bit mode, the default operand is 32-bits. However, GPRs are able to work with either 32-bit or 64-bit operands.
If a 32-bit operand is specified; EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D are available. If a 64-bit
operand is specified; RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8-R15 represent 8 new
GPRs. All of these registers can be accessed at the byte, word, dword and qword level. The level of granularity is
enabled by the REX prefixes (see Section 1.4.2.).

In 64-bit mode, there are limitations on the byte registers that instructions can access. An instruction cannot reference
legacy high-bytes (for example: AH, BH, CH, DH) and one of the new byte registers at the same time (for example:
the low byte of the RAX register). However, instructions may reference legacy low-bytes (for example: AL, BL, CL
or DL) and new byte registers at the same time (for example: the low byte of the R8 register, or RBP). The architecture
will enforce the above limitation by changing high-byte references (AH, BH, CH, DH) to low byte references (BPL,
SPL, DIL, SIL; these are the low 8 bits of RBP,R SP, RDI and RSI) for any instruction with an REX prefix.

When in 64-bit mode, the size of the operands determine the number of valid bits in the destination GPR: 

• 64-bit operands generate a 64-bit result in the destination GPR.

• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the destination GPR.

• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56-bits or 48-bits (respectively) of the
destination GPR are not be modified by the operation. If the result of an 8-bit or 16-bit operation is intended for
64-bit address calculation, explicitly sign-extend it to the full 64-bits. 

Because the upper 32-bits of 64-bit GPR’s are undefined in 32-bit modes, the upper 32-bits of any GPR are not
preserved when switching from 64-bit mode to any 32-bit mode (e.g. legacy mode or compatibility mode). As such,
software must not depend on the upper, undefined bits to maintain a value after a 64-bit to 32-bit mode switch. These
values may change from one hardware implementation to the next, or from one cycle to the next.

Table 1-2.  Register Set Changes
Software Visible 
Register 

64-Bit Mode Legacy and Compatibility Modes

Name Number Size (bits) Name Number Size (bits)

General Purpose 
Registers

RAX, RBX, RCX, 
RDX, RBP, RSI, 
RDI, RSP, R8-15

16 64 EAX, EBX, ECX, 
EDX, EBP, ESI, 
EDI, ESP

8 32

Instruction Pointer RIP 1 64 EIP 1 32

Flags EFLAGS 1 32 EFLAGS 1 32

FP Registers ST0-7 8 80 ST0-7 8 80

Multi-Media 
Registers

MM0-7 8 64 MM0-7 8 64

Streaming SIMD 
Registers

XMM0-15 16 128 XMM0-7 8 128

Stack Width - 64 - 16 or 32
1-4
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.3.2. Streaming SIMD Extension (SSE) Registers
In compatibility and legacy modes, SSE registers consist of the eight 128-bit legacy registers, XMM0–XMM7. In
64-bit mode, eight additional 128-bit SSE registers are available, XMM8–XMM15. Access to these registers is
controlled on an instruction-by-instruction basis by using a REX instruction prefix. The XMM registers can be used
with SSE, SSE2, and SSE3 in all modes.

1.3.3. System Registers
64-bit extensions introduces new registers and makes changes to existing system registers. These are:

• MSRs. The Extended Feature Enable MSR (IA32_EFER) contains bits for controlling, enabling and disabling
features of the 64-bit extension technology. For information on the KernelGSbase MSR, see Section 1.4.4. For
information on the STAR, LSTAR, CSTAR & FMASK MSRs, see Section 1.6.9.3. For information on the
FS.base & GS.base MSRs, see Section 1.6.4.2.

• Control Registers. All control registers expand to 64 bits. A new control register, (the task priority register: CR8
or TPR) has been added.

• Descriptor Table Registers. The global descriptor table register (GDTR), and interrupt descriptor table register
(IDTR) are expanded to 10 bytes so that they can hold the full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) are also expanded to hold the full 64-bit base address. See as shown in
Table 1-6.

• Debug Registers. Debug registers have been expanded to 64 bits.

1.3.3.1. EXTENDED FEATURE ENABLE REGISTER (IA32_EFER)

The extended feature enable register (IA32_EFER) contains control bits that enable extended features of the processor.
The IA32_EFER is at address C0000080H. Table 1-3 summarizes IA32_EFER bits. Bit definitions are described in
Table 1-4.

.

1.3.3.2. CONTROL REGISTERS 

Control registers CR0-CR4 are expanded to 64 bits in the 64-bit extensions architecture. In 64-bit mode, the MOV
CRn instructions read or write all 64 bits of these registers. Operand-size prefixes are ignored. In compatibility and
legacy modes, control register writes fill the upper 32 bits with zeros and control register reads return only the lower
32 bits.

In 64-bit mode, the upper 32 bits of CR0 and CR4 are reserved and must be written with zeros. Writing a 1 to any of
the upper 32 bits results in a general-protection exception, #GP(0). All 64 bits of CR2 are writable by software. Bits
51:40 of CR3 are reserved, and must be 0. However, the MOV CRn instructions do not check that addresses written
to CR2 or CR3 are within the linear-address or physical-address limitations of the implementation.

The 64-bit extensions architecture introduces a new control register, CR8, defined as the task priority register (TPR).
Operating systems can use the TPR to control whether or not external interrupts are allowed to interrupt the processor,
based on the interrupt’s priority level. See See “Task Priority” on page 36. for more details on TPR. 

Table 1-3.  Extended Feature Enable MSR (IA32_EFER)
63:11 10 9 8 7:1 0

Reserved IA-32e mode 
Active (LMA)

Reserved IA-32e mode 
Enable (LME)

Reserved SysCall Enable 
(SCE)
1-5
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.3.3.3. DESCRIPTOR TABLE REGISTERS

The four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware to hold 64-bit
base addresses. This allows operating systems running in IA-32e mode to locate system-descriptor tables anywhere in
the linear-address space supported by the implementation. 

Table 1-5 shows the GDTR and IDTR. Table 1-6 shows the LDTR and TR. In all cases, the base address must be in
canonical form. The number of linear and physical address bits supported by an implementation can be determined by
executing CPUID with EAX set to 80000008H. See Chapter 2 for more CPUID details.

1.3.3.4. DEBUG REGISTERS 

In 64 bit mode, debug registers DR0–DR7 are 64 bits. The MOV DRn instructions read or write all 64 register bits.
Operand-size prefixes are ignored.

In all 16-bit mode or 32-bit mode on an IA-32e platform (legacy or compatibility modes), writes to a debug register
fill the upper 32 bits with zeros and reads from a debug register return only the lower 32 bits. In 64-bit mode, the upper

Table 1-4.  IA32_EFER Bit Descriptions

Name Description Operation

LMA IA-32e mode active (bit 10). This bit is a read-only status bit. Any attempt to set LMA is silently 
ignored. It indicates that IA-32e mode is active.

The processor sets LMA to 1 when both IA-32e mode and paging have 
been enabled. When LMA = 1, the processor is running either in 
compatibility mode or 64-bit mode, depending on the values of the code 
segment descriptor’s L and D bits as shown in Table 11. 

When LMA = 0, the processor is running in legacy mode. In this mode, the 
processor behaves like a standard 32-bit IA-32 processor, with none of 
the 64-bit features enabled.

LME IA-32e mode enable (bit 8). Setting this bit to 1 enables the processor’s ability to switch to IA-32e 
mode. IA-32e mode is not actually activated until software enables PAE 
mode paging.

When PAE paging is enabled while LME is set to 1, the processor sets the 
IA32_EFER.LMA bit to 1, indicating that IA-32e mode is not only enabled 
but also active. 

All other IA32_EFER bits are reserved and must be written with zeros 
(MBZ).

SCE Syscall/Sysret enable (bit 0) Setting this bit to 1 enables support for SYSCALL/SYSRET. SYSCALL/
SYSRET is supported in 64-bit mode only. It is the responsibility of the OS 
to enable SYSCALL/SYSRET for 64-bit operation.

Table 1-5.  GDTR & IDTR
QWord 0ffset Bits 63:16 Bits 15:0

1 Limit

0 BASE

Table 1-6.  LDTR & TR
QWord 0ffset Bits 63:20 Bits 19:16 Bits 15:0

3 Selector

2 Attributes

1 Limit

0 BASE
1-6
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of the upper 32 bits results in a
#GP(0) exception. 

All 64 bits of DR0–DR3 are writable by software. However the MOV DRn instructions do not check that addresses
written to DR0–DR3 are in the linear-address limits of the implementation. Address matching is only supported on
valid addresses generated by the processor implementation.

1.4. INSTRUCTION-SET CHANGES

1.4.1. Address-Size and Operand-Size Prefixes
In 64-bit mode, the default address size is 64 bits and the default operand size is 32 bits. The defaults can be overridden
using a new set of instruction prefixes, referred to as REX and discussed in Section 1.4.2. Address-size and operand-
size prefixes allow mixing of 32-bit and 64-bit data and addresses on an instruction-by-instruction basis. Table 1-7
shows the instruction prefix requirements for address-size overrides in IA-32e operating modes. 

Note that 16-bit addresses are not supported in 64-bit mode. In compatibility and legacy mode, address sizes function
as they do in the IA-32 legacy architecture.

Table 1-8 shows valid combinations of the 66H instruction prefix and the REX.W prefix to specify operand-size over-
rides in IA-32e operating modes.

In 64-bit mode, the default operand size is 32 bits. The REX prefixes include 4 bit fields to form 16 different values.
The W bit field in the REX prefixes is referred to as REX.W. The REX.W = 1 prefix specifies a 64-bit operand size.
Note that software can still use the operand-size 66H prefix to toggle to a 16-bit operand size. However, the REX.W
= 1 prefix takes precedence over the operand-size prefix (66H) when both are used as operand-size overrides.

In the case of the SSE/SSE2/SSE3 SIMD instructions; the 66H, F2H, and F3H prefixes are used as opcode extensions
and are considered to be part of the opcode. In these cases, there is no interaction between a valid REX.W prefix and
the 66H opcode extension prefix.

Table 1-7.  IA-32e Mode Address-Size Overrides Requirements 
IA-32e mode sub-mode Default Address 

Size (bits)
Effective Address Size (bits) Address-Size Prefix Required

64-bit 64 64 No

32 Yes

Compatibility 32 32 No

16 Yes

16 32 Yes

16 No
1-7
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.4.2. REX Prefixes 
The REX prefixes are a new family of instruction-prefix bytes used in 64-bit mode. They do the following:

• Specify the new GPRs and SSE registers

• Specify a 64-bit operand size

• Specify extended control registers (used by system software)

Not all instructions require a REX prefix. The prefix is necessary only if an instruction references one of the extended
registers or uses a 64-bit operand. If a REX prefix is used when it has no meaning, it is ignored.

An instruction can have only one REX prefix. The prefix, if used, must immediately precede the opcode byte or the
two-byte opcode escape prefix (if present). Other placements of an REX prefix are ignored. 

The legacy instruction-size limit of 15 bytes still applies to instructions that contain a REX prefix. Figure 1-1 shows
how a REX prefix fits within the byte-order of instructions.

The legacy prefixes noted in Figure 1-1 include 66H, 67H, F2H and F3H. Group 1, Group 2, Group 3 and Group 4
prefix refers to Section 2.2 of IA-32 Intel® Architecture Software Developer’s Manual, Volume 2A.

1.4.2.1. ENCODING

IA-32 instruction formats specify up to three registers by using 3-bit fields in the instruction encoding, depending on
the format:

• ModRM: the reg and r/m fields of the ModRM byte

• ModRM with SIB: the reg field of the ModRM byte and the base and index fields of the SIB (scale, index, base)
byte

• Instructions without the ModRM: the reg field of the opcode

Table 1-8.  64-Bit Extensions Operand-Size Overrides  
IA-32e sub-mode Default 

Operand Size 
(bits)

Effective 
Operand Size 

(bits)

Instruction Prefix

66H REX.W = 1

64-bit 32 64 X Yes

32 No No

16 Yes No

Compatibility 32 32 No Not Applicable

16 Yes

16 32 Yes

16 No

x: Function depends on the implementation of individual instructions.

Figure 1-1.  Prefix Ordering in 64-bit Mode

REX
Prefix Opcode ModR/M SIB Displacement Immediate

Immediate
data of

1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4

bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode(optional)

Grp 1, Grp 2, 
Grp 3, Grp 4

(optional)

Legacy
Prefixes
1-8
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



In 64-bit mode, these fields and formats do not change. All bits needed to extend fields for 64-bit are provided by the
addition of the REX prefixes.

1.4.2.2. REX PREFIX FIELDS 

REX prefixes (a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH). These
opcodes represents valid instructions (INC or DEC) in legacy IA-32 operating modes and in compatibility mode. In
64-bit mode, these opcodes represents the instruction prefix REX and are not treated as individual instructions. 

The functionality of the single-byte-opcode INC/DEC instruction is no longer available in 64-bit mode. INC/DEC
functionality is still available with the ModRM forms of the same instructions (see opcodes FF/0 and FF/1). Table 1-9
and Figure 1-2 through Figure  show the prefix fields and their uses.   

Some combinations of REX prefix fields result in an operation that is not valid. In those cases, the REX prefix is
ignored.

• Setting the REX.W bit is used to determine the operand size, but doesn’t solely determine the operand width.
Like the existing 66H operand size prefix, the REX 64-bit operand size override has no effect on byte-specific
operations. 

• For non-byte operations, an REX operand-size override takes precedence over the 66H prefix. If a 66H prefix is
used with a REX prefix (REX.W = 1), the 66H prefix is ignored. If a 66H override is used with REX and REX.W
= 0, the operand size is 16 bits.

• REX.R modifies the ModRM reg field when that field encodes a GPR, SSE, control or debug register. REX.R is
ignored when ModRM specifies other registers or includes an extended opcode.

• REX.X bit modifies the SIB index field.

• REX.B either modifies the base in the ModRM r/m field or SIB base field; or it modifies the opcode reg field
used for accessing GPRs.

Figure 1-2 through Figure 1-5 show four examples of how the R, X, and B bits of REX prefixes are concatenated with
fields from the ModRM byte, SIB byte, and opcode to specify register and memory addressing. The R, X, and B bits
are described in Table 1-9.

Table 1-9.  REX Prefix Fields
Field Name Bit Position Definition

- 7:4 0100

W 3 0 = Default Operand Size

1 = 64 Bit Operand Size

R 2 Extension of the MODRM reg field

X 1 Extension of the SIB index field

B 0 Extension of the MODRM r/m field, SIB base field, or Opcode reg 
field
1-9
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Figure 1-2.  Register-Register Addressing (No Memory Operand), REX.X is Not Used

Figure 1-3.  Memory Addressing Without a SIB Byte, REX.X is Not Used, ModRM Reg Field!

Figure 1-4.  Memory Addressing With a SIB Byte

REX PREFIX
0100WR0B

Opcode mod
!11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

REX PREFIX
0100WR0B

Opcode mod
11

reg r/m

Rrrr Bbbb

ModRM Byte

rrr bbb

mod
!11

ModRM Byte
r/m
100

reg
rrr

scale
ss

SIB Byte
REX PREFIX
0100WRXB

Opcode

Rrrr

base

Bbbb

bbb

Xxxx

index
xxx
1-10
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



In the legacy IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are encoded in the ModRM
byte’s reg field, the r/m field or the opcode reg field as registers 0 through 7. The REX prefixes provide an additional
addressing capability to byte-registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModRM byte and the SIB byte have special meaning for register encodings.
Note that, for some combinations, instruction fields expanded by the REX prefix are not decoded. Table 1-10 describes
how each case behaves.

1.4.2.3. DISPLACEMENT 

Addressing in 64-bit mode uses existing 32-bit ModRM and SIB encodings. In particular, the ModRM and SIB
displacement sizes do not change. They remain 8 bits or 32 bits and are sign-extended to 64 bits.

Figure 1-5.  Register Operand Coded in Opcode Byte, REX.X and REX.R Are Not Used

Table 1-10.  Special Cases of REX Encodings
ModRM or SIB Sub-field Encodings Compatibility Mode 

Operation
Compatibility Mode 
Implications

Additional Implications

ModRM Byte mod != 11 SIB byte present. SIB byte required for 
ESP-based addressing

REX prefix adds a fourth bit (b) 
which is not decoded (don't care)

SIB byte also required for R12-
based addressing

r/m == b*100(ESP)

ModRM Byte mod == 0 Base register not 
used

EBP without a 
displacement must be 
done using 
mod = 01 with 
displacement of 0

REX prefix adds a fourth bit (b) 
which is not decoded (don't care)

Using RBP or R13 without 
displacement must be done using 
mod = 01 with a displacement of 0

r/m == b*101(EBP)

SIB Byte index == 0100(ESP) Index register not 
used

ESP cannot be used as 
an index register

REX prefix adds a fourth bit (b) 
which is decoded.

There are no additional 
implications. The expanded index 
field is used to distinguish RSP 
from R12, allowing R12 to be used 
as an index.

SIB Byte base == 0101(EBP) Base register is 
unused if 
mod = 0

Base register depends 
on mod encoding

REX prefix adds a fourth bit (b) 
which is decoded.

There are no additional 
implications. The expanded base 
field is used to distinguish RBP 
from R13, allowing R13 to be used 
as a SIB base regardless of the 
mod.

*: Don’t care about the value of b (REX.B).

REX PREFIX
0100W00B

Opcode

Bbbb

reg
bbb
1-11
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.4.2.4. DIRECT MEMORY-OFFSET MOVS

In 64-bit mode, direct memory-offset forms of the MOV instruction (Table 1-11) are extended to specify a 64-bit
immediate absolute address. This address is called a moffset. No prefix is needed to specify this 64-bit memory offset.
For these MOV instructions, the size of the memory offset follows the address-size default (64 bits in 64-bit mode).

1.4.2.5. IMMEDIATES 

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the operand size is 64 bits, the processor
sign-extends all immediates to 64 bits prior to their use. 

Support for 64-bit immediate operands is accomplished by expanding the semantics of the existing move (MOV reg,
imm16/32) instructions. These instructions (opcodes B8H – BFH) move 16-bits or 32-bits of immediate data
(depending on the effective operand size) into a GPR. When the effective operand size is 64 bits, these instructions can
be used to load an immediate into a GPR. A REX prefix is needed to override the 32-bit default operand size to a 64-
bit operand size. 

For example: 
48 B8 8877665544332211 MOV RAX,1122334455667788H

1.4.2.6. RIP-RELATIVE ADDRESSING

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is implemented in 64-bit mode. An
effective address is formed by adding the displacement to the 64-bit RIP of the next instruction.

In legacy IA-32 architecture, addressing relative to the instruction pointer is available only with control-transfer
instructions. In 64-bit mode, instructions that use ModRM addressing can use RIP-relative addressing. Without RIP-
relative addressing, all ModRM instruction modes address memory relative to zero. 

RIP-relative addressing allows specific ModRM modes to address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of ±2GB from the RIP. Table 1-12 shows the ModRM and SIB
encodings for RIP-relative addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModRM and SIB encodings. There is one ModRM encoding and several SIB encodings. RIP-relative addressing is
encoded using a redundant form. 

In 64-bit mode, the ModRM Disp32 (32-bit displacement) encoding is re-defined to be RIP+Disp32 rather than
displacement-only. See Table 1-12 for details.

Table 1-11.  Direct Memory Offset Form of MOV
Opcode Instruction

A0 MOV AL, moffset

A1 MOV EAX, moffset

A2 MOV moffset, AL

A3 MOV moffset, EAX

Table 1-12.  RIP-Relative Addressing
ModRM and SIB Sub-field Encodings Compatibility Mode 

Operation
64-bit Mode Operation Additional Implications in 64-

bit mode

ModRM Byte mod == 00 Disp32 RIP + Disp32 Must use SIB form with normal 
(zero-based) displacement 
addressing r/m == 101(none)

SIB Byte base == 101 (none) if mod = 00, Disp32 Same as legacy None

index == 100(none)

scale = 0, 1, 2, 4
1-12
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The ModRM encoding for RIP-relative addressing does not depend on using a REX prefix. Specifically, the r/m bit
field encoding of 101B, used to select RIP-relative addressing, is not affected by the REX prefix. For example,
selecting R13 (REX.B = 1, r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m field of
REX.B combined with ModRM is not fully decoded. In order to address R13 with no displacement, software must
encode it as R13 + 0 using a 1-byte displacement of zero. 

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The use of the address-size prefix does
not disable RIP-relative addressing. The effect of the address-size prefix is to truncate and zero-extend the computed
effective address to 32 bits. 

1.4.2.7. DEFAULT 64-BIT OPERAND SIZE

In 64-bit mode, two groups of instructions have a default operand size of 64 bits and thus do not need a REX prefix
for this operand size. These are:

• Near branches

• All instructions, except far branches, that implicitly reference the RSP

1.4.3. New Encodings for Control and Debug Registers
In 64-bit mode, additional encodings for control and debug registers are available. The REX.R bit is used to modify
the ModRM reg field when that field encodes a control or debug register, (see Table 1-9). These encodings enable the
processor to address CR8-CR15 and DR8- DR15. 

One additional control register (CR8) is defined in 64-bit mode. CR8 becomes the Task Priority Register (TPR). In the
first implementation of the IA-32e technology, CR9-CR15 and DR8-DR15 are not implemented. Any attempt to access
the unimplemented registers results in an invalid-opcode exception (#UD).

1.4.4. New Instructions
The following instructions are being introduced to operate in 64-bit mode with 64-bit extensions. They are discussed
in detail in Chapter 2.

• SWAPGS instruction

• SYSCALL and SYSRET instructions

• CDQE instruction

• CMPSQ instruction

• CMPXCHG16B instruction

• LODSQ instruction

• MOVSQ instruction

• MOVZX(64-bits) instruction

• STOSQ instruction

1.4.5. Stack Pointer 
In 64-bit mode, the stack pointer size is 64 bits. The stack size is not controlled by a bit in the SS descriptor (as it is in
compatibility or legacy mode) nor can it be overridden by an instruction prefix. 

Address-size overrides are ignored for implicit stack references. Except for far branches, all instructions that implicitly
reference the RSP default to 64-bit operand size in 64-bit mode. Instructions affected include: PUSH, POP, PUSHF,
POPF, ENTER, and LEAVE. Pushes and pops of 32-bit stack values are not possible in 64-bit mode with these instruc-
tions. 16-bit pushes and pops are supported by using the 66H operand-size prefix.
1-13
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The 64-bit default operation-size eliminates the need for a REX prefix to precede these instructions when registers
RAX – RSP are used as operands. REX is still required if the R8– R15 registers are used as operands. This is because
the prefix is required to address the new extended registers.

1.4.6. Branches 
64-bit extensions expand two branching mechanisms to accommodate branches in 64-bit linear-address space. These
are:

• Near-branch semantics are redefined in 64-bit mode,

• In both 64-bit mode and compatibility mode, 64-bit call-gate descriptors are defined for far calls.

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits.
These instructions update the full 64-bit RIP without the need for a REX operand-size prefix. The following aspects
of near branches are controlled by the effective operand size:

• Truncation of the size of the instruction pointer

• Size of a stack pop or push, due to a CALL or RET

• Size of a stack-pointer increment or decrement, due to a CALL or RET

• Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand size prefixes (operand size prefixes
are silently ignored). However, the displacement field for relative branches is still limited to 32 bits; the address size
of near branches is not forced in 64-bit mode. 

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the address calculation for memory
indirect branches. Such addresses are 64 bits by default; but they can be overridden to 32 bits by an address size prefix.

Software typically uses far branches to change privilege levels. Legacy IA-32 architecture provides the call-gate mech-
anism to allow software to branch from one privilege level to another, although call gates can also be used for branches
that do not change privilege levels. When call gates are used, the selector portion of the direct or indirect pointer refer-
ences a gate descriptor (the offset in this instruction is ignored). The offset to the destination’s code segment is taken
from the call-gate descriptor. IA-32e mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit call
gate descriptor and expands the size of the 64-bit descriptor to hold a 64-bit offset. The 64-bit mode call-gate descriptor
allows far branches that reference any location in the supported linear-address space. These call gates also hold the
target code selector (CS), allowing changes to privilege level and default size as a result of the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a full 64-bit absolute RIP in 64-bit
mode is with an indirect branch. For this reason, direct far branches are eliminated from the instruction set in 64-bit
mode.

IA-32e mode expands the semantics of the SYSENTER and SYSEXIT instructions so that they operate within a 64-
bit memory space. In Chapter 2, see “SYSENTER—Fast System Call” and “SYSEXIT—Fast Return from Fast
System Call” for details on the enhancements. IA-32e mode also introduces two new instructions: SYSCALL and
SYSRET which are valid only in 64-bit mode. In Chapter 2, see “SYSCALL—Fast System Call” and “SYSRET—
Return From Fast System Call”.

1.5. MEMORY ORGANIZATION

1.5.1. Address Calculations in 64-Bit Mode
In 64-bit mode (if there is no address-size override), the size of effective address calculations is 64 bits. An effective-
address calculation uses a 64-bit base and index registers and sign-extend displacements to 64 bits. 

Due to the flat address space in 64-bit mode, linear addresses are equal to effective addresses. In the event that FS or
GS segments are used with a non-zero base, this rule does not hold. In 64-bit mode, the effective address components
1-14
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



are added and the effective address is truncated before adding the full 64-bit segment base. The base is never truncated,
regardless of addressing mode in 64-bit mode.

In IA-32e mode, the instruction pointer is extended to 64 bits to support 64-bit code offsets. The 64-bit instruction
pointer is called the RIP. Table 1-13 shows the relationship between RIP, EIP, and IP.

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. They are still limited to 32 bits
and sign-extended during effective-address calculations. In 64-bit mode, however, support is provided for 64-bit
displacement and immediate forms of the MOV instruction. 

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. Address calcu-
lations are first truncated to the effective address size of the current mode (64-bit mode or compatibility mode), as over-
ridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width. Because of this, 16-
bit and 32-bit applications running in compatibility mode can access only the low 4GBytes of the 64-bit mode effective
addresses. Likewise, a 32-bit address generated in 64-bit mode can access only the low 4GBytes of the 64-bit mode
effective addresses.

1.5.2. Canonical Addressing
An address considered to be in canonical form has address bit 63 through to the most-significant implemented bit by
the micro architecture set to either all ones or all zeros.

IA-32e mode defines a 64-bits linear address; implementations can support less. The first implementation of IA-32
processors with 64-bit extension technology will support 48 bits of linear address. This means a canonical address must
have bits 63 thru 48 be all zeros or one’s depending whether bit 47 is zero or one.

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the most-
significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in canonical
form, the implementation should generate an exception. In most cases, a general-protection exception (#GP) is gener-
ated. However, in the case of explicit or implied stack references a stack fault (#SS) is generated. Instructions that have
implied stack references includes PUSH/POP-related instruction, and instructions using RSP/RBP as base registers by
default use the SS segment register. In these cases, a canonical fault is #SF. If an instruction uses RSP/RBP as base
registers and has a segment override which gives a non-SS segment, a canonical fault will get a general protection fault
(#GP). Implied stack references includes all PUSH/POP-type instructions and any instruction using RSP or RBP as a
base register. The check for canonical address form will be performed after privilege checks but before paging and
alignment checks.

1.6. OPERATING SYSTEM CONSIDERATIONS

1.6.1. CPUID
The CPUID instruction reports the presence of processor features and capabilities. Operating system must rely on
CPUID to report the availability of IA-32e, the IA32_EFER MSR, and instructions that are available in 64-bit mode.
See the reference page of CPUID in Section 2.2. for feature information that pertains to IA-32e mode.

Table 1-13.  Instruction Pointer 
QWord offset Bits 63:32 Bits 31:16 Bits 15:0

2 Not Modified IP

1 Zero Extension EIP

0 RIP
1-15
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.6.2. Register Settings and IA-32e Mode
The operation of 64-bit mode and compatibility mode are governed by various control-bit fields of the IA32_EFER
MSR and the CS descriptor. Table 1-14 shows the control-bit settings for IA-32e mode and legacy IA-32 mode. The
default address and data sizes are shown for each mode. For more information on SMM and register extensions, see
Table 1-1.

1.6.3. Processor Modes 

1.6.3.1. IA-32E MODE

IA-32e mode uses two code segment-descriptor bits (CS.L and CS.D, see Table 1-14) to control the sub operating
mode. If the processor is running in 64-bit mode, CS.L = 1 and CS.D = 0. With this encoding, the default operand size
is 32 bits and default address size is 64 bits. Using instruction prefixes, the operand size can be changed to 64 bits or
16 bits; address size can be changed to 32 bits. 

When IA-32e mode is active and CS.L = 0, the processor is in compatibility mode. In this mode, CS.D controls default
operand and address sizes exactly as it does in the legacy IA-32 architecture. Setting CS.D = 1 specifies default
operand and address size as 32 bits. Clearing CS.D to 0 specifies default operand and address size as 16 bits.

The CS.L = 1 and CS.D = 1 combination is reserved for future use.

1.6.3.2. ACTIVATING IA-32E MODE 

Operating system should follow this general sequence to activate IA-32e mode:

1. Starting from page-enabled protected mode, disable paging by setting CR0.PG = 0. Use the MOV CR0
instruction to disable paging (must be located in an identity-mapped page).

2. Enable physical-address extensions by setting CR4.PAE = 1. Failure to enable PAE will result in a #GP fault
when an attempt is made to enable IA-32e mode.

3. Load CR3 with the physical base address of the Level 4 page map table (PML4). 

4. Enable IA-32e mode by setting IA32_EFER.LME = 1.

5. Enable paging by setting CR0.PG = 1. This causes the processor to set the LMA bit to 1. The MOV CR0
instruction that enables paging and the following instructions must be located in an identity-mapped page, until
such time that a branch to non-identity mapped pages can be effected.

To return from IA-32e mode to legacy paged-protected mode, deactivate and disable IA-32e mode. Software should
use the following general sequence:

1. Must be in compatibility sub mode.

2. Deactivate IA-32e mode by clearing CR0.PG = 0. This causes the processor to set IA32_EFER.LMA = 0. The
MOV CR0 instruction used to disable paging and the following instructions must be located in an identity-
mapped page.

Table 1-14.  Processor Modes
Mode Encoding Default 

Address Size
Default 

Operand Size
IA32_EFER.LMA CS.L CS.D

Legacy Mode 0 Not 
applicable

1 32 32

0 16 16

IA-32e mode 64-Bit Mode 1 1 0 64 32

Compatibility Mode 0 1 32 32

0 16 16

X : Not applicable.
1-16
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



3. Load CR3 with the physical base address of the legacy page-table-directory base address.

4. Disable IA-32e mode by setting IA32_EFER.LME = 0.

5. Enable legacy paged-protected mode by setting CR0.PG = 1

6. The instruction following the MOV CR0 that enables paging must be a branch. both the MOV CR0 and the
following branch instruction must be located in an identity-mapped page.

Immediately after activating IA-32e mode, the system-descriptor-table registers (GDTR, LDTR, IDTR, TR) continue
to reference legacy descriptor tables. The tables referenced by the descriptors all reside in the lower 4GBytes of linear-
address space. After activating IA-32e mode, 64-bit operating-system software should use the LGDT, LLDT, LIDT,
and LTR instructions to load the system-descriptor-table registers with references to the 64-bit descriptor tables.

Software must not allow exceptions or interrupts to occur between the time IA-32e mode is activated and the subse-
quent update of the interrupt-descriptor-table register (IDTR) that establishes a reference to the 64-bit interrupt-
descriptor table (IDT). This is because the IDT remains in its legacy form immediately after IA-32e mode is activated.
If an interrupt or exception occurs prior to updating the IDTR, a legacy 32-bit interrupt gate will be referenced and
interpreted as a 64-bit interrupt gate with unpredictable results. External interrupts can be disabled using the CLI
instruction. Non-maskable interrupts (NMI) must be disabled using external hardware. 

64-bit mode paging tables must be located in the first 4GBytes of physical-address space prior to activating IA-32e
mode. This is necessary because the MOV CR3 instruction used to initialize the page-directory base must be executed
in legacy mode prior to activating IA-32e mode (setting CR0.PG = 1 to enable paging). Because the MOV CR3 is
executed in legacy mode, only the low 32 bits of the register are written, limiting the table location to the low 4GBytes
of memory. Software can relocate the page tables anywhere in physical memory after IA-32e mode is activated.

The processor performs 64-bit mode consistency checks whenever software attempts to modify any of the enable bits
directly involved in activating IA-32e mode (IA32_EFER.LME, CR0.PG, and CR4.PAE). The processor generates a
general protection fault (#GP) when a consistency check fails. 64-bit mode consistency checks ensure that the
processor does not enter an undefined mode or state with unpredictable behavior. 

64-bit mode consistency checks fail in the following circumstances:

• An attempt is made to enable or disable IA-32e mode while paging is enabled.

• IA-32e mode is enabled and an attempt is made to enable paging prior to enabling physical-address extensions
(PAE).

• IA-32e mode is active and an attempt is made to disable physical-address extensions (PAE).

• If the current CS has the L-bit set on an attempt to activate IA-32e mode.

• The TR must be contain a 16-bit TSS.

Table 1-15 summarizes the 64-bit mode consistency checks.

1.6.3.3. VIRTUAL-8086 MODE 

Virtual-8086 mode is not supported when the processor is operating in IA-32e mode. When IA-32e mode is enabled,
any attempt to set the EFLAGS.VM bit is silently ignored.

