
C o p y r i g h t

Chio:

A String Processing Library

for Common Lisp

Jonathan E. Spingarn

 September 20, 2003

spingarn@toiling-in-obscurity.net

http://www.toiling-in-obscurity.net/chio/

http://www.toiling-in-obscurity.net/chio/

Chio: A String Processing Library for Common Lisp

Copyright © 2003 Jonathan E. Spingarn

All Rights Reserved

This document may not be reproduced without the written consent of its author. Its

online distribution is restricted solely to the Chio web site, currently:

http://www.toiling-in-obscurity.net/chio/

Please send comments and suggestions to the author at

spingarn@toiling-in-obscurity.net,

 For up-to-date information about Chio, the latest iteration of this document, and

information about the software, see the Chio web site.

http://www.toiling-in-obscurity.net/chio/

Table of Contents

Copyright 1
Introduction 1
Simple-Tests 5

Fundamental concepts: simple-test and tret 5
The simple-test-reader 6
Keyboard shortcuts 6
Testing a simple-test 7
Some tools for building simple-tests 7
Tests for arbitrary characters 8
Matching a literal string 9
Zero-width simple-tests 9
Predicate-simple-tests 10
Design considerations 10

Regular Expressions 12
Regular expression syntax 12
Examples: 15
Composite quantifiers 17

Algebraic operations on Simple-Tests 19
Concatenation 19
The OR operation 20
The AND operation 20
Memoized simple-tests 22
Repetition: T+ and T* 23
Repetition without backtracking: T+! and T*! 24
Dumbed repetition with backtracking: T!+ and T!* 25
Short repetition: T+< and T*< 25
Dumbed short repetition: T!+< and T!*< 26
The optional operator: T? 27
The once-only operator: T! 28
The sorting operators: T< and T> 29
Numerical quantifiers: TN 30
Dumbed numerical quantifiers: T!N and T!N! 31
Short numerical quantifier: TN< 32
Dumbed short numerical quantifier: T!N< 32

Binding-Trees 34
Definition of binding-tree 34
Naming conventions 36
Compiled-binding-trees 37
Incomplete binding-trees 38

Access to Match Results 40
Matching: with-test-binds 43

Summary 43
Modes 43
Description 43
Keyword arguments 45
Local variables and block 46
Macro-expansion outlines 48

Substitution: with-test-format 51
Modes 51
Description 51
Keyword arguments 52
Local variables 53
Macro-expansion outlines 55

Splitting: with-test-split 57
Summary 57
Description 57
Keyword arguments 60
Local variables and block 62
Macro-expansion outlines 64

Managing the Stack 67
Examples 70
References 70

Introduction

1

In t ro d u c t i o n

Chio is a string processing package for Common Lisp. Its three main

macros -- with-test-binds, with-test-format, and with-test-

split –– perform matching, substitution, and splitting operations on

strings. As an extension of Lisp, Chio grants the user full access to the Lisp

programming environment at all times, thus offering flexibility and power

that make it ideal for complex or highly algorithmic searches that might be

cumbersome in more rigid languages. At the same time, it is simple and

intuitive for routine tasks. (The “ch” in “Chio” is pronounced softly, as in

char.)

The atomic unit of a Chio search is a simple-test. Postponing its

definition, we mention now only that a simple-test may be compiled from a

regular expression, but can also result from evaluating any suitable Lisp

expression. The possibilities for what a simple-test might do are therefore

not limited by the particular regular-expression syntax that Chio happens to

provide. In addition to many ready-made simple-tests, and tools for creating

new ones, Chio provides the simple-test-reader, a reader macro that

is able to manufacture simple-tests from regular expressions. For example,

the simple-test-reader reads #~"a+b+" as code that returns a simple-test

that searches, as one would expect, for a run of a's followed by a run of b's.

Chio does not have any regexp “engine” to process regular expressions in

the manner of a black box. Indeed, the moment the simple-test-reader

reads it, a regular expression ceases to exist. The use of this reader macro

gives Chio some attractive features. For instance, by examining the Lisp

reader’s code expansion of a regexp, a user receives immediate feedback as to

what the regexp does. This feature is useful not only for debugging, but also

for its instructional role –– if you want to write a simple-test, it is sometimes

helpful to see the code the simple-test-reader writes to handle a similar task.

The simple-test-reader can be regarded as an independent module of

the Chio package.

When we say that simple-tests are “atomic” we mean that you cannot

Introduction

2

look inside one to see its parts. For example, Chio does not grant access to

the portion of a string that matches the "b+" portion of an #~"a+b+"

match. Surrounding that part with parentheses, #~"a+(b+)", is legal

but would not (as it would, for instance, in Perl) grant any kind of access to

that portion of the match.

To gain such access, you need to move up to the next level of complexity,

the binding-tree . The leaves of a binding-tree are simple-tests, and its

internal nodes are keyword symbols, called operation-keywords, that

represent operations combining simple-tests into compound searches. For

instance, the binding-tree (:&0 #~"a+" (:&1 #~"b+")) has two internal

nodes (:&0 and :&1) and represents concatenation of #~"a+" with

#~"b+". Chio can grant memory access to the match results corresponding

to an internal node of a binding-tree. In this example, :&0 grants access to

the entire "a+b+" match, and :&1 grants access to the "b+" portion of

the match. When the symbol-name of the operation-keyword has length

greater than one (such as :&0), access is granted for future access. However,

when the symbol-name has length one (such as :&), the results are not

retained. This is the distinction between basic-operation-keywords (like

:& and :o) and remembering-operation-keywords (like :&1 and :ox).

Binding-trees are compiled into compiled-binding-trees . Since the

user has control over the compilation, it can be kept outside of iterated code,

where it would waste resources. A NIL leaf on the binding-tree can serve as

a place holder for a simple-test that is unavailable at the time of compilation,

and there is an efficient mechanism for filling NIL slots in such an

incomplete binding-tree at a later time.

Chio supports a rich regular expression syntax. In addition to the

familiar quantifiers *, +, and ?, Chio assigns special roles to !, <,

and > when they occur in certain contexts. The ! causes a simple-test to

return only the first match it finds. This can speed execution, especially

when a test fails, and also clarify a programmer’s intentions. It is a

destructive operation in the sense that it causes certain valid matches to be

overlooked. The < and > symbols cause search results to be returned in a

Introduction

3

sorted ascending or descending order. These six basic quantifiers correspond

to the six Chio functions T*, T+, T?, T!, T<, and T> which take a

simple-test as a single argument and return an appropriately modified new

simple-test. Quantifiers can be composed by writing them sequentially.

Many useful such combinations are handled by specially tailored routines to

enhance efficiency. For example, the simple-test-reader handles +!

via a call to the T+! routine, rather than by composing T! with T+.

Efficiency is further enhanced by handling character classes and their

quantifiers by specially optimized routines. For example, #~"[a\d]+!",

which searches for a longest-only run of a's and digits, expands into a call to

chtes+! and does not use T+!

The three major macros include among their arguments a binding-tree

(either uncompiled or compiled), a target string (to be bound to the global

variable *STRING*) to be searched, and several keyword arguments that

permit the user to choose among options and return values in numerous

ways.

Each major macro operates in one of two possible modes : loop mode

and once-only mode. In once-only mode, the body of the macro is

executed just one time, while in loop mode the body is enclosed in a (LOOP

…) to iteratively process additional matches.

The first argument to each major macro is PREFIX, a symbol. PREFIX

provides the search with a name that permits access to search results. In

addition, the symbol-name of PREFIX serves as a prefix for the symbol-

names of several variables to be bound to match results. For example, in the

body of a call that begins (WITH-TEST-BINDS AA ..., the symbol AA-

COUNT is bound to an iteration count, and the symbols AA-MRS and AA-

MRE point to the start and end of the match results in Chio’s workspace

STACK. PREFIX also serves to name an enclosing block in the case of

the with-test-binds and with-test-split macros, thereby providing

an alternative means to exit from the body of the macro by using (RETURN-

FROM PREFIX &OPTIONAL VALUE).

The user accesses match results via MREF. For example, the substring

Introduction

4

that matches the "b+" portion of the binding-tree (:&0 #~"a+" (:&1

#~"b+")) would be accessed (assuming PREFIX=AA) as (MREF AA 1 :S).

Here, the number "1" specifies the second remembering internal node of the

binding-tree, and the argument :S instructs MREF that that substring be

read as a string (as opposed to :I which would read it as an integer, or :R

which would read it as the Lisp reader would read it, among several other

choices). An additional feature provides unlimited flexibility to MREF: a

function name or lambda expression in the place of the keyword can specify

customized instructions to read a match in any manner one might desire.

For example,

 (MREF AA 1 (lambda (start end) (- end start)))

returns the length of the match and

 (MREF AA 1 (lambda (start end)

 (nreverse (subseq *string* start end))))

returns the match backwards as a string.

When major macros are nested, the naming of each one eliminates any

reference ambiguity. For instance, you could have

 (with-test-binds AA ...

 (with-test-binds BB ...

 ...(MREF BB 0 :S)...

 ...(MREF AA 7 :R)...))

and it would be clear that the first MREF refers to the inner call and the

second to the outer one.

In addition to MREF, two other access macros are provided. Neither

does anything that MREF can’t already do, but they are convenient

nonetheless. EMPTY-MATCH-P returns the position of a match of length

zero or NIL if the match has positive length, and MWRITE writes a match to

a stream without first copying it.

Simple-Tests

5

S i mp l e -T est s

Fundame ntal c once pts : s imple - te s t and t re t

Chio uses the notion of simple-test to encapsulate a search task such as might

be described by a regular expression. A simple-test is a function of three variables,

STRING, START, and *END*. However, only START is passed as an argument

to the simple-test, the other two variables being global. A form (FUNCALL SIMPLE-

TEST START) returns a thunk (a function of zero arguments) which we will call a t re t

(pronounced “tray” - a function that a Test RETurns). *STRING* is bound to the

string currently being searched. Each substring of *STRING* that satisfies the test

(each match) is required to have its starting index exactly equal to START and must

end at or before *END*. Each time the tret is called, it returns one possible index for

the end of the match, until the tret finally returns NIL to indicate that it is

exhausted. After the tret returns NIL once, it must never be called again. (Failure to

observe this convention may cause stack space belonging to other tests to be

overwritten, as well as other problems). Some simple-tests return trets that return all

possible endings for a match, whereas others return only some subset of the possible

endings; the documentation for a simple-test (or for any function that creates simple-

tests) should state clearly how its trets behave.

For example, if the goal of a simple-test V is to search for a non-empty run of

consecutive vowels, *STRING*="XYAEIZE" and *END*=6, then (funcall V 2)

is a tret that might return 5,4,3, and finally NIL. Or, perhaps it might return

the endings in the opposite order: 3,4,5, NIL. Or, perhaps it might just return 5;

it all depends on the intentions of the programmer who designs V. The definition of

“simple-test” is very permissive; it does not require that the tret return a sequence of

distinct integers, nor does it even require that this sequence have finite length (though

that is certainly to be desired).

The simple-test is only the most elementary buildling block for a Chio search.

Simple-tests can be assembled into binding-trees to construct more complicated

searches that grant access to particular substrings of the match. Algebraic operations

can be performed that act on simple-tests to produce new simple-tests. These ideas

Simple-Tests

6

will be discussed further in the sections on binding-trees and algebraic operations on

simple-tests.

The s imple - te s t -r eade r

The simple-test-reader, defined in the file simple-test-reader.lisp, is a

reader macro that processes regular expressions. It reads an expression of the form

#~"..." as a Lisp expression that evaluates to a simple-test. The test can be made

case-insensitive by inserting the letter "i" after the "~". For example,

#~i"\b[xy]{2,}\d*" is a case-insensitive search for two or more occurences of

"x" or "y", starting at a word-boundary, and followed by zero or more digits. The

simple-test-reader reads this regular expression as

(SCAT WORD-BOUNDARY
 (CHTES-N "xy" NIL NIL NIL 2 :INFINITY NIL T)
 (CHTES+ NIL NIL (DIGIT-CHAR-P) NIL :STAR T))

Here, SCAT builds a simple-test by concatenating three simple-tests. The first one is

the zero-width test WORD-BOUNDARY. The second tests for two or more occurrences

of the letters "x" or "y" in a case-insensitive manner, and the third tests for zero

or more digits. (See the documentation strings for SCAT, CHTES-N, and CHTES+

for more information.)

Chio’s regular expression syntax will be discussed in more detail in a section

devoted to that topic.

Keyboar d shor tc uts

With version 1.0 of Chio, the following keyboard shortcuts are available when

running Macintosh Common Lisp. If you place the cursor in front of a regular

expression such as #~"[aeiou]+" and type c-x c-r, you can view the code

produced by the simple-test-reader. In many cases, the code that you see will

be a macro call, so if you type c-m, you will observe the macroexpansion which is the

actual code for the simple test. To easily type a regular expression like

#~"[aeiou]+", you can either

 (1) Type meta-~ and then type [aeiou]+, or

 (2) Select [aeiou]+ and then type meta-~

Simple-Tests

7

Tes t ing a s imple - te s t

Chio provides the function

(CALLL SIMPLE-TEST &OPTIONAL *STRING* START *END*)

for the purpose of debugging simple-tests. It applies SIMPLE-TEST to the other

arguments to produce a tret. That tret is then exhausted; that is, called over and over

until NIL is returned, printing each result. For example:

(calll #~"[aeiou]+" "eyzaiouaisqv" 3 12)
prints=> 9 8 7 6 5 4 NIL

A silent version, CALLL-SILENTLY, useful for timing simple-tests, does the same

thing without printing the results. Or, to test a tret directly, use TEST-TRET to call

it repeatedly, printing each result until NIL is returned. For example,

(with-string ("eyzaiouaisqv") ; WITH-STRING binds *STRING* and *END*

 (let ((tret (funcall #~"[aeiou]+" 3)))
 (test-tret tret)))

prints=> 9 8 7 6 5 4 NIL

Some tool s fo r bu i lding s imple - te s t s

+NIL-THUNK+ (Constant)

is the tret that a simple-test should return to indicate that no match can be
found. When called, it returns NIL:

(defconstant +nil-thunk+ #'(lambda ())

Since this outcome is so common, it is better for a simple-test to return this
constant object than to create a new one each time.