Table 1-15.  IA-32e Mode Consistency Checks
Register Bit Check

EFER LME 0 → 1 if (CR0.PG ==1) then #GP(0) 

LME 1 → 0 if (CR0.PG == 1) then #GP(0)

CR0 PG 0 → 1 if ((IA32_EFER.LME == 1) & (CR4.PAE-0)) then #GP(0)

CR4 PAE 1 → 0 if (IA32_EFER.LMA == 1) then #GP(0)
1-17
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.6.3.4. COMPATIBILITY MODE

Compatibility mode, within IA-32e mode, maintains binary compatibility with legacy IA-32 16-bit and 32-bit appli-
cations. (Legacy 16-bit or 32-bit applications that run in Virtual 8086 mode or use hardware task management are not
supported in compatibility mode). Compatibility mode is selected on a code-segment basis. It allows legacy applica-
tions to coexist under a 64-bit operating system along with 64-bit applications running in 64-bit mode. An operating
system running in IA-32e mode can execute existing 16-bit and 32-bit applications by clearing their code-segment
descriptor’s CS.L bit to 0.

When the CS.L = 0, the legacy IA-32 meanings of the CS.D bit and the address-size and operand-size prefixes are
observed. Segmentation is enabled. From the application’s viewpoint, the processor is in a legacy 16-bit or 32-bit
(depending on CS.D) operating environment, even though IA-32e mode is activated.

In compatibility mode, the following system-level mechanisms continue to operate using the IA-32e-mode architec-
tural semantics:

• Linear-to-physical address translation use the 64-bit mode extended page-translation mechanism.

• Interrupts and exceptions are handled using the 64-bit mode mechanisms.

• System calls (calls through call gates and SYSENTER/SYSEXIT) are handled using the IA-32e mode
mechanisms.

1.6.4. Segmentation
In IA-32e mode, the effects of segmentation depend on whether the processor is running in compatibility mode or 64-
bit mode. In compatibility mode, segmentation functions just as it does in legacy IA-32 mode, using legacy 16-bit or
32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address space.
Specifically, the processor treats the segment base of CS, DS, ES, SS as zero in 64-bit mode, creating a linear address
that is equal to the effective address. The exceptions are the FS and GS segments, whose segment registers (which hold
the segment base) can be used as an additional base register in linear address calculations. This facilitates addressing
local data and certain operating system data structures. 

It should be noted that even though segmentation is generally disabled, segment register loads may cause the processor
to perform segment access assists. Also, segment register loads will still perform all legacy checks on the values, even
if the values may not be applicable while in 64-bit mode. The checks are needed because a segment register may be
loaded in 64-bit mode for use by an application in compatibility mode.

1.6.4.1. CODE SEGMENTS 

In 64-bit mode, some code-segment (CS) descriptor content (e.g the base address and limit fields) are ignored; the
remaining fields functions normally (with the possible exception of the readable bit in the type field). Code segments
continue to exist in 64-bit mode. Code segments and their associated descriptors and selectors are needed to establish
the processor’s operating mode as well as execution privilege-level. The L (long), D (default operation size), and DPL
(descriptor privilege level) specifies the segment’s operating mode and its privilege level. 

For address calculations in 64-bit mode, the segment base is treated as if it is zero. IA-32e mode uses a previously
unused bit in the CS descriptor. Bit 53 is defined as the long (L) bit and is used to select between 64-bit and compati-
bility modes when IA-32e mode is activated (IA32_EFER.LMA = 1). 

Table 1-16 shows a legacy CS descriptor with the L bit added.
1-18
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The CS descriptor’s D bit selects the default operand and address sizes. When the CS.L bit is set to 1, the only valid
setting of CS.D is 0. This setting produces a default operand size of 32 bits and a default address size of 64 bits. Note
that the CS.L = 1 and CS.D = 1 bit combination is reserved for future use and a #GP fault will be generated on an
attempt to use a code segment with these bits set in IA-32e mode.

If CS.L = 0 while IA-32e mode is activated, the processor is running in compatibility mode. In this case, CS.D selects
the default size for both data and addresses as it does in legacy mode. If CS.D is 0, the default data and address sizes
are 16 bits. Setting CS.D to 1 selects a default data and address size of 32 bits. 

In IA-32e mode, the CS descriptor’s DPL is used for execution privilege checks just as in legacy mode.

1.6.4.2. SEGMENT LOAD INSTRUCTIONS

The following list of behaviors can be expected for Segment Load instructions and registers while in IA-32e mode.

• ES, DS, and SS segment registers are not used. Their fields (base, limit, and attribute) in the corresponding
segment descriptor registers are ignored. 

• Some forms of segment load instruction are also invalid (for example, LDS, POP ES). 

• In 64-bit mode, address calculations that reference the ES, DS or SS segments are treated as if the segment base
is zero. Note: SS DPL is modified such that it is always equal to CPL. This will be guaranteed to be true, even if
it is the only field in the SS descriptor that is modified.

• The processor checks that all linear-address references are in canonical form instead of performing limit checks.
Mode switching does not change the contents of the segment registers or the associated descriptor registers.
These registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed. 

• In order to set up a compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg)
work normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded
into the hidden portion of the segment descriptor register. The descriptor-register base, limit, and attribute fields
are all loaded. However, the contents of data and stack segment selector and descriptor registers are ignored. 

• The FS and GS segment registers are treated differently in 64-bit mode. When FS and GS segment overrides are
used, their respective base addresses are used in the linear address calculation: (FS or GS).base + index +
displacement. FS.base and GS.base are then expanded to the full linear-address size supported by the implemen-
tation. The resultant effective address calculation is allowed to wrap across positive and negative addresses, and
the resulting linear address must be canonical.

• In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for runtime limit
nor subject to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS only load
a standard 32-bit base value into the hidden portion of the segment descriptor register. The base address bits
above the standard 32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits. 

• The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs to load all address
bits supported by a 64-bit implementation. Software with CPL = 0 (Privileged software) can load all supported
linear-address bits into FS.base or GS.base using a single WRMSR instruction. 

• The FS.base MSR index is C0000100h while the GS.base index is C0000101h. Addresses written into the
expanded FS.base and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write
a non-canonical address to those registers will generate a general-protection exception, #GP. 

Table 1-16.  Code Segment Descriptor
Bit Position

DW 
Offset

31:24 23 22 21 20 19:16 15 14:13 12 11:8 7:0

1 Base Address 
31:24

G D L AVL Segment Limit
19:16

P DPL 1 Type Base Address 
23:16

0 Base Address 15:0 Segment Limit 15:0
1-19
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• When in compatibility mode, the FS and GS overrides operate as defined by the legacy IA-32 architecture
regardless of the value loaded into the upper 32 linear-address bits of the hidden descriptor register base field.
Compatibility mode ignores the upper 32 bits when calculating an effective address. 

• A new 64-bit mode instruction, SWAPGS can be used to load GS base. SWAPGS exchanges the kernel data
structure pointer from the KernelGSbase MSR with the GS base register. The kernel can then use the GS prefix
on normal memory references to access the kernel data structures. (An attempt to write a non-canonical value via
WRMSR to the KernelGSBase MSR will cause a #GP fault.)

1.6.4.3. SYSTEM DESCRIPTORS 

In certain modes, system descriptors are expanded by 64 bits to handle 64-bit base addresses. Where this size-expan-
sion occurs depends on the purpose served by the descriptor. Note the following:

• Descriptors and pseudo-descriptors that are loaded into the GDTR, IDTR, LDTR, and TR registers are used to
define system tables. These descriptors are expanded in 64-bit mode but not in compatibility mode. 

• In IA-32e mode, descriptors that populate system tables and are referenced by application programs are
expanded. These descriptors include call gates, interrupt gates, and trap gates (task gates are not supported in IA-
32e mode). 

• The GDTR, LDTR, IDTR, and TR system descriptor registers (used by the processor to locate the GDT, LDT,
and IDT system-descriptor tables and TSS of the current process) are changed in IA-32e mode to support
expanded memory addressing. 

• The base addresses of the LDT and TSS are specified by their associated descriptors. These descriptor registers
are expanded to hold 64-bit addresses (see Section 1.3.3.3.). GDT and IDT, on the other hand, do not use
descriptors. Instead, their bases are loaded by the LGDT and LIDT instructions. For 64-bit mode (but not
compatibility or legacy modes), the operands size for these instructions increases to specify a 64-bit base. 

• The processor checks descriptor-table limits in IA-32e mode. The limit-field size in all four descriptor-table
registers are unchanged from their legacy IA-32 sizes. The GDTR, and IDTR limits remain 16 bits and the
LDTR, TR limits are the normal 20/32 bits. The size of the segment-attribute fields in the LDTR and TR registers
are also unchanged in IA-32e mode. 

• The existing LDT type field (02H) and the existing 32-bit TSS type field (09H) are redefined in 64-bit mode for
use as the 64-bit LDT and TSS types. LDT and TSS system descriptors are expanded by 64 bits to be 16 bytes
(Table 1-17), allowing them to hold 64-bit base addresses. 

Bytes 11:8 hold the upper 32 bits of the base address in canonical form. A second type field, used for consistency
checking, is defined in bits 12:8 of the highest dword (Bytes 15:12). This entire field must be cleared to 0, indicating
an illegal type. This illegal type (00H) serves to generate a general-protection exception (#GP) if an attempt is made
to access the upper half of a 64-bit-mode descriptor as a legacy IA-32 descriptor. 

For the existing type field (bits 12:8 of the lowest dword), some of the existing type codes are redefined in 64-bit mode.
For example, a 32-bit LDT type (02H) and 32-bit TSS type (09H) are redefined in 64-bit mode for use as the 64-bit
LDT and 64-bit TSS types. In compatibility mode, a 02H type continues to refer to a 32-bit LDT, and a 09H type
continues to refer to be a 32- bit TSS. No other type-field codes are defined or redefined. The 64-bit base address spec-

Table 1-17.  LDT & TSS Descriptors in 64-bit Mode
Bit Position

31:24 23 22:20 19:16 15 14:13 12:8 7:0

Bytes 15:12 Reserved 00000 Reserved

Bytes 11:8 Base 63:32

Bytes 7:4 Base Address 
31:24

G Reserved Limit 19:16 P DPL Type Base 23:16

Bytes 3:0 Base Address 15:0 Limit 15:0
1-20
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ified in the descriptor must be in canonical form. If it is not, a general-protection exception, #GP (selector), is gener-
ated.

LGDT and LIDT instructions load a pseudo-descriptor into the GDTR or the IDTR register. The first two bytes loaded
in all modes (legacy, compatibility, and 64-bit) are a 16-bit limit. The next bytes loaded depend on the mode, as
follows:

• In any 16-bit or 32-bit mode (legacy or compatibility mode), the next 4 bytes loaded are the base, for a total of 6
bytes. 

• In 64-bit mode, the next 8 bytes loaded are the base, for a total of 10 bytes. 

Operand-size prefixes are ignored by the LGDT and LIDT instructions. In 64-bit mode, the 64-bit base address loaded
into the GDTR and IDTR registers must be in canonical form, otherwise a general-protection exception, #GP(0), is
generated. 

LLDT and LTR instructions load a system descriptor into the processor’s internal LDTR and TR segment descriptor
registers (hidden portion). In 64-bit mode, the expanded descriptor format and redefined descriptor types give rise to
the following restrictions on the descriptors that these instructions can load:

• A general-protection exception, #GP (selector), is generated if an attempt is made to load the second type field
(bits 12:8 of the highest dword) with a value other than 00H.

• The 64-bit base address loaded by an LLDT or LTR must be in canonical form, otherwise a general-protection
exception, #GP (selector), is generated.

• A general-protection exception, #GP (selector), is generated if an LTR instruction references either a busy or 16-
bit TSS. 

In 64-bit mode, the LTR instruction still changes a task’s state to busy (descriptor type set to 0Bh). Because IA-32e
mode does not support task switches, a task descriptor’s busy bit is never automatically cleared. If the operating system
has previously loaded the task descriptor using the LTR instruction, the operating system is responsible for clearing
the task’s busy bit (setting descriptor type to 09H). The actual order of the memory accesses generated by the LLDT
and LTR instructions is implementation specific.

1.6.5. Linear Addressing and Paging
When IA-32e mode is enabled, the linear address to physical address translation is different than in legacy protected
mode. With the introduction of a new page mapping table, page map level 4 (PML4), 64-bit addresses are translated
into physical addresses using the conversions described in the following paragraphs.

1.6.5.1. SOFTWARE ADDRESS TRANSLATIONS IN 64-BIT MODE

Using the flat address space in 64-bit mode, linear addresses are equal to effective addresses. As mentioned in the
memory section above: when FS or GS segments are used with a non-zero base, linear and effective addresses are not
the same. 

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. They are still limited to 32 bits
and sign-extended during effective-address calculations. In 64-bit mode, however, support is provided for some 64-bit
displacement and immediate forms of the MOV instruction.

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. Address calcu-
lations are first truncated to the effective address size of the current mode (64-bit mode or compatibility mode) as over-
ridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width. Because of this, 16-
bit and 32-bit applications running in compatibility mode can access only the low 4GBytes of the 64-bit mode effective
addresses. Likewise, a 32-bit address generated in 64-bit mode can access only the low 4GBytes of the 64-bit mode
effective-address space.

1.6.5.2. PAGING DATA STRUCTURES

The 64-bit extensions architecture expands physical address extension (PAE) paging structures to potentially support
mapping a 64-bit linear address into a 52-bit physical address. In the first implementation of the 64-bit extension tech-
1-21
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



nology, PAE paging structures are extended to support translation of a 48-bit linear address into a 40-bit physical
address. 

Prior to activating IA-32e mode, PAE must be enabled by setting CR4.PAE = 1. PAE expands the size of an individual
page-directory entry (PDE) and page-table entry (PTE) from 32 bits to 64 bits, allowing physical-address sizes of
greater than 32 bits. Attempting to activate IA-32e mode prior to enabling PAE results in a general-protection excep-
tion (#GP). 

64-bit extensions architecture adds a new table, called the page map level 4 table (PML4), to the linear-address trans-
lation hierarchy. The PML4 table sits above the page directory pointer (PDP) table in the page-translation hierarchy.
The PML4 contains 512 eight-byte entries, with each entry pointing to a PDP table. Nine linear-address bits are used
to index into the PML4. 

PML4 tables are used in page translation only when IA-32e mode is activated. They are not used when IA-32e mode
is disabled, regardless of whether or not PAE is enabled. The existing page-directory pointer table is expanded by the
64-bit extensions to 512 eight-byte entries from four entries. As a result, nine bits of the linear address are used to index
into a PDP table rather than two bits. The size of both page-directory entry (PDE) tables and page-table entry (PTE)
tables remains 512 eight-byte entries, each indexed by nine linear-address bits. The total of linear-address index bits
into the collection of paging data structures (PML4 + PDP + PDE + PTE + page offset) defined above is 48. The
method for translating the high-order 16 linear-address bits into a physical address is currently reserved. 

   

The PS flag in the page directory entry (PDE.PS) selects between 4KByte and 2MByte page sizes. Because PDE.PS
is used to control large page selection, the CR4.PSE bit is ignored. Table 1-18 through Table 1-21 shows the 64-bit
mode PML4, PDP, PDE, and PTE formats when 4KByte pages are enabled. 

  

Figure 1-6.  Paging Data Structures

Table 1-18.  IA-32e mode Page Map Level 4 Entry (PML4 - 4K Pages)
63 62:52 51:40 39:12 11:9 8:6 5 4 3 2 1 0

Reserved

Available

R
eserved

P
age 

D
irectory 

P
ointer B

ase 
A

ddress

Available

R
eserved

A P
C

D

P
W

T

U
/S

R
/W

P

Table 1-19.  IA-32e mode Page Directory Pointer Table Entry (PDPTE - 4K Pages)
63 62:52 51:40 39:12 11:9 8:6 5 4 3 2 1 0

Reserved

Available

R
eserved

P
age 

D
irectory 

B
ase 

A
ddress

Available

R
eserved

A P
C

D

P
W

T

U
/S

R
/W

P

PML4
PDP

PDE
PTE

Physical
1-22
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The physical base-address field in all four table entry formats is extended by the 64-bit extensions to bits 51:12. This
allows paging tables to be located anywhere in the physical memory supported by a 64-bit implementation. Implemen-
tations that do not support the maximum physical-address size reserve the unsupported high-order bits and require that
they be cleared to zeros. The physical base-address field in the first implementation of the IA-32e technology is spec-
ified by bits 39:12. 

NOTE: Software should take care not to locate paging tables above 4G in memory if it is anticipated that mode changes
to legacy mode will be needed. 

Bit 63 is reserved. Bits 62:52 in all page-table entry formats are available for use by system software. In the 64-bit
extensions architecture, future implementations leave bits 62:52 available for software use. Other than the extensions
made to the base-address field and the addition of the software-available field at bits 62:52, all other PDE and PTE
fields are the same as in legacy mode. 

Fields within the PDP table entry are similar to legacy mode PDP table entries, with the following exceptions. The
exceptions reflect changes necessary to indicate that a higher-level paging structure (PML4) now references the PDP
tables:

• Bit 0 is no longer reserved. IA-32e mode defines this bit as the present (P) flag to indicate whether or not the PDE
table referenced by the PDP entry is currently stored in physical memory. A page-fault exception (#PF) is
generated when the processor accesses a PDP entry with the P flag cleared to 0.

• Bit 1 is no longer reserved. IA-32e mode defines this bit as the read/write (R/W) flag.

• Bit 2 is no longer reserved. IA-32e mode defines this bit as the user/supervisor (U/S) flag.

• Bit 5 is no longer reserved. IA-32e mode defines this bit as the accessed (A) flag.

• The base-address field extensions, as specified above. 

• Bits 62:52 are available to software, as specified above. The format of a PML4 table entry is identical to the 64-
bit mode PDP table-entry format.

Table 1-22 through Table 1-24. shows the 64-bit mode PML4, PDP, and PDE formats when 2MByte pages are enabled.
As with legacy mode, 2MByte pages are enabled by setting the PDE page-size bit to 1 (PDE.PS = 1). Control of 2M
page sizes is not dependent on CR4.PSE.

Table 1-20.  IA-32e mode Page Directory Entry (PDE - 4K Pages)
63 62:52 51:40 39:12 11:9 8 7 6 5 4 3 2 1 0

Reserved

Available

R
eserved

P
age 

Table 
B

ase 
A

ddress

Available

R
eserved

0 R
esvd

A P
C

D

P
W

T

U
/S

R
/W

P
Table 1-21.  IA-32e mode Page Table Entry (PTE - 4K Pages

63 62:52 51:40 39:12 11:9 8 7 6 5 4 3 2 1 0

Reserved

Available

R
eserved

Page B
ase 

Address

Available

G PAT

D A PC
D

PW
T

U
/S

R
/W

P

1-23
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The physical base-address field in all three table-entry formats is extended by the 64-bit architecture to bits 51:12. This
allows paging tables to be located anywhere in the physical memory supported by a 64-bit mode implementation.
Implementations that do not support the maximum physical-address size reserve the unsupported high-order bits and
require that they be cleared to zeros. 

The physical base-address field in the first implementation of the 64-bit extension technology is specified by bits
39:12. Bits 63:52 in all page-table entry formats are available for use by system software. In the 64-bit extensions,
future implementations will leave bits 63:52 available for software use. When 2MByte pages are selected, the PDE
points directly to the physical page, and not to a PTE. Other than the extensions made to the base-address field and the
addition of the software-available field at bits 63:52, all other PDE fields are the same as in legacy mode.

Fields within the PDP table entry are similar to legacy-mode PDP table entries, with the following exceptions. The
exceptions reflect changes necessary to indicate that a higher-level paging structure (PML4) now references the PDP
tables:

• Bit 0 is no longer reserved. IA-32e mode defines this bit as the present (P) flag to indicate whether or not the PDE
table referenced by the PDP entry is currently stored in physical memory. A page-fault exception (#PF) is
generated when the processor accesses a PDP entry with the P flag cleared to 0.

• Bit 1 is no longer reserved. IA-32e mode defines this bit as the read/write (R/W) flag.

• Bit 2 is no longer reserved. IA-32e mode defines this bit as the user/supervisor (U/S) flag.

• Bit 5 is no longer reserved. IA-32e mode defines this bit as the accessed (A) flag.

• The base-address field extensions, as specified above.

• Bits 62:52 available to software, as specified above.

The format of a PML4 table entry is identical to the 64-bit mode PDP table-entry format.

Table 1-22.  IA-32e mode Page Map Level 4 Entry (PML4 - 2MB Pages)
63 62:52 51:40 39:12 11:9 8:6 5 4 3 2 1 0

 Reserved

Available

R
eserved

P
age D

irectory 
P

ointer B
ase 

A
ddress

Available

R
eserved

A P
C

D

P
W

T

U
/S

R
/W

P
Table 1-23.  IA-32e mode Page Directory Pointer Table Entry (PDPTR - 2MB Pages)

63 63:52 51:40 39:12 11:9 8:6 5 4 3 2 1 0

Reserved

Available

R
eserved

P
age 

D
irectory 

B
ase 

A
ddress

Available

R
esvd

A P
C

D

P
W

T

U
/S

R
/W

P

Table 1-24.  IA-32e mode Page Directory Entry (PDE - 2MB Pages)
63 62:52 51:40 39:21 20:13 12 11:9 8 7 6 5 4 3 2 1 0

Reserved

Available

R
eserved

Page B
ase 

Address

R
eserved

PAT

Available

G 1 D A PC
D

PW
T

U
/S

R
/W

P

1-24
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.6.5.3. OVERALL PAGE PROTECTION

The addition of incremental layers of paging necessitates changes by applying the same IA-32 methodology on the R/
W and U/S flags to four levels of the page tables. Table 1-25 shows IA-32e mode paging protection.
  

There are two basic rules for combining the privilege levels and access types from multiple levels of page entries
within a page walk. These are:

1. The most privilege mode of the page entries within the page walk will be used. (for example, a page has a
supervisor privilege level if the U/S bit is cleared in any of its page entries).

2. The most restrictive access type of the page entries with the page walk will be used (for example, a page has a
read-only access type if the R/W bit is cleared in any of the page entries).

1.6.5.4. RESERVED BIT CHECKING

The processor will enforce reserved bit checking on the following paging mode specific bits. Table 1-26 shows the
reserved bits that are checked. In legacy paging modes of Table 1-26, the letter A, B, and C refers to:

A: 4KB-page only paging (CR4.PAE = 0, CR4.PSE = 0)

B: 4KB and 4MB pages (CR4.PAE = 0, CR4.PSE = 1)

C: 4KB and 2MB pages (CR4.PAE = 1, CR4.PSE = x)

Table 1-25.  IA-32e Mode Page Level Protection Matrix 
Privilege (U/S bit, bit 2) Access Type (R/W bit, bit 1 Combined Effects

PML4 PDP PDE PTE PML4 PDP PDE PTE

User User User User RO * * * User RO

User User User User * RO * * User RO

User User User User * * RO * User RO

User User User User * * * RO User RO

User User User User R/W R/W R/W R/W User R/W

Super * * * * * * * Super R/W

* Super * * * * * * Super R/W

* * Super * * * * * Super R/W

* * * Super * * * * Super R/W
1-25
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Table 1-26.  Reserved Bit Checking

1.6.6. Enhanced Legacy-Mode Paging
Some changes made to paging data structures to support the larger physical address sizes used in IA-32e mode are
available in legacy mode operating systems. Legacy-mode operating system can take advantage of the enhancements
made to the physical address extension (PAE) support and page size extension (PSE) support, e.g. more physical
address bits. However, the four-level page translation mechanism introduced by IA-32e mode is not available to legacy
mode software.

As previously described, setting CR4.PAE = 1 expands the size of an individual PDE and PTE from 32 bits to 64 bits.
This allows physical-address sizes of greater than 32 bits. Previous legacy IA-32 implementations limit physical-
address size to 36-bits.

The architecture of IA-32 processors that support 64-bit extension technology potentially allows legacy-mode software
to load up to 52-bit physical addresses in the PDE and PTE. Unsupported physical-address bits are reserved and must
be cleared to zero. In the first implementation of the 64-bit extension technology, legacy-mode software can use up to
40 bits of the physical address in PDE and PTE entries. Software must clear bits 62:40 to 0. Bit 63 is reserved.

Legacy-mode page-size extensions (PSE) are enabled by setting the CR4 page-size enable bit to 1 (CR4.PSE = 1). PSE
modifies the original 4-byte PDE format to support 4MByte pages in addition to legacy 4KByte pages. 4MByte pages
are selected by setting the PDE page size bit to 1 (PDE.PS = 1); clearing the bit selects 4KByte pages (PDE.PS = 0). 

When PDE.PS = 1, the processor combines PDE bits 31:22 with linear address bits 21:0 to form a 32-bit physical
address into a 4MByte page. Legacy PTEs are not used in a 4MByte page translation. Because legacy PTEs are not
used, PDE bits 21:12 are reserved in the original PSE mode definition. Updates to PSE mode change the 4-byte PDE
format so that it also supports 36-bit physical addresses without requiring the 8-byte format used by PAE. This is
accomplished by using previously reserved PDE bits 16:13 to hold four additional high-order physical address bits.
Bits 21:17 are reserved. 

The architecture of IA-32 processors that support 64-bit extension technology further modifies the 4-byte PDE format
in PSE mode to increase physical address size support to 40 bits. This is accomplished by defining previously reserved
PDE bits 20:17 to hold four additional high-order physical address bits. Bit 21 is reserved and must be cleared to 0.
Table 1-27 shows the format of the PDE when PSE mode is enabled. The high-order physical address bits 39:32 are
located in PDE[20:13], while physical address bits 31:22 are located in PDE[31:22].

Mode Paging Mode Check Bits

Legacy  A  no reserved bits checked

B PDE, 4MB page  bit [21] 

B PDE, 4KB page  no reserved bits checked

B PTE  no reserved bits checked

C PDP table entry  bits [63:40] & [8:5] & [2:1] 

C PDE, 2MB page  bits [63:40] & [20:13] 

C PDE, 4KB page  bits [63:40] 

C PTE  bits [63:40] 

64-bit PML4E  bit [63], bits [51:40] 

PDPTE  bit [63], bits [51:40] 

PDE, 2MB page  bit [63], bits [51:40] & [20:13] 

PDE, 4KB page  bit [63], bits [51:40] 

PTE  bit [63], bits [51:40] 
1-26
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.6.7. CR2 and CR3 
The size of CR2 (page-fault address register) is increased to 64 bits by the 64-bit extensions to hold 64-bit linear
addresses. It also increases the size of CR3 (page-directory base register) to 64 bits. This allows first level of the paging
structures to be located anywhere in physical memory, subject to the implementation-dependent physical-address size
limits.

Table 1-28 shows the 64-bit mode format of CR3. The Base Address field specifies the most-significant bits of the
page-directory base address above bit 11. The Page-Directory Base field holds the most-significant physical-address
bits of the top-level paging structure. Bits 51:12 of CR3 define the maximum base address allowed by the 64-bit mode
architecture, but specific implementations can support smaller physical-address spaces. The lower 12 bits (11:0) of the
base address are always assumed to be zero. This forces the top-level paging structure to be aligned on a 4KByte
boundary.

CR3[12] through to the bit position that represents the maximum limit of physical addressability supported by the
processor (CR3[39] if the implementation supports 40 bits of physical addressing) specify the top-level paging-struc-
ture (PML4) base address. CR3[51] down to the bit position that represents the maximum limit of physical address-
ability supported by the processor are reserved and must be cleared to zero (for example, CR3[51:40] if the
implementation supports 40 bits of physical addressing).

CR3[63:52] are reserved. CR3[51:40] are reserved for future expansion of the page-directory base address. In the first
implementation of the 64-bit extension technology, the processor checks that these bits are written as zeros and gener-
ates a general-protection exception, #GP(0), if they are not.

The MOV to CR3 instruction is not affected by operand size in IA-32e mode. In 64-bit mode, all 64 bits of CR3 are
loaded from the source register. In compatibility mode, only the lower 32 bits of CR3 are loaded from the source
register and the upper 32 bits are cleared to 0.

1.6.8. Address Translation 
When paging is used in IA-32e mode, the processor divides the linear address into a collection of table and physical-
page offsets, much like in legacy mode. However, the 64-bit architecture extends how the processor divides the linear
address to support the 64-bit linear-address size and its deeper paging data-structure hierarchy.

4KByte pages are enabled by clearing the PDE page-size flag (PDE.PS = 0). As the first implementation of the IA-32e
technology supports a maximum 48 bits of linear address, this paging option supports 236 4KByte pages spanning a
linear-address space of 248 bytes (256 terabytes).

The 48-bit linear address is broken into five fields to index into the 4-level paging structure, as follows:

• Bits 47:39 index into the 512-entry page map level-4 table (PML4).

Table 1-27.  Legacy Mode Page Directory Entry for 4MB Pages
31:22 21 20:13 12 11:9 8 7 6 5 4 3 2 1 0

B
ase 

A
ddress 

31:22

0 P
age B

ase 
A

ddress 
39:32

PAT

Available

G 1 D A P
C

D

P
W

T

U
/S

R
/W

P

Table 1-28.  IA-32e Mode CR3
63:52 51:40 39:32 32:12 11:5 4 3 2:0

R
eserved

R
eserved

B
ase 

A
ddress 

P
age 

D
irectory 

B
ase

R
eserved

P
C

D

P
W

T

R
eserved
1-27
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• Bits 38:30 index into the 512-entry page-directory pointer table (PDP).

• Bits 29:21 index into the 512-entry page-directory table (PDE).

• Bits 20:12 index into the 512-entry page table (PTE).

• Bits 11:0 provide the byte offset into the physical page.

2MByte pages are enabled by setting the PDE page size flag to 1 (PDE.PS = 1). Because the first implementation of
the 64-bit extension technology supports a maximum 48 bits of linear address, this paging option supports 227 2MByte
pages spanning a linear-address space of 248 bytes (256 terabytes). The 48-bit linear address is broken up into four
fields to index into the 3-level paging structure, as follows:

• Bits 47:39 index into the 512-entry page map level-4 table.

• Bits 38:30 index into the 512-entry page-directory pointer table.

• Bits 29:21 index into the 512-entry page-directory table.

• Bits 20:0 provide the byte offset into the physical page
.

1.6.9. Privilege-Level Transitions and Far Transfers
The 64-bit extensions provide three mechanisms for changing privilege levels:

• Call gates and interrupt gates

• SYSCALL and SYSRET instructions

• SYSENTER and SYSEXIT instructions

Table 1-29.  4KB Page Translation

63:48 47:39 38:30 29:21 20:12 11:0

Sign Extend Page Map Level 4 
Table Offset 
(PML4E)

Page Directory 
Pointer Offset 
(PDPE)

Page Directory 
Table Offset 
(PDE)

Page Table Offset 
(PTE)

Page Offset

Table 1-30.  CR3 Page Directory Pointer Offset

63:40 39:12 11:0

Page Directory Pointer Offset

PML4E PDPE PDE PTE Physical 
Address

CR3
1-28
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1.6.9.1. CALL GATES 

The call-gate mechanism provides a public entry point into the operating system. It also provides a means for changing
privilege levels and stacks when calling the operating system.

Legacy IA-32 call-gate descriptors provide a 32-bit offset for the instruction pointer (EIP). 64-bit extensions double
the size of legacy call gates to provide a 64-bit offset for the instruction pointer (RIP). Table 1-33. shows the layout of
a call-gate descriptor in IA-32e mode. Table 1-34. describes the fields in a 64-bit mode call gate.

The first eight bytes (bytes 7:0) of a 64-bit mode call gate are similar but not identical to legacy 32-bit call gates. The
parameter copy count field has been removed. Bytes 11:8 hold the upper 32 bits of the target-segment offset in canon-
ical form. A general-protection exception (#GP) is generated if software attempts to use a call gate with a target offset
that is not in canonical form. 

The target code segment referenced by the call gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If it is not,
a general-protection exception, #GP (selector), is generated with the target CS selector reported as the error code. The
double-sized descriptors can reside in the same descriptor table as 16-bit and 32-bit legacy descriptors. A second type
field, used for consistency checking, is defined in bits 12:8 of the highest dword and must be cleared to zero. This
illegal type (00H) results in a general-protection exception (#GP) if an attempt is made to access the upper half of the
64-bit mode descriptor as a legacy descriptor.

Table 1-31.  2MB Page Translation

63:48 47:39 38:30 29:21 20: 0

Sign Extend Page Map Level 4 
Table Offset (PML4E)

Page Directory Pointer 
Offset (PDPE)

Page Directory Offset 
(PDE)

Page Offset

Table 1-32.  CR3

63:40 39:12 11:0

Page Directory Pointer Offset

Table 1-33.  Call Gates in IA-32e Mode
Bit Position

DW Offset 31:16 15 14:13 12:8 7:0

3 Reserved 00000 Reserved

2 Offset 63:32 

1 Offset 31:16 P DPL 0CH (type) 00000000

0 Target Segment Selector Offset 15:0

PML4E PDPE PDE Physical 
Address

CR3
1-29
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Only 64-bit mode call gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). The legacy 32-
bit call gate type (0CH) is redefined in IA-32e mode as the 64-bit call-gate type. No 32-bit call-gate type exists in IA-
32e mode and if a far call references a 16-bit call gate type (04H), a general-protection exception (#GP) is generated.

When a CALL references a 64-bit mode call gate, the actions taken are identical to those taken in legacy calls through
a 32-bit gate, with the following exceptions:

• Stack pushes are performed in eight-byte increments.

• A 64-bit RIP is pushed onto the stack.

• Parameter copying is not performed.

Software should use the matching far-return instruction size for correct operation (for example, a return from a 64-bit
call must be performed with a 64-bit operand-sized return in order to process the stack correctly).

1.6.9.2. PRIVILEGE-LEVEL CHANGES AND STACK SWITCHING

A call gate can be used to change to a more-privileged code segment. Although the protection-check rules for call gates
are unchanged in IA-32e mode from legacy mode, the associated stack-switch changes slightly in IA-32e mode.

In IA-32e mode, the target of any call gate must be a 64-bit code segment. 64-bit mode does not use segmentation.
Stack pointers consist solely of the 64-bit stack pointer (RSP) and the SS segment register is ignored.

When stacks are switched as part of a 64-bit mode privilege-level change through a call gate, a new SS descriptor is
not loaded. IA-32e mode only loads an inner-level RSP from the TSS. The new SS is forced to null and the SS
selector’s RPL field is forced to the new CPL. The new SS is set to null in order to handle nested far transfers (CALLF,
INTn, interrupts and exceptions). The old SS and RSP are saved on the new stack (Table 1-35). On the subsequent
RETF the old SS is popped from the stack and loaded into the SS register. 

Table 1-34.  IA-32e Mode Call Gate Fields
DWord Offset Gate Field Function

3 +12(31:13) Unused

+12(12:8) Must Be 0

+12(7:0) Unused

2 +8(31:0) Offset in canonical form

1 +4(31:16) Offset 31:16

+4(15:13) Present and Descriptor Privilege Level

+4(12:8) 64-bit Mode Call Gate Type (0Ch)

+4(7:0) Unused

0 +0(31:16) Target Segment Selector

+0(15:0) Offset 15:0

Table 1-35.  64-Bit-Mode Stack Layout After CALLF with CPL Change
Legacy Mode IA-32e mode

Old SS Selector +12 +24 Old SS Selector

Old ESP +8 +16 Old RSP

CS Selector +4 +8 Old CS Selector

EIP 0 ESP  RSP 0 RIP

<       4 Bytes      > <       8 Bytes      >
1-30
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



In summary, a stack switch in IA-32e mode works like the legacy stack switch except that a new SS selector is not
loaded from the TSS. Instead, the new SS is forced to null. All 64-bit mode stack operations resulting from a privilege-
level-changing far call or far return are eight-bytes wide and change the RSP by eight.

IA-32e mode does not support the automatic parameter-copy feature found in legacy mode. The call-gate count field
is ignored by IA-32e mode. Software can access the old stack, if necessary, by referencing the old stack-segment
selector and stack pointer saved on the new process stack.

In IA-32e mode, RETF is allowed to load a null SS under certain conditions. If the target mode is 64-bit mode and the
target CPL<>3, IRET allows SS to be loaded with a null selector.

As part of the stack switch mechanism, an interrupt or exception sets the new SS to null instead of fetching a new SS
selector from the TSS and loading the corresponding descriptor from the GDT or LDT. The new SS selector is set to
null in order to properly handle returns from subsequent nested far transfers. If the called procedure itself is interrupted,
the null SS is pushed on the stack frame. On the subsequent RETF, the null SS on the stack acts as a flag to tell the
processor not to load a new SS descriptor.

1.6.9.3. FAST SYSTEM CALLS 

The SYSCALL and SYSRET instructions are designed for operating systems that use a flat memory model where
segmentation is not used. These instructions (along with SYSENTER/SYSEXIT) are ideally suited for IA-32e mode
operation. SYSCALL and SYSRET are not supported in compatibility mode. See CPUID for more details about
detecting the availability of SYSCALL and SYSRET.

The semantics of SYSCALL and SYSRET specify a 64-bit code offset. In IA-32e mode, the clearing of bits in the
EFLAGS is programmable rather than fixed; SYSCALL and SYSRET save and restore the EFLAGS register.

The legacy System Target-Address Register (STAR) cannot be expanded to provide a 64-bit target RIP address because
the upper 32 bits of that MSR already contain the target CS and SS selectors. IA-32e mode provides two new STAR
registers — Long STAR (LSTAR) and Compatibility STAR (CSTAR) — that hold a 64-bit target RIP. LSTAR holds
the target RIP used by a SYSCALL when IA-32e mode is activated and the calling program is in 64-bit mode. CSTAR
holds the target RIP used by a SYSCALL when IA-32e mode is activated and the calling program is in compatibility
mode. In the initial implementation of IA-32e, CSTAR is not available because SYSCALL and SYSRET is not
supported in compatibility mode.

The SYSCALL and SYSRET CS and SS selectors used in IA-32e mode and legacy mode are stored in the STAR.
LSTAR and CSTAR are written by the WRMSR instruction. The addresses written to LSTAR and CSTAR are first
checked by the WRMSR instruction to ensure they are in canonical form. If they are not, a general protection exception
(#GP) is generated. Table 1-36. shows the layout and MSR numbers for the STAR, LSTAR, CSTAR and FMASK
registers.

See “SYSRET—Return From Fast System Call” on page 277. and See “SYSCALL—Fast System Call” on page 273.
for details on the operation of SYSCALL and SYSRET.

1.6.9.4. TASK STATE SEGMENTS 

The legacy IA-32 task-switching architecture is not supported in IA-32e mode. IA-32e mode requires that task
management and switching be performed by software. The processor issues a general-protection exception (#GP) if
any of the following is attempted in IA-32e mode:

• A control transfer to a TSS or a task gate via a JMP, CALL, INTn, or interrupt.

Table 1-36.  STAR, LSTAR, and CSTAR Model-Specific Registers (MSRs)
63:48 47:32 31:0

STAR C0000081H SYSRET CS and SS Reserved Reserved

LSTAR C0000082H Target RIP for 64-bit Mode Calling Programs

CSTAR C0000083H Target RIP for Compatibility Mode Calling Programs

FMASK C0000084H Reserved SYSCALL EFLAGS Mask
1-31
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• An IRET with EFLAGS.NT (nested task) set to 1.

Although the hardware task-switching mechanism is not supported in IA-32e mode, a 64-bit task state segment (TSS)
must still exist. Table 1-37 shows the format of a 64-bit TSS. This 64-bit field holds information important to IA-32e
mode and not directly related to the task-switch mechanism. These are:

• RSPn. The full 64-bit canonical forms of the stack pointers (RSP) for privilege levels 0–2

• ISTn. The full 64-bit canonical forms of the interrupt stack table (IST, see Section 1.6.10.4.) pointers

• I/O Map Base Address. The 16-bit offset to the I/O permission bit map from the 64-bit TSS base

The operating system must create at least one 64-bit TSS after activating IA-32e mode. It must execute the LTR
instruction (in 64-bit mode) to load the TR register with a pointer to the 64- bit TSS responsible for both 64-bit-mode
programs and compatibility-mode programs.

1.6.10. Interrupts
Interrupts and exceptions force control transfers from the currently executing program to an interrupt service routine
that handles the particular interrupt. The interrupt-handling and exception-handling mechanism saves the interrupted

Table 1-37.  TSS Format in IA-32e Mode 
Byte Offset 31:16 15:0

+64h I/O Map Base Reserved

+60h Reserved

+5Ch IST7 (upper 32-bits)

+58h IST7 (lower 32-bits)

+54h IST6 (upper 32-bits)

+50h IST6 (lower 32-bits)

+4Ch IST5 (upper 32-bits)

+48h IST5 (lower 32-bits)

+44h IST4 (upper 32-bits)

+40h IST4 (lower 32-bits)

+3Ch IST3 (upper 32-bits)

+38h IST3 (lower 32-bits)

+34h IST2 (upper 32-bits)

+30h IST1 (lower 32-bits)

+2Ch IST1 (upper 32-bits)

+28h IST1 (lower 32-bits)

+24h Reserved

+20h Reserved

+1Ch RSP2 (upper 32-bits)

+18h RSP2 (lower 32-bits)

+14h RSP1 (upper 32-bits)

+10h RSP1 (lower 32-bits)

+0Ch RSP0 (upper 32-bits)

+08h RSP0 (lower 32-bits)

+04h Reserved

0 Reserved
1-32
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



program’s execution state, transfers control to the interrupt service routine, and ultimately returns to the interrupted
program.

Throughout this section, the term “interrupt” covers both asynchronous events generated external to the processor and
synchronous events related to instruction execution (exceptions, faults and traps). 64-bit extensions expand the legacy
IA-32 interrupt-processing and exception-processing mechanism to support 64-bit operating systems and applications.
Changes include:

• All interrupt handlers pointed by the IDT are 64-bit code (This does not apply to the SMI handler).

• The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte, zero extended stores.

• The stack pointer, SS:RSP, is pushed unconditionally on interrupts. In legacy environments, this push is
conditional and based on a change in current privilege level (CPL).

• The new SS is set to null if there is a change in CPL.

• IRET behavior changes.

• New interrupt stack-switch mechanism.

• Alignment of interrupt stack frame.

1.6.10.1. GATE DESCRIPTOR FORMAT

The interrupt descriptor table (IDT) contains gate descriptors that are used to locate the service routine for each inter-
rupt vector. Legacy interrupt-gate descriptors provide a 32-bit offset for the instruction pointer (EIP). 64-bit entensions
double the size of legacy interrupt gates from eight bytes to 16 bytes in order to provide a 64-bit offset for the instruc-
tion pointer (RIP). The 64-bit RIP referenced by an interrupt-gate descriptor allows an interrupt service routine to be
located anywhere in the linear-address space.

Table 1-38 shows the layout of 64-bit mode interrupt-gate and trap-gate descriptors. Table 1-39 describes the fields in
a 64-bit interrupt and trap gate.

In legacy mode, the IDT index is formed by scaling the interrupt vector by eight. In IA-32e mode, the IDT index is
formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar
but not identical to legacy 32-bit interrupt gates. Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment
offset) in canonical form. A general-protection exception, #GP, is generated if software attempts to reference an inter-
rupt gate with a target RIP that is not in canonical form. 

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If the
target is not a 64-bit code segment, a general-protection exception, (#GP), is generated with the IDT vector number
reported as the error code.

Table 1-38.  Interrupt and Trap Gate in IA-32e Mode
31:16 15 14 13 12:8 7:3 2:0

Reserved

Offset 63:32

Offset 31:16 P DPL Type 000000 IST

Target Segment 
Selector

Offset 15:0
1-33
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). The
legacy 32-bit interrupt or trap gate types (0EH or 0FH) are redefined in IA-32e mode as the 64-bit interrupt and trap-
gate types. No 32-bit interrupt or trap gate types exists in IA-32e mode. If a reference is made to a 16-bit interrupt or
trap gate (06H or 07H), a general-protection exception, #GP(0), is generated.

1.6.10.2. STACK FRAME 

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes.
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight bytes.
This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally, rather than
pushing only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-stack-
frame size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the INTn
instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer is at any alignment when an interrupt or exception causes a stack frame to be pushed.
Thus, the stack frame and succeeding pushes done by the interrupt handler are at arbitrary alignments. In IA-32e mode,
the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack frame itself will be aligned on a
16-byte boundary when the interrupt handler is entered. The processor can arbitrarily realign the new RSP on interrupts
because the previous (possibly unaligned) RSP is unconditionally saved on the newly aligned stack. The previous RSP
will be automatically restored by the subsequent IRET. 

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts are re-
enabled. This allows the stack to be laid out for optimal storage of 16-byte XMM registers. This enables the interrupt
handler to use the faster 16-byte aligned loads and stores (MOVAPS) rather than unaligned accesses (MOVUPS) to
save and restore XMM registers. Efficiently saving and restoring the XMM registers becomes more important as SSE
is emphasized over x87 for floating point. Although the RSP alignment is done in all cases when LMA = 1, it is only
of consequence for the kernel-mode case where there is no stack switch or IST used. For a stack switch or IST, the OS
would have presumably put suitably aligned RSP values in the TSS.

1.6.10.3. IRET 

IRET semantics change in IA-32e mode. Execute IRET with an 8-byte operand size. There is nothing that forces this
requirement; but the stack is formatted such that for typical actions where IRET is required, an 8-byte IRET operand
size works correctly.

In 64-bit mode, SS:RSP pops unconditionally. In compatibility and legacy modes, SS:RSP is popped only if the CPL
changes. Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte
items off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop
is determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack size.

Table 1-39.  IA-32e Mode Interrupt and Trap Gate Fields
DWord Offset Gate Field Function

3 +12(31:0) Unused

2 +8(31:0)) Offset bits 63:32

1 +4(31:16) Offset bits 31:16

+4(15:13) Present and Descriptor Privilege Level

+4(12:8) 64-bit Interrupt or Trap Gate Type (0Eh)

+4(7:3) Unused

+4(2:0) IST Index

0 +0(31:16) Target Segment Selector

+0(15:0) Offset 15:0
1-34
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to run
properly in compatibility mode when using the IRET instruction.

64-bit interrupt service routines that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame,
even if the target code segment is running in 64-bit mode or at CPL = 0. This is done because the original interrupt
always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a null SS under certain conditions. If the target mode is 64-bit mode and the
target CPL <> 3, IRET allows SS to be loaded with a null selector. As part of the stack switch mechanism, an interrupt
or exception sets the new SS to null, instead of fetching a new SS selector from the TSS and loading the corresponding
descriptor from the GDT or LDT. The new SS selector is set to null in order to properly handle returns from subsequent
nested far transfers. If the called procedure itself is interrupted, the null SS is pushed on the stack frame. On the subse-
quent IRET, the null SS on the stack acts as a flag to tell the processor not to load a new SS descriptor.

1.6.10.4. STACK SWITCHING 

The legacy IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt.
The 64-bit extensions implement a slightly modified version of the legacy stack-switching mechanism and an alterna-
tive stack-switching mechanism called the interrupt stack table (IST).

In legacy mode, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change resulting from an
interrupt, a new SS descriptor is not loaded. IA-32e mode only loads an inner-level RSP from the TSS. The new SS
selector is forced to null and the SS selector’s RPL field is set to the new CPL. The new SS is set to null in order to
handle nested far transfers (CALLF, INT, interrupts and exceptions). The old SS and RSP are saved on the new stack
(Table 1-40). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not
loaded from the TSS. Instead, the new SS is forced to null. 

1.6.10.5. INTERRUPT STACK TABLE

In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy
stack-switching mechanism described above. This IST mechanism unconditionally switches stacks when it is enabled.
It can be enabled on an individual interrupt-vector basis via a field in the IDT entry. Thus, some interrupt vectors can
use the modified legacy mechanism and others can use the IST mechanism. The IST mechanism is only available in
IA-32e mode. It is part of the 64-bit mode TSS shown in Table 1-37. The primary motivation for the IST mechanism
is to provide a method for specific interrupts, such as NMI, double-fault, and machine-check, to always execute on a
known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-good stack by
accessing the interrupt service routine through a task gate located in the IDT. However, the legacy task-switch mech-
anism is not supported in IA-32e mode. The IST mechanism is part of the 64-bit mode task state segment (TSS) shown
in Table 1-37.  It provides up to seven IST pointers located in the TSS. The pointers are referenced by an interrupt-gate
descriptor in the interrupt-descriptor table (IDT), as shown in Table 1-38. The gate descriptor contains a 3-bit IST index
field that provides an offset into the IST section of the TSS.

Table 1-40.  IA-32e Mode Stack Layout After Interrupt With CPL Change
Legacy Mode 64-bit Mode

Content Byte Offset Byte Offset Content

Old SS +20 +40 Old SS

Old ESP +16 +32 Old RSP

EFLAGS +12 +24 RF Flags

CS +8 +16 CS

EIP +4 +8 RIP

Error Code 0 ESP  RSP 0 Error Code

<       4 Bytes      > <       8 Bytes      >
1-35
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



If the IST index for an interrupt gate is not zero, the IST pointer corresponding to the index is loaded into the RSP
when an interrupt occurs. The new SS selector is forced to null, and the SS selector’s RPL field is set to the new CPL.
The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as normal.
If the IST index is zero, the modified legacy stack-switching mechanism described above is used.

1.6.10.6. TASK PRIORITY

64-bit extensions build on the 15 external interrupt-priority classes defined by the APIC specification. Priority class 1
is the lowest and 15 is the highest. How external interrupts are mapped into these priority classes is platform-depen-
dent. Operating systems can use the TPR to temporarily block specific (generally low-priority) interrupts from inter-
rupting a high-priority task. This is done by loading TPR with a value corresponding to the highest-priority interrupt
that is to be blocked. For example, loading TPR with a value of 8 (01000b) blocks all interrupts with a priority of 8 or
less, while allowing all interrupts with a priority of 9 or more to be recognized. Loading TPR with 0 enables all external
interrupts. Loading TPR with 15 (01111b) disables all external interrupts. The TPR is cleared to 0 on reset.

Software can read and write the TPR using a MOV CR8 instruction. The new priority level is established when the
MOV CR8 instruction completes execution. Software does not need to force serialization after loading TPR. 

Use of the MOV CRn instruction requires a privilege level of 0. Programs running at any other privilege level cannot
read or write the TPR. An attempt to do so results in a general-protection exception, #GP(0).

The TPR is abstracted from the interrupt controller (IC), which prioritizes and manages external interrupt delivery to
the processor. The IC can be an external device, such as an APIC or 8259. Typically, the IC provides a priority mech-
anism similar, if not identical to, the TPR. The IC, however, is considered implementation-dependent, with the under-
lying priority mechanisms subject to change. The TPR, by contrast, is part of 64-bit architecture. Software can depend
on this definition remaining unchanged. Table 1-41 shows the TPR. Only the low four bits are used. The remaining 60
bits are reserved and must be written with zeros, failure to do so results in a general-protection exception, #GP(0). 

1.6.10.7. CR8 INTERACTIONS WITH APIC

The first implementation of 64-bit extension technology includes a local advanced programmable interrupt controller
(APIC) that is similar to the APIC used with many IA-32 processors. Some aspects of the local APIC affect the oper-
ation of the architecturally defined task priority register (CR8.TPR). 

Notable CR8 and APIC interactions are:

• The processor powers up with the local APIC enabled.

• The APIC must be enabled for CR8 to function as the TPR. The interaction between the CR8 and the APIC is the
following: Writes to CR8 are reflected into the APIC's Task Priority Register.

• APIC.TPR.7:4 = CR8.3:0, APIC.TPR.3:0 = 0. Reads of CR8 return APIC.TPR.7:4, zero extended to 64 bits

• There are no ordering mechanisms between direct updates of the APIC.TPR and CR8. It is expected that
Operating Software will implement either direct APIC TPR updates or CR8 style TPR updates but will not mix
them. Software can use a serializing instruction (e.g. CPUID) to serialize updates between MOV CR8 and stores
to the APIC.

1.7. GENERAL RULES FOR 64-BIT MODE
In 64-bit mode, the following general rules apply to changes in instructions and their operands:

• If an instruction's operand size in legacy mode (16-bit or 32-bit) depends on the effective operand size
(dependent on CS.D and prefix overrides); operand-size choices are extended in 64-bit mode from 16-bit and 32-
bit to include 64 bits, or the operand size is fixed at a size that supports 64-bit operands. Such instructions are said
to be ‘promoted to 64 bits’. However, byte-operand opcodes of such instructions are not promoted.

Table 1-41.  Task Priority Register - CR8
63:4 3:0

Reserved Task Priority Register (TPR)
1-36
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• As stated above, the byte-operand opcodes of promoted instructions are not usually promoted. Those opcodes
continue to operate only on bytes.

• If an instruction's operand size is fixed in legacy mode (independent of CS.D and prefix overrides), that operand
size is usually fixed at the same size in 64-bit mode. For example, CPUID operates on the same-size operands in
legacy mode and 64-bit mode. There are some exceptions.

• Operations on 32-bit operands in 64-bit mode zero-extend the high 32 bits of 64-bit GPR destination registers. 

• Operations on 8-bit and 16-bit operands in 64-bit mode leave the high 56 or 48 bits, respectively, of 64-bit GPR
destination registers unchanged.

• When the operand size is 64 bits, shifts and rotates use one additional bit (6 bits total) to specify shift-count or
rotate-count, allowing 64-bit shifts and rotates.

• The maximum size of immediate operands remains 32 bits, except that 64-bit immediates can be moved to 64-bit
GPRs. When the operand size is 64 bits, immediates are sign-extended to 64 bits prior to using them.

• Branch-address displacements remains 8 bits or 32 bits, but they are sign-extended to 64 bits prior to using them.

• The processor does not preserve the upper 32 bits of the 64-bit GPRs across switches from 64-bit mode to
compatibility or legacy modes. In compatibility or legacy mode, the upper 32 bits of the GPRs are undefined and
not accessible to software.
1-37
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



1-38
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CHAPTER 2
INSTRUCTION SET REFERENCE (A-L)

Chapter 2, Instruction Set Reference (A-L), provides an alphabetical discussion of IA-32 instructions (A-L). This
discussion is continued in Chapter 3, Instruction Set Reference (M-Z), 64-Bit Extension Technology Software Devel-
oper’s Guide, Vol. 2. For a complete description of the set, you need both volumes.

This chapter describes the new instructions in 64-bit extensions technology and the existing IA-32 instruction set in
IA-32e modes. This description includes general-purpose, x87 FPU, MMX, SSE, SSE2, SSE3, and system instruc-
tions. Instruction descriptions are arranged in alphabetical order. 

For each instruction, forms are given for each operand combination. This includes the opcode, operands required, and
a description. Also given for each instruction:

• a description of the instruction and its operands

• an operational description 

• a description of the effect of the instructions on flags in the EFLAGS register

• a summary of the exceptions that can be generated

2.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES
This section describes the presentation format of this chapter. It covers notational conventions and abbreviations. The
following is an example of the format used in the remainder of the chapter.

2.1.1. The Instruction Summary Table
The presentation of each instruction opens with an “Instruction Summary Table” like the following example.

CMC—Complement Carry Flag (example section with explanation...)

The information in each column is described below.

2.1.1.1. OPCODE COLUMN IN THE INSTRUCTION SUMMARY TABLE

The “Opcode” column gives the object code produced for each form of the instruction. When possible, the codes are
given as hexadecimal bytes, in the same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:

• REX.W — Indicates the use of a REX prefix that affects operand size or instruction semantics. The ordering of
the REX prefix and other optional/mandatory instruction prefix is discussed in Chapter 1, Figure 1-1. The use of
a REX prefix that results in promoting the legacy instruction behavior to 64-bits is not listed explicitly in the
opcode column.

• /digit — A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses only the r/m (register or
memory) operand. The reg field contains the digit that provides an extension to the instruction's opcode.

• /r — Indicates that the ModR/M byte of the instruction contains both a register operand and an r/m operand.

Opcode Instruction 64-bit Mode
Compat/Leg 
Mode Description

F5 CMC Valid Valid Complement carry flag
2-1
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp), 8-byte (co) or 10-byte (ct) value
following the opcode that is used to specify a code offset and possibly a new value for the code segment register.

• ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate operand to the instruction that
follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if the operand is a signed
value. All words and doublewords are given with the low-order byte first.

• +rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the hexadecimal byte given at the left of the
plus sign to form a single opcode byte. The register codes are given in Table 2-1.

• +i — A number used in floating-point instructions when one of the operands is ST(i) from the FPU register stack.
The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign to
form a single opcode byte.

2.1.1.2. INSTRUCTION COLUMN IN THE INSTRUCTION SUMMARY TABLE

The “Instruction” column gives the syntax of the instruction statement as it would appear in an ASM386 program. The
following is a list of the symbols used to represent operands in the instruction statements:

• rel8 — A relative address in the range from 128 bytes before the end of the instruction to 127 bytes after the end
of the instruction.

Table 2-1.  Register Codes
Register REX.R Reg 

Field
Register REX.R Reg 

Field
Register REX.R Reg 

Field
Register REX.R Reg 

Field

AL 0 0 AX 0 0 EAX 0 0 RAX 0 0

CL 0 1 CX 0 1 ECX 0 1 RCX 0 1

DL 0 2 DX 0 2 EDX 0 2 RDX 0 2

BL 0 3 BX 0 3 EBX 0 3 RBX 0 3

AH No REX 
prefix

4 SP No REX 
prefix

4 ESP No REX 
prefix

4 N/A N/A N/A

CH No REX 
prefix

5 BP No REX 
prefix

5 EBP No REX 
prefix

5 N/A N/A N/A

DH No REX 
prefix

6 SI No REX 
prefix

6 ESI No REX 
prefix

6 N/A N/A N/A

BH No REX 
prefix

7 DI No REX 
prefix

7 EDI No REX 
prefix

7 N/A N/A N/A

SPL Any REX 
Prefix

4 SP 0 4 ESP 0 4 RSP 0 4

BPL Any REX 
Prefix

5 BP 0 5 EBP 0 5 RBP 0 5

SIL Any REX 
Prefix

6 SI 0 6 ESI 0 6 RSI 0 6

DIL Any REX 
Prefix

7 DI 0 7 EDI 0 7 RDI 0 7

R8L 1 0 R8W 1 0 R8D 1 0 R8 1 0

R9L 1 1 R9W 1 1 R9D 1 1 R9 1 1

R10L 1 2 R10W 1 2 R10D 1 2 R10 1 2

R11L 1 3 R11W 1 3 R11D 1 3 R11 1 3

R12L 1 4 R12W 1 4 R12D 1 4 R12 1 4

R13L 1 5 R13W 1 5 R13D 1 5 R13 1 5

R14L 1 6 R14W 1 6 R14D 1 6 R14 1 6

R15L 1 7 R15W 1 7 R15D 1 7 R15 1 7
2-2
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• rel16 and rel32 — A relative address within the same code segment as the instruction assembled. The rel16
symbol applies to instructions with an operand-size attribute of 16 bits; the rel32 symbol applies to instructions
with an operand-size attribute of 32 bits.

• rel64 — A relative address within the same code segment as the instruction assembled. The rel64 symbol applies
to instructions with an operand-size attribute of 64 bits.

• ptr16:16, ptr16:32 and ptr16:64 — A far pointer, typically in a code segment different from that of the
instruction. The notation 16:16 indicates that the value of the pointer has two parts. The value to the left of the
colon is a 16-bit selector or value destined for the code segment register. The value to the right corresponds to the
offset within the destination segment. The ptr16:16 symbol is used when the instruction's operand-size attribute is
16 bits; the ptr16:32 symbol is used when the operand-size attribute is 32 bits the ptr16:64 symbol is used when
the operand-size attribute is 64 bits.

• r8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH, R8l - R15l, BPL, SPL, DIL
and SIL

• r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI, R8-R15.

• r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D -
R15D.

• r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8–R15
registers

• imm8 — An immediate byte value. The imm8 symbol is a signed number between –128 and +127 inclusive. For
instructions in which imm8 is combined with a word or doubleword operand, the immediate value is sign-
extended to form a word or doubleword. The upper byte of the word is filled with the topmost bit of the
immediate value.

• imm16 — An immediate word value used for instructions whose operand-size attribute is 16 bits. This is a
number between  –32,768 and  +32,767 inclusive.

• imm32 — An immediate doubleword value used for instructions whose operand-size attribute is 32
bits. It allows the use of a number between +2,147,483,647 and –2,147,483,648 inclusive.

• imm64 — An immediate quadword value used for instructions whose operand-size attribute is 64 bits.
It allows the use of a number between +9,223,372,036,854,775,807 and –9,223,372,036,854,775,808
inclusive.

• r/m8 — A byte operand that is either the contents of a byte general-purpose register (AL, CL, DL, BL, AH, CH,
DH, BH, R8l - R15l, BPL, SPL, DIL and SIL), or a byte from memory.

• r/m16 — A word general-purpose register or memory operand used for instructions whose operand-size attribute
is 16 bits. The word general-purpose registers are: AX, CX, DX, BX, SP, BP, SI, DI, R8-R15. The contents of
memory are found at the address provided by the effective address computation.

• r/m32 — A doubleword general-purpose register or memory operand used for instructions whose operand-size
attribute is 32 bits. The doubleword general-purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
R8D - R15D. The contents of memory are found at the address provided by the effective address computation.

• r/m64 — A quadword general-purpose register or memory operand used for instructions whose operand-size
attribute is 64 bits. The quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP,
R8–R15. The contents of memory are found at the address provided by the effective address computation.

• m — A 16-, 32- or 64-bit operand in memory.

• m8 — A byte operand in memory, usually expressed as a variable or array name, but pointed to by the DS:(E)SI
or ES:(E)DI registers. This nomenclature is used only with the string instructions and the XLAT instruction.

• m16 — A word operand in memory, usually expressed as a variable or array name, but pointed to by the
DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.

• m32 — A doubleword operand in memory, usually expressed as a variable or array name, but pointed to by the
DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the string instructions.

• m64 — A memory quadword operand in memory. 
2-3
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• m128 — A memory double quadword operand in memory. This nomenclature is used only with the SSE and
SSE2 instructions.

• m16:16, m16:32 & m16:64 —A memory operand containing a far pointer composed of two numbers. The
number to the left of the colon corresponds to the pointer's segment selector. The number to the right corresponds
to its offset.

• m16&32, m16&16, m32&32, m16&64 — A memory operand consisting of data item pairs whose sizes are
indicated on the left and the right side of the ampersand. All memory addressing modes are allowed. The
m16&16 and m32&32 operands are used by the BOUND instruction to provide an operand containing an upper
and lower bounds for array indices. The m16&32 operand is used by LIDT and LGDT to provide a word with
which to load the limit field, and a doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT to provide a word with which to load the limit
field, and a quadword with which to load the base field of the corresponding GDTR and IDTR registers.

• moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory offset) of type byte, word, or
doubleword used by some variants of the MOV instruction. The actual address is given by a simple offset relative
to the segment base. No ModR/M byte is used in the instruction. The number shown with moffs indicates its size,
which is determined by the address-size attribute of the instruction. 

• Sreg — A segment register. The segment register bit assignments are ES = 0, CS = 1, SS = 2, DS = 3, FS = 4, and
GS = 5.

• m32fp, m64fp, m80fp — A single-precision, double-precision, and double extended-precision (respectively)
floating-point operand in memory. These symbols designate floating-point values that are used as operands for
x87 FPU floating-point instructions.

• m16int, m32int, m64int — A word, doubleword, and quadword integer (respectively) operand in memory.
These symbols designate integers that are used as operands for x87 FPU integer instructions.

• ST or ST(0) — The top element of the FPU register stack.

• ST(i) — The ith element from the top of the FPU register stack (i ← 0 through 7).

• mm — An MMX register. The 64-bit MMX registers are: MM0 through MM7.

• mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory operand. The 64-bit MMX registers
are: MM0 through MM7. The contents of memory are found at the address provided by the effective address
computation.

• mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX registers are: MM0 through MM7.
The contents of memory are found at the address provided by the effective address computation.

• xmm — An XMM register. The 128-bit XMM registers are: XMM0 through XMM15.

• xmm/m32 — An XMM register or a 32-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM15. The contents of memory are found at the address provided by the effective address computation.

• xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD floating-point registers are
XMM0 through XMM15. The contents of memory are found at the address provided by the effective address
computation.

• xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM registers are XMM0 through
XMM15. The contents of memory are found at the address provided by the effective address computation.

2.1.1.3. 64-BIT MODE COLUMN IN THE INSTRUCTION SUMMARY TABLE

The “64-bit Mode” column indicates whether the opcode sequence is supported in 64-bit mode. The column uses the
following notation:

• “Valid” — supported

• “Inv.” — not supported

• “N.E.” — indicates an instruction syntax is not encodable; not applicable in 64-bit mode, but may represent part
of a sequence of valid instructions.
2-4
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• “N.P.” — indicates the REX prefix do not affect the legacy instruction in 64-bit mode.

• “N.I.” — indicates the opcode is treated as a new instruction in 64-bit mode.

• “N.S.” — indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not
supported. Using an address override prefix in 64-bit mode may results in model-specific execution behavior.

2.1.1.4. COMPATIBILITY/LEGACY MODE COLUMN IN THE INSTRUCTION SUMMARY TABLE

The “Compatibility/Legacy Mode” column provides information on the opcode sequence in either the compatibility
mode or other legacy IA-32 modes. The column uses the following notation:

• “Valid” — supported

• “Inv.” — not supported

• “N.E.” — indicates an instruction syntax that is not encodable; the opcode sequence is not applicable as an
individual instruction in compatibility mode nor legacy IA-32 modes but may represent a valid sequence of
legacy IA-32 instructions

2.1.1.5. DESCRIPTION COLUMN IN THE INSTRUCTION SUMMARY TABLE

The “Description” column briefly explains the forms of the instruction. 

2.1.2. Description Section 
Next, each instruction is described by number of information sections. The “Description” section describes the purpose
of the instructions and the required operands in more detail. It also discusses the effect of the instruction on flags.

2.1.3. Operation Section
The “Operation” section contains an algorithmic description (written in pseudo-code) of the instruction. The pseudo-
code uses notation similar to the Algol or Pascal language. The algorithms are composed of the following elements:

• Comments are enclosed within the symbol pairs “(*” and “*)”. 

• Compound statements are enclosed in keywords, such as IF, THEN, ELSE, and FI for an if statement, DO and
OD for a do statement, or CASE... OF and ESAC for a case statement.