RETURN-NUM-RANGE first last (Function)

returns a tret that returns an increasing or decreasing sequence of consecutive
integers. For example, DOT+ (= #~".+") which returns *end*, *end*-
1,…,start+1, could be defined like this:

(defun DOT+ (start)
 (if (> *end* start)
 (return-num-range *end* (+ start 1))
 +nil-thunk+))

Simple-Tests

8

RETURN-ONCE val (Function)

returns a tret that returns val and then NIL. For an example, the simple-
test DOT (= #~".") which matches an arbitrary character, could be defined

like this:
(defun DOT (start)
 (if (> *end* start)
 (return-once (+ start 1))
 +nil-thunk+))

TEST-ONCE simple-test &optional start (Function)

calls simple-test to produce a tret, and then returns the value that results
by calling the tret just once. It is used in the definition of T! and other

destructive simple-tests. For example,
(with-string ("xxabbac") (test-once #~"[ab]+" 2)) => 6
(with-string ("xxabc") (test-once #~".+")) => 5

The use of TEST-ONCE, or of the closely related function T!, or the ! regular-

expression operator can be considered to result in a destructive operation since it
may cause possible matches to be discarded. For example, (calll #~"[ab]+"
"xxabbac" 2) prints all possible values 6,5,4,3, whereas (calll
#~"[ab]+!" "xxabbac" 2) prints only 6. Any pending items that a
SIMPLE-TEST places on the *STACK* are cleared by TEST-ONCE.

TRET-RETURNS-VALUE-P simple-test start value (Function)

returns t if the tret (funcall simple-test start) is capable of returning
value. Conceptually, this is the same as calling (calll simple-test
start) and checking whether value is one of the printed results.

Tes ts f or arb i t rary c haract er s

These simple-tests match arbitrary characters:

name regexp matches…

DOT #~"." any single character

DOT+ #~".+" any nonempty character sequence, longer preferred

DOT* #~".*" any character sequence, possibly empty, longer preferred

DOT+< #~".+<" any nonempty character sequence, shorter preferred

Simple-Tests

9

DOT*< #~".*<" any character sequence, possibly empty, shorter preferred

DOT+! #~".+!" longest-only nonempty character sequence

DOT*! #~".*!" longest-only, possibly empty, character sequence

M atch in g a l i te ra l s t r ing

A string of length two or more is handled by the simple-test (string-test string

&optional start end). There is also a case-insensitive version ci-string-

test. For example, #~"abc" expands as (string-test "abc" 0 3) and

#~i"abc" expands as (ci-string-test "abc" 0 3).

Zer o-width s imple - t es ts

A zero-width simple-test has the property that its trets either return START

and then NIL, or simply return NIL. In other words, they either accept or reject the

current position. WORD-BOUNDARY, NON-WORD-BOUNDARY, START-OF-LINE, and

END-OF-LINE are zero-width simple-tests provided by Chio.

Additional zero-width simple-tests can be conveniently defined using the macro

(LOOKAHEAD-SIMPLE-TEST (START) &BODY BODY). The body of the macro

should return T if START is accepted, and NIL otherwise. For example, a zero-

width simple-test that accepts a boundary between a digit and an alphabetical

character could be defined as follows:

(let ((alpha-num-boundary
 (lookahead-simple-test (start)
 (when (< 0 start *end*)
 (let ((ch- (char *string* (- start 1)))
 (ch+ (char *string* start)))
 (or (and (alpha-char-p ch-)
 (digit-char-p ch+))
 (and (alpha-char-p ch+)
 (digit-char-p ch-))))))))
 (calll alpha-num-boundary "aaa444" 3))
 prints=> 3 NIL

For further insight, macroexpand the call to lookahead-simple-test. The idea of

Simple-Tests

10

a lookahead-simple-test is adapted from Perl.

Pre di cate -s imple - te s t s

Somewhat dual to the idea of the lookahead-simple-test, Chio introduces what

may be a new concept, the predicate-simple-test. Whereas the lookahead-simple-

test always returns the start of a string (or NIL), the predicate-simple-test always

returns the *end* of the target string (or NIL). In other words, a predicate simple-

test either accepts or rejects an entire string. Predicate simple-tests are especially

useful when used in conjunction with T_AND to filter matches that satisfy some

desired property. For example, #~"[+-]?\d+!" matches an integer. However, if

you want to match only integers divisible by seven, you could use the simple-test

(t_and #~"[+-]?\d+!" div7), div7 being a predicate-simple-test that matches

integers divisible by seven.

Predicate simple-tests can be conveniently defined using the macro

(PREDICATE-SIMPLE-TEST (START) &BODY BODY). The body of the macro

should return T if the entire string (the substring of *STRING* between START

and *END*) is accepted, and otherwise NIL. For example, a predicate-simple-test

that accepts integers divisible by seven could be defined as follows:

(let ((div7 (predicate-simple-test (start)
 (= 0 (mod (parse-integer *string*
 :start start :end *end*) 7)))))
 (calll (t_and #~"[+-]?\d+" div7) "1435"))

; use \d+! if you only want the longer match
prints=> 4 2 NIL

Here, both values 1435 and 14 are accepted. But why is 14 accepted? To make

complete sense of this, you will need to understand how t_and works, which will be

explained in the section on the algebraic operations on simple-tests. For now, this

explanation will do –– the digit test finds four possibilities: 4,3,2,1. t_and offers

each of these ("1435", "143", "14", and "1") to div7 to either accept or reject,

and it accepts the two that are divisible by 7.

Des ign cons id er at ions

A simple-test should be designed so that it can be used over and over again, and

Simple-Tests

11

work the same predictable way. It should not be possible for a simple-test to modify

state in such a way that it will behave differently the next time it is called. (Of course,

a programmer can always choose to violate this rule in a local context if he knows

what he is doing. This is just a suggestion for keeping out of trouble.)

 For example, consider the function LENGTH-RANGE. (LENGTH-RANGE LOW

&OPTIONAL (HIGH LOW)) returns a simple-test matching any string whose length

lies in the interval [LOW,HIGH], preferring a longer match. HIGH may have the

value :INFINITY to indicate that any string whose length is greater than or equal to

LOW is acceptable. Consider the following definition for LENGTH-RANGE, which

seems to work just fine, but contains a subtle bug:

(defun length-rangex (low &optional (high low))
#'(lambda (start)
(when (eql high :infinity) (setf high (- *end* start)))
(if (< *end* (+ start low))
+nil-thunk+
(return-num-range (min *end* (+ start high)) (+ start low)))))

A few examples give the impression that length-rangex works as intended:

(calll (length-rangex 2 4) "aaaaaaa" 2) => 6 5 4 NIL
(calll (length-rangex 2) "aaaaaaa" 2) => 4 NIL
(calll (length-rangex 1 :infinity) "aaaaaaa" 2) => 7 ... 3 NIL

However, after executing these examples, we find that the following now prints "5"

and then "3", and that is clearly not what is desired (it should print "5" both times):

(with-string ("abcde") ; binds *string* to "abcde" and *end* to 5

(let ((simple-test (length-rangex 3 :infinity)))
(print (test-once simple-test 2)) ; prints "5"

(print (test-once simple-test 0)) ; prints "3" but should print "5"

nil))

The problem, of course, is the SETF in the definition of LENGTH-RANGEX. The

simple-test is a lexical closure. Once the binding for HIGH in the lexical closure has

been altered, the simple-test behaves in a manner that was not intended.

We also remark that simple-tests are designed under the assumption that they

will be only called with START ≤ *END*, and that their trets will never be called

again once they have returned NIL.

Regular Expressions

12

Reg u l a r Ex p ress i o n s

Regular e xpre ss ion syntax

To learn about regular expressions (or “regexps”), consult the book Mastering

Regular Expressions by Jeffrey E. F. Friedl (O’Reilly, 1997). This section presents

information you will need to use Chio’s flavor of regular expressions.

A Chio regexp is translated at read-time by the simple-test-reader into a

Lisp expression whose value is a simple-test. The regular expression is placed

between delimiters (usually quotation marks) following the dispatch sequence #~ (or

#~i for case-insensitive searches). For example, #~"ab[cd]" searches for either

"abc" or "abd", while #~i"ab[cd]" accepts anything that is string-equal to

one of these. Any character can be used as a delimiter, except #\i and #\\ (or

wierd stuff like #\delete).

Within regular expressions, the backslash #\\ is used as an escape character.

The escape character itself can be inserted by entering it twice. Escaped three-digit

decimal codes \ddd and two-digit hex codes \xdd are replaced with the code-

char of that value. For example, #~"[\009\032]+" or #~"[\x09\x20]+"

searches for a run of tabs and spaces. In fact you can even replace the brackets and

plus sign: #~"\x58\x09\x20\x5D\x28". A delimiting character can itself be placed

in the regular expression if it is escaped. Thus all of these have the same meaning:

#~"abc", #~cab\cc, #~/abc/, #~xabcx, #~a\abca.

The usual conventions governing character classes are followed. For example,

#~"[ac-f\s]" matches the letter "a", any letter "c" through "f", or any

whitespace character, and #~"[^ac-f\s]" matches the complement of that set.

Chio treats the expression #~"[^]" in the same way as #~"." which matches an

arbitrary character, the justification being that the complement of the empty class

contains all characters. The empty class #~"[]" is not defined.

Regular Expressions

13

The following characters, when escaped, serve as abbreviations for special

characters or character predicates within a regular expression. These can be

used inside or outside of character classes.

t or T #\tab
n or N #\newline
r or R #\return
 d any digit (as determined by digit-char-p)
 s any whitespace (as determined by whitespacep)
 a any alphabetical (as determined by alpha-char-p)
 w any word character (as determined by word-char-p)
 D any non-digit
 S any non-whitespace character
 A any non-alphabetical character
 W any non-word character

To modify these definitions or to add additional escape abbreviations, it is only

necessary to modify the function char-class-esc or the association list char-

test-data and recompile Chio.

The following represent quantifiers:

 + one or more repetition, longer preferred
 * zero or more repetitions, longer preferred
 ? one or zero occurrence, one preferred
 ! first value only
 < return values in increasing order
 > return values in decreasing order
 {n} exactly n repetitions
 {n,} n or more repetitions, longer preferred
{n,m} between n and m repetitions inclusive, longer preferred

When escaped, these are treated as ordinary characters. However, the (unescaped)

!, <, and > are only considered to be quantifiers when they follow another

quantifier or an unescaped right parenthesis. In all other contexts, they are

considered to be ordinary characters. The justification for this rule is that !, <,

and > have no effect on character classes anyhow. A character class tret returns only

one value, so if you sort that value in increasing or decreasing order or take only the

first value, you are really doing nothing at all. Thus !, <, and > are only needed

Regular Expressions

14

when they are applied to something more complicated than a character class. This is

fortunate, because it would be a nuisance to have to escape these useful characters

everytime they were needed to match ordinary text. Thus, for example, #~"a!"

searches for an a followed by a !, #~"a!+" searches for an a followed by one or

more !. Also, in #~"a!!" the first ! is an ordinary character because it follows an

ordinary character, and therefor the second is an ordinary character for the same

reason, so the search is for an a followed by two !.

Quantifiers can be composed by writing them sequentially. For example

#~"a+<" is the same, conceptually, as #~"((a)+)<)". It tests for a run of

consecutive a's and returns the matches in increasing order:

(calll #~"a+<" "aaaabb") => 1 2 3 4 NIL

The fact that #~"a+<" and #~"((a)+)<)" are conceptually the same does not,

however, imply that the parentheses are without effect. Although the results are the

same, the task is handled differently depending on how parentheses are placed. This

is because a quantifier that follows a closing parenthesis handles the expression inside

the parentheses in a manner that is independent of what that expression might be ––

it does not “see inside” the parentheses.

Consider the following examples, which are listed in order of decreasing

efficiency:

example 1: #~"a+<" is handled efficently by the CHTES+< routine which is

optimized to handle the +< composition for character classes. The single letter a

here is handled the same as would be the character class [a], so #~"a+<" is the

same as #~"[a]+<".

example 2: #~"(a)+<". Chio passes the character class [a] to the routine T+<,

which handles the +< composition efficiently. Thus #~"(a)+<" is equivalent to

(T+< #~"a"). This is less efficient than example 1 because T+< cannot take

advantage of the fact that its argument is a character class.

example 3: #~"((a)+)<". The simple-test-reader reads this as (T< (T+

#~"a")). This is very inefficient because, in order to return the results in increasing

order, T< must exhaust the tret returned by (T+ #~"a") before returning even the

first result.

Regular Expressions

15

The following characters, when escaped, and not inside a character class,

represent zero-width simple-tests:

b word-boundary (as determined by word-char-p)
B non-word-boundary
^ start of line
$ end of line

#~"\b" matches any position between a word and a non-word character, or position

0 when the first character in *STRING* is a word character, or position *END*

when the last character in *STRING* is a word character. #~"\^" matches position

0 and any position that follows a #\NEWLINE, while #~"\$" matches position

END and any position that preceeds a #\NEWLINE. Quantifiers are treated as

ordinary characters when they follow these zero-width tests. For example, #~"\^*"

matches an asterisk at the beginning of a line.