• A register name implies the contents of the register. A register name enclosed in brackets implies the contents of
the location whose address is contained in that register. For example, ES:[DI] indicates the contents of the
location whose ES segment relative address is in register DI. [SI] indicates the contents of the address contained
in register SI relative to the SI register’s default segment (DS) or overridden segment.

• Parentheses around the “E” or “R” in a general-purpose register name, such as (E)SI, (R)SI, or the presence of a
64-bit register definition i.e. RSI indicates that an offset is read from the SI register if the current address-size
attribute is 16 or is read from the ESI register if the address-size attribute is 32 or from the 64-bit RSI register if
the address-size attribute is 64.

• Brackets are also used for memory operands, where they mean that the contents of the memory location is a
segment-relative offset. For example, [SRC] indicates that the contents of the source operand is a segment-
relative offset.

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, ≠, ≥, and ≤ are relational operators used to compare two values, meaning equal, not equal, greater
or equal, less or equal, respectively. A relational expression such as A ← B is TRUE if the value of A is equal to
B; otherwise it is FALSE.

• The expression “<< COUNT” and “>> COUNT” indicates that the destination operand should be shifted left or
right, respectively, by the number of bits indicated by the count operand.
2-5
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The following identifiers are used in the algorithmic descriptions:

• OperandSize and AddressSize — The OperandSize identifier represents the operand-size attribute of the
instruction, which is either 16, 32 or 64-bits. The AddressSize identifier represents the address-size attribute,
which is either 16, 32 or 64-bits. For example, the following pseudo-code indicates that the operand-size attribute
depends on the form of the MOV instruction used.
IF instruction ← MOVW

THEN OperandSize ← 16;
ELSE

IF instruction ← MOVD
THEN OperandSize ← 32;
ELSE
IF instruction ← MOVQ

THEN OperandSize ← 64;
FI;

FI;
FI;

See “Operand-Size and Address-Size Attributes” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1 for general guidelines on how these attributes are determined.

• StackAddrSize — Represents the stack address-size attribute associated with the instruction, which has a value
of 16, 32 or 64-bits (see “Address-Size Attribute for Stack” in Chapter 6 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 1).

• SRC — Represents the source operand.

• DEST — Represents the destination operand.

The following functions are used in the algorithmic descriptions:

• ZeroExtend(value) — Returns a value zero-extended to the operand-size attribute of the instruction. For
example, if the operand-size attribute is 32, zero extending a byte value of –10 converts the byte from F6H to a
doubleword value of 000000F6H. If the value passed to the ZeroExtend function and the operand-size attribute
are the same size, ZeroExtend returns the value unaltered.

• SignExtend(value) — Returns a value sign-extended to the operand-size attribute of the instruction. For
example, if the operand-size attribute is 32, sign extending a byte containing the value –10 converts the byte from
F6H to a doubleword value of FFFFFFF6H. If the value passed to the SignExtend function and the operand-size
attribute are the same size, SignExtend returns the value unaltered.

• SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a signed 8-bit value. If the signed 16-
bit value is less than –128, it is represented by the saturated value –128 (80H); if it is greater than 127, it is
represented by the saturated value 127 (7FH).

• SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a signed 16-bit value. If the signed
32-bit value is less than –32768, it is represented by the saturated value –32768 (8000H); if it is greater than
32767, it is represented by the saturated value 32767 (7FFFH).

• SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an unsigned 8-bit value. If the
signed 16-bit value is less than zero, it is represented by the saturated value zero (00H); if it is greater than 255, it
is represented by the saturated value 255 (FFH).

• SaturateToSignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less than –
128, it is represented by the saturated value –128 (80H); if it is greater than 127, it is represented by the saturated
value 127 (7FH).

• SaturateToSignedWord — Represents the result of an operation as a signed 16-bit value. If the result is less
than –32768, it is represented by the saturated value –32768 (8000H); if it is greater than 32767, it is represented
by the saturated value 32767 (7FFFH).

• SaturateToUnsignedByte — Represents the result of an operation as a signed 8-bit value. If the result is less
than zero it is represented by the saturated value zero (00H); if it is greater than 255, it is represented by the
saturated value 255 (FFH).
2-6
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



• SaturateToUnsignedWord — Represents the result of an operation as a signed 16-bit value. If the result is less
than zero it is represented by the saturated value zero (00H); if it is greater than 65535, it is represented by the
saturated value 65535 (FFFFH).

• LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the least significant
word of the doubleword result in the destination operand.

• HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand and stores the most
significant word of the doubleword result in the destination operand.

• Push(value) — Pushes a value onto the stack. The number of bytes pushed is determined by the operand-size
attribute of the instruction. See the “Operation” section in “PUSH—Push Word or Doubleword Onto the Stack”
in this chapter for more information on the push operation.

• Pop() removes the value from the top of the stack and returns it. The statement EAX ← Pop(); assigns to EAX
the 32-bit value from the top of the stack. Pop will return either a word, a doubleword or a quadword depending
on the operand-size attribute. See the “Operation” section in Chapter 3, “POP—Pop a Value from the Stack” for
more information on the pop operation.

• PopRegisterStack — Marks the FPU ST(0) register as empty and increments the FPU register stack pointer
(TOP) by 1.

• Switch-Tasks — Performs a task switch.

• Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string, which is a sequence of bits in memory or
a register. Bits are numbered from low-order to high-order within registers and within memory bytes. If the base
operand is a register, the offset can be in the range 0..64 depending on register size. This offset addresses a bit
within the indicated register. An example, the function Bit[EAX, 21] is illustrated in Figure 2-1.

If BitBase is a memory address, BitOffset can range from –2 GBits to 2 GBits. The addressed bit is numbered (Offset 
MOD 8) within the byte at address (BitBase + (BitOffset DIV 8)), where DIV is signed division with rounding towards
negative infinity, and MOD returns a positive number. This operation is illustrated in Figure 2-2.

Figure 2-1.  Bit Offset for BIT[EAX,21]

Figure 2-2.  Memory Bit Indexing

02131

BitOffset ←

BitBase + 1

0777 5 0 0

BitBase − 2

0777 50 0

BitBase BitBase − 1

BitOffset ←

BitOffset ←

BitBase − 1BitBase
2-7
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Since instruction behavior for legacy modes can be found in IA-32 Intel Architecture Software Developer’s Manual,
Volume 2A and 2B, Instruction References. They are not repeated in this document. 

2.1.3.1. IA-32E MODE OPERATION

The section “IA-32e Mode Operation” summarizes instruction behavior in 64-bit mode that differs from legacy IA-32
modes.

2.1.4. Flags Affected
The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the instruction. When a flag is
cleared, it is equal to 0; when it is set, it is equal to 1. The arithmetic and logical instructions usually assign values to
the status flags in a uniform manner (see Appendix A, EFLAGS Cross-Reference, in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 1). Non-conventional assignments are described in the “Operation” section. The
values of flags listed as undefined may be changed by the instruction in an indeterminate manner. Flags that are not
listed are unchanged by the instruction.

2.1.5. FPU Flags Affected
The floating-point instructions have an “FPU Flags Affected” section that describes how each instruction can affect
the four condition code flags of the FPU status word.

2.1.6. Protected Mode Exceptions
The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
protected mode and the reasons for the exceptions. Each exception is given a mnemonic that consists of a pound sign
(#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a general protection
exception with an error code of 0. Table 2-2 associates each two-letter mnemonic with the corresponding interrupt
vector number and exception name. See Chapter 5, Interrupt and Exception Handling, in the IA-32 Intel Architecture
Software Developer’s Manual, Volume 3, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their operating systems to determine the
actions taken when exceptions occur.

Table 2-2.  Interrupt Vectors 

Vector 
No. Name Source

Protected 
Mode

Real 
Address 

Mode

Virtual 
8086 
Mode 64-Bit Mode

 0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes Yes

 1 #DB—Debug Any code or data reference. Yes Yes Yes Yes

 3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes Yes

 4 #OF—Overflow INTO instruction. Yes Yes Yes Yes

 5 #BR—BOUND Range 
Exceeded

BOUND instruction. Yes Yes Yes Reserved

 6 #UD—Invalid Opcode 
(Undefined Opcode)

UD2 instruction or reserved 
opcode.

Yes Yes Yes Yes

 7 #NM—Device Not 
Available (No Math 
Coprocessor)

Floating-point or WAIT/FWAIT 
instruction.

Yes Yes Yes Yes

 8 #DF—Double Fault Any instruction that can 
generate an exception, an NMI, 
or an INTR.

Yes Yes Yes Yes

10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes Yes
2-8
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



2.1.7. Real-Address Mode Exceptions
The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
real-address mode.

2.1.8. Virtual-8086 Mode Exceptions
The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
virtual-8086 mode.

2.1.9. Floating-Point Exceptions
The “Floating-Point Exceptions” section lists exceptions that can occur when an x87 FPU floating-point instruction is
executed. All of these exception conditions result in a floating-point error exception (#MF, vector number 16) being
generated. Table 2-3 associates a one- or two-letter mnemonic with the corresponding exception name. See “Floating-
Point Exception Conditions” in Chapter 8 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for
a detailed description of these exceptions.

11 #NP—Segment Not 
Present

Loading segment registers or 
accessing system segments.

Yes Reserved Yes Yes

12 #SS—Stack Segment 
Fault

Stack operations and SS 
register loads.

Yes Yes Yes Yes

13 #GP—General Protection* Any memory reference and 
other protection checks.

Yes Yes Yes Yes

14 #PF—Page Fault Any memory reference. Yes Reserved Yes Yes

16 #MF—Floating-Point Error 
(Math Fault)

Floating-point or WAIT/FWAIT 
instruction.

Yes Yes Yes Yes

17 #AC—Alignment Check Any data reference in memory. Yes Reserved Yes Yes

18 #MC—Machine Check Model dependent machine 
check errors.

Yes Yes Yes Yes

19 #XF—SIMD Floating-Point 
Numeric Error

SSE and SSE2 floating-point 
instructions.

Yes Yes Yes Yes

* In the real-address mode, vector 13 is the segment overrun exception.

Table 2-3.  Exception Names
Mnemonic Name Source

#IS
#IA

Floating-point invalid operation:
- Stack overflow or underflow
- Invalid arithmetic operation

- x87 FPU stack overflow or underflow
- Invalid FPU arithmetic operation

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result (precision) Inexact result (precision)

Table 2-2.  Interrupt Vectors  (Contd.)

Vector 
No. Name Source

Protected 
Mode

Real 
Address 

Mode

Virtual 
8086 
Mode 64-Bit Mode
2-9
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



2.1.10. SIMD Floating-Point Exceptions
The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an SSE and SSE2 floating-point
instruction is executed. All of these exception conditions result in a SIMD floating-point error exception (#XF, vector
number 19) being generated. Table 2-4 associates a one-letter mnemonic with the corresponding exception name. For
a detailed description of these exceptions, refer to ”SSE and SSE2 Exceptions”, in Chatper 11of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 1.

2.2. INSTRUCTION REFERENCE
The remainder of this chapter provides detailed descriptions of each of the IA-32 instructions.

Table 2-4.  Floating Point Exception Names
Mnemonic Name Source

#I Floating-point invalid operation Invalid arithmetic operation or source operand

#Z Floating-point divide-by-zero Divide-by-zero

#D Floating-point denormal operand Source operand that is a denormal number

#O Floating-point numeric overflow Overflow in result

#U Floating-point numeric underflow Underflow in result

#P Floating-point inexact result Inexact result (precision)
2-10
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



AAA—ASCII Adjust After Addition

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; otherwise they are cleared to 0. The OF,
SF, ZF, and PF flags are undefined.

IA-32e Mode Operation

Instruction is invalid in 64-bit mode.

Protected Mode Exceptions

None

Real-Address Mode Exceptions

None

Virtual-8086 Mode Exceptions

None

Compatibility Mode Exceptions

None

64-Bit Mode Exceptions

#UD If in 64-bit mode.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

37 AAA Inv. Valid ASCII adjust AL after addition
2-11
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



AAD—ASCII Adjust AX Before Division

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register; the OF, AF, and CF flags
are undefined.

IA-32e Mode Operation

Instruction is invalid in 64-bit mode.

Protected Mode Exceptions

None

Real-Address Mode Exceptions

None

Virtual-8086 Mode Exceptions

None

Compatibility Mode Exceptions

None

64-Bit Mode Exceptions

#UD If in 64-bit mode.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D5 0A AAD Inv. Valid ASCII adjust AX before division
D5 ib (No mnemonic) Inv. Valid Adjust AX before division to number base imm8
2-12
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



AAM—ASCII Adjust AX After Multiply

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL register. The OF, AF, and CF flags
are undefined.

IA-32e Mode Operation

Instruction is invalid in 64-bit mode.

Protected Mode Exceptions

#DE If an immediate value of 0 is used.

Real-Address Mode Exceptions

#DE If an immediate value of 0 is used.

Virtual-8086 Mode Exceptions

#DE If an immediate value of 0 is used.

Compatibility Mode Exceptions

#DE If an immediate value of 0 is used.

64-Bit Mode Exceptions

#UD If in 64-bit mode.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D4 0A AAM Inv. Valid ASCII adjust AX after multiply
D4 ib (No mnemonic) Inv. Valid Adjust AX after multiply to number base imm8
2-13
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



AAS—ASCII Adjust AL After Subtraction

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0. The OF, SF, ZF, and PF
flags are undefined.

IA-32e Mode Operation

Instruction is invalid in 64-bit mode.

Protected Mode Exceptions

None

Real-Address Mode Exceptions

None

Virtual-8086 Mode Exceptions

None

Compatibility Mode Exceptions

None

64-Bit Mode Exceptions

#UD If in 64-bit mode.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

3F AAS Inv. Valid ASCII adjust AL after subtraction
2-14
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADC—Add with Carry

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

IA-32e Mode Operation

Promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

14 ib ADC AL,imm8 Valid Valid Add with carry imm8 to AL
15 iw ADC AX,imm16 Valid Valid Add with carry imm16 to AX
15 id ADC EAX,imm32 Valid Valid Add with carry imm32 to EAX
REX.W + 15 id ADC RAX,imm32 Valid N.E. Add with carry imm32 sign extended to 64-bits 

to RAX
80 /2 ib ADC r/m8,imm8 Valid Valid Add with carry imm8 to r/m8
REX + 80 /2 ib ADC r/m8*,imm8 Valid N.E. Add with carry imm8 to r/m8
81 /2 iw ADC r/m16,imm16 Valid Valid Add with carry imm16 to r/m16
81 /2 id ADC r/m32,imm32 Valid Valid Add with CF imm32 to r/m32
REX.W + 81 /2 id ADC r/m64,imm32 Valid N.E. Add with CF imm32 sign extended to 64-bits to 

r/m64
83 /2 ib ADC r/m16,imm8 Valid Valid Add with CF sign-extended imm8 to r/m16
83 /2 ib ADC r/m32,imm8 Valid Valid Add with CF sign-extended imm8 into r/m32
REX.W + 83 /2 ib ADC r/m64,imm8 Valid N.E. Add with CF sign-extended imm8 into r/m64
10 /r ADC r/m8,r8 Valid Valid Add with carry byte register to r/m8
REX + 10 /r ADC r/m8*,r8* Valid N.E. Add with carry byte register to r/m64
11 /r ADC r/m16,r16 Valid Valid Add with carry r16 to r/m16
11 /r ADC r/m32,r32 Valid Valid Add with CF r32 to r/m32
REX.W + 11 /r ADC r/m64,r64 Valid N.E. Add with CF r64 to r/m64
12 /r ADC r8,r/m8 Valid Valid Add with carry r/m8 to byte register
REX + 12 /r ADC r8*,r/m8* Valid N.E. Add with carry r/m64 to byte register
13 /r ADC r16,r/m16 Valid Valid Add with carry r/m16 to r16
13 /r ADC r32,r/m32 Valid Valid Add with CF r/m32 to r32
REX.W + 13 /r ADC r64,r/m64 Valid N.E. Add with CF r/m64 to r64
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also

refer to Section 1.4.2.2.
2-15
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-16
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADD—Add

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

04 ib ADD AL,imm8 Valid Valid Add imm8 to AL
05 iw ADD AX,imm16 Valid Valid Add imm16 to AX
05 id ADD EAX,imm32 Valid Valid Add imm32 to EAX
REX.W + 05 id ADD RAX,imm32 Valid N.E. Add imm32 sign-extended to 64-bits to RAX
80 /0 ib ADD r/m8,imm8 Valid Valid Add imm8 to r/m8
REX + 80 /0 ib ADD r/m8*,imm8 Valid N.E. Add sign-extended imm8 to r/m64
81 /0 iw ADD r/m16,imm16 Valid Valid Add imm16 to r/m16
81 /0 id ADD r/m32,imm32 Valid Valid Add imm32 to r/m32 
REX.W + 81 /0 id ADD r/m64,imm32 Valid N.E. Add imm32 sign-extended to 64-bits to r/m64 
83 /0 ib ADD r/m16,imm8 Valid Valid Add sign-extended imm8 to r/m16
83 /0 ib ADD r/m32,imm8 Valid Valid Add sign-extended imm8 to r/m32
REX.W + 83 /0 ib ADD r/m64,imm8 Valid N.E. Add sign-extended imm8 to r/m64
00 /r ADD r/m8,r8 Valid Valid Add r8 to r/m8
REX + 00 /r ADD r/m8*,r8* Valid N.E. Add r8 to r/m8
01 /r ADD r/m16,r16 Valid Valid Add r16 to r/m16
01 /r ADD r/m32,r32 Valid Valid Add r32 to r/m32
REX.W + 01 /r ADD r/m64,r64 Valid N.E. Add r64 to r/m64
02 /r ADD r8,r/m8 Valid Valid Add r/m8 to r8
REX + 02 /r ADD r8*,r/m8* Valid N.E. Add r/m8 to r8
03 /r ADD r16,r/m16 Valid Valid Add r/m16 to r16
03 /r ADD r32,r/m32 Valid Valid Add r/m32 to r32
REX.W + 03 /r ADD r64,r/m64 Valid N.E. Add r/m64 to r64
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also

refer to Section 1.4.2.2. 
2-17
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-18
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADDPD—Add Packed Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 58 /r ADDPD xmm1, xmm2/m128 Valid Valid Add packed double-precision floating-
point values from xmm2/m128 to xmm1.
2-19
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-20
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADDPS—Add Packed Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 58 /r ADDPS xmm1, xmm2/m128 Valid Valid Add packed single-precision floating-point values 
from xmm2/m128 to xmm1.
2-21
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
2-22
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADDSD—Add Scalar Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F 58 /r ADDSD xmm1, xmm2/m64 Valid Valid Add the low double-precision floating-point 
value from xmm2/m64 to xmm1.
2-23
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-24
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADDSS—Add Scalar Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F3 0F 58 /r ADDSS xmm1, xmm2/m32 Valid Valid Add the low single-precision floating-point value 
from xmm2/m32 to xmm1.
2-25
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-26
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADDSUBPD—Packed Double-Precision Floating-Point Add/Subtract

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F D0 /r ADDSUBPD xmm1, xmm2/
m128

Valid Valid Add/subtract double-precision floating-point 
values from xmm2/m128 to xmm1.
2-27
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.
2-28
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ADDSUBPS—Packed Single-Precision Floating-Point Add/Subtract

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F D0 /r ADDSUBPS xmm1, xmm2/
m128

Valid Valid Add/subtract single-precision floating-point 
values from xmm2/m128 to xmm1.
2-29
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.
2-30
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



AND—Logical AND

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The state of the AF flag is
undefined.

IA-32e Mode Operation

Promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Comp/Leg’y 
Mode Description

24 ib AND AL,imm8 Valid Valid AL AND imm8
25 iw AND AX,imm16 Valid Valid AX AND imm16
25 id AND EAX,imm32 Valid Valid EAX AND imm32
REX.W + 25 id AND RAX,imm32 Valid N.E. RAX AND imm32 sign-extended to 64-bits
80 /4 ib AND r/m8,imm8 Valid Valid r/m8 AND imm8
REX + 80 /4 ib AND r/m8*,imm8 Valid N.E. r/m64 AND imm8 (sign-extended)
81 /4 iw AND r/m16,imm16 Valid Valid r/m16 AND imm16
81 /4 id AND r/m32,imm32 Valid Valid r/m32 AND imm32
REX.W + 81 /4 id AND r/m64,imm32 Valid N.E. r/m64 AND imm32 sign extended to 64-bits
83 /4 ib AND r/m16,imm8 Valid Valid r/m16 AND imm8 (sign-extended)
83 /4 ib AND r/m32,imm8 Valid Valid r/m32 AND imm8 (sign-extended)
REX.W + 83 /4 ib AND r/m64,imm8 Valid N.E. r/m64 AND imm8 (sign-extended)
20 /r AND r/m8,r8 Valid Valid r/m8 AND r8
REX + 20 /r AND r/m8*,r8* Valid N.E. r/m64 AND r8 (sign-extended)
21 /r AND r/m16,r16 Valid Valid r/m16 AND r16
21 /r AND r/m32,r32 Valid Valid r/m32 AND r32
REX.W + 21 /r AND r/m64,r64 Valid N.E. r/m64 AND r32
22 /r AND r8,r/m8 Valid Valid r8 AND r/m8
REX + 22 /r AND r8*,r/m8* Valid N.E. r/m64 AND r8 (sign-extended)
23 /r AND r16,r/m16 Valid Valid r16 AND r/m16
23 /r AND r32,r/m32 Valid Valid r32 AND r/m32
REX.W + 23 /r AND r64,r/m64 Valid N.E. r64 AND r/m64
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also

refer to Section 1.4.2.2.
2-31
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the destination is located in a non-writable segment.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-32
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 54 /r ANDPD xmm1, xmm2/m128 Valid Valid Bitwise logical AND of xmm2/m128 and 
xmm1.
2-33
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-34
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 54 /r ANDPS xmm1, xmm2/m128 Valid Valid Bitwise logical AND of xmm2/m128 and 
xmm1.
2-35
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
2-36
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point 
Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 55 /r ANDNPD xmm1, xmm2/m128 Valid Valid Bitwise logical AND NOT of xmm2/m128 
and xmm1.
2-37
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-38
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point 
Values
 

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 55 /r ANDNPS xmm1, xmm2/m128 Valid Valid Bitwise logical AND NOT of xmm2/m128 and 
xmm1.
2-39
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
2-40
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ARPL—Adjust RPL Field of Segment Selector

IA-32e Mode Operation

Instruction is invalid in 64-bit mode. The opcode is treated as part of the instruction MOVSXD.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#UD The ARPL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The ARPL instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

None

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

63 /r ARPL r/m16,r16 N. I. Valid Adjust RPL of r/m16 to not less than RPL of 
r16
2-41
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BOUND—Check Array Index Against Bounds

Flags Affected

None.

IA-32e Mode Operation

Instruction is invalid in 64-bit mode.

Protected Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

62 /r BOUND r16, m16&16 Inv. Valid Check if r16 (array index) is within bounds 
specified by m16&16

62 /r BOUND r32, m32&32 Inv. Valid Check if r32 (array index) is within bounds 
specified by m16&16
2-42
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#UD If in 64-bit mode.
2-43
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BSF—Bit Scan Forward

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, flags
are undefined.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F BC BSF r16,r/m16 Valid Valid Bit scan forward on r/m16
0F BC BSF r32,r/m32 Valid Valid Bit scan forward on r/m32
REX.W + 0F BC BSF r64,r/m64 Valid N.E. Bit scan forward on r/m64
2-44
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BSR—Bit Scan Reverse

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared. The CF, OF, SF, AF, and PF, flags
are undefined.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F BD BSR r16,r/m16 Valid Valid Bit scan reverse on r/m16
0F BD BSR r32,r/m32 Valid Valid Bit scan reverse on r/m32
REX.W + 0F BD BSR r64,r/m64 Valid N.E. Bit scan reverse on r/m64
2-45
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BSWAP—Byte Swap

Flags Affected

None.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

None

Real-Address Mode Exceptions

None

Virtual-8086 Mode Exceptions

None

Compatibility Mode Exceptions

None

64-Bit Mode Exceptions

None

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F C8+rd BSWAP r32 Valid Valid Reverses the byte order of a 32-bit register.
REX.W + 0F C8+rd BSWAP r64 Valid N.E. Reverses the byte order of a 64-bit register.
2-46
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BT—Bit Test

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are undefined.

IA-32e Mode Operation

Instruction is promoted to 64-bits.
Default Operation Size is 32 bits.
Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F A3 BT r/m16,r16 Valid Valid Store selected bit in CF flag
0F A3 BT r/m32,r32 Valid Valid Store selected bit in CF flag
REX.W + 0F A3 BT r/m64,r64 Valid N.E. Store selected bit in CF flag
0F BA /4 ib BT r/m16,imm8 Valid Valid Store selected bit in CF flag
0F BA /4 ib BT r/m32,imm8 Valid Valid Store selected bit in CF flag
REX.W + 0F BA /4 ib BT r/m64,imm8 Valid N.E. Store selected bit in CF flag
2-47
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-48
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BTC—Bit Test and Complement

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF, AF, and PF flags are
undefined.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F BB BTC r/m16,r16 Valid Valid Store selected bit in CF flag and complement
0F BB BTC r/m32,r32 Valid Valid Store selected bit in CF flag and complement
REX.W + 0F BB BTC r/m64,r64 Valid N.E. Store selected bit in CF flag and complement
0F BA /7 ib BTC r/m16,imm8 Valid Valid Store selected bit in CF flag and complement
0F BA /7 ib BTC r/m32,imm8 Valid Valid Store selected bit in CF flag and complement
REX.W + 0F BA /7 ib BTC r/m64,imm8 Valid N.E. Store selected bit in CF flag and complement
2-49
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-50
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BTR—Bit Test and Reset

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and PF flags are undefined.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F B3 BTR r/m16,r16 Valid Valid Store selected bit in CF flag and clear
0F B3 BTR r/m32,r32 Valid Valid Store selected bit in CF flag and clear
REX.W + 0F B3 BTR r/m64,r64 Valid N.E. Store selected bit in CF flag and clear
0F BA /6 ib BTR r/m16,imm8 Valid Valid Store selected bit in CF flag and clear
0F BA /6 ib BTR r/m32,imm8 Valid Valid Store selected bit in CF flag and clear
REX.W + 0F BA /6 ib BTR r/m64,imm8 Valid N.E. Store selected bit in CF flag and clear
2-51
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-52
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



BTS—Bit Test and Set

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF flags are undefined.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F AB BTS r/m16,r16 Valid Valid Store selected bit in CF flag and set
0F AB BTS r/m32,r32 Valid Valid Store selected bit in CF flag and set
REX.W + 0F AB BTS r/m64,r64 Valid N.E. Store selected bit in CF flag and set
0F BA /5 ib BTS r/m16,imm8 Valid Valid Store selected bit in CF flag and set
0F BA /5 ib BTS r/m32,imm8 Valid Valid Store selected bit in CF flag and set
REX.W + 0F BA /5 ib BTS r/m64,imm8 Valid N.E. Store selected bit in CF flag and set
2-53
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-54
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CALL—Call Procedure

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

64-bit Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32-bits.

32 bit displacements are sign-extended to 64 bits.

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor table limits. 

If the segment descriptor pointed to by the segment selector in the destination operand is
not for a conforming-code segment, nonconforming-code segment, call gate, task gate, or
task state segment.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

E8 cw CALL rel16 N.S. Valid Call near, relative, displacement relative to next 
instruction. Not supported in 64-bit mode.

E8 cd CALL rel32 Valid Valid Call near, relative, displacement relative to next 
instruction. 32-bit displacement sign extended to 
64-bits in 64-bit mode.

FF /2 CALL r/m16 N.E. Valid Call near, absolute indirect, address given in r/
m16. 

FF /2 CALL r/m32 N.E. Valid Call near, absolute indirect, address given in r/
m32. 32-bit displacement sign extended to 64-
bits in 64-bit mode

FF /2 CALL r/m64 Valid N.E. Call near, absolute indirect, address given in r/
m64.

9A cd CALL ptr16:16 Inv. Valid Call far, absolute, address given in operand
9A cp CALL ptr16:32 Inv. Valid Call far, absolute, address given in operand
FF /3 CALL m16:16 Valid Valid Call far, absolute indirect, address given in 

m16:16
In 32-bit mode if selector points to a gate then 
RIP = 32-bit zero extended displacement taken 
from gate else RIP = zero extended 16-bit offset 
from far pointer referenced in the instruction. 

FF /3 CALL m16:32 Valid Valid In 64-bit mode of operation If selector points to a 
gate then RIP = 64-bit displacement taken from 
gate else RIP = zero extended 32-bit offset from 
far pointer referenced in the instruction. 

FF /3 CALL m16:64 Valid N.E. In 64-bit mode of operation If selector points to a 
gate then RIP = 64-bit displacement taken from 
gate else RIP = 64-bit offset from far pointer 
from far pointer referenced in the instruction. 
2-55
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for the
segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or
than the RPL of the call-gate, task-gate, or TSS’s segment selector.

If the segment descriptor for a segment selector from a call gate does not indicate it is a code
segment.

If the segment selector from a call gate is beyond the descriptor table limits.

If the DPL for a code-segment obtained from a call gate is greater than the CPL.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack exceeds
the bounds of the stack segment, when a stack switch occurs.

If the SS register is being loaded as part of a stack switch and the segment pointed to is
marked not present.

If stack segment does not have room for the return address, parameters, or stack segment
pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or TSS is not present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not equal to the DPL
of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.
2-56
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is null.

If the code segment selector in the 64-bit gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment selector.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits. 

If code segment or 64-bit call gate overlaps non-canonical space. 

If the segment descriptor pointed to by the segment selector in the destination operand is
not for a conforming-code segment, nonconforming-code segment, 64-bit call gate.

If the segment descriptor pointed to by the segment selector in the destination operand is a
code segment, and has both the D-bit and the L-bit set.

If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the
segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-
gate.

If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the descriptor table limits.

If the DPL for a code-segment obtained from a 64-bit call gate is greater than the CPL.

If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the
L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call gate does not indicate
it is a code segment. 

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the stack
segment, when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.

If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or error
code onto the stack violates the canonical boundary, when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.

#TS(selector) If the load of the new RSP exceeds the limit of the TSS.

#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-57
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert 
Doubleword to Quadword

Flags Affected

None.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is size of destination register.

Exceptions (All Operating Modes)

None.

Opcode Instruction 64-Bit Mode Compat/Leg Mode Description
98 CBW Valid Valid AX ← sign-extend of AL
98 CWDE Valid Valid EAX ← sign-extend of AX
REX.W + 98 CDQE Valid N.E. RAX ← sign-extend of EAX
2-58
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CDQ—Convert Double to Quad
See entry for CWD/CDQ — Convert Word to Doubleword/Convert Doubleword to Quadword.
2-59
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CLC—Clear Carry Flag

Flags Affected

The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

IA-32e Mode Operation

Same as legacy mode.

Exceptions (All Operating Modes)

None.

Opcode Instruction 64-Bit Mode Compat/Leg Mode Description
F8 CLC Valid Valid Clear CF flag
2-60
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CLD—Clear Direction Flag

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

IA-32e Mode Operation

Same as legacy mode.

Exceptions (All Operating Modes)

None.

Opcode Instruction 64-Bit Mode Compat/Leg Mode Description
FC CLD Valid Valid Clear DF flag
2-61
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CLFLUSH—Flush Cache Line

IA-32e Mode Operation

Same as Legacy.

Intel® C/C++ Compiler Intrinsic Equivalents

CLFLUSH void_mm_clflush(void const *p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#UD If CPUID feature flag CLFSH is 0.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#UD If CPUID feature flag CLFSH is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CPUID feature flag CLFSH is 0.

Opcode Instruction 64-Bit Mode Compat/Leg Mode Description
0F  AE /7 CLFLUSH m8 Valid Valid Flushes cache line containing m8.
2-62
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CLI—Clear Interrupt Flag

Flags Affected

The IF is cleared to 0 if the CPL is equal to or less than the IOPL; otherwise, it is not affected. The other flags in the
EFLAGS register are unaffected.

IA-32e Mode Operation

Same as legacy mode.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. 

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current program or procedure. 

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

FA CLI Valid Valid Clear interrupt flag; interrupts disabled when 
interrupt flag cleared
2-63
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CLTS—Clear Task-Switched Flag in CR0

Flags Affected

The TS flag in CR0 register is cleared.

IA-32e Mode Operation

Same as legacy mode.

Protected Mode Exceptions

#GP(0) If the CPL is greater than 0.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater than 0.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater than 0.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 06 CLTS Valid Valid Clears TS flag in CR0
2-64
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMC—Complement Carry Flag

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flags are unaffected.

IA-32e Mode Operation

Same as legacy mode.

Exceptions (All Operating Modes)

None.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F5 CMC Valid Valid Complement CF flag
2-65
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMOVcc—Conditional Move

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 47 /r CMOVA r16, r/m16 Valid Valid Move if above (CF=0 and ZF=0)
0F 47 /r CMOVA r32, r/m32 Valid Valid Move if above (CF=0 and ZF=0)
REX.W + 0F 47 /r CMOVA r64, r/m64 Valid N.E. Move if above (CF=0 and ZF=0)
0F 43 /r CMOVAE r16, r/m16 Valid Valid Move if above or equal (CF=0)
0F 43 /r CMOVAE r32, r/m32 Valid Valid Move if above or equal (CF=0)
REX.W + 0F 43 /r CMOVAE r64, r/m64 Valid N.E. Move if above or equal (CF=0)
0F 42 /r CMOVB r16, r/m16 Valid Valid Move if below (CF=1)
0F 42 /r CMOVB r32, r/m32 Valid Valid Move if below (CF=1)
REX.W + 0F 42 /r CMOVB r64, r/m64 Valid N.E. Move if below (CF=1)
0F 46 /r CMOVBE r16, r/m16 Valid Valid Move if below or equal (CF=1 or ZF=1)
0F 46 /r CMOVBE r32, r/m32 Valid Valid Move if below or equal (CF=1 or ZF=1)
REX.W + 0F 46 /r CMOVBE r64, r/m64 Valid N.E. Move if below or equal (CF=1 or ZF=1)
0F 42 /r CMOVC r16, r/m16 Valid Valid Move if carry (CF=1)
0F 42 /r CMOVC r32, r/m32 Valid Valid Move if carry (CF=1)
REX.W + 0F 42 /r CMOVC r64, r/m64 Valid N.E. Move if carry (CF=1)
0F 44 /r CMOVE r16, r/m16 Valid Valid Move if equal (ZF=1)
0F 44 /r CMOVE r32, r/m32 Valid Valid Move if equal (ZF=1)
REX.W + 0F 44 /r CMOVE r64, r/m64 Valid N.E. Move if equal (ZF=1)
0F 4F /r CMOVG r16, r/m16 Valid Valid Move if greater (ZF=0 and SF=OF)
0F 4F /r CMOVG r32, r/m32 Valid Valid Move if greater (ZF=0 and SF=OF)
REX.W + 0F 4F /r CMOVG r64, r/m64 Valid N.E. Move if greater (ZF=0 and SF=OF)
0F 4D /r CMOVGE r16, r/m16 Valid Valid Move if greater or equal (SF=OF)
0F 4D /r CMOVGE r32, r/m32 Valid Valid Move if greater or equal (SF=OF)
REX.W + 0F 4D /r CMOVGE r64, r/m64 Valid N.E. Move if greater or equal (SF=OF)
0F 4C /r CMOVL r16, r/m16 Valid Valid Move if less (SF<>OF)
0F 4C /r CMOVL r32, r/m32 Valid Valid Move if less (SF<>OF)
REX.W + 0F 4C /r CMOVL r64, r/m64 Valid N.E. Move if less (SF<>OF)
0F 4E /r CMOVLE r16, r/m16 Valid Valid Move if less or equal (ZF=1 or SF<>OF)
0F 4E /r CMOVLE r32, r/m32 Valid Valid Move if less or equal (ZF=1 or SF<>OF)
REX.W + 0F 4E /r CMOVLE r64, r/m64 Valid N.E. Move if less or equal (ZF=1 or SF<>OF)
0F 46 /r CMOVNA r16, r/m16 Valid Valid Move if not above (CF=1 or ZF=1)
0F 46 /r CMOVNA r32, r/m32 Valid Valid Move if not above (CF=1 or ZF=1)
REX.W + 0F 46 /r CMOVNA r64, r/m64 Valid N.E. Move if not above (CF=1 or ZF=1)
0F 42 /r CMOVNAE r16, r/m16 Valid Valid Move if not above or equal (CF=1)
0F 42 /r CMOVNAE r32, r/m32 Valid Valid Move if not above or equal (CF=1)
REX.W + 0F 42 /r CMOVNAE r64, r/m64 Valid N.E. Move if not above or equal (CF=1)
0F 43 /r CMOVNB r16, r/m16 Valid Valid Move if not below (CF=0)
0F 43 /r CMOVNB r32, r/m32 Valid Valid Move if not below (CF=0)
REX.W + 0F 43 /r CMOVNB r64, r/m64 Valid N.E. Move if not below (CF=0)
0F 47 /r CMOVNBE r16, r/m16 Valid Valid Move if not below or equal (CF=0 and ZF=0)
0F 47 /r CMOVNBE r32, r/m32 Valid Valid Move if not below or equal (CF=0 and ZF=0)
REX.W + 0F 47 /r CMOVNBE r64, r/m64 Valid N.E. Move if not below or equal (CF=0 and ZF=0)
0F 43 /r CMOVNC r16, r/m16 Valid Valid Move if not carry (CF=0)
0F 43 /r CMOVNC r32, r/m32 Valid Valid Move if not carry (CF=0)
REX.W + 0F 43 /r CMOVNC r64, r/m64 Valid N.E. Move if not carry (CF=0)
0F 45 /r CMOVNE r16, r/m16 Valid Valid Move if not equal (ZF=0)
0F 45 /r CMOVNE r32, r/m32 Valid Valid Move if not equal (ZF=0)
REX.W + 0F 45 /r CMOVNE r64, r/m64 Valid N.E. Move if not equal (ZF=0)
0F 4E /r CMOVNG r16, r/m16 Valid Valid Move if not greater (ZF=1 or SF<>OF)
2-66
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



IA-32e Mode Operation:

              temp <-- DEST

              IF condition TRUE

                THEN

                  DEST <-- SRC

                ELSIF (osize = 32)

                  DEST <-- temp AND 0x00000000FFFFFFFF

                  FI;

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 4E /r CMOVNG r32, r/m32 Valid Valid Move if not greater (ZF=1 or SF<>OF)
REX.W + 0F 4E /r CMOVNG r64, r/m64 Valid N.E. Move if not greater (ZF=1 or SF<>OF)
0F 4C /r CMOVNGE r16, r/m16 Valid Valid Move if not greater or equal (SF<>OF)
0F 4C /r CMOVNGE r32, r/m32 Valid Valid Move if not greater or equal (SF<>OF)
REX.W + 0F 4C /r CMOVNGE r64, r/m64 Valid N.E. Move if not greater or equal (SF<>OF)
0F 4D /r CMOVNL r16, r/m16 Valid Valid Move if not less (SF=OF)
0F 4D /r CMOVNL r32, r/m32 Valid Valid Move if not less (SF=OF)
REX.W + 0F 4D /r CMOVNL r64, r/m64 Valid N.E. Move if not less (SF=OF)
0F 4F /r CMOVNLE r16, r/m16 Valid Valid Move if not less or equal (ZF=0 and SF=OF)
0F 4F /r CMOVNLE r32, r/m32 Valid Valid Move if not less or equal (ZF=0 and SF=OF)
REX.W + 0F 4F /r CMOVNLE r64, r/m64 Valid N.E. Move if not less or equal (ZF=0 and SF=OF)
0F 41 /r CMOVNO r16, r/m16 Valid Valid Move if not overflow (OF=0)
0F 41 /r CMOVNO r32, r/m32 Valid Valid Move if not overflow (OF=0)
REX.W + 0F 41 /r CMOVNO r64, r/m64 Valid N.E. Move if not overflow (OF=0)
0F 4B /r CMOVNP r16, r/m16 Valid Valid Move if not parity (PF=0)
0F 4B /r CMOVNP r32, r/m32 Valid Valid Move if not parity (PF=0)
REX.W + 0F 4B /r CMOVNP r64, r/m64 Valid N.E. Move if not parity (PF=0)
0F 49 /r CMOVNS r16, r/m16 Valid Valid Move if not sign (SF=0)
0F 49 /r CMOVNS r32, r/m32 Valid Valid Move if not sign (SF=0)
REX.W + 0F 49 /r CMOVNS r64, r/m64 Valid N.E. Move if not sign (SF=0)
0F 45 /r CMOVNZ r16, r/m16 Valid Valid Move if not zero (ZF=0)
0F 45 /r CMOVNZ r32, r/m32 Valid Valid Move if not zero (ZF=0)
REX.W + 0F 45 /r CMOVNZ r64, r/m64 Valid N.E. Move if not zero (ZF=0)
0F 40 /r CMOVO r16, r/m16 Valid Valid Move if overflow (OF=0)
0F 40 /r CMOVO r32, r/m32 Valid Valid Move if overflow (OF=0)
REX.W + 0F 40 /r CMOVO r64, r/m64 Valid N.E. Move if overflow (OF=0)
0F 4A /r CMOVP r16, r/m16 Valid Valid Move if parity (PF=1)
0F 4A /r CMOVP r32, r/m32 Valid Valid Move if parity (PF=1)
REX.W + 0F 4A /r CMOVP r64, r/m64 Valid N.E. Move if parity (PF=1)
0F 4A /r CMOVPE r16, r/m16 Valid Valid Move if parity even (PF=1)
0F 4A /r CMOVPE r32, r/m32 Valid Valid Move if parity even (PF=1)
REX.W + 0F 4A /r CMOVPE r64, r/m64 Valid N.E. Move if parity even (PF=1)
0F 4B /r CMOVPO r16, r/m16 Valid Valid Move if parity odd (PF=0)
0F 4B /r CMOVPO r32, r/m32 Valid Valid Move if parity odd (PF=0)
REX.W + 0F 4B /r CMOVPO r64, r/m64 Valid N.E. Move if parity odd (PF=0)
0F 48 /r CMOVS r16, r/m16 Valid Valid Move if sign (SF=1)
0F 48 /r CMOVS r32, r/m32 Valid Valid Move if sign (SF=1)
REX.W + 0F 48 /r CMOVS r64, r/m64 Valid N.E. Move if sign (SF=1)
0F 44 /r CMOVZ r16, r/m16 Valid Valid Move if zero (ZF=1)
0F 44 /r CMOVZ r32, r/m32 Valid Valid Move if zero (ZF=1)
REX.W + 0F 44 /r CMOVZ r64, r/m64 Valid N.E. Move if zero (ZF=1)
2-67
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



                ELSE

                  DEST <-- temp

                  FI;

                FI;

Flags Affected

None.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-68
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMP—Compare Two Operands

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

3C ib CMP AL, imm8 Valid Valid Compare imm8 with AL
3D iw CMP AX, imm16 Valid Valid Compare imm16 with AX
3D id CMP EAX, imm32 Valid Valid Compare imm32 with EAX
REX.W + 3D id CMP RAX, imm32 Valid N.E. Compare imm32 sign-extended to 64-bits 

with RAX
80 /7 ib CMP r/m8, imm8 Valid Valid Compare imm8 with r/m8
REX + 80 /7 ib CMP r/m8*, imm8 Valid N.E. Compare imm8 with r/m8
81 /7 iw CMP r/m16, imm16 Valid Valid Compare imm16 with r/m16
81 /7 id CMP r/m32,imm32 Valid Valid Compare imm32 with r/m32
REX.W + 81 /7 id CMP r/m64,imm32 Valid N.E. Compare imm32 sign-extended to 64-bits 

with r/m64
83 /7 ib CMP r/m16,imm8 Valid Valid Compare imm8 with r/m16
83 /7 ib CMP r/m32,imm8 Valid Valid Compare imm8 with r/m32
REX.W + 83 /7 ib CMP r/m64,imm8 Valid N.E. Compare imm8 with r/m64
38 /r CMP r/m8,r8 Valid Valid Compare r8 with r/m8
REX + 38 /r CMP r/m8*,r8* Valid N.E. Compare r8 with r/m8
39 /r CMP r/m16,r16 Valid Valid Compare r16 with r/m16
39 /r CMP r/m32,r32 Valid Valid Compare r32 with r/m32
REX.W + 39 /r CMP r/m64,r64 Valid N.E. Compare r64 with r/m64
3A /r CMP r8,r/m8 Valid Valid Compare r/m8 with r8
REX + 3A /r CMP r8*,r/m8* Valid N.E. Compare r/m8 with r8
3B /r CMP r16,r/m16 Valid Valid Compare r/m16 with r16
3B /r CMP r32,r/m32 Valid Valid Compare r/m32 with r32
REX.W + 3B /r CMP r64,r/m64 Valid N.E. Compare r/m64 with r64
*  In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also

refer to Section 1.4.2.2.
2-69
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-70
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMPPD—Compare Packed Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid if SNaN operand; invalid if QNaN and predicate as listed in Table 3-6 of IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A; denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F C2 /r ib CMPPD xmm1, xmm2/m128, imm8 Valid Valid Compare packed double-precision 
floating-point values in xmm2/m128 
and xmm1 using imm8 as 
comparison predicate.
2-71
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-72
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMPPS—Compare Packed Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid if SNaN operand; invalid if QNaN and predicate as listed in Table 3-6 of IA-32 Intel Architecture Software
Developer’s Manual, Volume 2; denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F C2 /r ib CMPPS xmm1, xmm2/m128, imm8 Valid Valid Compare packed single-precision 
floating-point values in xmm2/mem 
and xmm1 using imm8 as 
comparison predicate.
2-73
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
2-74
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

A6 CMPS m8, m8 Valid Valid For legacy mode, compare byte at address 
ES:(E)SI; For 64-bit mode compare byte at address 
(R)SI. The status flags are set accordingly.

A7 CMPS m16, m16 Valid Valid For legacy mode, compare word at address 
ES:(E)SI; For 64-bit mode compare word at address 
(R)SI. The status flags are set accordingly.

A7 CMPS m32, m32 Valid Valid For legacy mode, compare dword at address 
ES:(E)SI; For 64-bit mode compare dword at 
address (R)SI. The status flags are set accordingly.

REX.W + A7 CMPS m64, m64 Valid N.E. Compares quadword at address RSI with quadword 
at address RDI and sets the status flags accordingly

A6 CMPSB Valid Valid For legacy mode, compare byte at address 
ES:(E)SI; For 64-bit mode compare byte at address 
(R)SI. The status flags are set accordingly.

A7 CMPSW Valid Valid For legacy mode, compare word at address 
ES:(E)SI; For 64-bit mode compare word at address 
(R)SI. The status flags are set accordingly.

A7 CMPSD Valid Valid For legacy mode, compare dword at address 
ES:(E)SI; For 64-bit mode compare dword at 
address (R)SI. The status flags are set accordingly.

REX.W + A7 CMPSD Valid N.E. Compares quadword at address RSI with quadword 
at address RDI and sets the status flags accordingly
2-75
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-76
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMPSD—Compare Scalar Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid if SNaN operand; invalid if QNaN and predicate as listed in Table 3-6 of IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A; denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction
64-Bit Mode

Compat/Leg 
Mode

Description

F2 0F C2 /r ib CMPSD xmm1, xmm2/m64, imm8 Valid Valid Compare low double-precision 
floating-point value in xmm2/m64 and 
xmm1 using imm8 as comparison 
predicate.
2-77
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-78
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMPSS—Compare Scalar Single-Precision Floating-Point Values 

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid if SNaN operand; invalid if QNaN and predicate as listed in Table 3-6 of IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A; denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F3 0F C2 /r ib CMPSS xmm1, xmm2/m32, imm8 Valid Valid Compare low single-precision 
floating-point value in xmm2/m32 and 
xmm1 using imm8 as comparison 
predicate.
2-79
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-80
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMPXCHG—Compare and Exchange

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the comparison operation.

IA-32e Mode Operation

Promoted to 64-bits

Default Operation Size is 32-bits.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F B0/r CMPXCHG r/m8,r8 Valid Valid Compare AL with r/m8. If equal, ZF is set 
and r8 is loaded into r/m8. Else, clear ZF and 
load r/m8 into AL.

REX + 0F B0/r CMPXCHG r/m8*,r8* Valid N.E. Compare AL with r/m8. If equal, ZF is set 
and r8 is loaded into r/m8. Else, clear ZF and 
load r/m8 into AL.

0F B1/r CMPXCHG r/m16,r16 Valid Valid Compare AX with r/m16. If equal, ZF is set 
and r16 is loaded into r/m16. Else, clear ZF 
and load r/m16 into AX

0F B1/r CMPXCHG r/m32,r32 Valid Valid Compare EAX with r/m32. If equal, ZF is set 
and r32 is loaded into r/m32. Else, clear ZF 
and load r/m32 into EAX

REX.W + 0F B1/r CMPXCHG r/m64,r64 Valid N.E. Compare RAX with r/m64. If equal, ZF is set 
and r64 is loaded into r/m64. Else, clear ZF 
and load r/m64 into AL

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also
refer to Section 1.4.2.2.
2-81
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-82
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CMPXCHG8B/CMPXCHG16B—Compare and Exchange 8 Bytes

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared. The CF, PF, AF, SF, and
OF flags are unaffected.

IA-32e Mode Operation

Promoted to 64-bits

Default Operation Size is 64-bits.

CMPXCHG16B requires that the destination (memory) operand be 16-byte-aligned. 

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#UD If the destination operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F C7 /1 m64 CMPXCHG8B m64 Valid Valid Compare EDX:EAX with m64. If 
equal, set ZF and load ECX:EBX 
into m64. Else, clear ZF and load 
m64 into EDX:EAX.

REX.W + 0F C7 /1 m128 CMPXCHG16B m128 Valid N.E. Compare RDX:RAX with m128. If 
equal, set ZF and load RCX:RBX 
into m128. Else, clear ZF and load 
m128 into RDX:RAX.
2-83
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte boundary.

If CPUID feature flag CMPXCHG16B is 0.

#UD If the destination operand is not a memory location.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-84
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and 
Set EFLAGS

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 2F /r COMISD xmm1, xmm2/m64 Valid Valid Compare low double-precision floating-point 
values in xmm1 and xmm2/mem64 and set the 
EFLAGS flags accordingly.
2-85
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-86
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set 
EFLAGS

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 2F /r COMISS xmm1, xmm2/m32 Valid Valid Compare low single-precision floating-point 
values in xmm1 and xmm2/mem32 and set 
the EFLAGS flags accordingly.
2-87
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-88
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CPUID—CPU Identification

Description

When the input value in the EAX register is 0, the processor returns the highest value the CPUID instruction recognizes
in the EAX register for returning basic CPUID information (see Table 2-5). A vendor identification string is returned
in the EBX, EDX, and ECX registers. For Intel® processors, the vendor identification string is “GenuineIntel” as
follows:
EBX ← 756e6547h (* "Genu", with G in the low nibble of BL *)

EDX ← 49656e69h (* "ineI", with i in the low nibble of DL *)

ECX ← 6c65746eh (* "ntel", with n in the low nibble of CL *)

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F A2 CPUID Valid Valid Returns processor identification and feature 
information to the EAX, EBX, ECX, and EDX 
registers, according to the input value entered 
initially in the EAX register

Table 2-5.  CPUID Function Leaf
Initial EAX 

Value Information Provided about the Processor

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 2-6).
“Genu”
“ntel”
“ineI”

1H EAX
EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0:     Brand Index
Bits 15-8:   CLFLUSH line size. (Value returned ∗ 8 = cache line size)
Bits 23-16: # of logical processors per physical package
Bits 31-24: Processor’s initial local APIC ID
Feature Information (see Figure 2-8)
Feature Information (see Figure 2-8)

2H EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

3H EAX
EBX
ECX
EDX

Reserved
Reserved
Reserved
Reserved
2-89
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



4H
EAX

EBX

ECX
EDX

Deterministic Cache Parameters Leaf 
Bits 4-0: Cache Type** 
Bits 7-5: Cache Level (starts at 1) 
Bits 8: Self Initializing cache level (does not need SW initialization)               Bits 9: Fully 
Associative cache 
Bits 13-10: Reserved 
Bits 25-14: Number of threads sharing this cache* 
Bits 31-26: Number of processor cores on this die (Multicore)*.
Bits 11-00: L = System Coherency Line Size* 
Bits 21-12: P = Physical Line partitions* 
Bits 31-22: W = Ways of associativity*.
Bits 31-00: S = Number of Sets*
Reserved = 0

*  Add one to the value in the register file to get the number. For example, the number of 
processor cores is EAX[31:26]+1.
** Cache Types fields
    0 = Null - No more caches
     1 = Data Cache
     2 = Instruction Cache
     3 = Unified Cache
     4-31 = Reserved

NOTE: CPUID leaves > 3 < 80000000 are only visible when IA32_CR_MISC_ENABLES.BOOT_
NT4 (bit 22) is clear (Default)

5H
EAX

EBX

ECX
EDX

MONITOR/MWAIT Leaf
Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)               
Bits 31-16: Reserved = 0.
Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)               
Bits 31-16: Reserved = 0.
Reserved = 0
Reserved = 0

Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see Table 2-6).
Reserved.
Reserved.
Reserved.

80000001H
EAX
EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. 
Reserved.
Reserved.
Reserved 
Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available
Bits 19-12: Reserved
Bits 28-21: Reserved
Bit 29: 64-bit extensions technology available
Bits 31-30: Reserved.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

Table 2-5.  CPUID Function Leaf (Contd.)
Initial EAX 

Value Information Provided about the Processor
2-90
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



When the input value is 1, the processor returns version information in the EAX register (see Figure 2-3). The version
information consists of an IA-32 processor family identifier, a model identifier, a stepping ID, and a processor type.
The model, family, and processor type for the first processor supporting 64-bit extensions technology is as follows:

• Model—0011B

• Family—1111B

• Processor Type—00B

The available processor types are given in Table 2-7. Intel releases information on stepping IDs as needed.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX
ECX

EDX

Reserved = 0
Reserved = 0
Bits 7-0: Cache Line size
Bits 15-12: L2 Associativity
Bits 31-16: Cache size in 1K units
In initial implementation ECX = 0x04008040
Reserved = 0

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000008H EAX

EBX
ECX
EDX

Virtual/Physical Address size 
Bits 7:0: #Physical Address Bits
Bits 15:8: #Virtual Address Bits,
Bits 31:16: reserved. 
In initial implementation EAX = 0x3028
Reserved = 0
Reserved = 0
Reserved = 0

Table 2-6.  Highest CPUID Source Operand for Processor Supporting 64-Bit Extensions Technology

IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

5H 80000008H

Figure 2-3.  Version Information in the EAX Register

Table 2-5.  CPUID Function Leaf (Contd.)
Initial EAX 

Value Information Provided about the Processor

31 12 11 8 7 4 3 0

EAX

Family (1111B for the Pentium 4 Processor Family)
Model (Beginning with 0000B)

1314

Processor Type

ModelFamily
Stepping

ID

15

Model
ExtendedExtended

Family

1619202728
2-91
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



If the values in the family and/or model fields reach or exceed FH, the CPUID instruction will generate two additional
fields in the EAX register: the extended family field and the extended model field. Here, a value of FH in either the
model field or the family field indicates that the extended model or family field, respectively, is valid. Family and
model numbers beyond FH range from 0FH to FFH, with the least significant hexadecimal digit always FH.

See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) and Chapter 13 in the
IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for more information on identifying earlier IA-32
processors.

When the input value in EAX is 1, four unrelated pieces of information are returned to the EBX register: 

• Brand index EBX[7:0]—this number provides an entry into a brand string table that contains brand strings for
IA-32 processors. See “Brand Identification” later in the description of this instruction for information about the
intended use of brand indices. This field was introduced in the Pentium® III Xeon™ processors. 

• CLFLUSH instruction cache line size EBX[15:8]—this number indicates the size of the cache line flushed with
CLFLUSH instruction in 8-byte increments. This field was introduced with the Pentium 4 processors.

• The number of threads contained in the package is indicated in EBX[23:16].

• Initial APIC ID EBX[31:24]—this number is the 8-bit physical ID that is assigned to the local APIC on the
processor during power up. This field was introduced with the Pentium 4 processors.

When the input value in EAX is 1, feature information is returned to the EDX register (see Figure 2-8). The feature
bits permit operating system or application code to determine which IA-32 architectural features are available in the
processor. Table 2-8 shows the encoding of the feature flags in the EDX register. For all the feature flags currently
returned in EDX, a 1 indicates that the corresponding feature is supported. Software should identify Intel as the vendor
to properly interpret the feature flags. (Software should not depend on a 1 indicating the presence of a feature for future
feature flags.)

Table 2-7.  Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel® OverDrive® Processor 01B

Dual processor* 10B

Intel reserved. 11B

* Not applicable to Intel486™ processors.

Table 2-8.  CPUID Feature Information
Reg.Bit # Mnemonic Description

EDX.0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

EDX.1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, 
including CR4.VME for controlling the feature, CR4.PVI for protected mode 
virtual interrupts, software interrupt indirection, expansion of the TSS with the 
software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

EDX.2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for 
controlling the feature, and optional trapping of accesses to DR4 and DR5. 

EDX.3 PSE Page Size Extension. Large pages of size 4Mbyte are supported, including 
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page 
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs. 

EDX.4 TSC Time Stamp Counter. The RDTSC instruction is supported, including 
CR4.TSD for controlling privilege.

EDX.5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR 
and WRMSR instructions are supported. Some of the MSRs are 
implementation dependent.
2-92
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



EDX.6 PAE Physical Address Extension. Physical addresses greater than 32 bits are 
supported: extended page table entry formats, an extra level in the page 
translation tables is defined, 2 Mbyte pages are supported instead of 4 Mbyte 
pages if PAE bit is 1. The actual number of address bits beyond 32 is not 
defined, and is implementation specific. 

EDX.7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, 
including CR4.MCE for controlling the feature. This feature does not define the 
model-specific implementations of machine-check error logging, reporting, and 
processor shutdowns. Machine Check exception handlers may have to depend 
on processor version to do model specific processing of the exception, or test 
for the presence of the Machine Check feature.

EDX.8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) 
instruction is supported (implicitly locked and atomic). 

EDX.9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt 
Controller (APIC), responding to memory mapped commands in the physical 
address range FFFE0000H to FFFE0FFFH (by default - some processors 
permit the APIC to be relocated). 

EDX.10 Reserved Reserved 

EDX.11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and 
associated MSRs are supported. 

EDX.12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR 
contains feature bits that describe what memory types are supported, how 
many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 

EDX.13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table 
entries (PTEs) is supported, indicating TLB entries that are common to different 
processes and need not be flushed. The CR4.PGE bit controls this feature. 

EDX.14 MCA Machine Check Architecture. The Machine Check Architecture, which 
provides a compatible mechanism for error reporting in Pentium 4 processors, 
P6 family processors, and future processors, is supported. The MCG_CAP 
MSR contains feature bits describing how many banks of error reporting MSRs 
are supported. 

EDX.15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is 
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU 
feature bit, then the FCOMI and FCMOV instructions are supported 

EDX.16 PAT Page Attribute Table. Page Attribute Table is supported. This feature 
augments the Memory Type Range Registers (MTRRs), allowing an operating 
system to specify attributes of memory on a 4K granularity through a linear 
address.

EDX.17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are capable of 
addressing physical memory beyond 4 GBytes are supported. This feature 
indicates that the upper four bits of the physical address of the 4-MByte page is 
encoded by bits 13-16 of the page directory entry.

EDX.18 PSN Processor Serial Number. The processor supports the 96-bit processor 
identification number feature and the feature is enabled. (Only Pentium III 
processor supports this feature.)

EDX.19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

EDX.20 Reserved Reserved

EDX.21 DS Debug Store. The processor supports the ability to write debug information 
into a memory resident buffer. This feature is used by the branch trace store 
(BTS) and precise event-based sampling (PEBS) facilities (see Chapter 14, 
Debugging and Performance Monitoring, in the IA-32 Intel Architecture 
Software Developer’s Manual, Volume 3).

EDX.22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor 
implements internal MSRs that allow processor temperature to be monitored 
and processor performance to be modulated in predefined duty cycles under 
software control.

Table 2-8.  CPUID Feature Information (Contd.)
Reg.Bit # Mnemonic Description
2-93
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



When the input value is 2, the processor returns information about the processor’s internal caches and TLBs in the
EAX, EBX, ECX, and EDX registers. The encoding of these registers is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction
must be executed with an input value of 2 to get a complete description of the processor’s caches and TLBs. The
first member of the family of Pentium 4 processors will return a 1.

• The most significant bit (bit 31) of each register indicates whether the register contains valid information (cleared
to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors. Table 2-9 shows the
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not
defined; that is, specific bytes are not designated to contain descriptors for specific cache or TLB types. The
descriptors may appear in any order.

EDX.23 MMX Intel® MMX™ Technology. The processor supports the Intel MMX technology.

EDX.24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR 
instructions are supported for fast save and restore of the floating point context. 
Presence of this bit also indicates that CR4.OSFXSR is available for an 
operating system to indicate that it supports the FXSAVE and FXRSTOR 
instructions

EDX.25 SSE SSE. The processor supports the SSE extensions.

EDX.26 SSE2 SSE2. The processor supports the SSE2 extensions.

EDX.27 SS Self Snoop. The processor supports the management of conflicting memory 
types by performing a snoop of its own cache structure for transactions issued 
to the bus

EDX.28 HT HyperThreading Technology. The processor supports HyperThreading 
Technology.

EDX.29 TM Thermal Monitor. The processor implements the thermal monitor automatic 
thermal control circuitry (TCC).

EDX.30 Reserved Reserved

EDX.31 FERR FERR# Signalling change

ECX.0 SSE3 SSE3 available

ECX.2 Reserved Reserved

ECX.3 Monitor Monitor/Mwait Instructions

ECX.4 DS_CPL CPL qualified debug store available

ECX.7 EST Enhanced Intel® SpeedStep® Technology

ECX.8 TM2 Thermal Monitor 2 available

ECX.10 CNXT-ID L1 context ID available

ECX.13 CMPXCHG16B CMPXCHG16B available

ECX.31:13 Reserved Reserved

Table 2-8.  CPUID Feature Information (Contd.)
Reg.Bit # Mnemonic Description
2-94
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Table 2-9.  Cache Parameter Table

The first member of the family of Pentium 4 processors will return the following information about caches and TLBs
when the CPUID instruction is executed with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 40H

These values are interpreted as follows:

• The least-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID instruction needs to
be executed only once with an input value of 2 to retrieve complete information about the processor’s caches and
TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor contains the following:

— 50H—A 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH—A 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H—An 8-KByte 1st level data cache, 4-way set associative, with a 64-byte cache line size.

• The descriptors in registers EBX and ECX are valid, but contain null descriptors.

• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor contains the following:

 Descriptor Value  Description

22h 512K Third-Level Cache, 4-way, 64byte line size, 128 byte sector size

23h 1MB Third-Level Cache, 8-way, 64byte line size, 128 byte sector size

25h 2MB Third-Level Cache, 8-way, 64byte line size, 128 byte sector size

29h 4MB Third-Level Cache, 8-way, 64byte line size, 128 byte sector size

40h No Third-Level Cache

50h 64 entries for 4KB pages & 2MB/4MB pages (ITLB)

51h 128 entries for 4KB pages & 2MB/4MB pages (ITLB)

52h 256 entries for 4KB pages & 2MB/4MB pages (ITLB)

5Bh 64 entries for 4KB pages & 4MB pages (DTLB)

5Ch 128 entries for 4KB pages & 4MB pages (DTLB)

5Dh 256 entries for 4KB pages & 4MB pages (DTLB)

60h 16KB First-Level Data Cache, 8-way set associative, 64 byte line size

66h 8KB First-Level Data Cache, 4-way set associative, 64 byte line size

67h 16KB First-Level Data Cache, 4-way set associative, 64 byte line size

68h 32KB First-Level Data Cache, 4-way set associative, 64 byte line size

70h 12K uops, Trace Cache, 8-way set associative

71h 16K uops, Trace Cache, 8-way set associative

72h 32K uops, Trace Cache, 8-way set associative

79h 128KB Second-Level Cache, 8-way set associative, 64byte line size, 128 byte sector size

7Ah 256KB Second-Level Cache, 8-way set associative, 64byte line size, 128 byte sector size

7Bh 512KB Second-Level Cache, 8-way set associative, 64byte line size, 128 byte sector size

7Ch 1MB Second-Level Cache, 8-way set associative, 64byte line size, 128 byte sector size
2-95
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



— 00H—Null descriptor.

— 70H—A 12-KByte 1st level code cache, 4-way set associative, with a 64-byte cache line size.

— 7AH—A 256-KByte 2nd level cache, 8-way set associative, with a 128-byte cache line size.

— 00H—Null descriptor.

Brand Identification

To facilitate brand identification of IA-32 processors with the CPUID instruction, two features are provided: brand
index and brand string.

The brand index was added to the CPUID instruction with the Pentium III Xeon processor and will be included on all
future IA-32 processors, including the Pentium 4 processors. The brand index provides an entry point into a brand iden-
tification table that is maintained in memory by system software and is accessible from system- and user-level code.
In this table, each brand index is associate with an ASCII brand identification string that identifies the official Intel®
family and model number of a processor (for example, “Intel Pentium III processor”).

When executed with a value of 1 in the EAX register, the CPUID instruction returns the brand index to the low byte
in EBX. Software can then use this index to locate the brand identification string for the processor in the brand iden-
tification table. The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with
processors that do not support the brand identification feature. Table 2-10 shows those brand indices that currently have
processor brand identification strings associated with them.

It is recommended that (1) all reserved entries included in the brand identification table be associated with a brand
string that indicates that the index is reserved for future Intel processors and (2) that software be prepared to handle
reserved brand indices gracefully.

The brand string feature is an extension to the CPUID instruction introduced in the Pentium 4 processors. With this
feature, the CPUID instruction returns the ASCII brand identification string and the maximum operating frequency of

Table 2-10.  Brand String Offsets 
Brand Index Brand String

0 This processor does not support the brand identification feature

1 Celeron® processor* 

2 Pentium® III processor* 

3 Intel® Pentium® III Xeon™ processor 

4 Intel® Pentium® III processor

6 Mobile Intel® Pentium® III processor -M

7 Mobile Intel® Celeron® processor

8 Intel® Pentium® 4 processor
If processor signature ≥ 00000F13H; then Intel® Genuine processor

9 Intel® Pentium® 4 processor

10 Intel® Celeron® processor

11 Intel® Xeon™ processor
If processor signature < 00000F13H; then Intel® Xeon™ processor MP

12 Intel®  Xeon™ processor MP

14 Mobile Intel® Pentium® 4 processor -M
If processor signature < 00000F13H; then Intel®  Xeon™ processor 

15 Mobile Intel® Celeron® processor

16 – 255 Reserved for future processor

*  Indicates versions of these processors that were introduced after the Pentium III Xeon processor.
2-96
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



the processor to the EAX, EBX, ECX, and EDX registers. (Note that the frequency returned is the maximum operating
frequency that the processor has been qualified for and not the current operating frequency of the processor.)