The vertical line character "|" represents the “or” operation. The simple-

test-reader translates it into the T_OR function. (T_OR simple-test-1 ...

simple-test-n) is a simple-test that matches substrings satisfying at least one of

simple-test-1 ... simple-test-n.

The maximum length of a regular expression (excluding escapes) is specified by

the compile-time constant +MAX-REGEXP-LENGTH+.

Example s :

Parentheses can be used to group expressions, but they have no memory function (as

they would in Perl):

(calll #~"([ab]+c)+" "aaacbbbcababc") => 13 8 4 NIL

The < operator causes results to be returned in ascending order:

(calll #~"([ab]+c)*<" "aaacbbbcababc") => 0 4 8 13 NIL

When < or > or ! follows a character class it is treated as an ordinary character

rather than a quantifier:

(calll #~"[ab]<+c?" "a<<<<c") => 6 5 4 3 2

In the following, the effect of the ! operator is that whenever three a are found, no

backtracking will be performed to allow just two a to be used.

Regular Expressions

16

(calll #~"(a{2,3}!.)+" "aaaaaaaaaaxaaaxaaa")
 => 15 11 8 4 NIL
Without the ! operator, more values would be returned:

(calll #~"(a{2,3}.)+" "aaaaaaaaaaxaaaxaaa")
 => 18 15 14 11 8 10 7 4 9 6 3 NIL

and adding the > operator would cause these to be returned in descending order:

(calll #~"(a{2,3}.)+>" "aaaaaaaaaaxaaaxaaa")
 => 18 15 14 11 10 9 8 7 6 4 3 NIL

It is important to beware the danger of using the ! operator –– it causes perfectly

good matches to be discarded. However, when you are sure that you really do want to

throw out those matches, it increases efficiency and clarity of code.

In the following case-insensitive regexp, \A matches any character that is not

alphabetical and \s+!|\d+! matches either a longest-only run of whitespace or

digits:

(calll #~i"\A([ab]+(\s+!|\d+!))*" "_AaaB aaab77aaab9")
 => 18 13 7 1 NIL

The following picks up groups of three a, but accepts a group of two at the end of the

string

(calll #~"a{2,3}!*" "aaaaaaaaaaa") => 11 9 6 3 0 NIL

and !*! does the same but accepts only the first value returned:

(calll #~"a{2,3}!*!" "aaaaaaaaaaa") => 11 NIL

The !*< composition moves forward-only through a string, picking up first matches

only. When using < (except on a character class), all the work must be done in

advance. Thus for this example, the entire string is scanned before any values are

returned:

(calll #~"(a+b+)!*<" "aaabbbbaaaaaaabbbbbaaaaabbbbb")
 => 0 7 19 29 NIL

The !+< composition would do the same thing without returning 0. Note that !*<

returns zero first. If you wanted zero returned last, you would use ((a+b+)!+<)?

(calll #~"((a+b+)!+<)?" "aaabbbbaaaaaaabbbbbaaaaabbbbb")

 => 7 19 29 0 NIL

Regular Expressions

17

Composi te quant i f ie rs

Although quantifiers can be composed by writing them sequentially, Chio handles

certain combinations with customized routines. Those combinations are represented

in Figure 1:

or+ *

{n,m}!

!

<

>! < ! <

>? <

< or+ *

Figure 1

Any sequence of quantifiers that forms a path from the root of the tree in Figure 1

corresponds to a specially tailored Chio routine. In other words, the following

sequences correspond to Chio routines:

sequences of length 1: + * {n,m} ! ? < >
sequences of length 2: +! +< *! *< {n,m}< !+ !* !{n,m}
sequences of length 3: !+! !*! !+< !*< !{n,m}! !{n,m}< !{n,m}>

(where, in this listing, any numerical quantifier {n,m} can be replaced with a related

quantifier {n} or {n,}.) The names of these routines are formed by prefixing the

letter "T" to the symbol combination. For example, T!*< is the routine that

handles the !*< composition. For those quantifier sequences that contain a

numerical quantifier, the numerical quantifier is replaced by the letter "N". For

example, T!N< is the routine that handles the !{n,m}< composition.

Those routines are used by the simple-test-reader to expand a regular

expression in which the corresponding symbols follow an expression in parentheses.

Thus, the simple-test-reader expands #~"(a+|b+)!*<" first as (T!*<

#~"a+|b+") (before it goes on to expand #~"a+|b+").

For character classes, the routines represented in Figure 1 are not used. Rather,

routines designed specifically for character classes handle the task. All of the

Regular Expressions

18

quantifier sequences shown in Figure 1 can be used following a character class (or

single character), and are handled efficiently, except for those that begin with ! or <

or > (recall that !, <, and > are not considered to be quantifiers when they follow

a single character or a character class.)

Although the symbol combinations shown in Figure 1 are the ones a user is most

likely to use, the quantifier symbols can occur in any sequence of arbitrary length.

The simple-test-reader groups combinations of symbols (proceeding from left to

right) according to the tree of Figure 1. For example, #~"(abc)+!<?{2,3}<+"

would be read as

(T+ (TN< (T? (T< (T+! (STRING-TEST "abc" 0 3)))) 2 3)).

More information about composite quantifiers will be presented in the section on

algebraic operations on of simple-tests.

Algebra of Simple-Tests

19

Al g ebra i c o p era t i o n s o n S i mp l e -T est s

Chio provides many routines that take simple-tests as arguments and return a

new simple-test. Some of these are used by the simple-test-reader to translate

regular expressions into simple-tests.

Concate nation

(scat &rest simple-tests)

Simple-test concatenation is performed by the scat routine. scat is also used

by the simple-test-reader to paste together the various parts of a regular

expression sequentially. For example, the regular expression #~"abcd+[^a-z]*!"

is read as

(SCAT (STRING-TEST "abc" 0 3)
(CHTES+ "d" NIL NIL NIL NIL NIL)
(CHTES+! NIL ((#\a . #\z)) NIL :- :STAR NIL))

which is a concatenation of three simple-tests: the first handles the literal string

"abc", the second handles repetitions of the letter "d", and the third handles a

longest only substring not containing lowercase "a" through "z".

The possible matches that result from a concatenation of simple-tests form a tree.

When scat is used to find these matches, the branches of the tree are searched in a

depth-first order. To illustrate how this works, consider the following scat call:

(calll #~"[cx]+<[^c]+[^x]?" "ccxcxcxxxccx")

 => 4 3 6 5 10 9 8 7 10 9 8 10 9 12

which applies #~"[cx]+<[^c]+[^x]?", a concatenation of three simple-tests to the

string "ccxcxcxxxccx". The first simple-test, #~"[cx]+<", matches every

position 1 through 12 in ascending order. The second test, #~"[^c]+", matches

consecutive characters not equal to #\c in descending order, or fails if there are no

such characters. The third test, #~"[^x]?", which always succeeds, matches 1 and

0 additional positions in descending order if the next character is not #\x, and

otherwise matches 0 additional positions. The tree that results is displayed in Figure

2. The results returned by the tret appear in the bottom row in the order in which

Algebra of Simple-Tests

20

they are returned.

1 2 3

3

3

4

4

5

5

5

6

6

7

7

7

8

8

88

8

9

9

999

99

10

101010

11 12

12

12

Figure 2

The OR oper at ion

(T_OR &rest simple-tests) (function)
handles choice among alternative simple-tests. It returns a new simple-test that is

satisfied if one of simple-tests is satisfied. T_OR works by exhausting the first

simple-test, then the next, and so forth. For example

 (calll (t_or #~"a{1,3}" #~"a{4,6}<") "aaaaaaaa")

 => 3 2 1 4 5 6 NIL

because the first simple-test returns 3,2,1 and then the second simple-test kicks in

with 4,5,6. If the order of the simple-tests were reversed, the values returned

would be 4 5 6 3 2 1 NIL.

The simple-test-reader uses T_OR to handle alternatives separated by

vertical lines "|". For instance, the simple-test-reader would, as a first step,

expand the regular expression #~"abc+|(abab)*" as (t_or #~"abc+"

#~"(abab)*").

The AND oper at ion

(T_AND first-test &rest other-tests) (function)
finds all matches to first-test that also match other-tests. The operation is

perhaps misnamed, since the outcome depends on which of the arguments is first-

Algebra of Simple-Tests

21

test. An alternative name could be FILTER since it filters out the matches to

first-test that fail to match one of other-tests.

Let us refer to the tret returned by

(*) (funcall (T_AND first-test &rest other-tests) start)

as the “outer” tret. T_AND works by using the “inner tret”

(**) (funcall first-test start)

The outer tret (*) returns the same values, and in the same order, as the inner tret

(**), except that each such value is tested against each of other-tests using the

routine tret-returns-value-p to see if those other-tests are also capable of

returning that value. Only those values that pass this requirement for all other-

tests are returned by the outer tret. More precisely, the algorithm is:

step 0) Let other-tests = (test1 ... testn)

When the form (*) is evaluated, the inner tret (**) is computed.

Each time the outer tret is called, go to step 1:

step 1) Let e = (funcall inner-tret).
If e=NIL, outer-tret returns NIL.
Otherwise, let i=1.

step 2) With *end* bound to e,
let treti = (funcall testi start).

Call treti repeatedly until it returns e or NIL.

If it returns NIL, go to step 1.

 step 3) Let i=i+1.
If i>n, outer-tret returns e.
Otherwise, go to step 2.

Notice that when a value e is returned by the inner-tret, the other-tests are

consulted with *end* bound to e to see if they are also capable of returning e.

For example, if the target string is "abcdef" and the inner tret returns the value 3,

the other tests are consulted to see if they are capable of returning 3 for the target

string "abc" (rather than the target string "abcdef").

In a typical application for T_AND, we choose first-test to be one which

specifies the structure of the desired match, and choose other-tests to be

Algebra of Simple-Tests

22

predicates, perhaps defined using the predicate-simple-test macro, that

describe properties the match should satisfy. For example, first-test might select

a number in some specific format, and the other-tests might verify that the

number possesses some desired properties.

The following example creates a simple-test that accepts any alphabetic string

having length six and that contains at most two letters. The test #~".{6}" selects

strings having the correct length. Those strings are then filtered by the only-two-

letters predicate:

(let ((only-two-letters
 (predicate-simple-test (start)
 (let (letters)
 (dotimes (i (- *end* start) t)
 (pushnew (char *string* (+ start i)) letters)
 (if (third letters) (return))))))
 (target "xyxyxyuuuuvv"))
 (calll (t_and #~".{6}" only-two-letters) target))

 => 6 NIL

When T_AND is called, *end* is bound to the length of the string, or 12. However,

before only-two-letters is called to verify the value 6, *end* is re-bound to 6, so

only the first six letters of the string are checked for the only-two-letters property.

This rebinding is handled by the T_AND routine -- the design of only-two-letters

can ignore the issue.

T_AND is not used by the simple-test-reader.

M emoize d s imple - t es ts

(MEMOIZE-SIMPLE-TEST simple-test) (function)
returns a new simple-test whose trets return the same values as those of simple-

test, except that the same value is never returned twice. For example,

(calll #~"[cx]+<[^c]+[^x]?" "ccxcxcxxxccx")

 => 4 3 6 5 10 9 8 7 10 9 8 10 9 12

but,

Algebra of Simple-Tests

23

(calll (memoize-simple-test #~"[cx]+<[^c]+[^x]?") "ccxcxcxxxccx")

 => 4 3 6 5 10 9 8 7 12.

memoize-simple-test works by marking the positions that have been returned in a

bit vector of size *end*-start+1 which it stores on the *stack*.

MEMOIZE-SIMPLE-TEST is not currently used by the simple-test-reader.

Repet i t ion : T+ an d T*

(T+ simple-test) (function)
(T* simple-test) (function)
(T+ simple-test) is a simple-test that performs simple-test one or more

times, each time starting at the conclusion of the previous match. (T* simple-

test) does the same, but performing the test zero or more times. Back-tracking is

done both by the inner simple-test and the outer (T+ simple-test), ensuring

that no possible matches can be overlooked. In effect, T+ performs a depth-first

search of the match tree. Unnecessary work is avoided by tracking the positions

already visited, so the search will never start a second time from the same position

and no value is returned more than once. Without such tracking, costs could grow

exponentially. For example, (calll #~"(a|a)+" "aaaaa") returns the values

5,4,3,2,1,NIL, but it would return 62 values before returning NIL if tracking

were not used.

T+ and T* do not advance on matches having length zero, since doing so would

create an infinite loop. For example,

(calll #~"(\b)+" "abc") => NIL
(calll #~"(a?)+" "b") => NIL

both fail immediately, even though both tests are successfull in the sense that the

start of the first string is a word boundary and the a? test is satisfied at position 0 of

the second string. Contrast this with

(calll #~"\b" "abc") => 0 NIL
(calll #~"a?" "b") => 0 NIL.

Of course, we still have

(calll #~"(\b)*" "abc") => 0 NIL
(calll #~"(a?)*" "b") => 0 NIL.

Algebra of Simple-Tests

24

The simple-test-reader uses T+ and T* to expand regular expressions

using + or * quantifiers unless the quantifier follows a single character or character

class. For example, #~"a+" and #~"[ab]+" would not be handled by T+, but

#~"(a)+" does expand using T+ because of the parentheses, and #~"a++" expands

as (T+ #~"a+") because quantifiers are always recognized as such when they follow

other quantifiers.