To use the brand string feature, the CPUID instructions must be executed three times, once with an input value of
80000002H in the EAX register, and a second time an input value of 80000003, and a third time with a value of
80000004H.

The brand string is architecturally defined to be 48 byte long: the first 47 bytes contain ASCII characters and the 48th

byte is defined to be null (0). The string may be right justified (with leading spaces) for implementation simplicity. For
each input value (EAX is 80000002H, 80000003H, or 80000004H), the CPUID instruction returns 16 bytes of the
brand string to the EAX, EBX, ECX, and EDX registers. Processor implementations may return less than the 47 ASCII
characters, in which case the string will be null terminated and the processor will return valid data for each of the
CPUID input values of 80000002H, 80000003H, and 80000004H. 

Table 2-11 shows the brand string that is returned by the first processor in the family of Pentium 4 processors.

NOTE
When a frequency is given in a brand string, it is the maximum qualified frequency of the processor,
not the actual frequency at which the processor is running.

The following procedure can be used for detection of the brand string feature:

1. Execute the CPUID instruction with input value in EAX of 80000000H.

2. If ((EAX_Return_Value) AND (80000000H) ≠ 0) then the processor supports the extended CPUID functions and
EAX contains the largest extended function input value supported.

3. If EAX_Return_Value ≥ 80000004H, then the CPUID instruction supports the brand string feature. 

Future processors may return a frequency in GHz rather than MHz. To identify an IA-32 processor using the CPUID
instruction, brand identification software should use the following brand identification techniques ordered by
decreasing priority: 

• Processor brand string

• Processor brand index and a software supplied brand string table.

• Table based mechanism using type, family, model, stepping, and cache information returned by the CPUID
instruction.

IA-32 Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in any IA-32 processor earlier
than the Intel486 processor.

Table 2-11.  Processor Brand String Returned
EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H
EBX = 20202020H
ECX = 20202020H
EDX = 6E492020H;

“” 
“”
“”
“nI  ”

80000003H EAX = 286C6574H
EBX = 50202952H
ECX = 69746E65H
EDX = 52286D75H

“(let”
“P )R”
“itne”
“R(mu”

80000004H EAX = 20342029H;
EBX = 20555043H;
ECX = 30303531H
EDX = 007A484DH

“ 4 )”
“ UPC”
“0051”
“\0zHM”
2-97
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Operation

Flags Affected

None.

Exceptions (All Operating Modes)

None.

NOTE
In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction
results in an invalid opcode (#UD) exception being generated.
2-98
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision 
Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F3 0F E6 CVTDQ2PD xmm1, 
xmm2/m64

Valid Valid Convert two packed signed doubleword integers 
from xmm2/m128 to two packed double-precision 
floating-point values in xmm1.
2-99
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-100
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision 
Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 5B /r CVTDQ2PS xmm1, xmm2/m128 Valid Valid Convert four packed signed 
doubleword integers from xmm2/m128 
to four packed single-precision floating-
point values in xmm1.
2-101
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-102
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed 
Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments.segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F E6 CVTPD2DQ xmm1, xmm2/
m128

Valid Valid Convert two packed double-precision floating-
point values from xmm2/m128 to two packed 
signed doubleword integers in xmm1.
2-103
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-104
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed 
Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 2D /r CVTPD2PI mm, xmm/m128 Valid Valid Convert two packed double-precision floating-
point values from xmm/m128 to two packed 
signed doubleword integers in mm.
2-105
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-106
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPD2PS—Covert Packed Double-Precision Floating-Point Values to Packed 
Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 5A /r CVTPD2PS xmm1, xmm2/
m128

Valid Valid Convert two packed double-precision floating-
point values in xmm2/m128 to two packed 
single-precision floating-point values in xmm1.
2-107
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-108
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision 
Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 2A /r CVTPI2PD xmm, mm/m64 Valid Valid Convert two packed signed doubleword 
integers from mm/mem64 to two packed 
double-precision floating-point values in xmm.
2-109
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-110
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision 
Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 2A /r CVTPI2PS xmm, mm/
m64

Valid Valid Convert two signed doubleword integers from mm/m64 
to two single-precision floating-point values in xmm..
2-111
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-112
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed 
Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 5B /r CVTPS2DQ xmm1, xmm2/m128 Valid Valid Convert four packed single-precision 
floating-point values from xmm2/m128 
to four packed signed doubleword 
integers in xmm1.
2-113
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-114
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPS2PD—Covert Packed Single-Precision Floating-Point Values to Packed 
Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F  5A /r CVTPS2PD xmm1, xmm2/
m64

Valid Valid Convert two packed single-precision floating-
point values in xmm2/m64 to two packed double-
precision floating-point values in xmm1.
2-115
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-116
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed 
Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 2D /r CVTPS2PI mm, xmm/m64 Valid Valid Convert two packed single-precision floating-
point values from xmm/m64 to two packed 
signed doubleword integers in mm.
2-117
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-118
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword 
Integer

IA-32e Mode Operation

Promoted to 64-bits. 

Enables access to XMM8-XMM15.

Enables access to new registers R8-R15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F 2D /r  CVTSD2SI r32, xmm/
m64

Valid Valid Convert one double-precision floating-
point value from xmm/m64 to one signed 
doubleword integer r32. 

REX.W + F2 0F 2D /r CVTSD2SI r64, xmm/
m64

Valid N.E. Convert one double-precision floating-
point value from xmm/m64 to one signed 
quadword integer sign-extended into r64. 
2-119
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-120
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar 
Single-Precision Floating-Point Value

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F 5A /r CVTSD2SS xmm1, xmm2/m64 Valid Valid Convert one double-precision floating-
point value in xmm2/m64 to one single-
precision floating-point value in xmm1.
2-121
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-122
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-
Point Value

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F 2A /r CVTSI2SD xmm, r/m32 Valid Valid Convert one signed doubleword integer 
from r/m32 to one double-precision 
floating-point value in xmm.

REX.W + F2 0F 2A /r CVTSI2SD xmm, r/m64 Valid N.E. Convert one signed quadword integer 
from r/m64 to one double-precision 
floating-point value in xmm.
2-123
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-124
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point 
Value

IA-32e Mode Operation

Enables access to XMM8-XMM15. XMMn[31:0] = CVT(reg/mem64), XMMn[127:32] = unchanged.

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction
64-Bit 
Mode

Compat/
Leg Mode Description

F3 0F 2A /r CVTSI2SS xmm, r/m32 Valid Valid Convert one signed doubleword integer from 
r/m32 to one single-precision floating-point 
value in xmm.

REX.W + F3 0F 2A /r CVTSI2SS xmm, r/m64 Valid N.E. Convert one signed quadword integer from r/
m64 to one single-precision floating-point 
value in xmm.
2-125
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-126
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar 
Double-Precision Floating-Point Value

IA-32e Mode Operation

Enables access to XMM8-XMM15. XMMn[63:0] = CVT(reg/mem32), XMMn[127:64] = unchanged.

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F3 0F 5A /r CVTSS2SD xmm1, xmm2/m32 Valid Valid Convert one single-precision floating-
point value in xmm2/m32 to one double-
precision floating-point value in xmm1.
2-127
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-128
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword 
Integer

IA-32e Mode Operation

Enables access to XMM8-XMM15. 

Promoted to 64-bits.

Enables access to new registers R8-R15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Opcode Instruction
64-Bit 
Mode

Compat/Leg 
Mode Description

F3 0F 2D /r CVTSS2SI r32, xmm/
m32

Valid Valid Convert one single-precision floating-point 
value from xmm/m32 to one signed 
doubleword integer in r32. 

REX.W + F3 0F 2D /r CVTSS2SI r64, xmm/
m32

Valid N.E. Convert one single-precision floating-point 
value from xmm/m32 to one signed quadword 
integer in r64. 
2-129
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-130
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point 
Values to Packed Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 2C /r CVTTPD2PI mm, xmm/m128 Valid Valid Convert two packer double-precision 
floating-point values from xmm/m128 to two 
packed signed doubleword integers in mm 
using truncation.
2-131
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-132
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point 
Values to Packed Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F E6 CVTTPD2DQ xmm1, xmm2/m128 Valid Valid Convert two packed double-precision 
floating-point values from xmm2/m128 
to two packed signed doubleword 
integers in xmm1 using truncation.
2-133
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-134
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point 
Values to Packed Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#PF(fault-code) For a page fault.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F3 0F 5B /r CVTTPS2DQ xmm1, xmm2/m128 Valid Valid Convert four single-precision floating-
point values from xmm2/m128 to four 
signed doubleword integers in xmm1 
using truncation.
2-135
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-136
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point 
Values to Packed Doubleword Integers

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 2C /r CVTTPS2PI mm, xmm/
m64

Valid Valid Convert two single-precision floating-point values 
from xmm/m64 to two signed doubleword signed 
integers in mm using truncation.
2-137
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-138
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point 
Value to Signed Doubleword Integer

IA-32e Mode Operation

Enables access to XMM8-XMM15.

Promoted to 64-bits.

Enables access to new registers R8-R15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Opcode Instruction
64-Bit 
Mode

Compat/Leg 
Mode Description

F2 0F 2C /r CVTTSD2SI r32, xmm/
m64

Valid Valid Convert one double-precision floating-point 
value from xmm/m64 to one signed 
doubleword integer in r32 using truncation. 

REX.W + F2 0F 2C /r CVTTSD2SI r64, xmm/
m64

Valid N.E. Convert one double-precision floating-point 
quadword integer in r64 using truncation. 
2-139
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-140
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value 
to Doubleword Integer

IA-32e Mode Operation

Enables access to XMM8-XMM15. 

Promoted to 64-bits.

Enables access to new registers R8-R15.

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Opcode Instruction
64-Bit 
Mode

Compat/Leg 
Mode Description

F3 0F 2C /r CVTTSS2SI r32, xmm/
m32

Valid Valid Convert one single-precision floating-point 
value from xmm/m32 to one signed 
doubleword integer in r32 using truncation.

REX.W + F3 0F 2C /r CVTTSS2SI r64, xmm/
m32

Valid N.E. Convert one single-precision floating-point 
value from xmm/m32 to one signed 
quadword integer in r64 using truncation.
2-141
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-142
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



CWD/CDQ/CQQ—Convert Word to Doubleword/Convert Doubleword 
to Quadword/Convert Quadword to Double Quadword

Flags Affected

None.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is size of destination register.

Exceptions (All Operating Modes)

None.

See entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword. 

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

99 CWD Valid Valid DX:AX ← sign-extend of AX
99 CDQ Valid Valid EDX:EAX ← sign-extend of EAX
REX.W + 99 CQO Valid N.E. RDX:RAX← sign-extend of RAX
2-143
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DAA—Decimal Adjust AL after Addition

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either digit of the result (see the
“Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined.

IA-32e Mode Operation

Invalid in 64 bit Mode

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If in 64-bit mode.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

27 DAA Inv. Valid Decimal adjust AL after addition
2-144
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DAS—Decimal Adjust AL after Subtraction

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow in either digit of the result (see
the “Operation” section above). The SF, ZF, and PF flags are set according to the result. The OF flag is undefined.

IA-32e Mode Operation

Invalid in 64 bit Mode

Protected Mode Exceptions

None.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

#UD If in 64-bit mode.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

2F DAS Inv. Valid Decimal adjust AL after subtraction
2-145
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DEC—Decrement by 1

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32-bits.

Opcode 48H through 4FH are REX prefixes in 64-bit mode.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

FE /1 DEC r/m8 Valid Valid Decrement r/m8 by 1
REX + FE /1 DEC r/m8* Valid N.E. Decrement r/m8 by 1
FF /1 DEC r/m16 Valid Valid Decrement r/m16 by 1
FF /1 DEC r/m32 Valid Valid Decrement r/m32 by 1
REX.W + FF /1 DEC r/m64 Valid N.E. Decrement r/m64 by 1
48+rw DEC r16 N.E. Valid Decrement r16 by 1
48+rd DEC r32 N.E. Valid Decrement r32 by 1
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also

refer to Section 1.4.2.2.
2-146
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-147
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DIV—Unsigned Divide

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

IA-32e Mode Operation

Instruction is promoted to 64-bits.

Default Operation Size is 32 bits

With 64-bit operation RAX contains the 64-bit quotient and RDX the 64-bit remainder

Enables access to new registers R8-R15.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F6 /6 DIV r/m8 Valid Valid Unsigned divide AX by r/m8, with result stored in AL ← 
Quotient, AH ← Remainder

REX + F6 /6 DIV r/m8* Valid N.E. Unsigned divide AX by r/m8, with result stored in AL ← 
Quotient, AH ← Remainder

F7 /6 DIV r/m16 Valid Valid Unsigned divide DX:AX by r/m16, with result stored in AX 
← Quotient, DX ← Remainder

F7 /6 DIV r/m32 Valid Valid Unsigned divide EDX:EAX by r/m32, with result stored in 
EAX ← Quotient, EDX ← Remainder

REX.W + F7 /6 DIV r/m64 Valid N.E. Unsigned divide RDX:RAX by r/m64, with result stored in 
RAX ← Quotient, RDX ← Remainder

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also
refer to Section 1.4.2.2.
2-148
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

If the quotient is too large for the designated register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-149
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DIVPD—Divide Packed Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 5E /r DIVPD xmm1, xmm2/m128 Valid Valid Divide packed double-precision floating-point 
values in xmm1 by packed double-precision 
floating-point values xmm2/m128.
2-150
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.
2-151
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DIVPS—Divide Packed Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 5E /r DIVPS xmm1, xmm2/m128 Valid Valid Divide packed single-precision floating-point 
values in xmm1 by packed single-precision 
floating-point values xmm2/m128.
2-152
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.
2-153
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DIVSD—Divide Scalar Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F 5E /r DIVSD xmm1, xmm2/m64 Valid Valid Divide low double-precision floating-point 
value n xmm1 by low double-precision floating-
point value in xmm2/mem64.
2-154
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE2 is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-155
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



DIVSS—Divide Scalar Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F3 0F 5E /r DIVSS xmm1, xmm2/m32 Valid Valid Divide low single-precision floating-point value 
in xmm1 by low single-precision floating-point 
value in xmm2/m32
2-156
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-157
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



EMMS—Empty MMX State

Flags Affected

None.

IA-32e Mode Operation

Same as Legacy mode

Protected Mode Exceptions

#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions 

Same as for protected mode exceptions.

Virtual-8086 Mode Exceptions

Same as for protected mode exceptions.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 77 EMMS Valid Valid Set the x87 FPU tag word to empty.
2-158
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



ENTER—Make Stack Frame for Procedure Parameters

Flags Affected

None.

IA-32e Mode Operation

Default Operation Size is 64 bits

In 64-bit mode a 32-bit operation size cannot be encoded.

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

C8 iw 00 ENTER imm16,0 Valid Valid Create a stack frame for a procedure
C8 iw 01 ENTER imm16,1 Valid Valid Create a nested stack frame for a procedure
C8 iw ib ENTER imm16,imm8 Valid Valid Create a nested stack frame for a procedure
2-159
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



F2XM1—Compute 2x–1

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

IA-32e Mode Operation

Same as legacy mode.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F0 F2XM1 Valid Valid Replace ST(0) with (2ST(0) – 1)
2-160
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FABS—Absolute Value

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

IA-32e Mode Operation

Same as legacy mode.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 E1 FABS Valid Valid Replace ST with its absolute value.
2-161
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FADD/FADDP/FIADD—Add

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of unlike sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result in ST(0)
DC /0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result in ST(0)
D8 C0+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in ST(0)
DC C0+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in ST(i)
DE C0+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in ST(i), and 

pop the register stack
DE C1 FADDP Valid Valid Add ST(0) to ST(1), store result in ST(1), and 

pop the register stack
DA /0 FIADD m32int Valid Valid Add m32int to ST(0) and store result in ST(0)
DE /0 FIADD m16int Valid Valid Add m16int to ST(0) and store result in ST(0)
2-162
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-163
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FBLD—Load Binary Coded Decimal

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DF /4 FBLD m80 dec Valid Valid Convert BCD value to floating-point and push 
onto the FPU stack.
2-164
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-165
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FBSTP—Store BCD Integer and Pop

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is generated: 0 = not roundup;
1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is empty; contains a NaN, ±∞, or unsupported format; or contains value that
exceeds 18 BCD digits in length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector that points to a nonwritable
segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0).
2-166
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-167
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FCHS—Change Sign

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 E0 FCHS Valid Valid Complements sign of ST(0)
2-168
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FCLEX/FNCLEX—Clear Exceptions

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The C0, C1, C2, and C3 flags
are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

9B DB E2 FCLEX Valid Valid Clear floating-point exception flags after checking for 
pending unmasked floating-point exceptions.

DB E2 FNCLEX* Valid Valid Clear floating-point exception flags without checking for 
pending unmasked floating-point exceptions.
2-169
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FCMOVcc—Floating-Point Conditional Move

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Integer Flags Affected

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DA C0+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1)
DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1)
DA D0+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or ZF=1)
DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1)
DB C0+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0)
DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0)
DB D0+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0 and 

ZF=0)
DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0)
2-170
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FCOM/FCOMP/FCOMPP—Compare Floating Point Values

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Cleared to 0.

C0, C2, C3 See table below.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

Register is marked empty.

#D One or both operands are denormal values.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp.
DC /2 FCOM m64fp Valid Valid Compare ST(0) with m64fp.
D8  D0+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i).
D8 D1 FCOM Valid Valid Compare ST(0) with ST(1).
D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and pop register 

stack.
DC /3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and pop register 

stack.
D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register 

stack.
D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop register 

stack.
DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop register 

stack twice.

Condition C3 C2 C0

ST(0) > SRC 0 0 0

ST(0) < SRC 0 0 1

ST(0) = SRC 1 0 0

Unordered* 1 1 1
2-171
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-172
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set 
EFLAGS

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Cleared to 0.

C0, C2, C3 Not affected.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN values or have unsup-
ported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are SNaN values (but not
QNaNs) or have undefined formats. Detection of a QNaN value does not raise an invalid-
operand exception.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#MF If there is a pending x87 FPU exception.

#NM EM or TS in CR0 is set.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DB F0+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status flags 
accordingly

DF F0+i FCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), set status flags 
accordingly, and pop register stack

DB E8+i FUCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, 
and set status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for ordered values, 
set status flags accordingly, and pop register stack
2-173
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FCOS—Cosine

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

Undefined if C2 is 1.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Result is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 FF FCOS Valid Valid Replace ST(0) with its cosine
2-174
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FDECSTP—Decrement Stack-Top Pointer

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F6 FDECSTP Valid Valid Decrement TOP field in FPU status word.
2-175
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FDIV/FDIVP/FIDIV—Divide

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z DEST / ±0, where DEST is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D8 /6 FDIV m32fp Valid Valid Divide ST(0) by m32fp and store result in ST(0)
DC /6 FDIV m64fp Valid Valid Divide ST(0) by m64fp and store result in ST(0)
D8 F0+i FDIV ST(0), ST(i) Valid Valid Divide ST(0) by ST(i) and store result in ST(0)
DC F8+i FDIV ST(i), ST(0) Valid Valid Divide ST(i) by ST(0) and store result in ST(i)
DE F8+i FDIVP ST(i), ST(0) Valid Valid Divide ST(i) by ST(0), store result in ST(i), and 

pop the register stack
DE F9 FDIVP Valid Valid Divide ST(1) by ST(0), store result in ST(1), and 

pop the register stack
DA /6 FIDIV m32int Valid Valid Divide ST(0) by m32int and store result in ST(0)
DE /6 FIDIV m16int Valid Valid Divide ST(0) by m64int and store result in ST(0)
2-176
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#MF If there is a pending x87 FPU exception.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-177
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FDIVR/FDIVRP/FIDIVR—Reverse Divide

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

±∞ / ±∞; ±0 / ±0

#D Result is a denormal value.

#Z SRC / ±0, where SRC is not equal to ±0.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D8 /7 FDIVR m32fp Valid Valid Divide m32fp by ST(0) and store result in ST(0)
DC /7 FDIVR m64fp Valid Valid Divide m64fp by ST(0) and store result in ST(0)
D8 F8+i FDIVR ST(0), ST(i) Valid Valid Divide ST(i) by ST(0) and store result in ST(0)
DC F0+i FDIVR ST(i), ST(0) Valid Valid Divide ST(0) by ST(i) and store result in ST(i)
DE F0+i FDIVRP ST(i), ST(0) Valid Valid Divide ST(0) by ST(i), store result in ST(i), and 

pop the register stack
DE F1 FDIVRP Valid Valid Divide ST(0) by ST(1), store result in ST(1), and 

pop the register stack
DA /7 FIDIVR m32int Valid Valid Divide m32int by ST(0) and store result in ST(0)
DE /7 FIDIVR m16int Valid Valid Divide m16int by ST(0) and store result in ST(0)
2-178
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-179
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FFREE—Free Floating-Point Register

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DD C0+i FFREE ST(i) Valid Valid Sets tag for ST(i) to empty
2-180
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FICOM/FICOMP—Compare Integer

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0.

C0, C2, C3 See table on FCOM instruction.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported formats.

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DE /2 FICOM m16int Valid Valid Compare ST(0) with m16int
DA /2 FICOM m32int Valid Valid Compare ST(0) with m32int
DE /3 FICOMP m16int Valid Valid Compare ST(0) with m16int and pop stack 

register
DA /3 FICOMP m32int Valid Valid Compare ST(0) with m32int and pop stack 

register
2-181
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-182
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FILD—Load Integer

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DF /0 FILD m16int Valid Valid Push m16int onto the FPU register stack.
DB /0 FILD m32int Valid Valid Push m32int onto the FPU register stack.
DF /5 FILD m64int Valid Valid Push m64int onto the FPU register stack.
2-183
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-184
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FINCSTP—Increment Stack-Top Pointer

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

The C1 flag is set to 0. The C0, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F7 FINCSTP Valid Valid Increment the TOP field in the FPU status register
2-185
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FINIT/FNINIT—Initialize Floating-Point Unit

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C0, C1, C2, C3 cleared to 0.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

9B DB E3 FINIT Valid Valid Initialize FPU after checking for pending unmasked 
floating-point exceptions.

DB E3 FNINIT* Valid Valid Initialize FPU without checking for pending unmasked 
floating-point exceptions.
2-186
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FIST/FISTP—Store Integer

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated: 0 ← not roundup;
1 ← roundup.

Cleared to 0 otherwise.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DF /2 FIST m16int Valid Valid Store ST(0) in m16int
DB /2 FIST m32int Valid Valid Store ST(0) in m32int
DF /3 FISTP m16int Valid Valid Store ST(0) in m16int and pop register stack
DB /3 FISTP m32int Valid Valid Store ST(0) in m32int and pop register stack
DF /7 FISTP m64int Valid Valid Store ST(0) in m64int and pop register stack
2-187
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-188
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FISTTP—Store Integer with Truncation

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is too large for the destination format

Source operand is a NaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

For an illegal memory operand effective address in the CS, DS, ES, FS, or GS segment.

#SS(0) For an illegal address in the SS segment.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If CPUID feature flag SSE3 is 0.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DF /1 FISTTP m16int Valid Valid Store ST(0) in m16int with truncation
DB /1 FISTTP m32int Valid Valid Store ST(0) in m32int with truncation
DD /1 FISTTP m64int Valid Valid Store ST(0) in m64int with truncation
2-189
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-190
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FLD—Load Floating Point Value

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format. Does not occur if the source
operand is in double extended-precision floating-point format.

#D Source operand is a denormal value. Does not occur if the source operand is in double
extended-precision floating-point format.

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 /0 FLD m32fp Valid Valid Push m32fp onto the FPU register stack.
DD /0 FLD m64fp Valid Valid Push m64fp onto the FPU register stack.
DB /5 FLD m80fp Valid Valid Push m80fp onto the FPU register stack.
D9 C0+i FLD ST(i) Valid Valid Push ST(i) onto the FPU register stack.
2-191
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-192
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

IA-32 Architecture Compatibility

When the RC field is set to round-to-nearest, the FPU produces the same constants that is produced by the Intel 8087
and Intel 287 math coprocessors.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 E8 FLD1 Valid Valid Push +1.0 onto the FPU register stack.
D9 E9 FLDL2T Valid Valid Push log210 onto the FPU register stack.
D9 EA FLDL2E Valid Valid Push log2e onto the FPU register stack.
D9 EB FLDPI Valid Valid Push π onto the FPU register stack.
D9 EC FLDLG2 Valid Valid Push log102 onto the FPU register stack.
D9 ED FLDLN2 Valid Valid Push loge2 onto the FPU register stack.
D9 EE FLDZ Valid Valid Push +0.0 onto the FPU register stack.
2-193
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FLDCW—Load x87 FPU Control Word

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status word. That exception is then gener-
ated upon execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 /5 FLDCW m2byte Valid Valid Load FPU control word from m2byte.
2-194
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-195
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FLDENV—Load x87 FPU Environment

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon execution of the next
“waiting” floating-point instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 /4 FLDENV m14/28byte Valid Valid Load FPU environment from m14byte or 
m28byte.
2-196
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-197
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FMUL/FMULP/FIMUL—Multiply

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

One operand is ±0 and the other is ±∞.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D8 /1 FMUL m32fp Valid Valid Multiply ST(0) by m32fp and store result in ST(0)
DC /1 FMUL m64fp Valid Valid Multiply ST(0) by m64fp and store result in ST(0)
D8 C8+i FMUL ST(0), ST(i) Valid Valid Multiply ST(0) by ST(i) and store result in ST(0)
DC C8+i FMUL ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0) and store result in ST(i)
DE C8+i FMULP ST(i), ST(0) Valid Valid Multiply ST(i) by ST(0), store result in ST(i), and 

pop the register stack
DE C9 FMULP Valid Valid Multiply ST(1) by ST(0), store result in ST(1), and 

pop the register stack
DA /1 FIMUL m32int Valid Valid Multiply ST(0) by m32int and store result in ST(0)
DE /1 FIMUL m16int Valid Valid Multiply ST(0) by m16int and store result in ST(0)
2-198
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-199
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FNOP—No Operation

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 D0 FNOP Valid Valid No operation is performed.
2-200
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FPATAN—Partial Arctangent

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F3 FPATAN Valid Valid Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register 
stack
2-201
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FPREM—Partial Remainder

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus is 0, dividend is ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F8 FPREM Valid Valid Replace ST(0) with the remainder obtained from dividing 
ST(0) by ST(1)
2-202
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FPREM1—Partial Remainder

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C0 Set to bit 2 (Q2) of the quotient.

C1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit of quotient (Q0).

C2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, modulus (divisor) is 0, dividend is ∞, or unsupported
format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F5 FPREM1 Valid Valid Replace ST(0) with the IEEE remainder obtained from 
dividing ST(0) by ST(1)
2-203
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FPTAN—Partial Tangent

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F2 FPTAN Valid Valid Replace ST(0) with its tangent and push 1 onto the 
FPU stack.
2-204
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FRNDINT—Round to Integer

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 FC FRNDINT Valid Valid Round ST(0) to an integer.
2-205
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FRSTOR—Restore x87 FPU State

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

The C0, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DD /4 FRSTOR m94/108byte Valid Valid Load FPU state from m94byte or m108byte.
2-206
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-207
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSAVE/FNSAVE—Store x87 FPU State

FPU Flags Affected

The C0, C1, C2, and C3 flags are saved and then cleared.

IA-32e Mode Operation

Same as legacy mode.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

9B DD /6 FSAVE m94/108byte Valid Valid Store FPU state to m94byte or m108byte after 
checking for pending unmasked floating-point 
exceptions. Then re-initialize the FPU.

DD /6 FNSAVE* m94/108byte Valid Valid Store FPU environment to m94byte or m108byte 
without checking for pending unmasked floating-
point exceptions. Then re-initialize the FPU.
2-208
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-209
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSCALE—Scale

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 FD FSCALE Valid Valid Scale ST(0) by ST(1).
2-210
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSIN—Sine

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

#U Result is too small for destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 FE FSIN Valid Valid Replace ST(0) with its sine.
2-211
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSINCOS—Sine and Cosine

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C2 Set to 1 if source operand is outside the range −263 to +263; otherwise, cleared to 0.

C0, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow or overflow occurred.

#IA Source operand is an SNaN value, ∞, or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 FB FSINCOS Valid Valid Compute the sine and cosine of ST(0); replace ST(0) with 
the sine, and push the cosine onto the register stack.
2-212
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSQRT—Square Root

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is generated: 0 ← not roundup;
1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format.

Source operand is a negative value (except for −0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 FA FSQRT Valid Valid Computes square root of ST(0) and stores the result in 
ST(0)
2-213
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FST/FSTP—Store Floating Point Value

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P) is generated: 0
← not roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Source operand is an SNaN value or unsupported format. Does not occur if the destination
operand is in double extended-precision floating-point format.

#U Result is too small for the destination format. Does not occur if the destination operand is
in double extended-precision floating-point format.

#O Result is too large for the destination format. Does not occur if the destination operand is in
double extended-precision floating-point format.

#P Value cannot be represented exactly in destination format. Does not occur if the destination
operand is in double extended-precision floating-point format.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 /2 FST m32fp Valid Valid Copy ST(0) to m32fp 
DD /2 FST m64fp Valid Valid Copy ST(0) to m64fp
DD D0+i FST ST(i) Valid Valid Copy ST(0) to ST(i)
D9 /3 FSTP m32fp Valid Valid Copy ST(0) to m32fp and pop register stack
DD /3 FSTP m64fp Valid Valid Copy ST(0) to m64fp and pop register stack
DB /7 FSTP m80fp Valid Valid Copy ST(0) to m80fp and pop register stack
DD D8+i FSTP ST(i) Valid Valid Copy ST(0) to ST(i) and pop register stack
2-214
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-215
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSTCW/FNSTCW—Store x87 FPU Control Word

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

9B D9 /7 FSTCW m2byte Valid Valid Store FPU control word to m2byte after 
checking for pending unmasked floating-point 
exceptions.

D9 /7 FNSTCW* m2byte Valid Valid Store FPU control word to m2byte without 
checking for pending unmasked floating-point 
exceptions.
2-216
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-217
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSTENV/FNSTENV—Store x87 FPU Environment

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

IA-32e Mode Operation

Same as legacy mode.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

9B D9 /6 FSTENV m14/28byte Valid Valid Store FPU environment to m14byte or 
m28byte after checking for pending 
unmasked floating-point exceptions. Then 
mask all floating-point exceptions.

D9 /6 FNSTENV* m14/28byte Valid Valid Store FPU environment to m14byte or 
m28byte without checking for pending 
unmasked floating-point exceptions. Then 
mask all floating-point exceptions.
2-218
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-219
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSTSW/FNSTSW—Store x87 FPU Status Word

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

The C0, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

9B DD /7 FSTSW m2byte Valid Valid Store FPU status word at m2byte after checking 
for pending unmasked floating-point exceptions.

9B DF E0 FSTSW AX Valid Valid Store FPU status word in AX register after 
checking for pending unmasked floating-point 
exceptions.

DD /7 FNSTSW* m2byte Valid Valid Store FPU status word at m2byte without 
checking for pending unmasked floating-point 
exceptions.

DF E0 FNSTSW* AX Valid Valid Store FPU status word in AX register without 
checking for pending unmasked floating-point 
exceptions.
2-220
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-221
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSUB/FSUBP/FISUB—Subtract

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D8 /4 FSUB m32fp Valid Valid Subtract m32fp from ST(0) and store result in 
ST(0)

DC /4 FSUB m64fp Valid Valid Subtract m64fp from ST(0) and store result in 
ST(0)

D8 E0+i FSUB ST(0), ST(i) Valid Valid Subtract ST(i) from ST(0) and store result in 
ST(0)

DC E8+i FSUB ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i) and store result in 
ST(i)

DE E8+i FSUBP ST(i), ST(0) Valid Valid Subtract ST(0) from ST(i), store result in ST(i), 
and pop register stack

DE E9 FSUBP Valid Valid Subtract ST(0) from ST(1), store result in ST(1), 
and pop register stack

DA /4 FISUB m32int Valid Valid Subtract m32int from ST(0) and store result in 
ST(0)

DE /4 FISUB m16int Valid Valid Subtract m16int from ST(0) and store result in 
ST(0)
2-222
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-223
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FSUBR/FSUBRP/FISUBR—Reverse Subtract

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.

Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D8 /5 FSUBR m32fp Valid Valid Subtract ST(0) from m32fp and store result in 
ST(0)

DC /5 FSUBR m64fp Valid Valid Subtract ST(0) from m64fp and store result in 
ST(0)

D8 E8+i FSUBR ST(0), ST(i) Valid Valid Subtract ST(0) from ST(i) and store result in 
ST(0)

DC E0+i FSUBR ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0) and store result in 
ST(i)

DE E0+i FSUBRP ST(i), ST(0) Valid Valid Subtract ST(i) from ST(0), store result in ST(i), 
and pop register stack

DE E1 FSUBRP Valid Valid Subtract ST(1) from ST(0), store result in ST(1), 
and pop register stack

DA /5 FISUBR m32int Valid Valid Subtract ST(0) from m32int and store result in 
ST(0)

DE /5 FISUBR m16int Valid Valid Subtract ST(0) from m16int and store result in 
ST(0)
2-224
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-225
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FTST—TEST

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to 0.