T+ uses 3L+2 words on the *stack*, where L= *end*-start is the length

of the string. Of these, L+1 are used as a bit vector to mark the positions that have

been visited and 2L+1 are used as a stack to store string positions and trets.

Examples:

 (calll #~"(a{5}|a{3})+" "aaaaaaaaa") => 8 5 9 6 3 NIL
 (calll #~"(@+\a+)+" "@@aa@@bb@@cc@@77") => 12 11 8 7 4 3 NIL

Repet i t ion wi thou t backtr ac king : T+! and T*!

(T+! simple-test) = (T!+! simple-test) (function)
(T*! simple-test) = (T!*! simple-test) (function)
(T+! simple-test) is a simple-test that performs simple-test one or more

times, each time starting where the previous match ends. However, unlike T+, no

back-tracking is done, and only the end of the final match is returned. Like all

destructive operations using !, it should be used with care. Since it does so little

bookkeeping, it can save a lot of time, especially when it fails. T+! is equivalent,

conceptually, to the composition of T! with T+. Since in this composition, T+ is not

called on to do any backtracking, nothing would change if T+ were replaced with

T!+. For this reason, it follows that T!+! and T+! are the same operations, that

is T!+! = T+!. Chio therefore assigns these two names to the same routine. (To

say that T!+! = T+! means that (calll T!+! simple-test str) and (calll

T+! simple-test str) always produce identical sequences of numbers). Likewise,

T*! and T!*! are two names for a routine that performs a test zero or more times

without backtracking.

These routines do not use the *stack*.

Examples:

(calll #~"(a{5}|a{3})+!" "aaaaaaaaa") => 8 NIL

Algebra of Simple-Tests

25

(calll #~"(@+\a+)+!" "@@aa@@bb@@cc@@77") => 12 NIL
(calll #~"[ab]+!b" "aaaaaab") => NIL

Replacing +! with + would cause a match to be found in the third example.

Dumbe d re pe t i t i on w ith backtr ac king : T!+ and T!*

(T!+ simple-test) (function)
(T!* simple-test) (function)

If test is a simple-test, then (T!+ test) is a simple-test that performs (T!

test) one or more times, each time starting where the previous match ends. In other

words, one match to test is found starting at START (and no match will ever again

be found starting at START –– that is a key point). Another (just one!) match is then

found starting where the first match ends, and then another starting where the second

ends, this process continuing as long as we keep moving forward. The endings of all

those matches are then returned in reverse order by the tret. Although (T!+ test)

backtracks, test itself never does. Thus T!+ works a little harder than T!+!,

but possibly much less than T+.

Examples:

(calll #~"(\s\d+)!+" " 111 222 333 ") => 12 8 4 NIL
(calll #~"(a{5}|a{3})!+" "aaaaaaaaa") => 8 5 NIL

The simple-test-reader uses T!+ and T!* to expand regular expressions

in parentheses followed by !+ or !*. The !+ and !* quantifiers cannot directly

follow a single character or character class since ! is not regarded as a quantifier in

that context. Thus #~"[ab]!+" is a search for an a or b followed by one or more

!.

T!+ uses *end*-start words on the *stack*. These are used as a bit vector

to mark the positions where some match ends.

Short r epet i t ion : T+< and T*<

(T+< simple-test) (function)
(T*< simple-test) (function)

If test is a simple-test, then (T+< test) is a simple-test that performs test

one or more times, each time starting where the previous match ends. T+< examines

Algebra of Simple-Tests

26

the same tree of all possible matches as T+ but the results are returned in ascending

order and the order of the search is different.

The T+< algorithm works as follows. Let Y denote the tret (funcall (T+<

test) start). The first time Y is called, the tret (funcall test start) is

created, exhausted, and all the values that it returns are marked to record that those

positions are reachable. The smallest of those marked values (greater than start),

say val1, is returned by Y. The next time Y is called, the tret (funcall test

val1) is created, exhausted, and all the values that it returns are marked (if not

already marked). The smallest marked value (greater than val1), call it val2, is

then returned by Y. This process continues until either the *end* of the *string*

is returned or there are no more marked values.

Although conceptually equivalent to the composition of T< with T+, T+< is

more efficient because it only does the computations needed to advance by one match

each time the tret is called. By contrast, using T< would require exhausting the T+

tret before any values could be returned.

Examples:

(calll #~"(a{5}|a{3})+<" "aaaaaaaaaaaaaaa")
=> 3 5 6 8 9 10 11 12 13 14 15 NIL

(calll #~"(\a+<abc)+<" "abacabcabbcaaccabcaaaabc")
=> 7 18 24 NIL

The simple-test-reader uses T+< and T*< to expand regular expressions

within parentheses that are followed by +< or *<. Single characters and character

classes are handled by the specialized routine chtes+<.

T+< and T*< use L+1 words on the *stack*. These are used as a bit vector

to mark the reachable positions.

Dumbe d sh or t re pe t i t i on : T!+< and T!*<

(T!+< simple-test) (function)
(T!*< simple-test) (function)

If test is a simple-test, (T!+< test) is a simple-test that performs (T! test)

one or more times, each time starting where the previous match ends. The first time

the tret Y = (funcall (T!+< test) start) is called, one match to test is

Algebra of Simple-Tests

27

sought starting at start. If found, the position of its end, say val1", is returned

provided val1 > start, and otherwise NIL is returned. If Y is called again,

another match is then sought starting at val1". If found, the position of its end, say

val2", is returned provided val2 > val1, and so forth. T!+< returns the same

values as T!+, but in the reverse order.

T!+< is more efficient than composing T< with T!+ because in the latter case

all values to be returned by the tret would be calculated in advance and saved so that

those values can be returned one by one each time the tret is called. By contrast,

T!+< only causes a match to be computed when it is needed, moving forward by just

one match each time the tret is called.

T!+< and T!*< do not use the *stack*.

The simple-test-reader uses T!+< and T!*< to expand regular

expressions within parentheses that are followed by !+< or !*<.

Examples:

(calll #~"(\s\d+)!+<" " 111 222 333 ") => 4 8 12 NIL
(calll #~"(a{5}|a{3})!+<" "aaaaaaaaa") => 5 8 NIL

The opt ional oper ator : T?

(T? simple-test) (function)
The simple-test-reader uses T? to handle single characters, character classes,

or regular expressions within parentheses when followed by an unescaped question

mark. T? is defined as follows:

(defun t? (simple-test)
#'(lambda (start)

(let ((itret (funcall simple-test start))) ; inner tret
#'(lambda () ; outer tret

(when itret
(cond ((funcall itret))
 (t (setf itret nil)
 start)))))))

The outer tret returned by (T? simple-test) returns the same values returned by

the inner tret returned by simple-test, with the exception that the outer tret

returns start once when the inner tret is exhausted.

Algebra of Simple-Tests

28

Examples:

(calll #~"a?" "aaa")) => 1 0 NIL
(calll #~"a+?" "aaa")) => 3 2 1 0 NIL
(calll #~"a+<?" "aaa")) => 1 2 3 0 NIL

The onc e -on ly ope rator : T!

(T! simple-test) (function)
The simple-test-reader uses T! to handle regular expressions within

parentheses when followed by an unescaped !. (T! simple-test) creates a tret

that returns only the first value that would be returned by simple-test, and then

NIL. Since it causes all other possible matches to be discarded, it should be regarded

as a destructive operation, only to be used when one is certain that the discarded

matches either do not exist or are of no interest. T! is defined as follows:

(defun t! (simple-test)
 #'(lambda (start) ; returned simple-test
 #'(lambda () ; and the tret it creates
 (when start
 (prog1
 (test-once simple-test start)
 (setf start nil))))))

The first time the tret is called, test-once is called to find just one match beginning

at start. If the tret is called again, it returns NIL. If the form

(test-once simple-test start)

were replaced in this definition by the form

(funcall (funcall simple-test start)),

which has the same value, the definition of t! would still work, in the sense that its

trets would return the same values. However, there would be a subtle bug. The

problem is that in the second form, the tret returned by (funcall simple-test

start) is evaluated only once and not exhausted. Due to this, if simple-test

allocates any space on the *stack*, that space would never be de-allocated. The

first form using test-once evaluates and returns the second form and also de-

allocates any *stack* space that has been allocated by simple-test. To see how

this is done, see Chio’s code for test-once.

Algebra of Simple-Tests

29

Examples:

Without the ! this first example would return 6 5 4:

(calll #~"(a+b+)!" "aaabbb") => 6 NIL

The test in the next example fails with or without the !. The advantage of using the

! operator is that it causes the test to fail quickly. Without the ! the test would

back-track, looking for a c after each b:

(calll #~"((ab)+c)!" "abababababab") => NIL

If you know that your data permits use of the ! operator, it can save much effort in

situations where a test fails. Another advantage of using the ! operator is that it

makes your regular expressions easier to read by declaring that only a subset of the

possible matches are under consideration.

The s or t ing ope rators : T< and T>

(T< simple-test) (function)
(T> simple-test) (function)
(T< simple-test) creates a tret (the “outer” tret) that returns the same values as

would be returned by the "inner tret" created by simple-test, but in ascending

order, and without duplicates. T< works by creating and exhausting the “inner” tret

produced by simple-test, and marking the values in a bit vector on the *stack*

so they can be returned one by one as the outer tret is called repeatedly. T> works in

identical manner with decreasing order.

Using the sorting operators directly is not always a good idea. Since they create

and exhaust a tret for simple-test before even a single value can be returned, they

are inherently inefficient. They do provide the advantage of omitting all duplicate

values, but that task would be handled more efficiently by memoize-simple-test.

Although the sorting operators may only be needed in limited circumstances, the

main reason they have been included with the Chio language is to provide a consistent

and sensible naming strategy for the numerous compound quantifiers. For example,

the operator T!+< does not actually use the T< operator at all. However it behaves,

in terms of the results it produces, as if it were the composition of T<, T+, and

T!. As long as the sorting operators play this useful role for naming the compound

quantifiers, it seems sensible to actually include them in the language.

Algebra of Simple-Tests

30

Examples:

 (calll #~"[cx]+<[^c]+[^x]?" "ccxcxcxxxccx")
 => 4 3 6 5 10 9 8 7 10 9 8 10 9 12 NIL
 (calll #~"([cx]+<[^c]+[^x]?)<" "ccxcxcxxxccx")
 => 3 4 5 6 7 8 9 10 12 NIL
 (calll #~"([cx]+<[^c]+[^x]?)>" "ccxcxcxxxccx")
 => 12 10 9 8 7 6 5 4 3 NIL

The simple-test-reader uses T< and T> to handle regular expressions, other

than single characters or character classes, that are followed by an unescaped < or

>. In other contexts, < and > are treated as ordinary characters. For example,

#~"<tag>" searches for the literal string "<tag>".

Numer ic al quant i f ie rs : TN

(TN simple-test L &optional (U L)) (function)
TN repeats simple-test n times, where L ≤ n ≤ U. If U = :infinity, then

simple-test is repeated L or more times. L should be a fixnum. U should be a

fixnum or :infinity, and defaults to L. Full back-tracking is performed, so no

possibilities can be missed. TN is used by the simple-test-reader to handle numerical

repetition counts. For example,

#~"(ab){n,m}" expands as (TN #~"ab" n m)
#~"(ab){n}" expands as (TN #~"ab" n n)
#~"(ab){n,}" expands as (TN #~"ab" n :infinity).

TN does not handle repetition counts applied to single characters or character classes

(unless enclosed in parentheses) – these are handled by a specialized and very efficient

routine chtes-n.

In Chio 1.0, TN delegates its work to two different routines. One routine, tn-

low, handles the :infinity case, and a less efficient routine, tn-low-high,

handles the ordinary case. Chio can sometimes deduce, based on the length of the

target string, that a regexp can be handled by tn-low even though it contains a

finite upper bound. For example,

(calll #~"(a){5,10}" "aaaaaaa") => 7 6 5 NIL

uses tn-low because Chio knows that 10 matches cannot possibly fit into a string of

Algebra of Simple-Tests

31

length 7. But Chio is not smart enough to know that

(calll #~"(ab){5,10}" "ababababababab") => 14 12 10 NIL

could have been handled by tn-low because it assumes a worst-case scenario where

each match has length one.

Whenever tn-low finds a match, it records its depth, that is the number of

matches since start. If, later, another match ends at that same position with a

lower depth, the recorded value is changed to the smaller value. On the other hand, if

another match later ends at that same position with the same or higher depth then

there is no point in proceeding further along that branch of the search tree. This can

sometimes save effort.

tn-low-high, on the other hand, searches the entire tree except, of course, that

it cuts off a branch whenever the upper limit has been exceeded. This can lead to

exponential explosions of complexity. So be careful with numerical quantifiers,

especially when the upper bound is a large number. For instance, try timing this form

(calll-silently #~"(a|a){15}" "aaaaaaaaaaaaaaaaaaaaa")

The time roughly doubles when 15 is changed to 16. For contrast, try replacing {15}

with {15,}.

Dumbe d nu me ri ca l quanti f i er s : T!N and T!N!

(T!N simple-test L &optional (U L)) (function)
(T!N! simple-test L &optional (U L)) (function)
T!N! keeps finding matches for simple-test, each time starting where the previous

match ends. It stops when U matches have been found or when there are no more

matches. U can have the value :infinity. If U is not reached, the end of the

last match found is returned if at least L matches have been found. No back-tracking

is performed.

T!N does the same work as TN!, but whereas TN! returns at most one value

(and then NIL), T!N back-tracks to return the endings of all the valid matches in

descending order. The reason why T!N and TN! are so efficient is that their search

tree is a simple path.

Algebra of Simple-Tests

32

Examples:

 (calll #~"(a+b+)!{2,4}" "aaabbbaaabbbaaabbb ") => 18 12 NIL
 (calll #~"(a+b+)!{2,4}!" "aaabbbaaabbbaaabbb ") => 18 NIL

The simple-test-reader does not apply T!N to characters or character

classes because ! is not considered to be a quantifier in that context.

Note that there is no specially defined TN! Chio routine. Although it is

permissible (and sometimes useful) to put ! after a numerical quantifier, it is not

handled in any special way – T! is just composed with the quantifier. However, the

simple-test-reader does use a specialized routine to apply the N! composition to

characters or character classes.

Short n umer ic al quant i f ie r : TN<

(TN< simple-test L &optional (U L)) (function)
TN< returns the same values as TN but in ascending order. When U is

:infinity, TN< passes its labor on to the efficient routine TN<-lbound. When U

is a fixnum, Chio 1.0 simply composes T< with TN, so that no improvements in

efficiency are achieved. TN< is used by the simple-test-reader to handle

quantifiers of the form {n,m}< or {n,}< (other than character classes, which are

handled by the specialized routine chtes-n).

TN<-lbound works very much like T+<. However, in addition to keeping track

of reachable positions, it keeps track of their depth as well. When a position is

revisited with lower depth, the search may be truncated. When revisited at a higher

depth, the depth is updated to the higher value.

Examples:

 (calll #~"(a+b+){2,4}<" "aaabbbaaabbbaaabbb")
 => 10 11 12 16 17 18 NIL
 (calll #~"(.{5}|a{3}){3,}<" "aaaaaaaabbbbbbb")
 => 11 13 15 NIL

Dumbe d sh or t nu me ri ca l qu anti f i er : T!N<

(T!N< simple-test L &optional (U L)) (function)
returns the same values as T!N but in ascending order. When the tret is called, L

Algebra of Simple-Tests

33

matches are attempted, each starting at the end of the previous one. If this succeeds

the end of match L, xL , is returned. If the tret is called again and U>L, another

match is attempted starting at xL. If it succeeds, the end xL+1 of the match is

returned. If the tret is called again and U>L+1, another match is attempted starting

at xL+1, and so forth.

Examples:

 (calll #~"(a+b+)!{2,4}<" "aaabbbaaabbbaaabbb")
 => 12 18 NIL
 (calll #~"(c+|.{5})!{2,}<" "cccxccccxxxxxcc")
 => 8 13 15 NIL

Binding-Trees

34

Bi n d i n g -T rees

Def in i t ion of b inding-t re e

Binding-trees provide a mechanism for glueing simple-tests together to describe a

search. To a limited extent, this role is already performed by the simple-test-

reader. For example, the simple-test #~"[ab]+(c{3}d{5}|d{3}c{5})e?" can be

represented by the tree shown in Figure 3

scat scat

[ab]+

e

t_or t?

scat

c{3} d{5} d{3} c{5}

Figure 3

where the internal nodes represent operations on simple-tests (scat=concatenation,

t_or=alternation, t?=option) and the leaves of the tree are simple-tests. The

simple-test-reader glues these simple-tests together into one simple-test.

However, the simple-test-reader cannot glue together arbitrary simple-tests – it

can only handle those representable with Chio’s regular-expression syntax. But a

simple-test is just a Lisp procedure following certain rules, and we ought to be able to

include any simple-test as a leaf of a search tree, not merely those that can be

understood by the simple-test-reader.

Another shortcoming of the simple-test-reader is that it provides no way to

capture sub-matches. For example, placing parentheses around [ab]+ does not give

access, as it would in some regular expression dialects, to the part of a match that

matches [ab]+. One way to fix this would be to program more capability into the

simple-test-reader. This approach, however, would not suffice – we need to be

able to capture arbitrary sub-matches, not just the ones that correspond to Chio

regular-expressions, or portions thereof.

Binding-Trees

35

To satisfy these needs, Chio provides the notion of binding-tree.

The internal nodes of a binding-tree are operation-keywords, of which there are

three basic-operation-keywords:

:& represents concatenation (like scat)

:o represents alternation (like t_or) (the letter "o")

:? represents option (like t?)

In addition to the basic-operation-keywords, any keyword symbol whose symbol-name

has length greater than one and whose first character is &, o, or ? is called a

remembering-operation-keyword. For example, all of the following are remembering-

operation-keywords:

:&0 :&foo :&3 :ox :o11 :?5

Remembering-operation-keywords perform grouping and binding functions, whereas

basic-operation-keywords merely perform a grouping function. The first character, &,

O, or ?, specifies the operation.

The definition of binding-tree is recursive:

 i. Any Lisp expression whose value is a simple-test is a
binding-tree with a single node.

ii. If op is an operation-keyword and L is a non-empty
list of binding-trees, then (cons op L) is a binding-
tree.

Note that a binding-tree contains Lisp expressions that evaluate to simple-tests,

rather than actual compiled simple-tests.

Example: These binding trees represent the same search:

i. #~"[ab]+(c{3}d{5}|d{3}c{5})e?"
(binding-tree with single node)

ii. (:& #~"[ab]+" #~"c{3}d{5}|d{3}c{5)" #~"e?")
(three leaves and one internal node)

iii. (:& #~"[ab]+" (:o #~"c{3}d{5}" #~"d{3}c{5)") #~"e?")
iv. (:& #~"[ab]+"

 (:o (:& #~"c{3}" #~"d{5}") (:& #~"d{3}" #~"c{5)"))
 (:? #~"e"))
(the binding tree of this example looks exactly like the tree of Figure 3,
except that the internal nodes are operation-keywords.)

Binding-Trees

36

Naming conven tion s

All remembering-operation-keywords whose names start with the same character

(&, o, or ?) are indistinguishable; for example, it never matters whether you use

:&3 or :&foo. The names play no role in the bindings that will be formed. The only

things that matter to Chio about the name of an operation-keyword are the first

character, which identifies the operation, and whether or not there is another

character after it. However, for the sake of code clarity, it is suggested to use

ascending numerical values such as :&0, :&1, :o2, :?3, :&4,… to identify the

remembering-operation-keywords in a binding-tree in the order in which they occur.

The reason this scheme is so helpful is that captured match results are referenced by

the number (counting from left to right and starting with zero) of the remembering-

operation-keyword. For example, here is a binding-tree following this naming

convention. It contains two basic- and three remembering-operation-keywords:

(:& #~"." ; single character
 (:&0 #~"[^+-]+!" ; longest-only run of not + or -
 (:o1 #~"[+]+" ; run of pluses
 #~"[-]+" ; run of minuses
 (:? #~i"[a-eiou]+")) ; run of certain chars, ignoring case
 #~"\d+") ; run of digits
 (:&2 #~".{3,4}<")) ; 3 or 4 characters, preferring 3

and this would be read by the simple-test-reader as

(:& dot
 (:&0 (chtes+! "+-" nil nil :- nil nil)
 (:o1 (chtes+ "+" nil nil nil nil nil)
 (chtes+ "-" nil nil nil nil nil)
 (:? (chtes+ "iou" ((#\a . #\e)) nil nil nil t)))
 (chtes+ nil nil (digit-char-p) nil nil nil))
 (:&2 (length-range-short 3 4)))

which is a tree in which every leaf is a Lisp expression whose value is a simple-test, as

shown in Figure 4. In such a list, internal tree structure is recognized as lists whose

cars are keywords. Leaves of the tree are recognized as either symbols that are not

keywords (like dot), or lists whose cars are not keywords (like (length-range-

short 3 4)).

Binding-Trees

37

.

.{3,4}<

:&0 :&2

:&

[^+-]+! \d+:o1

[-]+[+]+! :?

[a-eiou]+

Figure 4

Compi le d-bind in g- tr ee s

Before it can be used, a binding-tree must be compiled. The resulting compiled-

binding-tree structure contains a tree identical to the binding-tree, except that the

code for its simple-tests has been compiled, and it is uses vectors rather than lists to

enable faster access. The structure also contains information about the number of

remembering-operation-keywords and the amount of space on the *stack* that need

to be reserved to execute the search. A binding-tree is compiled using the macro

compile-test. For example,

(compile-test (:& #~"."
 (:&0 #~"[^+-]+!"
 (:o1 #~"[+]+" #~"[-]+" (:? #~i"[a-eiou]+"))
 #~"\d+") (:&2 #~".{3,4}<")))

returns something like this:

Binding-Trees

38

#S(compiled-test :tree
 (-3 .
 #(#<compiled-function dot-simple-test (non-global)>
 (0 .
 #(#<anonymous function>
 (7 .
 #(#<compiled-lexical-closure chtes+-simple-test>
 #<compiled-lexical-closure chtes+-simple-test>
 (-1 . #(#<compiled-lexical-closure chtes+-simple-test>))))
 #<compiled-lexical-closure chtes+-simple-test>))
 (12 .
 #(#<compiled-lexical-closure>))))
 :vars 6
 :ssize 9)

In the compiled structure, the internal nodes are fixnums that encode the operation

type (&, o, or ?) and, for each remembering node, its position. The :vars component

is two times the number of remembering nodes, and the :ssize component indicates

the required *stack* space.

The three main macros with-test-binds, with-test-format, and with-

test-split accept either a binding-tree or a compiled-binding-tree as an argument.

When the user provides a binding-tree, the macro will automatically compile it. Thus

explicit compilation by the user is optional. However, when used inside an iterative

control like a loop, do, or while, a binding-tree should always be compiled

explicitly outside of the loop so that the compilation is not needlessly repeated.

Recall that a simple-test is also a binding-tree. When compile-test is applied

to a simple-test, it is treated as a binding-tree with the single remembering-operation-

keyword &0. For example, #~"abc" is compliled in the same way as (:&0

#~"abc").

Inc omple t e bind ing- tr ee s

The value NIL can be used for a leaf of a binding-tree as a place-holder for a

simple-test to be inserted after compilation. A binding tree that contains one or more

NIL leaves is an incomplete binding-tree. When compile-test is applied to an

incomplete binding-tree having n such NIL leaves, a function of n variables is

returned. Let’s call that function g. The function g contains the compiled-binding-

tree (still with NIL leaves) in its lexical-closure. When g is called, it inserts its

arguments into their reserved spots and returns the modified compiled-binding-tree.

Binding-Trees

39

The ordering of the arguments of g corresponds to the order of the NIL leaves in the

binding-tree.

Incomplete binding-trees are useful in situations where just a portion of the

search instructions change each time a compiled-binding-tree is to be used, typically

within iterated code. Avoiding the necessity to allocate a new data structure, the

existing compiled-binding-tree is destructively modified so just the simple-tests that

need to be changed are replaced with their new values. This replacement is fast

because the function g knows exactly where to put the new simple-tests – it doesn’t

have to search through the compiled-binding-tree to find the right spots.

As an example,

(let ((incomplete
 (compile-test (:& #~"."
 (:&0 #~"[^+-]+!"
 (:o1 #~"[+]+" #~"[-]+" (:? NIL))
 #~"\d+")
 (:&2 NIL))))
 (first-insertion #~i"[a-eiou]+")
 (second-insertion #~".{3,4}<"))
 (funcall incomplete first-insertion second-insertion))

returns the same compiled-binding-tree as the previous example.

Access to Match Results

40

Ac c ess t o M a t c h Resu l t s

Chio provides the macros mref, mwrite, and empty-match-p to access

results captured by binding-trees. When a binding-tree is used successfully, the

coordinates (start and end) of each remembered match are stored on the *stack*.

The access macros provide a convenient interface to these saved values.

These access macros are designed to be used only within the body of the major

macros with-test-binds, with-test-format, and with-test-split. The

macros are therefore called only in the context of a successful match. The first

argument to each major macro is prefix, a symbol which serves to identify the

macro call and provide a key to access results. The access macros may also be used

within the afterform of with-test-format in once-only mode. (Afterforms do not

exist in once-only mode with the other two macros).

MREF prefix i fmt &optional empty-val [Macro}
accesses the substring of *string* matching the ith remembering-operation-

keyword of the binding-tree (starting with i=0). If the match has length zero, or if

the match does not exist (because it refers to an unused or failed alternative of an :o

operation-keyword) then empty-val (which defaults to NIL) is returned. If the

match exists and has positive length, then the match can be read in various ways,

depending on the value of fmt

(MREF prefix i :A) = index in *string* of start of match

(MREF prefix i :E) = index in *string* of end of match

(MREF prefix i :P) = coordinates of the match as a pair (start . end)

(MREF prefix i :S) = match, read as a string (a copy is made)

(MREF prefix i :I) = match, read as an integer (as by parse-integer)

(MREF prefix i :R) = match, read as the Lisp reader would read it

(MREF prefix i :C) = the first character of the match

(MREF prefix i :N) = the match, read as a number (as by Lisp reader)

The :R option causes one object to be read from the match. For example, if the

match is "(+ 3 4)zzz", then (+ 3 4) would be read, and zzz ignored. Likewise,

the :I option causes one integer to be parsed, and may not use up the entire match.

Access to Match Results

41

The :N option uses the Lisp reader to read one object, checks that the object is a

number and that it uses up the entire match, signaling an error otherwise.

It is easy for a user to customize these options. It is merely necessary to modify

the function format-translation in the file access.lisp and define (or

redefine) the corresponding reader function. For example, if you wanted :R to signal

an error when the whole match is not consumed, you would look at the code for

format-translation and note that the reader corresponding to :R is called obj-

reader. You would then change the code for obj-reader to make it behave as you

want.