C0, C2, C3 See above table.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA The source operand is a NaN value or is in an unsupported format.

#D The source operand is a denormal value.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 E4 FTST Valid Valid Compare ST(0) with 0.0.
2-226
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

C0, C2, C3 See table on previous page.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA One or both operands are SNaN values or have unsupported formats. Detection of a QNaN
value in and of itself does not raise an invalid-operand exception.

#D One or both operands are denormal values.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

DD E0+i FUCOM ST(i) Valid Valid Compare ST(0) with ST(i)
DD E1 FUCOM Valid Valid Compare ST(0) with ST(1)
DD E8+i FUCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop register stack
DD E9 FUCOMP Valid Valid Compare ST(0) with ST(1) and pop register stack
DA E9 FUCOMPP Valid Valid Compare ST(0) with ST(1) and pop register stack twice
2-227
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FWAIT—Wait
See entry for WAIT/FWAIT—Wait.
2-228
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FXAM—Examine

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Sign of value in ST(0).

C0, C2, C3 See table above.

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 E5 FXAM Valid Valid Classify value or number in ST(0)

Class C3 C2 C0

Unsupported 0 0 0

NaN 0 0 1

Normal finite number 0 1 0

Infinity 0 1 1

Zero 1 0 0

Empty 1 0 1

Denormal number 1 1 0
2-229
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FXCH—Exchange Register Contents

IA-32e Mode Operation

Same as legacy mode.

FPU Flags Affected

C1 Cleared to 0.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 C8+i FXCH ST(i) Valid Valid Exchange the contents of ST(0) and ST(i)
D9 C9 FXCH Valid Valid Exchange the contents of ST(0) and ST(1)
2-230
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FXRSTOR—Restore x87 FPU, MMX, SSE, and SSE2 State

x87 FPU and SIMD Floating-Point Exceptions

None.

IA-32e Mode Operation

See FXSAVE for IA-32e Mode save/restore format.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment. (See align-
ment check exception [#AC] below.)

If attempting to set a reserved bit in MXCSR.

#SS(0) For an illegal address in the SS segment. 

#MF If there is a pending x87 FPU exception.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK prefix.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an
alignment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set. 

#MF If there is a pending x87 FPU exception.

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK override prefix.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F AE /1 FXRSTOR m512byte Valid Valid Restore the x87 FPU, MMX, XMM, and MXCSR 
register state from m512byte.
2-231
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK prefix.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an
alignment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).
2-232
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FXSAVE—Save x87 FPU, MMX, SSE, and SSE2 State

Description

Saves the current state of the x87 FPU, MMX, XMM, and MXCSR registers to a 512-byte memory location specified
in the destination operand. Table 2-12 shows the layout of the state information in memory in legacy mode.
 

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F AE /0 FXSAVE m512byte Valid Valid Save the x87 FPU, MMX, XMM, and MXCSR register 
state to m512byte.

Table 2-12.  Layout of the Legacy FXSAVE Map
15 14 13        12 11        10 9             8 7             6 5       4 3            2 1             0

Reserved CS FPU IP FOP FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

Reserved 288

Reserved 304

Reserved 320

Reserved 336

Reserved 352

Reserved 368

Reserved 384

Reserved 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496
2-233
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The destination operand contains the first byte of the memory image, and it must be aligned on a 16-byte boundary. A
misaligned destination operand will result in a general-protection (#GP) exception being generated (or in some cases,
an alignment check exception [#AC]).

The FXSAVE instruction is used when an operating system needs to perform a context switch or when an exception
handler needs to save and examine the current state of the x87 FPU, MMX, and/or XMM and MXCSR registers. The
fields in Table 2-12 are as follows:

FCW x87 FPU Control Word (16 bits). See Figure 8-6 in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1, for the layout of the x87 FPU control word.

FSW x87 FPU Status Word (16 bits). See Figure 8-4 in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1, for the layout of the x87 FPU status word.

FTW x87 FPU Tag Word (8 bits). The tag information saved here is abridged, as described in the
following paragraphs. See Figure 8-7 in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 1, for the layout of the x87 FPU tag word.

FOP x87 FPU Opcode (16 bits). The lower 11 bits of this field contain the opcode, upper 5 bits are
reserved. See Figure 8-8 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1,
for the layout of the x87 FPU opcode field.

FPU IP x87 FPU Instruction Pointer Offset (32 bits). The contents of this field differ depending on the
current addressing mode (32-bit or 16-bit) of the processor when the FXSAVE instruction was
executed:

• 32-bit mode—32-bit IP offset.

• 16-bit mode—low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the IA-32 Intel Architec-
ture Software Developer’s Manual, Volume 1, for a description of the x87 FPU instruction pointer.

CS x87 FPU Instruction Pointer Selector (16 bits).

FPU DP x87 FPU Instruction Operand (Data) Pointer Offset (32 bits). The contents of this field differ
depending on the current addressing mode (32-bit or 16-bit) of the processor when the FXSAVE
instruction was executed:

• 32-bit mode—32-bit IP offset.

• 16-bit mode—low 16 bits are IP offset; high 16 bits are reserved.

See “x87 FPU Instruction and Operand (Data) Pointers” in Chapter 8 of the IA-32 Intel Architec-
ture Software Developer’s Manual, Volume 1, for a description of the x87 FPU operand pointer.

DS x87 FPU Instruction Operand (Data) Pointer Selector (16 bits).

MXCSR MXCSR Register State (32 bits). See Figure 10-3 in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 1, for the layout of the MXCSR register. If the OSFXSR bit in control
register CR4 is not set, the FXSAVE instruction may not save this register. This behavior is imple-
mentation dependent.

MXCSR_
MASK

MXCSR_MASK (32 bits). This value can be used to adjust a value to be written to the MXCSR
register to ensure that all reserved bits are set to 0. Setting the reserved bits to 0 prevents a general-
protection exception (#GP) from being generated when writing to the MXCSR register with an
FXRSTOR or LDMXCSR instruction. See “Guidelines for Writing to the MXCSR Register” in
Chapter 11 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for instruc-
tions for how to determine and use the MXCSR_MASK value.

ST0/MM0 
through ST7/
MM7

x87 FPU or MMX registers. These 80-bit fields contain the x87 FPU data registers or the MMX
registers, depending on the state of the processor prior to the execution of the FXSAVE instruc-
tion. If the processor had been executing x87 FPU instruction prior to the FXSAVE instruction,
the x87 FPU data registers are saved; if it had been executing MMX instructions (or SSE or SSE2
instructions that operated on the MMX registers), the MMX registers are saved. When the MMX
registers are saved, the high 16-bits of the field are reserved.
2-234
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The FXSAVE instruction saves an abridged version of the x87 FPU tag word in the FTW field (unlike the FSAVE
instruction, which saves the complete tag word). The tag information is saved in physical register order (R0 through
R7), rather than in top-of-stack (TOS) order. With the FXSAVE instruction, however, only a single bit (1 for valid or
0 for empty) is saved for each tag. For example, assume that the tag word is currently set as follows:

R7 R6 R5 R4 R3 R2 R1 R0

11 xx xx xx 11 11 11 11

Here, 11B indicates empty stack elements and “xx” indicates valid (00B), zero (01B), or special (10B). 

For this example, the FXSAVE instruction saves only the following 8-bits of information:

R7 R6 R5 R4 R3 R2 R1 R0

0 1 1 1 0 0 0 0

Here, a 1 is saved for any valid, zero, or special tag, and a 0 is saved for any empty tag.

The operation of the FXSAVE instruction differs from that of the FSAVE instruction, the as follows:

• FXSAVE instruction does not check for pending unmasked floating-point exceptions. (The FXSAVE operation in
this regard is similar to the operation of the FNSAVE instruction). 

• After the FXSAVE instruction has saved the state of the x87 FPU, MMX, XMM, and MXCSR registers, the
processor retains the contents of the registers. Because of this behavior, the FXSAVE instruction cannot be used
by an application program to pass a “clean” x87 FPU state to a procedure, since it retains the current state. To
clean the x87 FPU state, an application must explicitly execute an FINIT instruction after an FXSAVE instruction
to reinitialize the x87 FPU state.

• The format of the memory image saved with the FXSAVE instruction is the same regardless of the current
addressing mode (32-bit or 16-bit) and operating mode (protected, real address, or system management). This
behavior differs from the FSAVE instructions, where the memory image format is different depending on the
addressing mode and operating mode. Because of the different image formats, the memory image saved with the
FXSAVE instruction cannot be restored correctly with the FRSTOR instruction, and likewise the state saved with
the FSAVE instruction cannot be restored correctly with the FXRSTOR instruction.

Note that The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP data
(assuming the stored data was not the contents of MMX registers) using the following table:

XMM0 through 
XMM7

XMM registers (128 bits per field). If the OSFXSR bit in control register CR4 is not set, the
FXSAVE instruction may not save these registers. This behavior is implementation dependent.
2-235
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the significand. The M-bit is defined
to be the most significant bit of the fractional portion of the significand (i.e., the bit immediately to the right of the
decimal place).

When the M- bit is the most significant bit of the fractional portion of the significand, it must be 0 if the fraction is all
0’s.

Operation

DEST ← Save(x87 FPU, MMX, XXM7-XMM0, MXCSR);

IA-32e Mode Operation

In IA-32e mode there are two fxsave/fxrstor formats which differ depending on whether the processor is in compati-
bility mode or 64-bit mode. In 64-bit mode, all of the SSE registers, XMM0 through XMM15, are saved. In compati-
bility mode, legacy SSE registers, XMM0 through XMM7, are saved according to the legacy FXSAVE map. In 64-bit
mode, the layout of the 64-bit FXSAVE map has two flavors, depending on the value of the REX.W bit. The difference
of these two flavors is in the FPU IP and FPU DP pointers. When REX.W = 0, the FPU IP is saved as CS with the 32
bit IP, and the FPU DP is saved as DS with the 32 bit DP. When REX.W = 1, the FPU IP and FPU DP are both 64 bit
values without and segment selectors. The IA-32e Mode save formats are shown in Table 2-14 and Table 2-15 listed
below.

Table 2-13.  State Save Map
Exponent

all 1’s
Exponent

all 0’s
Fraction

all 0’s
J and M

bits
FTW valid bit x87 FTW

0 0 0 0x 1 Special 10

0 0 0 1x 1 Valid 00

0 0 1 00 1 Special 10

0 0 1 10 1 Valid 00

0 1 0 0x 1 Special 10

0 1 0 1x 1 Special 10

0 1 1 00 1 Zero 01

0 1 1 10 1 Special 10

1 0 0 1x 1 Special 10

1 0 0 1x 1 Special 10

1 0 1 00 1 Special 10

1 0 1 10 1 Special 10

For all legal combinations above 0 Empty 11

Table 2-14.  Layout of the 64-bit FXSAVE Map When REX.W Is Set
15 14 13        12 11        10 9             8 7             6 5       4 3            2 1             0

FPU IP FOP FTW FSW FCW 0

MXCSR_MASK MXCSR FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96
2-236
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Table 2-15.  Layout of the 64-bit FXSAVE Map When REX.W Is Clear
15 14 13        12 11        10 9             8 7             6 5       4 3            2 1             0

Reserved CS FPU IP FOP FTW FSW FCW 0

MXCSR_MASK MXCSR Reserved DS FPU DP 16

Reserved ST0/MM0 32

Reserved ST1/MM1 48

Reserved ST2/MM2 64

Reserved ST3/MM3 80

Reserved ST4/MM4 96

Reserved ST5/MM5 112

Reserved ST6/MM6 128

Reserved ST7/MM7 144

XMM0 160

XMM1 176

Table 2-14.  Layout of the 64-bit FXSAVE Map When REX.W Is Set (Contd.)
15 14 13        12 11        10 9             8 7             6 5       4 3            2 1             0
2-237
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



XMM2 192

XMM3 208

XMM4 224

XMM5 240

XMM6 256

XMM7 272

XMM8 288

XMM9 304

XMM10 320

XMM11 336

XMM12 352

XMM13 368

XMM14 384

XMM15 400

Reserved 416

Reserved 432

Reserved 448

Reserved 464

Reserved 480

Reserved 496

Table 2-15.  Layout of the 64-bit FXSAVE Map When REX.W Is Clear
15 14 13        12 11        10 9             8 7             6 5       4 3            2 1             0
2-238
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment. (See the
description of the alignment check exception [#AC] below.)

#SS(0) For an illegal address in the SS segment. 

#MF If there is a pending x87 FPU exception.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK override prefix.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an
alignment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#MF If there is a pending x87 FPU exception.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK override prefix.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#MF If there is a pending x87 FPU exception.

#PF(fault-code) For a page fault.

#AC For unaligned memory reference if the current privilege level is 3.

Compatibility Mode Exceptions

Same as protected mode exceptions.
2-239
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#UD If EM in CR0 is set.

If CPUID feature flag FXSR is 0.

If instruction is preceded by a LOCK prefix.

#AC If this exception is disabled a general protection exception (#GP) is signaled if the memory
operand is not aligned on a 16-byte boundary, as described above. If the alignment check
exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may
vary with implementation, as follows. In all implementations where #AC is not signaled, a
general protection exception is signaled in its place. In addition, the width of the alignment
check may also vary with implementation. For instance, for a given implementation, an
alignment check exception might be signaled for a 2-byte misalignment, whereas a general
protection exception might be signaled for all other misalignments (4-, 8-, or 16-byte
misalignments).

Implementation Note

The order in which the processor signals general-protection (#GP) and page-fault (#PF) exceptions when they both
occur on an instruction boundary is given in Table 5-2 in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 3. This order vary for the FXSAVE instruction for different IA-32 processor implementations.
2-240
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FXTRACT—Extract Exponent and Significand

IA-32e Mode Operation

Same as legacy mode

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

C0, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

Stack overflow occurred.

#IA Source operand is an SNaN value or unsupported format.

#Z ST(0) operand is ±0.

#D Source operand is a denormal value.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F4 FXTRACT Valid Valid Separate value in ST(0) into exponent and significand, 
store exponent in ST(0), and push the significand onto 
the register stack.
2-241
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FYL2X—Compute y ∗ log2x

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

IA-32e Mode Operation

Same as legacy mode

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN or unsupported format.

Source operand in register ST(0) is a negative finite value (not −0).

#Z Source operand in register ST(0) is ±0.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F1 FYL2X Valid Valid Replace ST(1) with (ST(1) ∗ log2ST(0)) and pop the 
register stack
2-242
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



FYL2XP1—Compute y ∗ log2(x +1)

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is generated: 0 ← not
roundup; 1 ← roundup.

C0, C2, C3 Undefined.

IA-32e Mode Operation

Same as legacy mode

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA Either operand is an SNaN value or unsupported format.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#O Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Real-Address Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

#NM EM or TS in CR0 is set.

#MF If there is a pending x87 FPU exception.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

D9 F9 FYL2XP1 Valid Valid Replace ST(1) with ST(1) ∗ log2(ST(0) + 1.0) and pop 
the register stack
2-243
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



HADDPD—Horizontal Add Packed Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 7C /r HADDPD xmm1, xmm2/m128 Valid Valid Horizontal add packed double-precision 
floating-point values from xmm2/m128 to 
xmm1.
2-244
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.
2-245
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



HADDPS—Horizontal Add Packed Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F 7C /r HADDPS xmm1, xmm2/m128 Valid Valid Horizontal add packed single-precision 
floating-point values from xmm2/m128 to 
xmm1.
2-246
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.
2-247
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



HLT—Halt

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F4 HLT Valid Valid Halt
2-248
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



HSUBPD—Horizontal Subtract Packed Double-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#GP(0) If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

66 0F 7D /r HSUBPD xmm1, xmm2/m128 Valid Valid Horizontal subtract packed double-
precision floating-point values from 
xmm2/m128 to xmm1.
2-249
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.
2-250
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



HSUBPS—Horizontal Subtract Packed Single-Precision Floating-Point Values

IA-32e Mode Operation

Enables access to XMM8-XMM15 registers.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#SS(0) For an illegal address in the SS segment. 

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Real-Address Mode Exceptions

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of segment.

If any part of the operand lies outside the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault 

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F2 0F 7D /r HSUBPS xmm1, xmm2/m128 Valid Valid Horizontal subtract packed single-
precision floating-point values from 
xmm2/m128 to xmm1.
2-251
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set. 

#XM If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 1. 

#UD If an unmasked SIMD floating-point exception and OSXMMEXCPT in CR4 is 0.

If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.
2-252
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



IDIV—Signed Divide

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

IA-32e Mode Operation

Promoted to 64-bits.

Default operation size 32-bits

RAX contains a 64-bit quotient, RDX contains a 64-bit remainder.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F6 /7 IDIV r/m8 Valid Valid Signed divide AX by r/m8, with result stored in
AL ← Quotient, AH ← Remainder

REX + F6 /7 IDIV r/m8* Valid N.E. Signed divide AX by r/m8, with result stored in
AL ← Quotient, AH ← Remainder

F7 /7 IDIV r/m16 Valid Valid Signed divide DX:AX by r/m16, with result stored in
AX ← Quotient, DX ← Remainder

F7 /7 IDIV r/m32 Valid Valid Signed divide EDX:EAX by r/m32, with result stored 
in EAX ← Quotient, EDX ← Remainder

REX.W + F7 /7 IDIV r/m64 Valid N.E. Signed divide RDX:RAX by r/m64, with result stored 
in RAX ← Quotient, RDX ← Remainder

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also
refer to Section 1.4.2.2.
2-253
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#DE If the source operand (divisor) is 0.

The signed result (quotient) is too large for the destination.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#DE If the source operand (divisor) is 0

If the quotient is too large for the designated register.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-254
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



IMUL—Signed Multiply

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits are carried into the upper
half of the result and cleared when the result fits exactly in the lower half of the result. For the two- and three-operand
forms of the instruction, the CF and OF flags are set when the result must be truncated to fit in the destination operand
size and cleared when the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

IA-32e Mode Operation

Promoted to 64-bits.

Default operation size 32-bits

Enables access to new registers R8-R15.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F6 /5 IMUL r/m8* Valid Valid AX← AL ∗ r/m byte
F7 /5 IMUL r/m16 Valid Valid DX:AX ← AX ∗ r/m word
F7 /5 IMUL r/m32 Valid Valid EDX:EAX ← EAX ∗ r/m32
REX.W + F7 /5 IMUL r/m64 Valid N.E. RDX:RAX ← RAX ∗ r/m64
0F AF /r IMUL r16,r/m16 Valid Valid word register ← word register ∗ r/m16
0F AF /r IMUL r32,r/m32 Valid Valid doubleword register ← doubleword 

register ∗ r/m32
REX.W + 0F AF /r IMUL r64,r/m64 Valid N.E. Quadword register ← Quadword register 

∗ r/m Quadword
6B /r ib IMUL r16,r/m16,imm8 Valid Valid word register ← r/m16 ∗ sign-extended 

immediate byte
6B /r ib IMUL r32,r/m32,imm8 Valid Valid doubleword register ← r/m32 ∗ sign-

extended immediate byte
REX.W + 6B /r ib IMUL r64,r/m64,imm8 Valid N.E. Quadword register ← r/m64 ∗ sign-

extended immediate byte
6B /r ib IMUL r16,imm8 Valid Valid word register ← word register ∗ sign-

extended immediate byte
6B /r ib IMUL r32,imm8 Valid Valid doubleword register ← doubleword 

register ∗ sign-extended immediate byte
REX.W + 6B /r ib IMUL r64,imm8 Valid N.E. Quadword register ← Quadword register 

∗ sign-extended immediate byte
69 /r iw IMUL r16,r/m16,imm16 Valid Valid word register ← r/m16 ∗ immediate word
69 /r id IMUL r32,r/m32,imm32 Valid Valid doubleword register ← r/m32 ∗ 

immediate doubleword
REX.W + 69 /r id IMUL r64,r/m64,imm32 Valid N.E. Quadword register ← r/m64 ∗ immediate 

doubleword
69 /r iw IMUL r16,imm16 Valid Valid word register ← r/m16 ∗ immediate word
69 /r id IMUL r32,imm32 Valid Valid doubleword register ← r/m32 ∗ 

immediate doubleword
REX.W + 69 /r id IMUL r64,imm32 Valid N.E. Quadword register ← r/m64 ∗ immediate 

doubleword
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also

refer to Section 1.4.2.2.  
2-255
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-256
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



IN—Input from Port

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode.

Default operation size 32-bits

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.

Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

E4 ib IN AL,imm8 Valid Valid Input byte from imm8 I/O port address into AL
E5 ib IN AX,imm8 Valid Valid Input word from imm8 I/O port address into AX
E5 ib IN EAX,imm8 Valid Valid Input dword from imm8 I/O port address into EAX
REX.W + E5 ib IN RAX,imm8 N.P. N.E. REX does not change ensuing instruction
EC IN AL,DX Valid Valid Input byte from I/O port in DX into AL
ED IN AX,DX Valid Valid Input word from I/O port in DX into AX
ED IN EAX,DX Valid Valid Input doubleword from I/O port in DX into EAX
REX.W + ED IN RAX,DX N.P. N.E. REX does not change ensuing instruction
2-257
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



INC—Increment by 1

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

IA-32e Mode Operation

Promoted to 64-bits.

Default operation size 32-bits

Opcode 40H through 47H are REX prefixes in 64-bit mode.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

FE /0 INC r/m8 Valid Valid Increment r/m byte by 1
REX + FE /0 INC r/m8* Valid N.E. Increment r/m byte by 1
FF /0 INC r/m16 Valid Valid Increment r/m word by 1
FF /0 INC r/m32 Valid Valid Increment r/m doubleword by 1
REX.W + FF /0 INC r/m64 Valid N.E. Increment r/m quadword by 1
40+ rw INC r16 N.E. Valid Increment word register by 1
40+ rd INC r32 N.E. Valid Increment doubleword register by 1
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used: AH, BH, CH, DH. Also,

refer to Section 1.4.2.2.
2-258
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-259
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



INS/INSB/INSW/INSD—Input from Port to String

Flags Affected

None.

IA-32e Mode Operation

Default operand size is 32 bits and is not promoted by REX.W.

64-bit mode enables the use of RDI.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

6C INS m8, DX Valid Valid Input byte from I/O port specified in DX into memory 
location specified in ES:(E)DI

REX.W + 6C INS m8, DX Valid N.E. Input byte from I/O port specified in DX into memory 
location specified in RDI

6D INS m16, DX Valid Valid Input word from I/O port specified in DX into memory 
location specified in ES:(E)DI

6D INS m32, DX Valid Valid Input doubleword from I/O port specified in DX into 
memory location specified in ES:(E)DI

REX.W + 6D INS m32, DX N.P. N.E. Input default size from I/O port specified in DX into 
memory location specified in RDI

6C INSB Valid Valid Input byte from I/O port specified in DX into memory 
location specified with ES:(E)DI

REX.W + 6C INSB Valid N.E. Input byte from I/O port specified in DX into memory 
location specified with RDI

6D INSW Valid Valid Input word from I/O port specified in DX into memory 
location specified in ES:(E)DI

6D INSD Valid Valid Input doubleword from I/O port specified in DX into 
memory location specified in ES:(E)DI

REX.W + 6D INSD N.P. N.E. Input default size from I/O port specified in DX into 
memory location specified in RDI
2-260
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Compatibility Mode Exceptions

Same as protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL) and any of the
corresponding I/O permission bits in TSS for the I/O port being accessed is 1.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-261
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



INT n/INTO/INT 3—Call to Interrupt Procedure

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, depending on
the mode of operation of the processor when the INT instruction is executed (see the “Operation” section). If the inter-
rupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS image in the new task’s TSS.

IA-32e Mode Operation

Default operation size 32-bits

Protected Mode Exceptions

#GP(0) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code
segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside
its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n, INT 3, or INTO instruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor
for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment and no stack switch occurs.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.

If pushing the return address, flags, error code, or stack segment pointer exceeds the bounds
of the new stack segment when a stack switch occurs.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment selector in the TSS
is not equal to the DPL of the code segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

CC INT 3 Valid Valid Interrupt 3—trap to debugger
CD  ib INT imm8 Valid Valid Interrupt vector number specified by immediate byte
CE INTO No Valid Interrupt 4—if overflow flag is 1
2-262
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment.

Virtual-8086 Mode Exceptions

#GP(0) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond the code
segment limits.

#GP(selector) If the segment selector in the interrupt-, trap-, or task gate is null.

If a interrupt-, trap-, or task gate, code segment, or TSS segment selector index is outside
its descriptor table limits.

If the interrupt vector number is outside the IDT limits.

If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n instruction and the DPL of an interrupt-, trap-, or
task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a segment descriptor
for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not present.

If pushing the return address, flags, error code, stack segment pointer, or data segments
exceeds the bounds of the stack segment.

#NP(selector) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(selector) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the DPL
of the code segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is null.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.

#BP If the INT 3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

Compatibility Mode Exceptions

Same as for protected mode exceptions.
2-263
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#GP(0) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is non-canonical.

#GP(selector) If the segment selector in the 64-bit interrupt or trap gate is null.

If the interrupt vector number is outside the IDT limits.

If the interrupt vector number points to a gate which is in non-canonical space.

If the interrupt vector number points to a descriptor which is not a 64-bit interrupt gate or
64-bit trap gate.

If the descriptor pointed to by the gate selector is outside the descriptor table limit.

If the descriptor pointed to by the gate selector is in non-canonical space.

If the descriptor pointed to by the gate selector is not a code segment.

If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both the L-
bit and D-bit set.

If the descriptor pointed to by the gate selector has DPL > CPL.

#SS(0) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space with
no stack switch.

#SS(selector) If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in non-
canonical space on a stack switch (either CPL change or no-CPL with IST).

#NP(selector) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.

#TS(selector) If an attempt to load RSP from the TSS causes an access to non-canonical space.

If the RSP from the TSS is outside descriptor table limits. 

#PF(fault-code) If a page fault occurs.
2-264
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



INVD—Invalidate Internal Caches

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 08 INVD Valid Valid Flush internal caches; initiate flushing of external 
caches.
2-265
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



INVLPG—Invalidate TLB Entry

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD Operand is a register.

Real-Address Mode Exceptions

#UD Operand is a register.

Virtual-8086 Mode Exceptions

#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#UD Operand is a register.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 01/7 INVLPG m Valid Valid Invalidate TLB Entry for page that contains m
2-266
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



IRET/IRETD—Interrupt Return

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation of the
processor. If performing a return from a nested task to a previous task, the EFLAGS register will be modified according
to the EFLAGS image stored in the previous task’s TSS.

IA-32e Mode Operation

Promoted to 64-bits.

Default operation size 32-bits

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.

If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code segment
selector.

If the segment descriptor for a code segment does not indicate it is a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is
enabled.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

CF IRET Valid Valid Interrupt return (16-bit operand size)
CF IRETD Valid Valid Interrupt return (32-bit operand size)
REX.W + CF IRETQ Valid N.E. Interrupt return (64-bit operand size)
2-267
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.

IF IOPL not equal to 3

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.

#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the EFLAGS.NT bit is set.

If the return code segment selector is null.

If the stack segment selector is null going back to compatibility mode.

If the stack segment selector is null going back to CPL3 64-bit mode.

If a null stack segment selector RPL is not equal to CPL going back to non-CPL3 64-bit
mode.

If the return instruction pointer is not within the return code segment limit.

If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.

If a segment descriptor memory address is non-canonical.

If the segment descriptor for a code segment does not indicate it is a code segment.

If the proposed new code segment descriptor has both the D-bit and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the RPL of the code segment
selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the return code segment selector
RPL.

If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of the return code segment
selector.

If the stack segment selector RPL is not equal to the RPL of the return code segment
selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical address to be referenced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is
enabled.
2-268
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Jcc—Jump if Condition Is Met

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

77 cb JA rel8 Valid Valid Jump short if above (CF=0 and ZF=0)
73 cb JAE rel8 Valid Valid Jump short if above or equal (CF=0)
72 cb JB rel8 Valid Valid Jump short if below (CF=1)
76 cb JBE rel8 Valid Valid Jump short if below or equal (CF=1 or ZF=1)
72 cb JC rel8 Valid Valid Jump short if carry (CF=1)
E3 cb JCXZ rel8 Valid Valid Jump short if CX register is 0
E3 cb JECXZ rel8 Valid Valid Jump short if ECX register is 0
74 cb JE rel8 Valid Valid Jump short if equal (ZF=1)
7F cb JG rel8 Valid Valid Jump short if greater (ZF=0 and SF=OF)
7D cb JGE rel8 Valid Valid Jump short if greater or equal (SF=OF)
7C cb JL rel8 Valid Valid Jump short if less (SF<>OF)
7E cb JLE rel8 Valid Valid Jump short if less or equal (ZF=1 or SF<>OF)
76 cb JNA rel8 Valid Valid Jump short if not above (CF=1 or ZF=1)
72 cb JNAE rel8 Valid Valid Jump short if not above or equal (CF=1)
73 cb JNB rel8 Valid Valid Jump short if not below (CF=0)
77 cb JNBE rel8 Valid Valid Jump short if not below or equal (CF=0 and 

ZF=0)
73 cb JNC rel8 Valid Valid Jump short if not carry (CF=0)
75 cb JNE rel8 Valid Valid Jump short if not equal (ZF=0)
7E cb JNG rel8 Valid Valid Jump short if not greater (ZF=1 or SF<>OF)
7C cb JNGE rel8 Valid Valid Jump short if not greater or equal (SF<>OF)
7D cb JNL rel8 Valid Valid Jump short if not less (SF=OF)
7F cb JNLE rel8 Valid Valid Jump short if not less or equal (ZF=0 and 

SF=OF)
71 cb JNO rel8 Valid Valid Jump short if not overflow (OF=0)
7B cb JNP rel8 Valid Valid Jump short if not parity (PF=0)
79 cb JNS rel8 Valid Valid Jump short if not sign (SF=0)
75 cb JNZ rel8 Valid Valid Jump short if not zero (ZF=0)
70 cb JO rel8 Valid Valid Jump short if overflow (OF=1)
7A cb JP rel8 Valid Valid Jump short if parity (PF=1)
7A cb JPE rel8 Valid Valid Jump short if parity even (PF=1)
7B cb JPO rel8 Valid Valid Jump short if parity odd (PF=0)
78 cb JS rel8 Valid Valid Jump short if sign (SF=1)
74 cb JZ rel8 Valid Valid Jump short if zero (ZF ← 1)
0F 87 cw JA rel16 N.S. Valid Jump near if above (CF=0 and ZF=0). Not 

supported in 64-bit mode.
0F 87 cd JA rel32 Valid Valid Jump near if above (CF=0 and ZF=0)
0F 83 cw JAE rel16 N.S. Valid Jump near if above or equal (CF=0). Not 

supported in 64-bit mode.
0F 83 cd JAE rel32 Valid Valid Jump near if above or equal (CF=0)
0F 82 cw JB rel16 N.S. Valid Jump near if below (CF=1). Not supported in 64-

bit mode.
0F 82 cd JB rel32 Valid Valid Jump near if below (CF=1)
0F 86 cw JBE rel16 N.S. Valid Jump near if below or equal (CF=1 or ZF=1). 

Not supported in 64-bit mode.
0F 86 cd JBE rel32 Valid Valid Jump near if below or equal (CF=1 or ZF=1)
0F 82 cw JC rel16 N.S. Valid Jump near if carry (CF=1). Not supported in 64-

bit mode.
0F 82 cd JC rel32 Valid Valid Jump near if carry (CF=1)
0F 84 cw JE rel16 N.S. Valid Jump near if equal (ZF=1). Not supported in 64-

bit mode.
2-269
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



0F 84 cd JE rel32 Valid Valid Jump near if equal (ZF=1)
0F 84 cw JZ rel16 N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit 

mode.
0F 84 cd JZ rel32 Valid Valid Jump near if 0 (ZF=1)
0F 8F cw JG rel16 N.S. Valid Jump near if greater (ZF=0 and SF=OF). Not 

supported in 64-bit mode.
0F 8F cd JG rel32 Valid Valid Jump near if greater (ZF=0 and SF=OF)
0F 8D cw JGE rel16 N.S. Valid Jump near if greater or equal (SF=OF). Not 

supported in 64-bit mode.
0F 8D cd JGE rel32 Valid Valid Jump near if greater or equal (SF=OF)
0F 8C cw JL rel16 N.S. Valid Jump near if less (SF<>OF). Not supported in 

64-bit mode.
0F 8C cd JL rel32 Valid Valid Jump near if less (SF<>OF)
0F 8E cw JLE rel16 N.S. Valid Jump near if less or equal (ZF=1 or SF<>OF). 