In addition to the above keyword values for fmt, a user can supply the name of a

function (or lambda expression) of two variables (start end) to be applied to the match.

For example,

 (MREF prefix i (lambda (start end) (- end start)))

would return the length of the match, and

 (MREF prefix i (lambda (start end)

 (position #\d *string* :start start :end end)))

would return the position of the first d within the match. Using the :I option is

equivalent to

 (MREF prefix i (lambda (start end)

 (parse-integer *string*

 :start start :end end))).

Here is an example that uses MREF with several of its keyword tags. The

string "abc 345 3/4" contains three items separated by whitespace. "abc"

is match 0, "345" is match 1, and "3/4" is match 2:

(let* ((ws #~"\s+") ; whitespace
 (nws #~"\S+") ; not whitespace
 (test (compile-test
 (:& (:&0 nws) ws (:&1 nws) ws (:&2 nws)))))
 (with-test-binds X (test "abc 345 3/4")
 (list (mref X 0 :s) ; match 0 as string
 (mref X 0 :r) ; match 0 read as symbol
 (mref X 1 :i) ; match 1 as integer
 (mref X 1 :c) ; first char of match 1

Access to Match Results

42

 (mref X 2 :n) ; match 2 as number
 (mref X 1 :a) ; start of match 1
 (mref X 1 :e) ; end of match 1
 (mref X 1 :p)))) ; match 1 as pair

 returns => ("abc" ABC 345 #\3 3/4 6 9 (6 . 9))

MWRITE prefix i stream [Macro]
outputs the match to STREAM without first making a copy of it. It is equivalent to

 (mref prefix i (lambda (start end)
 (write-string *string* stream
 :start start :end end)))

EMPTY-MATCH-P prefix i [Macro]
returns the position start=end if the remembered match I has length zero. If the

match has positive length, it returns NIL. And there is a third possibility: end will

have a value less than start if the match does not exist because it is an unchosen or

failed alternative of an :o remembering-operation-keyword; in this situation,

empty-match-p returns T.

For example, the following reads either a number or a word and uses empty-

match-p to distinguish which outcome it is:

 (with-test-binds AA ((:o0 (:&1 #~"\d+") (:&2 #~"\a+")) " 123 ")
 (format t "the ~a is ~a" (if (empty-match-p AA 1)
 "word" "number")
 (mref AA 0 :s))
 (subseq *stack* AA-mrs AA-mre)) ; return the match vector

prints => the number is 123
returns => #(1 4 1 4 0 -1)

In this example, match 2 has negative “length” since it represents an unchosen

alternative. (empty-match-p AA 2) would return T. Note that whereas empty-

match-p returns a fixnum for a successful match of length zero, it returns T for an

unused or failed alternative of an :o remembering-operation-keyword. It is probably

rare that the need exists to distinguish between these two outcomes, since almost

always it will be the case that successful matches necessarily have positive length, but

empty-match-p makes it possible to make the distinction in those rare cases when it

is needed.

with-test-binds

43

M a t c h i n g : with-test-binds

This section documents the macro with-test-binds, which executes code

subject to bindings established by matching a binding-tree to a string.

WITH-TEST-BINDS prefix
 (test string &key start end until afterform tags)
 &body body [Macro]

Summary

WITH-TEST-BINDS finds match(es) to TEST in STRING. When the match is

successful, BODY is executed subject to the bindings described by the remembering-

operation-keywords of the binding-tree for TEST. The behavior of this macro, which

is highly flexible, is governed by TAGS, which is a list of keywords. TEST must be

either a binding-tree or a compiled-binding-tree. If TEST is a binding-tree it is

compiled into a compiled-binding-tree.

M odes

There are two modes: once-only and loop.

Loop mode is signalled when one of the tags :G, :MAP, or :MAP-IF is

present. Otherwise, the mode is once-only, meaning that only a single match is

sought.

UNTIL and AFTERFORM are available only in loop mode.

Des cr ip t i on

In once-only mode,…
if a match is found, BODY is executed subject to the bindings described by the
remembering-operation-keywords of the binding-tree for TEST, and the last
form in BODY is returned. If no match is found, BODY is never executed, and
NIL is returned.

Alternatively, (return-from PREFIX val) can exit the containing block
named PREFIX and return val.

with-test-binds

44

In loop mode with :G tag,…
the BODY is placed inside of a (loop…) where it is executed once for each

match found, subject to the bindings described by the remembering-operation-
keywords of the binding-tree for TEST. Any (return) inside of BODY or any
non-NIL UNTIL form exits the loop. When the entire STRING has been
searched or the loop has been exited by a (return) or UNTIL form, the
AFTERFORM (which defaults to NIL) is evaluated and returned.

Alternatively, any (return-from PREFIX val) inside BODY can exit with
val as return value (and, in this case, the AFTERFORM is never executed
because it is inside the block named PREFIX).

In loop mode with :MAP or :MAP-IF tags,…
the BODY is placed inside of a (loop…) and is executed once for each match

found, subject to the bindings described by the remembering-operation-keywords
of the binding-tree for TEST. Any (return) inside of BODY or any non-NIL
UNTIL form exits the loop. Each time BODY is executed, the value of the last
form in BODY is pushed onto a list, with the exception that with :MAP-IF, NIL
values are not pushed. When the entire STRING has been searched or the
loop has been exited by a (return) or UNTIL form, the AFTERFORM (which
defaults to NIL) is evaluated for side-effects only. Then the collected list is

nreversed and returned.

Alternatively, any (return-from PREFIX val) inside BODY exits the block
with val as return value. This value takes precedence over the list that would
have been returned by :MAP or :MAP-IF and, since AFTERFORM is inside the
block named PREFIX, it is never executed.

with-test-binds

45

Keyword arguments

:TAGS
Tags are included in a list following the keyword :TAGS. Permissible tags are:

 :G Find all matches (loop mode). A leftmost match is sought,
starting where the previous match ends. So #~"aa" would only
find one match in "aaa" and only two in "aaabaaa".

 :MAP Find all matches (loop mode) and return a list of the results.

 :MAP-IF Find all matches (loop mode) and return a list of the results, but
omitting NIL values.

:anchorL In once-only mode, anchors match to START of STRING (note:
this has nothing to do with newlines, which are given no special
treatment).

In loop mode, anchors first match to START of STRING and each
successive match to end of the previous match.

:anchorR In ONCE-ONLY mode, anchors match to END of string.

:START
Starting index in STRING of target substring.

:END
Ending index in STRING of target substring.

:UNTIL
In loop mode, this form is evaluated at the conclusion of each iteration to test
for an early exit from the loop. The UNTIL form is evaluated after PREFIX-
COUNT has been incremented.

:AFTERFORM
In loop mode, this form is evaluated after the loop is exited normally (because
there are no additional matches or because an UNTIL form returns a non-nil

value).

With the :G tag, the AFTERFORM is returned. With the :MAP or :MAP-IF
tags, the AFTERFORM is evaluated for side-effects only.

Since the AFTERFORM is placed inside the block named PREFIX, any
(return-from PREFIX val) inside of BODY will cause the AFTERFORM to

be skipped.

with-test-binds

46

Loc al var iabl es and b lock

The macro encloses its code in a block named PREFIX, allowing the use of

(return-from PREFIX &optional value) to exit returning value. The

symbol-name of PREFIX is also used as a prefix for several other symbols that are

interned in the current package:

PREFIX-END
The end of the most recent match (or of the single match in once-only mode)

PREFIX-COUNT
In loop mode, when PREFIX-COUNT occurs inside BODY, it is bound to the

index of the current iteration (starting with 0 during the first iteration).
PREFIX-COUNT is incremented after each complete execution of BODY and
before the UNTIL form. Within an AFTERFORM, PREFIX-COUNT equals the
number of times BODY has been executed, or zero if BODY was never executed.
However, if the loop is exited by a (return) inside of BODY, then that final
execution of BODY is considered to be incomplete, so PREFIX-COUNT is not
incremented for that last iteration. Consequently, within the AFTERFORM,
PREFIX-COUNT would still equal the index of the iteration during which the exit

occurred.

PREFIX-COUNT is not used in once-only mode.

PREFIX-MRS and PREFIX-MRE
The match results (that is, the coordinates of the substrings of STRING that
match the remembering-operation-keywords of the binding-tree for TEST) are
stored in the subvector of *stack* that starts at PREFIX-MRS and ends at
PREFIX-MRE. ("MRS" and "MRE" stand for "match-results-start" and "match-

results-end"). A user will normally access match those results indirectly via the
macros mref, mwrite, and empty-match-p which expand into expressions
that use PREFIX-MRS and PREFIX-MRE. Therefore, a user does not normally

need to use these two variables directly.

The start and end of the substring that matches the ith remembering-operation-
keyword (starting with i=0) are stored at

with-test-binds

47

(svref *stack* (+ prefix-mrs (* 2 i)))
and

(svref *stack* (+ prefix-mrs (* 2 i) 1)),

respectively (as can be observed by examining the macro-expansions of (mref
prefix i :a) and (mref prefix i :e)).

If no match is found for the ith remembering-operation-keyword because it is a
failed or unused alternative of an :o operation-keyword, then the second of
these values is smaller than the first and (empty-match-p prefix i)
returns T.

In loop mode, match results are unpredictable within the scope of an
AFTERFORM because results from the most recent successful match may be

overridden by results from a more recent unsuccessful match attempt. For this
reason, the behavior of the macros mref, mwrite, and empty-match-p is
undefined when they are used in an AFTERFORM.

The variable PREFIX-MRE is used only when the global variable *CHECK-
MATCH-BOUNDS* is not NIL.

with-test-binds

48

M ac ro -e xpansion out l ine s

Three pseudo-code macro-expansions are included here to show approximately

how the code looks that the macro produces. Many questions about the behavior of the

macro can be answered by studying these code outlines. For example, if you have

questions about exactly when prefix-count is incremented, or how the use of a

(return) affects the prefix-count, glancing at the outline can provide the answer.

In once-only mode, the expression

(with-test-binds prefix (test str &key start end tags) &body body)

macroexpands into code that resembles this pseudo-code skeleton:

(let* ((*string* STR) ; the target string

 (*end* (or end (length *string*)))
 (prefix-end ...) ; end of match

 (prefix-mrs ...) ; the first position in *stack* where
; match results are stored

 (prefix-mre ...) ; the first position in *stack* following the match results
; (this variable is not needed if *check-match-bounds* is nil)

 (#:gen0 ...) ; the compiled-test is bound to a gensym

 ... other bindings ...)
 (block PREFIX ; block can be executed by (return-from prefix &optional value)

 ... look for only one match ...
 (when match has been found
 ...BODY...)))

with-test-binds

49

In loop mode with the :G tag, the expression

 (with-test-binds prefix (test str &key start end

 until afterform tags) &body body)

macroexpands into code that resembles this pseudo-code skeleton:

(let* ((*string* str) ; the string being matched

 (*end* (or end (length *string*)))
 (prefix-count 0) ; iteration counter

 (prefix-end ...) ; end of match

 (prefix-mrs ...) ; the first position in *stack* where match results are stored

 (prefix-mre ...) ; the first position in *stack* following the match results
; (not needed if *check-match-bounds* is nil)

 (#:gen0 ...) ; the compiled-test is bound to a gensym

 ... other bindings ...)
 (block prefix ; block can be executed by (return-from prefix &optional value)

 (loop
 (cond ; loop can be exited by placing (return) inside of body

 (..not finished.. ; finished when string has been entirely searched

 (when ..match is found..
 (setf prefix-end ..index of end of match..)
 ,@body
 (incf prefix-count)
 (if untilform (return)))) ; untilform defaults to nil

 (t (return))))
 afterform)) ; afterform (defaults to nil) supplies the return value

; afterform is skipped when block is exited by (return-from...)

with-test-binds

50

In loop mode with the :MAP or :MAP-IF tags, the expression

 (with-test-binds prefix (test str &key start end

 until afterform tags) &body body)

macroexpands into code that resembles this pseudo-code skeleton:

(let* ((*string* str) ; the string being matched

 (*end* (or end (length *string*)))
 (prefix-end ...) ; end of match

 (prefix-count 0) ; iteration counter

 (prefix-mrs ...) ; the first position in *stack* where match results are stored

 (prefix-mre ...) ; the first position in *stack* following the match results
; (not needed if *check-match-bounds* is nil)

 (#:gen0 ...) ; the compiled-test is bound to a gensym

 (#:gen1 nil) ; to accumulate list of results

 ... other bindings ...)
 (block prefix ; block can be executed by (return-from prefix &optional value)

 (loop
 (cond ; note that loop can be exited by placing (return) inside of body

 (..not finished..
 (when ..match is found..
 (setf prefix-end ..index of end of match..)
 (let ((#:gen2 (progn ..,@body...)))
 (push #:gen2 #:gen1)) ; with :map-if: (if #:gen2 (push #:gen2 #:gen1))

 (incf prefix-count)
 (if untilform (return))))
 (t (return))))
 afterform ; for side-effects only -- does not supply the return value

; afterform is skipped when block is exited by (return-from...)

 (nreverse #:gen1))) ; return list of results

with-test-format

51

S u bst i t u t i o n : with-test-format

This section documentations the macro with-test-format, which performs

substitutions in a string subject to bindings established by matching a binding-tree to

the string.

WITH-TEST-FORMAT prefix destination
 (test string &key start end afterform tags)
 &body body [Macro]

where either destination = (variable stream)
or destination = variable, the latter being equivalent to
destination = (variable NIL)

M odes

There are two modes: once-only and loop. Loop mode is signalled when the :G

tag is present. Otherwise, the mode is once-only, meaning that only a single match

is sought.

Des cr ip t i on

With VARIABLE bound to STREAM, WITH-TEST-FORMAT reads STRING and

copies it to STREAM. The match (or matches in loop mode) to TEST, if any, is/are

however not copied to STREAM. Rather, for each such match, the code in BODY is

executed instead. Typically, BODY contains instructions sending output to STREAM

intended as a substitution for the match(es). Or, the absence of such instructions in

BODY has the effect of deleting the match(es). BODY is executed subject to the

various bindings described by the remembering-operation-keywords of the binding-

tree for TEST. TEST must be either a binding-tree or a compiled-binding-tree. If

TEST is a binding-tree it is compiled to produce a compiled-binding-tree.

If STREAM=NIL, output is directed to a string-output-stream.

The behavior of this macro, which is highly flexible, is governed by TAGS, which

is a list of keywords.

In either mode, AFTERFORM (which defaults to NIL) is returned. AFTERFORM is

executed within the scope of the bindings for the local variables prefix-out (the

output collected by the string-output-stream when STREAM=NIL), prefix-end (the

with-test-format

52

end of the last match), and prefix-count (the number of matches, or zero if there

are none).

Keyword arguments

:TAGS
Tags are included in a list following the keyword :TAGS. Permissible tags are:

 :G Find all matches (loop mode) and execute BODY subordinate to
the bindings established by each match.

:anchorL In once-only mode, anchors match to START of STRING (note:
this has nothing to do with newlines, which are given no special
treatment).

In loop mode, anchors first match to START of STRING and each
successive match to end of the previous match.

:anchorR In ONCE-ONLY mode, anchors match to END of string.

 :SET When STREAM=NIL (so that output goes to a newly allocated
string), causes STRING, which must be a settable generalized
variable, to be SET to the output string.

 :HALT In either mode, this causes formatting to halt after last match, so
that the tail portion of STRING following the last match is not
copied to STREAM. Has no effect if there is no match.

 :SKIP-IF-NONE
Governs the behavior of the macro in the event that no match is
found. If :SKIP-IF-NONE tag is present and no match is found, no
output is sent to STREAM. If :SKIP-IF-NONE tag is not present
and no match is found, the entire STRING is sent to STREAM.
Consequently if STREAM=NIL and no match is found, a fresh copy
of STRING is bound to the variable prefix-out when the tag is
not present, and an empty string is bound to prefix-out when
the tag is present.

:START
Starting index in STRING of target substring.

:END
Ending index in STRING of target substring.

with-test-format

53

:AFTERFORM
AFTERFORM is evaluated and returned after all other processing has been

completed. This also allows for the insertion of code, possibly for side-effect only,
to be executed after formatting is completed, but still within the scope of the
bindings of PREFIX-OUT, PREFIX-END, and PREFIX-COUNT. The
AFTERFORM provides the only mechanism whereby the macro WITH-TEST-
FORMAT returns a value.

remark: although there is no :UNTIL form, the same effect can be achieved by
placing a (return) inside of BODY to exit the loop.

Loc al var iabl es

The symbol-name of PREFIX is used as a prefix for several other symbols that

are interned in the current package. In contrast to the macros with-test-binds

and with-test-split, with-test-format does not enclose its code in a block

named PREFIX. Hence return-from cannot be used to exit and return a value

(values may only be returned by AFTERFORM.)

PREFIX-OUT
If STREAM=NIL, then PREFIX-OUT is bound to the string collected by the
output-stream-string. For example, :AFTERFORM PREFIX-OUT causes the

output string to be returned.

PREFIX-END
The end of most recent match (or of the single match in once-only mode).

This variable comes in handy if you want to halt the matching process and then
resume it later from the same spot.

PREFIX-COUNT
In once-only mode, PREFIX-COUNT is zero during the execution of BODY.
Within an AFTERFORM, PREFIX-COUNT is one if BODY has been executed

(because a match has been found) and zero otherwise.

with-test-format

54

In loop mode, when PREFIX-COUNT occurs inside BODY, it is bound to the

index of the current iteration (starting with zero during the first iteration).
PREFIX-COUNT is incremented after each complete execution of BODY. During
execution of an AFTERFORM, PREFIX-COUNT equals the number of times BODY
has been executed, which would be zero if BODY was never executed. However,
if the loop is exited by a (return) inside of BODY, then that final partial
execution of BODY is considered to be incomplete, so PREFIX-COUNT is not
incremented for that last iteration. Consequently, within the AFTERFORM,
PREFIX-COUNT is still equal to the index of the iteration during which the exit

occurred. (The code skeleton below makes it clear why this happens).

PREFIX-MRS and PREFIX-MRE
See the description of these variables in the documentation for with-test-
binds.

with-test-format

55

M ac ro -e xpansion out l ine s

Two pseudo-code macro-expansions are included here to show approximately how

the code looks that the macro produces. Many questions about the behavior of the

macro can be answered by studying these code outlines. In once-only mode, the

expression

(with-test-format prefix (variable stream)
 (test string &key start end afterform tags)
 &body body)
macroexpands into code that resembles this pseudo-code skeleton:

(let* ((*STRING* STR) ; the target string

 (*END* (or END (length *STRING*)))
 (PREFIX-COUNT 0) ; match counter

 (PREFIX-MRS ...) ; the first position in *stack* where match results are stored

; include the following line only if *CHECK-MATCH-BOUNDS* is T
 (PREFIX-MRE ...) ; the first position in *stack* following the match results

; include the following line only if STREAM=NIL
 (PREFIX-OUT ...) ; the result string

 (PREFIX-END ...) ; end of match

 (#:GEN0 ...) ; the compiled-test is bound to a gensym

 (VARIABLE (or STREAM (make-string-output-stream)))
 ... other bindings ...)
 (... look for only one match ...
 (cond
 (..match found..
 ..copy portion of string preceeding match to stream..
 (setf PREFIX-END ..index of end of match..)
 ,@BODY ; code formatting match to stream

 (incf PREFIX-COUNT) ; increment counter

; omit the following line when :HALT tag is present
 ..copy portion of string following match to stream..)
 (..match not found..

; omit the following line when :SKIP-IF-NONE tag is present
 ..copy entire string to stream..)))

;include the following line only if STREAM=NIL
 (setf PREFIX-OUT ; with :SET tag, STRING is also SETF to this value.
 (get-output-stream VARIABLE))
 AFTERFORM)

with-test-format

56

In loop mode, the expression

(with-test-format prefix (variable stream)
 (test string &key start end afterform tags)
 &body body)
macroexpands into code that resembles this pseudo-code skeleton:

(let* ((*STRING* STR) ; the target string

 (*END* (or END (length *STRING*)))
 (PREFIX-COUNT 0) ; match counter

 (PREFIX-MRS ...) ; the first position in *stack* where match results are stored

; include the following line only if *CHECK-MATCH-BOUNDS* is T
 (PREFIX-MRE ...) ; the first position in *stack* following the match results

; include the following line only if STREAM=NIL
 (PREFIX-OUT ...) ; the result string

 (PREFIX-END ...) ; end of match

 (#:GEN0 ...) ; the compiled-test is bound to a gensym

 (VARIABLE (or STREAM (make-string-output-stream)))
 ... other bindings ...)
 (loop ; note that loop can be exited by (RETURN) inside of BODY

 (cond
 (..match found..
 ..copy portion of string preceeding match to stream..
 (setf PREFIX-END ..index of end of match..)
 ,@BODY ; code formatting match to stream

 (incf PREFIX-COUNT)) ; increment counter

 (t (return)))) ; break out of loop when no match is found

 (unless (or (:SKIP-IF-NONE tag is present and no match found)
 (:HALT tag is present and at ≥1 match found))
 ..copy portion of string after last match to stream,
 or copy entire string if no match has been found)
 ;include the following line only if STREAM=NIL
 (setf PREFIX-OUT ; with :SET tag, STRING is also SETF to this value.
 (get-output-stream VARIABLE))
 AFTERFORM)

with-test-split

57

S p l i t t i n g : wi t h - t es t - sp l i t

This section contains the documentation for Chio’s splitting macro, with-test-

split.

WITH-TEST-SPLIT prefix
 (sep test string
 &key start end until afterform tags)
 &body body [Macro]

Summary

WITH-TEST-SPLIT splits STRING into fields separated by separators matching the

simple-test SEP. There are two modes: once-only and loop. Loop mode is

signalled when one of the tags :G, :MAP, or :MAP-IF is present. otherwise, the

mode is once-only.

In once-only mode, BODY is executed just one time subject to bindings under

which match i refers to the substring of field i that matches TEST’s unique

remembering-operation-keyword. The value of the last form in BODY is returned.

In loop mode, BODY is executed once for each field subject to the bindings

established by applying TEST to the leftmost successful match in the field. Match i

refers to the substring of the field matching the ith remembering-operation-keyword

of TEST. With the tags :MAP and :MAP-IF results can be collected and returned

as a list. With the :G tag, an AFTERFORM can be evaluated for a return value.

Des cr ip t i on

In either mode,…
STRING is split into fields numbered 0,1,… by separator substrings that match
SEP, which must be a simple-test. The number of fields is one more than the
number of substrings that match SEP. The macro expands into code that is
contained within a block named PREFIX. Thus (RETURN-FROM PREFIX VAL)
inside BODY exits and returns VAL, overriding the normal return values
described below, and skipping the AFTERFORM.

with-test-split

58

In once-only mode,…
TEST can be either

1. a binding-tree with exactly one remembering-operation-keyword
2. a compiled-binding-tree compiled from a binding-tree with exactly one

remembering-operation-keyword
3. NIL (to match entire field)

When TEST is a binding-tree, it is compiled to produce a compiled-binding-tree.
When TEST is a simple-test, it is handled as would be the binding-tree (:&0
TEST). TEST=NIL is handled as would be the binding-tree (:&0 #~".*!")

which matches and remembers the entire field.

STRING is first split into fields by separator substrings that match SEP. In
each field, the leftmost substring matching TEST is then found, storing the
coordinates of the match to TEST’s single remembering-operation-keyword
onto the *stack* for later access. The BODY is then executed just one time
subject to bindings under which match I refers to the substring of field i that
matches TEST’s single remembering-operation-keyword. The value of the last
form in BODY is returned.

For example, within BODY, (mref PREFIX i :s) would return a copy of the
substring of field i matching TEST’s single remembering-operation-keyword.

Even when you know that you want to match each entire field, use of an
appropriate TEST (rather than simply making TEST=NIL) permits verification

of the data. For example, to verify that each field contains only digits, you could
use TEST=#~"\d+" with :anchorL and :anchorR tags.

Unless the :PERSIST tag is present, an error is signaled if TEST fails to find a

match in some field.

In loop mode,…
BODY is executed once for each field, subject to the bindings established by
applying TEST once to its leftmost successful match in the field. For example,
during the ith execution of BODY, (mref PREFIX k :s) returns a copy of
the substring of field i matching the kth remembering-operation-keyword of
the binding-tree for TEST (starting with i=0 for field 0 during iteration 0).

With the :G tag, AFTERFORM (default=NIL) is evaluated for the return value.

with-test-split

59

With the :MAP or :MAP-IF tags, a list is returned containing the value, for
each field, of the last form in BODY. :MAP-IF is the same as :MAP except
that NIL values are not included in the list. With :MAP or :MAP-IF, the
AFTERFORM is evaluated, but for side-effects only.

TEST can be either

1. a binding-tree
2. a compiled-binding-tree
3. NIL (to match entire field)

When TEST is a binding-tree, it is compiled to produce a compiled-binding-tree.
When TEST is a simple-test, it is handled as would be the binding-tree (:&0
TEST). TEST=NIL is handled as would be the binding-tree (:&0 #~".*!")

which matches and remembers the entire field.

Unless the :PERSIST tag is present, an error is signaled if TEST fails to find a

match in some field.

 Any (return) inside of BODY or any non-NIL UNTIL form exits the loop.

One difference between these two ways to achieve an early exit is that with a
(return) the PREFIX-COUNT is not incremented for the iteration during

which the exit occurs.

with-test-split

60

Keyword arguments

:TAGS
Tags are included in a list following the keyword :TAGS. Permissible tags are:

 :G (loop mode) Match TEST once against the leftmost successful
match in each field.

 :MAP (loop mode) Match TEST once against the leftmost successful
match in each field, collecting in a list the value of the last form in
BODY.

 :MAP-IF (loop mode) Same as :MAP, but omit NIL results from the list.

:anchorL Anchors TEST to the start of each field.

:anchorR Anchors TEST to the end of each field.

:persist Indicates that execution should persist (and no error be signalled) in
the event that TEST fail to find a match in a field. In the presence
of the :persist tag…

– PREFIX-COUNT is incremented even for fields that fail to
match TEST because PREFIX-COUNT is a counter for fields,
not successful matches.

– In once-only mode, when TEST fails to match in field i,
a match of negative length is recorded, and (empty-match-p
PREFIX i) returns T.

– In loop mode, when TEST fails to match in a field, BODY is
not executed for that field (and nothing is pushed onto the
return list if the :MAP or :MAP-IF tag is present.)

The :PERSIST tag has no effect if TEST is NIL (or DOT*! =
#~".*!") since that test never fails to match.

:START
Starting index in STRING of target substring.

:END
Ending index in STRING of target substring.