Not supported in 64-bit mode.
0F 8E cd JLE rel32 Valid Valid Jump near if less or equal (ZF=1 or SF<>OF)
0F 86 cw JNA rel16 N.S. Valid Jump near if not above (CF=1 or ZF=1). Not 

supported in 64-bit mode.
0F 86 cd JNA rel32 Valid Valid Jump near if not above (CF=1 or ZF=1)
0F 82 cw JNAE rel16 N.S. Valid Jump near if not above or equal (CF=1). Not 

supported in 64-bit mode.
0F 82 cd JNAE rel32 Valid Valid Jump near if not above or equal (CF=1)
0F 83 cw JNB rel16 N.S. Valid Jump near if not below (CF=0). Not supported in 

64-bit mode.
0F 83 cd JNB rel32 Valid Valid Jump near if not below (CF=0)
0F 87 cw JNBE rel16 N.S. Valid Jump near if not below or equal (CF=0 and 

ZF=0). Not supported in 64-bit mode.
0F 87 cd JNBE rel32 Valid Valid Jump near if not below or equal (CF=0 and 

ZF=0)
0F 83 cw JNC rel16 N.S. Valid Jump near if not carry (CF=0). Not supported in 

64-bit mode.
0F 83 cd JNC rel32 Valid Valid Jump near if not carry (CF=0)
0F 85 cw JNE rel16 N.S. Valid Jump near if not equal (ZF=0). Not supported in 

64-bit mode.
0F 85 cd JNE rel32 Valid Valid Jump near if not equal (ZF=0)
0F 8E cw JNG rel16 N.S. Valid Jump near if not greater (ZF=1 or SF<>OF). Not 

supported in 64-bit mode.
0F 8E cd JNG rel32 Valid Valid Jump near if not greater (ZF=1 or SF<>OF)
0F 8C cw JNGE rel16 N.S. Valid Jump near if not greater or equal (SF<>OF). Not 

supported in 64-bit mode.
0F 8C cd JNGE rel32 Valid Valid Jump near if not greater or equal (SF<>OF)
0F 8D cw JNL rel16 N.S. Valid Jump near if not less (SF=OF). Not supported in 

64-bit mode.
0F 8D cd JNL rel32 Valid Valid Jump near if not less (SF=OF)
0F 8F cw JNLE rel16 N.S. Valid Jump near if not less or equal (ZF=0 and 

SF=OF). Not supported in 64-bit mode.
0F 8F cd JNLE rel32 Valid Valid Jump near if not less or equal (ZF=0 and 

SF=OF)
0F 81 cw JNO rel16 N.S. Valid Jump near if not overflow (OF=0). Not 

supported in 64-bit mode.
0F 81 cd JNO rel32 Valid Valid Jump near if not overflow (OF=0)
0F 8B cw JNP rel16 N.S. Valid Jump near if not parity (PF=0). Not supported in 

64-bit mode.
0F 8B cd JNP rel32 Valid Valid Jump near if not parity (PF=0)
0F 89 cw JNS rel16 N.S. Valid Jump near if not sign (SF=0). Not supported in 

64-bit mode.
0F 89 cd JNS rel32 Valid Valid Jump near if not sign (SF=0)

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description
2-270
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Flags Affected

None.

IA-32e Mode Operation

Operand size fixed at 64-bits

JMP Short is RIP = RIP + 8-bit offset sign extended to 64 bits

JMP Near is RIP = RIP + 32-bit offset sign extended to 64-bits

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the
effective address space from 0 to FFFFH. This condition can occur if a 32-bit address size
override prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

0F 85 cw JNZ rel16 N.S. Valid Jump near if not zero (ZF=0). Not supported in 
64-bit mode.

0F 85 cd JNZ rel32 Valid Valid Jump near if not zero (ZF=0)
0F 80 cw JO rel16 N.S. Valid Jump near if overflow (OF=1). Not supported in 

64-bit mode.
0F 80 cd JO rel32 Valid Valid Jump near if overflow (OF=1)
0F 8A cw JP rel16 N.S. Valid Jump near if parity (PF=1). Not supported in 64-

bit mode.
0F 8A cd JP rel32 Valid Valid Jump near if parity (PF=1)
0F 8A cw JPE rel16 N.S. Valid Jump near if parity even (PF=1). Not supported 

in 64-bit mode.
0F 8A cd JPE rel32 Valid Valid Jump near if parity even (PF=1)
0F 8B cw JPO rel16 N.S. Valid Jump near if parity odd (PF=0). Not supported in 

64-bit mode.
0F 8B cd JPO rel32 Valid Valid Jump near if parity odd (PF=0)
0F 88 cw JS rel16 N.S. Valid Jump near if sign (SF=1). Not supported in 64-

bit mode.
0F 88 cd JS rel32 Valid Valid Jump near if sign (SF=1)
0F 84 cw JZ rel16 N.S. Valid Jump near if 0 (ZF=1). Not supported in 64-bit 

mode.
0F 84 cd JZ rel32 Valid Valid Jump near if 0 (ZF=1)

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description
2-271
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



JMP—Jump

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

IA-32e Mode Operation

Promoted to 64-bits.

Operand size fixed at 64-bits

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment limits.

If the segment selector in the destination operand, call gate, task gate, or TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#GP(selector) If segment selector index is outside descriptor table limits. 

If the segment descriptor pointed to by the segment selector in the destination operand is
not for a conforming-code segment, nonconforming-code segment, call gate, task gate, or
task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment selector is greater than
the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

EB cb JMP rel8 Valid Valid Jump short, RIP = RIP + 8-bit displacement sign 
extended to 64-bits

E9 cw JMP rel16 N.S. Valid Jump near, relative, displacement relative to next 
instruction. Not supported in 64-bit mode.

E9 cd JMP rel32 Valid Valid Jump near, relative, RIP = RIP + 32-bit displacement 
sign extended to 64-bits

FF /4 JMP r/m16 N.S. Valid Jump near, absolute indirect, address = sign-extended 
r/m16. Not supported in 64-bit mode.

FF /4 JMP r/m32 N.S. Valid Jump near, absolute indirect, address = sign-extended 
r/m32. Not supported in 64-bit mode.

FF /4 JMP r/m64 Valid N.E. Jump near, absolute indirect, RIP = 64-Bit offset from 
register or memory

EA cd JMP ptr16:16 Inv. Valid Jump far, absolute, address given in operand
EA cp JMP ptr16:32 Inv. Valid Jump far, absolute, address given in operand
FF /5 JMP m16:16 Valid Valid Jump far, absolute indirect, address given in m16:16
FF /5 JMP m16:32 Valid Valid Jump far, absolute indirect, address given in m16:32

In 32-bit mode of operation If selector points to a gate 
then RIP = 32-bit zero extended displacement taken 
from gate else RIP = zero extended 32-bit offset from 
far pointer referenced in the instruction. 

FF /5 JMP m16:64 Valid N.E. In 64-bit mode of operation If selector points to a gate 
then RIP = 64-bit displacement taken from gate else 
RIP = zero extended 32-bit offset from far pointer 
referenced in the instruction.
2-272
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL or
than the RPL of the call-gate, task-gate, or TSS’s segment selector.

If the segment descriptor for selector in a call gate does not indicate it is a code segment.

If the segment descriptor for the segment selector in a task gate does not indicate available
TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP (selector) If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3. (Only occurs when fetching target from memory.)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made. (Only occurs
when fetching target from memory.)

Compatibility Mode Exceptions

Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If target offset in destination operand is beyond the new code segment limit.

If the segment selector in the destination operand is null.

If the code segment selector in the 64-bit gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment selector.

#GP(selector) If the code segment or 64-bit call gate is outside descriptor table limits. 

If the code segment or 64-bit call gate overlaps non-canonical space. 

If the segment descriptor from a 64-bit call gate is in non-canonical space. 
2-273
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



If the segment descriptor pointed to by the segment selector in the destination operand is
not for a conforming-code segment, nonconforming-code segment, 64-bit call gate.

If the segment descriptor pointed to by the segment selector in the destination operand is a
code segment, and has both the D-bit and the L-bit set.

If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for the
segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the descriptor table limits.

If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the
L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call gate does not indicate
it is a code segment. 

If the code segment is non-confirming and CPL != DPL.

If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.

#UD (64-bit mode only) If a far jump is direct to an absolute address in memory.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-274
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LAHF—Load Status Flags into AH Register

Flags Affected

None (that is, the state of the flags in the EFLAGS register is not affected).

IA-32e Mode Operation

Invalid in 64-bit mode.

Exceptions (All Operating Modes)

None.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

9F LAHF Valid Valid Load: AH ← EFLAGS(SF:ZF:0:AF:0:PF:1:CF)
2-275
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LAR—Load Access Rights Byte

Flags Affected

The ZF flag is set to 1 if the access rights are loaded successfully; otherwise, it is cleared to 0.

IA-32e Mode Operation

Same as legacy mode.

Default operand size 32-bits.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3. (Only occurs when fetching target from memory.)

Real-Address Mode Exceptions

#UD The LAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LAR instruction cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3. (Only occurs when fetching target from memory.)

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 02 /r LAR r16,r/m16 Valid Valid r16 ← r/m16 masked by FF00H
0F 02 /r LAR r32,r/m32 Valid Valid r32 ← r/m32 masked by 00FxFF00H
0F 02 /r LAR r64,r/m64 Valid N.E. r64 ← zero extended r/m32 masked by 

00FxFF00H
2-276
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LDDQU—Load Unaligned Double Quadword

Operation

If the memory address is not aligned on 16 byte boundary, some implementation may load up to 32 bytes and return
16 bytes in the destination. 

IA-32e Mode Operation

Enables access to XMM8-XMM15.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. 

#SS(0) If a memory operand effective address is outside the SS segment limit. 

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions 

#GP(0) If any part of the operand lies outside of the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode Compat/Leg Mode Description
F2 0F F0 /r LDDQU xmm1, mem Valid Valid Load unaligned data from mem and 

return double quadword in xmm1.
2-277
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE3 is 0.

#PF(fault-code) If a page fault occurs.
2-278
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LDMXCSR—Load MXCSR Register

IA-32e Mode Operation

Same as legacy mode.

C/C++ Compiler Intrinsic Equivalent

_mm_setcsr(unsigned int i)

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS, or GS segments.

For an attempt to set reserved bits in MXCSR.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real Address Mode Exceptions

#GP(0) For an attempt to set reserved bits in MXCSR.

#GP(0) If any part of the operand would lie outside of the effective address space from 0 to FFFFH.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault. 

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F,AE,/2 LDMXCSR m32 Valid Valid Load MXCSR register from m32.
2-279
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

For an attempt to set reserved bits in MXCSR.

#PF(fault-code) For a page fault.

#NM If TS in CR0 is set.

#UD If EM in CR0 is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag SSE is 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-280
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LDS/LES/LFS/LGS/LSS—Load Far Pointer

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode.

Default operand size 32-bits.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a null selector is loaded into the SS register.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#GP(selector) If the SS register is being loaded and any of the following is true: the segment selector index
is not within the descriptor table limits, the segment selector RPL is not equal to CPL, the
segment is a nonwritable data segment, or DPL is not equal to CPL.

If the DS, ES, FS, or GS register is being loaded with a non-null segment selector and any
of the following is true: the segment selector index is not within descriptor table limits, the
segment is neither a data nor a readable code segment, or the segment is a data or noncon-
forming-code segment and both RPL and CPL are greater than DPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment is marked not present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment selector and the
segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

C5 /r LDS r16,m16:16 Inv. Valid Load DS:r16 with far pointer from memory
C5 /r LDS r32,m16:32 Inv. Valid Load DS:r32 with far pointer from memory
0F B2 /r LSS r16,m16:16 Valid Valid Load SS:r16 with far pointer from memory
0F B2 /r LSS r32,m16:32 Valid Valid Load SS:r32 with far pointer from memory
0F B2 /r LSS r64,m16:64 Valid N.E. Load SS:r64 with far pointer from memory 
C4 /r LES r16,m16:16 Inv. Valid Load ES:r16 with far pointer from memory
C4 /r LES r32,m16:32 Inv. Valid Load ES:r32 with far pointer from memory
0F B4 /r LFS r16,m16:16 Valid Valid Load FS:r16 with far pointer from memory
0F B4 /r LFS r32,m16:32 Valid Valid Load FS:r32 with far pointer from memory
0F B4 /r LFS r64,m16:64 Valid N.E. Load FS:r64 with far pointer from memory 
0F B5 /r LGS r16,m16:16 Valid Valid Load GS:r16 with far pointer from memory
0F B5 /r LGS r32,m16:32 Valid Valid Load GS:r32 with far pointer from memory
0F B5 /r LGS r64,m16:64 Valid N.E. Load GS:r64 with far pointer from memory
2-281
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

If a null selector is attempted to be loaded into the SS register in compatibility mode.

If a null selector is attempted to be loaded into the SS register in CPL3 and 64-bit mode.

If a null selector is attempted to be loaded into the SS register in non-CPL3 and 64-bit mode
where its RPL is not equal to CPL.

#GP(Selector) If the DS, ES, FS, or GS register is being loaded with a non-null segment selector and any
of the following is true: the segment selector index is not within descriptor table limits, the
memory address of the descriptor is non-canonical, the segment is neither a data nor a read-
able code segment, or the segment is a data or nonconforming-code segment and both RPL
and CPL are greater than DPL.

If the SS register is being loaded and any of the following is true: the segment selector index
is not within the descriptor table limits, the memory address of the descriptor is non-canon-
ical, the segment selector RPL is not equal to CPL, the segment is a nonwritable data
segment, or DPL is not equal to CPL.

#SS(0) If a memory operand effective address is outside the SS segment limit.

If a memory operand effective address is non-canonical

#SS(Selector) If the SS register is being loaded and the segment is marked not present.

#NP(selector) If DS, ES, FS, or GS register is being loaded with a non-null segment selector and the
segment is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

#UD If source operand is not a memory location.
2-282
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LEA—Load Effective Address

Flags Affected

None.

IA-32e Mode Operation

Default operand size 32-bits.

Protected Mode Exceptions

#UD If source operand is not a memory location.

Real-Address Mode Exceptions

#UD If source operand is not a memory location.

Virtual-8086 Mode Exceptions

#UD If source operand is not a memory location.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

GP(0) If the memory address is in a non-canonical form.

#UD If source operand is not a memory location.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

8D /r LEA r16,m Valid Valid Store effective address for m in register r16
8D /r LEA r32,m Valid Valid Store effective address for m in register r32
8D /r LEA r64,m Valid N.E. Store effective address for m in register r64. Zero 

extended 32-bit register results to 64-bits.
2-283
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LEAVE—High Level Procedure Exit

Flags Affected

None.

IA-32e Mode Operation

Default Operation Size is 64 bits

In 64-bit mode a 32-bit operation

Protected Mode Exceptions

#SS(0) If the EBP register points to a location that is not within the limits of the current stack
segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If the EBP register points to a location outside of the effective address space from 0 to
FFFFH.

Virtual-8086 Mode Exceptions

#GP(0) If the EBP register points to a location outside of the effective address space from 0 to
FFFFH.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If the memory address is in a non-canonical form.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

C9 LEAVE Valid Valid Set SP to BP, then pop BP
C9 LEAVE Valid Valid Set ESP to EBP, then pop EBP
C9 LEAVE Valid N.E. Set RSP to RBP, then pop RBP
2-284
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LES—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.
2-285
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LFENCE—Load Fence

IA-32e Mode Operation

Same as legacy mode.

Intel C/C++ Compiler Intrinsic Equivalent

void_mm_lfence(void)

Exceptions (All Modes of Operation)

None.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F AE /5 LFENCE Valid Valid Serializes load operations.
2-286
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LFS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.
2-287
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LGDT/LIDT—Load Global/Interrupt Descriptor Table Register

Flags Affected

None.

64-bit Mode Operation

Promoted to 64-bits.

Operand size fixed at 8+2 bytes.

Loads 8 byte base and 2 byte limit.

Protected Mode Exceptions

#UD If source operand is not a memory location.

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD If source operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#UD If source operand is not a memory location.

#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 01 /2 LGDT m16&32 N.E. Valid Load m into GDTR
0F 01 /3 LIDT m16&32 N.E. Valid Load m into IDTR
0F 01 /2 LGDT m16&64 Valid N.E. Load m into GDTR
0F 01 /3 LIDT m16&64 Valid N.E. Load m into IDTR
2-288
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LGS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.
2-289
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LLDT—Load Local Descriptor Table Register

Flags Affected

None.

IA-32e Mode Operation

Promoted to 64-bits.

Operand size fixed at 16-bits.

References 64-bit mode descriptor to load 64-bit base.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the
GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The LLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The LLDT instruction is recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#GP(selector) If the selector operand does not point into the Global Descriptor Table or if the entry in the
GDT is not a Local Descriptor Table.

Segment selector is beyond GDT limit.

#NP(selector) If the LDT descriptor is not present.

#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 00 /2 LLDT r/m16 Valid Valid Load segment selector r/m16 into LDTR
2-290
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LIDT—Load Interrupt Descriptor Table Register
See entry for LGDT/LIDT—Load Global/Interrupt Descriptor Table Register. 
2-291
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LMSW—Load Machine Status Word

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode.

Default operand size 32-bits.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 01 /6 LMSW r/m16 Valid Valid Loads r/m16 in machine status word of CR0
2-292
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LOCK—Assert LOCK# Signal Prefix

Operation

AssertLOCK#(DurationOfAccompaningInstruction)

Flags Affected

None.

IA-32e Mode Operation

Same as legacy mode.

Protected Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Description” section above.
Other exceptions can be generated by the instruction that the LOCK prefix is being applied
to.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Description” section above.
Other exceptions can be generated by the instruction that the LOCK prefix is being applied
to.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used with an instruction not listed in the “Description” section above.
Other exceptions can be generated by the instruction that the LOCK prefix is being applied
to.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

F0 LOCK Valid Valid Asserts LOCK# signal for duration of the 
accompanying instruction
2-293
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LODS/LODSB/LODSW/LODSD/LODSQ—Load String

Flags Affected

None.

IA-32e Mode Operation

Promoted to 64-bits.

Default operand size 32-bits.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

AC LODS m8 Valid Valid For legacy mode, Load byte at address DS:(E)SI into 
AL. For 64-bit mode load byte at address (R)SI into AL.

AD LODS m16 Valid Valid For legacy mode, Load word at address DS:(E)SI into 
AX. For 64-bit mode load word at address (R)SI into AX.

AD LODS m32 Valid Valid For legacy mode, Load dword at address DS:(E)SI into 
EAX. For 64-bit mode load dword at address (R)SI into 
EAX.

REX.W + AD LODS m64 Valid N.E. Load qword at address (R)SI into RAX.
AC LODSB Valid Valid For legacy mode, Load byte at address DS:(E)SI into 

AL. For 64-bit mode load byte at address (R)SI into AL.
AD LODSW Valid Valid For legacy mode, Load word at address DS:(E)SI into 

AX. For 64-bit mode load word at address (R)SI into AX.
AD LODSD Valid Valid For legacy mode, Load dword at address DS:(E)SI into 

EAX. For 64-bit mode load dword at address (R)SI into 
EAX.

REX.W + AD LODSQ Valid N.E. Load qword at address (R)SI into RAX.
2-294
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.
2-295
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LOOP/LOOPcc—Loop According to ECX Counter

Flags Affected

None.

IA-32e Mode Operation

Promoted to 64-bits. 

Operand size at 64-bits.

JMP Short is RIP = RIP + 8-bit offset sign extended to 64 bits.

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is outside of the
effective address space from 0 to FFFFH. This condition can occur if a 32-bit address size
override prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

E2 cb LOOP rel8 Valid Valid Decrement count; jump short if count ≠ 0
REX.W + E2 cb LOOP rel8 Valid N.E. Decrement count; jump short if count ≠ 0. JMP Short 

is RIP = RIP + 8-bit offset sign-extended to 64-bits.
E1 cb LOOPE rel8 Valid Valid Decrement count; jump short if count ≠ 0 and ZF=1
REX.W + E1 cb LOOPE rel8 Valid N.E. Decrement count; jump short if count ≠ 0 and ZF=1. 

JMP Short is RIP = RIP + 8-bit offset sign-extended to 
64-bits.

E0 cb LOOPNE rel8 Valid Valid Decrement count; jump short if count ≠ 0 and ZF=0
REX.W + E0 cb LOOPNZ rel8 Valid N.E. Decrement count; jump short if count ≠ 0 and ZF=0. 

JMP Short is RIP = RIP + 8-bit offset sign-extended to 
64-bits.
2-296
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LSL—Load Segment Limit

Flags Affected

The ZF flag is set to 1 if the segment limit is loaded successfully; otherwise, it is cleared to 0.

IA-32e Mode Operation

Same as legacy mode

Default operand size at 32-bits.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Real-Address Mode Exceptions

#UD The LSL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD  The LSL instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 03 /r LSL r16,r/m16 Valid Valid Load: r16 ← segment limit, selector r/m16
0F 03 /r LSL r32,r/m32 Valid Valid Load: r32 ← segment limit, selector r/m32
REX.W + 0F 03 /r LSL r64,r/m32 Valid Valid Load: r64 ← zero extended segment limit, 

selector r/m64
2-297
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LSS—Load Full Pointer
See entry for LDS/LES/LFS/LGS/LSS—Load Far Pointer.
2-298
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



LTR—Load Task Register

Flags Affected

None.

IA-32e Mode Operation

Promoted to 64-bits. 

Operand size fixed at 16-bits.

References 64-bit mode descriptor to load 64-bit base.

Enables access to new registers R8-R15.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains a null segment
selector.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task that is already
busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The LTR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD  The LTR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

Opcode Instruction 64-Bit Mode
Compat/Leg 
Mode Description

0F 00 /3 LTR r/m16 Valid Valid Load r/m16 into task register
2-299
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2



64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the current privilege level is not 0.

If the memory address is in a non-canonical form.

#GP(selector) If the source selector points to a segment that is not a TSS or to one for a task that is already
busy.

If the selector points to LDT or is beyond the GDT limit.

#NP(selector) If the TSS is marked not present.

#PF(fault-code) If a page fault occurs.
2-300
64-Bit Extension Technology Software Developer’s Guide, Volume 1 of 2


	CHAPTER 1 Introduction
	1.1. 64-bit Extension Technology
	1.2. Operating Modes
	1.2.1. IA-32e Mode
	1.2.2. 64-Bit Mode
	1.2.3. Compatibility Mode
	1.2.4. Legacy Modes
	1.2.5. System Management Mode

	1.3. Register-Set Changes
	1.3.1. General-Purpose Registers (GPRs)
	1.3.2. Streaming SIMD Extension (SSE) Registers
	1.3.3. System Registers
	1.3.3.1. Extended Feature Enable Register (IA32_EFER)
	1.3.3.2. Control Registers
	1.3.3.3. Descriptor Table Registers
	1.3.3.4. Debug Registers


	1.4. Instruction-Set Changes
	1.4.1. Address-Size and Operand-Size Prefixes
	1.4.2. REX Prefixes
	1.4.2.1. Encoding
	1.4.2.2. REX Prefix Fields
	1.4.2.3. Displacement
	1.4.2.4. Direct Memory-Offset MOVs
	1.4.2.5. Immediates
	1.4.2.6. RIP-Relative Addressing
	1.4.2.7. Default 64-Bit Operand Size

	1.4.3. New Encodings for Control and Debug Registers
	1.4.4. New Instructions
	1.4.5. Stack Pointer
	1.4.6. Branches

	1.5. Memory Organization
	1.5.1. Address Calculations in 64-Bit Mode
	1.5.2. Canonical Addressing

	1.6. Operating System Considerations
	1.6.1. CPUID
	1.6.2. Register Settings and IA-32e Mode
	1.6.3. Processor Modes
	1.6.3.1. IA-32e Mode
	1.6.3.2. Activating IA-32e mode
	1.6.3.3. Virtual-8086 Mode
	1.6.3.4. Compatibility Mode

	1.6.4. Segmentation
	1.6.4.1. Code Segments
	1.6.4.2. Segment LOAD Instructions
	1.6.4.3. System Descriptors

	1.6.5. Linear Addressing and Paging
	1.6.5.1. Software Address Translations in 64-Bit Mode
	1.6.5.2. Paging Data Structures
	1.6.5.3. Overall Page Protection
	1.6.5.4. Reserved Bit Checking

	1.6.6. Enhanced Legacy-Mode Paging
	1.6.7. CR2 and CR3
	1.6.8. Address Translation
	1.6.9. Privilege-Level Transitions and Far Transfers
	1.6.9.1. Call Gates
	1.6.9.2. Privilege-Level Changes and Stack Switching
	1.6.9.3. Fast System Calls
	1.6.9.4. Task State Segments

	1.6.10. Interrupts
	1.6.10.1. Gate Descriptor Format
	1.6.10.2. Stack Frame
	1.6.10.3. IRET
	1.6.10.4. Stack Switching
	1.6.10.5. Interrupt Stack Table
	1.6.10.6. Task Priority
	1.6.10.7. CR8 Interactions with APIC


	1.7. General Rules for 64-Bit Mode

	CHAPTER 2 Instruction Set Reference (A-L)
	2.1. Interpreting the Instruction Reference Pages
	2.1.1. The Instruction Summary Table
	2.1.1.1. Opcode Column in the Instruction Summary Table
	2.1.1.2. Instruction Column in the Instruction Summary Table
	2.1.1.3. 64-bit Mode Column in the Instruction Summary Table
	2.1.1.4. Compatibility/Legacy Mode Column in the Instruction Summary Table
	2.1.1.5. Description Column in the Instruction Summary Table

	2.1.2. Description Section
	2.1.3. Operation Section
	2.1.3.1. IA-32e Mode Operation

	2.1.4. Flags Affected
	2.1.5. FPU Flags Affected
	2.1.6. Protected Mode Exceptions
	2.1.7. Real-Address Mode Exceptions
	2.1.8. Virtual-8086 Mode Exceptions
	2.1.9. Floating-Point Exceptions
	2.1.10. SIMD Floating-Point Exceptions

	2.2. Instruction reference
	AAA-ASCII Adjust After Addition
	AAD-ASCII Adjust AX Before Division
	AAM-ASCII Adjust AX After Multiply
	AAS-ASCII Adjust AL After Subtraction
	ADC-Add with Carry
	ADD-Add
	ADDPD-Add Packed Double-Precision Floating-Point Values
	ADDPS-Add Packed Single-Precision Floating-Point Values
	ADDSD-Add Scalar Double-Precision Floating-Point Values
	ADDSS-Add Scalar Single-Precision Floating-Point Values
	ADDSUBPD-Packed Double-Precision Floating-Point Add/Subtract
	ADDSUBPS-Packed Single-Precision Floating-Point Add/Subtract
	AND-Logical AND
	ANDPD-Bitwise Logical AND of Packed Double-Precision Floating-Point Values
	ANDPS-Bitwise Logical AND of Packed Single-Precision Floating-Point Values
	ANDNPD-Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values
	ANDNPS-Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
	ARPL-Adjust RPL Field of Segment Selector
	BOUND-Check Array Index Against Bounds
	BSF-Bit Scan Forward
	BSR-Bit Scan Reverse
	BSWAP-Byte Swap
	BT-Bit Test
	BTC-Bit Test and Complement
	BTR-Bit Test and Reset
	BTS-Bit Test and Set
	CALL-Call Procedure
	CBW/CWDE/CDQE-Convert Byte to Word/Convert Word to Doubleword/Convert Doubleword to Quadword
	CDQ-Convert Double to Quad
	CLC-Clear Carry Flag
	CLD-Clear Direction Flag
	CLFLUSH-Flush Cache Line
	CLI-Clear Interrupt Flag
	CLTS-Clear Task-Switched Flag in CR0
	CMC-Complement Carry Flag
	CMOVcc-Conditional Move
	CMP-Compare Two Operands
	CMPPD-Compare Packed Double-Precision Floating-Point Values
	CMPPS-Compare Packed Single-Precision Floating-Point Values
	CMPS/CMPSB/CMPSW/CMPSD/CMPSQ-Compare String Operands
	CMPSD-Compare Scalar Double-Precision Floating-Point Values
	CMPSS-Compare Scalar Single-Precision Floating-Point Values
	CMPXCHG-Compare and Exchange
	CMPXCHG8B/CMPXCHG16B-Compare and Exchange 8 Bytes
	COMISD-Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
	COMISS-Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
	CPUID-CPU Identification
	CVTDQ2PD-Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTDQ2PS-Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPD2DQ-Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PI-Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPD2PS-Covert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
	CVTPI2PD-Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
	CVTPI2PS-Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
	CVTPS2DQ-Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTPS2PD-Covert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
	CVTPS2PI-Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTSD2SI-Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
	CVTSD2SS-Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
	CVTSI2SD-Convert Doubleword Integer to Scalar Double-Precision Floating- Point Value
	CVTSI2SS-Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
	CVTSS2SD-Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
	CVTSS2SI-Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CVTTPD2PI-Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPD2DQ-Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPS2DQ-Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTPS2PI-Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers
	CVTTSD2SI-Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Doubleword Integer
	CVTTSS2SI-Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
	CWD/CDQ/CQQ-Convert Word to Doubleword/Convert Doubleword to Quadword/Convert Quadword to Double Quadword
	DAA-Decimal Adjust AL after Addition
	DAS-Decimal Adjust AL after Subtraction
	DEC-Decrement by 1
	DIV-Unsigned Divide
	DIVPD-Divide Packed Double-Precision Floating-Point Values
	DIVPS-Divide Packed Single-Precision Floating-Point Values
	DIVSD-Divide Scalar Double-Precision Floating-Point Values
	DIVSS-Divide Scalar Single-Precision Floating-Point Values
	EMMS-Empty MMX State
	ENTER-Make Stack Frame for Procedure Parameters
	F2XM1-Compute 2x-1
	FABS-Absolute Value
	FADD/FADDP/FIADD-Add
	FBLD-Load Binary Coded Decimal
	FBSTP-Store BCD Integer and Pop
	FCHS-Change Sign
	FCLEX/FNCLEX-Clear Exceptions
	FCMOVcc-Floating-Point Conditional Move
	FCOM/FCOMP/FCOMPP-Compare Floating Point Values
	FCOMI/FCOMIP/ FUCOMI/FUCOMIP-Compare Floating Point Values and Set EFLAGS
	FCOS-Cosine
	FDECSTP-Decrement Stack-Top Pointer
	FDIV/FDIVP/FIDIV-Divide
	FDIVR/FDIVRP/FIDIVR-Reverse Divide
	FFREE-Free Floating-Point Register
	FICOM/FICOMP-Compare Integer
	FILD-Load Integer
	FINCSTP-Increment Stack-Top Pointer
	FINIT/FNINIT-Initialize Floating-Point Unit
	FIST/FISTP-Store Integer
	FISTTP-Store Integer with Truncation
	FLD-Load Floating Point Value
	FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ-Load Constant
	FLDCW-Load x87 FPU Control Word
	FLDENV-Load x87 FPU Environment
	FMUL/FMULP/FIMUL-Multiply
	FNOP-No Operation
	FPATAN-Partial Arctangent
	FPREM-Partial Remainder
	FPREM1-Partial Remainder
	FPTAN-Partial Tangent
	FRNDINT-Round to Integer
	FRSTOR-Restore x87 FPU State
	FSAVE/FNSAVE-Store x87 FPU State
	FSCALE-Scale
	FSIN-Sine
	FSINCOS-Sine and Cosine
	FSQRT-Square Root
	FST/FSTP-Store Floating Point Value
	FSTCW/FNSTCW-Store x87 FPU Control Word
	FSTENV/FNSTENV-Store x87 FPU Environment
	FSTSW/FNSTSW-Store x87 FPU Status Word
	FSUB/FSUBP/FISUB-Subtract
	FSUBR/FSUBRP/FISUBR-Reverse Subtract
	FTST-TEST
	FUCOM/FUCOMP/FUCOMPP-Unordered Compare Floating Point Values
	FWAIT-Wait
	FXAM-Examine
	FXCH-Exchange Register Contents
	FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State
	FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State
	FXTRACT-Extract Exponent and Significand
	FYL2X-Compute y * log2x
	FYL2XP1-Compute y * log2(x +1)
	HADDPD-Horizontal Add Packed Double-Precision Floating-Point Values
	HADDPS-Horizontal Add Packed Single-Precision Floating-Point Values
	HLT-Halt
	HSUBPD-Horizontal Subtract Packed Double-Precision Floating-Point Values
	HSUBPS-Horizontal Subtract Packed Single-Precision Floating-Point Values
	IDIV-Signed Divide
	IMUL-Signed Multiply
	IN-Input from Port
	INC-Increment by 1
	INS/INSB/INSW/INSD-Input from Port to String
	INT n/INTO/INT 3-Call to Interrupt Procedure
	INVD-Invalidate Internal Caches
	INVLPG-Invalidate TLB Entry
	IRET/IRETD-Interrupt Return
	Jcc-Jump if Condition Is Met
	JMP-Jump
	LAHF-Load Status Flags into AH Register
	LAR-Load Access Rights Byte
	LDDQU-Load Unaligned Double Quadword
	LDMXCSR-Load MXCSR Register
	LDS/LES/LFS/LGS/LSS-Load Far Pointer
	LEA-Load Effective Address
	LEAVE-High Level Procedure Exit
	LES-Load Full Pointer
	LFENCE-Load Fence
	LFS-Load Full Pointer
	LGDT/LIDT-Load Global/Interrupt Descriptor Table Register
	LGS-Load Full Pointer
	LLDT-Load Local Descriptor Table Register
	LIDT-Load Interrupt Descriptor Table Register
	LMSW-Load Machine Status Word
	LOCK-Assert LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD/LODSQ-Load String
	LOOP/LOOPcc-Loop According to ECX Counter
	LSL-Load Segment Limit
	LSS-Load Full Pointer
	LTR-Load Task Register