:UNTIL
In loop mode, this form is evaluated at the conclusion of each iteration to test
for an early exit from the loop. An UNTIL form is evaluated after PREFIX-
COUNT has been incremented.

with-test-split

61

:AFTERFORM
In loop mode, this form is evaluated after the loop is exited normally (because
there are no additional matches or because an UNTIL form or a (return)

causes an early exit from the loop).

With the :G tag, the AFTERFORM is returned. With the :MAP or :MAP-IF
tags, the AFTERFORM is evaluated for side-effects only.

Since the AFTERFORM is placed inside the block named PREFIX, any
(return-from PREFIX val) inside of BODY will cause the AFTERFORM to

be skipped.

:FIELDS
In once-only mode, this integer is an upper bound on the number of fields. Its
default value is supplied by the constant +DEFAULT-SPLIT-FIELDS+. If the

actual number of fields exceeds this, there is no problem unless you try to access
the contents of the extra fields using access macros such as mref, in which case
you will either get nonsensical results or, if the global variable *check-
match-bounds* is not NIL, signal an error. If you are not able to provide an

upper bound for the number of fields, you can avoid the issue by working in
loop mode.

with-test-split

62

Loc al var iabl es and b lock

The macro with-test-split encloses its code in a block named PREFIX,

allowing the use of (return-from PREFIX &optional value) to exit returning

value. The symbol-name of PREFIX is also used as a prefix for several other

symbols that are interned in the current package:

PREFIX-COUNT
In loop mode, when PREFIX-COUNT occurs inside BODY, it is bound to the
index of the current field (starting with 0 during the first field). PREFIX-COUNT
is incremented after each complete execution of BODY and before the UNTIL
form. During execution of an AFTERFORM, PREFIX-COUNT is the number of

fields that have been processed.

However, if the loop is exited by a (RETURN) inside of BODY, then that final
execution of BODY is considered to be incomplete, so PREFIX-COUNT is not

incremented for that last partial iteration. Consequently, within the
AFTERFORM, PREFIX-COUNT is still equal to the index of the field during which

the exit occurred.

In once-only mode, PREFIX-COUNT equals the total number of fields. It can

never be zero since there is always at least one field.

PREFIX-MRS and PREFIX-MRE
The match results are stored in the subvector of *stack* that starts at
PREFIX-MRS and ends at PREFIX-MRE. A user does not normally access these
results directly, but uses instead the access macros mref, mwrite, and
empty-match-p.

In once-only mode, the match vector contains, for each field, the start and
end of the substring matching TEST’s single remembering-operation-keyword.
More precisely, for field i the start and end of that substring are equal to

(aref *stack* (+ PREFIX-MRS (* 2 i)))
and

(aref *stack* (+ PREFIX-MRS (* 2 i) 1)).

with-test-split

63

 (Compare these with the macroexpansions of (mref PREFIX i :a) and
(mref PREFIX i :e)). If TEST fails to find a match in field i and the
:PERSIST tag is used to avoid signalling an error, then the second of these

entries is made smaller than the first so that a match of negative length is
recorded and (empty-match-p PREFIX i) returns T.

In loop mode, during iteration i (while field i is being examined), the
match vector contain the start and end of the substrings of field i that match
the remembering-operation-keywords of TEST. More precisely, during iteration
i the start and end of the substring of field i that matches the kth

remembering-operation-keyword of TEST are equal to
(aref *stack* (+ PREFIX-MRS (* 2 k)))

and
(aref *stack* (+ PREFIX-MRS (* 2 k) 1)).

If TEST fails to find a match in field i (and the :PERSIST tag is used), then
BODY is not executed during the ith iteration so these entries have no possible
relevance. If TEST succeeds in finding a match in field i, but no match is
found for the kth remembering-operation-keyword of TEST (because it is a
failed or unused option of an :o operation-keyword) then a match of negative
length is recorded so that (empty-match-p PREFIX k) returns T.

The contents of match results should not be accessed within the scope of an
AFTERFORM, neither directly nor indirectly by calling the macros mref,
mwrite, or empty-match-p.

with-test-split

64

M ac ro -e xpansion out l ine s

Three pseudo-code macro-expansions are included here to show approximately

how the code looks that the macro produces. Many questions about the behavior of the

macro can be answered by studying these code outlines.

In once-only mode, the expression

(with-test-split prefix (sep test string
 &key start end fields tags)
 &body body)

macroexpands into code that resembles this pseudo-code skeleton:

(let* ((*string* STRING) ; the target string

 (*end* (or END (length *string*)))
 (PREFIX-MRS…) ; the first position in *stack* where match results are stored

 (PREFIX-COUNT 0) ; field counter

 …other bindings…)
 (block PREFIX ; block can be exited by (return-from prefix &optional val)

Match each field to TEST, storing start
and end for single remembering-operation-
keyword in *stack*, and setting PREFIX-
COUNT to the number of fields.

 ; the variable PREFIX-MRE is used only if *CHECK-MATCH-BOUNDS* is T

 (let ((PREFIX-MRE…)) ; the first position in *STACK* following the match results

 BODY)))

with-test-split

65

In loop mode with :G tag, the expression

(with-test-split prefix (sep test string
 &key start end until afterform tags)
 &body body)

macroexpands into code that resembles this pseudo-code skeleton:

(LET* ((*string* STRING) ; the target string

 (*end* (or END (length *string*)))
 (PREFIX-MRS…) ; the first position in *stack* where match results are stored

 (PREFIX-COUNT 0) ; field (and iteration) counter

 …other bindings…)
 (block PREFIX ; block can be exited by (return-from prefix &optional val)

 ; the variable PREFIX-MRE is used only if *CHECK-MATCH-BOUNDS* is T
 (let ((PREFIX-MRE…)) ; the first position in *stack* following the match results

 (loop ; loop can be exited by a (RETURN) inside of BODY

 …try to find leftmost match for TEST in current field…
 …if not found and :PERSIST tag is not present
 signal error…
 (when ..match is found..
 ,@BODY)
 (incf PREFIX-COUNT) ; note that count is incremented before UNTILFORM

 (if UNTILFORM (return)) ; test for early exit from loop

 (cond (..no more fields.. (return))
 (t ..continue with next field..))))
 AFTERFORM)) ; return value, defaults to NIL.

with-test-split

66

In loop mode with the :MAP or :MAP-IF tag, the expression

(with-test-split prefix (sep test string
 &key start end until afterform tags)
 &body body)

macroexpands into code that resembles this pseudo-code skeleton:

(LET* ((*string* STRING) ; the target string

 (*end* (or END (length *string*)))
 (PREFIX-MRS…) ; the first position in *stack* where match results are stored

 (PREFIX-COUNT 0) ; field (and iteration) counter

 (#:gen1 nil) ; to accumulate list of results

 …other bindings…)
 (block PREFIX ; block can be exited by (return-from prefix &optional val)

 ; the variable PREFIX-MRE is used only if *CHECK-MATCH-BOUNDS* is T
 (let ((PREFIX-MRE…)) ; the first position in *stack* following the match results

 (loop ; loop can be exited by a (RETURN) inside of BODY

 …try to find leftmost match for TEST in current field…
 …if not found and :PERSIST tag is not present
 signal error…
 (when ..match is found..
 (push (progn ..,@BODY...) #:gen1))
 ; with :MAP-IF, a NIL value would not be pushed

 (incf PREFIX-COUNT) ; note that count is incremented before UNTILFORM

 (if UNTILFORM (return)) ; test for early exit from loop

 (cond (..no more fields.. (return))
 (t ..continue with next field..))))
 AFTERFORM)) ; return value, defaults to NIL.

Managing the Stack

67

M a n a g i n g t h e S t a c k

Chio uses the simple-vector *stack* as a workspace for holding intermediate

results. A casual Chio user does not need to be aware of it, but a programmer writing

algorithms such as those in the file algebra.lisp for creating and manipulating

simple-tests, needs to know more. In this section, we discuss the stack, and how it is

used.

The global variable *stack* is defined in the file stack.lisp. It is a simple

vector of size +stack-size+. The global variable *fp* acts as a pseudo fill-pointer

for *stack*, always pointing to the next position to be filled. It is not a real fill-

pointer because *stack* , being a simple-vector, does not have a fill-pointer. This is

done to save time – a simple-vector is faster than a vector with fill-pointer. Calling

(s-display) will display the value of *fp* and also the maximum value, *max-

fp*, that *fp* has attained since last being reset to zero. This will provide an idea

how much stack space you are using (and therefore whether you need to increase

+stack-size+).

To illustrate ideas, consider this example. The simple-test #~"a+" does not use

the *stack*. Evaluating

(s-reset) ; reset the stack
(s-display) ; display current fill-pointer

prints: current fill pointer *FP* = 0
maximum value of fill pointer since last calling (s-reset) *MAX-FP* = 0.

If we then evaluate

(calll #~"a+" "aaaaa") ;=> 5 4 3 2 1 NIL
(s-display)

prints: current fill pointer *FP* = 0
maximum value of fill pointer since last calling (s-reset) *MAX-FP* = 0

so we see that the *stack* was not used, since otherwise *MAX-FP* would have a

nonzero value. However, if we put parentheses around the a, then #~"(a)+" is

read by the simple-test-reader as a call to the routine T+ which does use the

stack. Now, evaluating

(calll #~"(a)+" "aaaaa"))) ;=> 5 4 3 2 1 NIL
(s-display)

prints: current fill pointer *FP* = 0

Managing the Stack

68

maximum value of fill pointer since last calling (s-reset) *MAX-FP* = 17

we see that the *stack* was used. The fact that the fill pointer is now zero might

lead us to believe that all the extra memory we have caused to be allocated is now free

to be disposed by the garbage-collector. Unfortunately, this is false. Evaluating

(subseq *stack* 0 17) ;take a look at the *stack* space we used

prints:

#(7 7 #<Anonymous Function #xBA41D6>
 #<COMPILED-LEXICAL-CLOSURE #x127841E> 2
 #<COMPILED-LEXICAL-CLOSURE #x127843E> 3
 #<COMPILED-LEXICAL-CLOSURE #x127845E> 4
 #<COMPILED-LEXICAL-CLOSURE #x127847E> 0 0 1 1 1 1 1)

showing that several trets that were created by T+ are still in the *stack* and

cannot be garbage collected. In order to release them, you would have to execute

(s-reset), which would replace the first 17 elements in *stack* with zeros. As a

practical matter, you probably would not want to bother to do this because your next

use of the *stack* would overwrite those elements anyhow, releasing the trets that

the array entries point to. That is why the main macros do not truly clear the stack,

but only reset *fp* to zero; it would mostly be a waste of time to zero out the

memory, but you are free to do so at any time by executing (s-reset).

When evaluated at top-level, *fp* should always be zero. If not, then someone

has either made a mistake, or simply created and called some trets without

exhausting them. The main macros, with-test-binds, with-test-format, and

with-test-split, all use unwind-protect to reset *fp* to zero even if an error

occurs. If you find that *fp* is nonzero at top-level, you can reset the stack by

calling (s-reset) which not only sets *fp* to zero, but also replaces the contents

of *stack* with zeros.

To get an idea how *fp* can obtain a nonzero value, consider the following:

(s-reset) ; reset the stack just in case
(s-display) ; display current fill-pointer

prints: current fill pointer *FP*=0
maximum value of fill pointer since last calling (s-reset) *MAX-FP*=0

(with-string ("aaaaa") ; binds *string* to "aaaaa" and *end* to 5
 (funcall (funcall #~"(a)+" 0))) ; create a tret and call it just

Managing the Stack

69

once
(s-display)

prints: current fill pointer *FP*=17
maximum value of fill pointer since last calling (s-reset) *MAX-FP*=17

What has happened here? The parentheses around the a have caused the routine

T+ to be called, and T+ uses the *stack*. The form (funcall #~"(a)+" 0)

returns a tret and that tret has been called just once. But it needs to be called six

times before it is exhausted and T+ can release its stack space –– and this never

happens. The problem become serious if you make a mistake like this inside an

iterative construct. For instance,

(loop
 (with-string ("aaaaa")
 (funcall (funcall #~"(a)+" 0))))

prints > Error: *STACK* overflow
> While executing: ALLOCATE-STACK

One way to avoid problems like this is to use the macro (with-stack-restore

&body body), which executes BODY and restores *fp* to the value it started

with:

(s-reset)
(with-string ("aaaaa")
 (with-stack-restore
 (funcall (funcall #~"(a)+" 0))))
(s-display)

prints current fill pointer *FP* = 0
Maximum value of fill pointer since last calling (s-reset)*MAX-FP*=17

 Dealing with the *stack* is much less of a problem than on might suppose.

Normally, a user does not create trets directly. If you use Chio’s main tools, like the

three main macros, all the book-keeping is handled for you, and you don’t have to

think about the *stack*.

References

70

Ex a mp l es

The author has provided a collection of Chio examples at the url

http://www.toiling-in-obscurity.net/chio/examples/

Referen c es

Friedl, Jeffrey E. F., Mastering Regular Expressions, Powerful Techniques for Perl

and Other Tools , O'Reilly 1998.

Excellent source for information about regular expressions and various

languages that use them.

Graham, Paul, On Lisp, Advanced Techniques for Common Lisp , Prentice Hall 1994.

A wonderful book for Lisp programmers who already know the basics.

This book does an excellent job of explaining macros, what they are for,

when they should be used, and how to write them. Currently available at

the author's web site, http://www.paulgraham.com/onlisp.html.

Steele, Guy L., Jr., Common Lisp, The Language, Second Edition , Digital Press

(Butterworth-Heinemann) 1990.

Definition of the Common Lisp programming language.

http://www.paulgraham.com/onlisp.html
http://www.toiling-in-obscurity.net/chio/examples/

