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The goal of computational biology in the early
twenty-first century is to link the various genome
sequencing projects to a high-throughput effort
in complete structural and functional annotation
of whole genomes or biological pathways. It is, in
fact, a logical extension of the genome effort to
systematically elaborate DNA (deoxyribonucleic
acid) sequences into full three-dimensional
structures through to functional analysis of
cellular networks. The first level of the biological
hierarchy is comparative analysis of the rapidly
emerging genomic data at the sequence level.
However, knowing only the sequence of DNA
does not always tell us about the structure or
function of the genes, nor does it tell us about
the combined action of their protein products,
which is the essence of higher order biological
function. Complete annotation will include the
determination of structure and function of
proteins, and a move from analysis of these
individual macromolecules to their complex
interactions that make up the processes of
cellular decisions. This paper represents an effort
by a research community to define the hard
computational biology problems of the future, to
define what mixture of basic research directions
and practical algorithmic approaches will be
required to achieve our goals, and to outline the
directions that will likely be taken in the
postgenomic era.

The pace of extraordinary advances in molecular
biology has accelerated in the past decade due

to discoveries coming from genome projects on hu-
man and model organisms. In the next century we
can begin to envision the necessary experimental,
computational, and theoretical steps necessary to ex-
ploit genome sequence information for its medical
impact, its contribution to biotechnology, economic
competitiveness, and improvements in global envi-
ronmental quality. Accordingly, a systematic and

comprehensive exploration of these sequence data
will enable us to shift our view of biology from that
of the particular, where it is focused currently, to that
of the comprehensive.

The breadth and density of genome data that must
be stored, accessed, and annotated immediately sug-
gests that computation will play a central role in the
postgenomic phase. As an example, the proposed
whole genome “shotgun” strategy at The Institute
for Genome Research (TIGR) produced 30 million
bases of DNA (deoxyribonucleic acid) per day in Jan-
uary of 1998 that increased to 100 million base pairs
per day by midyear. Indeed, the data management
issues are and will continue to be important. How-
ever, it is the transfer of comprehensive genomic in-
formation to the next level of characterization of
structure and function that signals a new maturity
in biology. The rapid acquisition of quantitative data
by experimental techniques (that are themselves be-
ing revolutionized) promises to transform much of
biology from a descriptive science into a predictive
one. The convergence to a quantitative science en-
sures that these areas of biology are genuinely en-
dowed with computational complexity beyond just
data management and organization.

The simultaneous revolutions in genomics and com-
puting will securely establish an unprecedented sci-
entific computing culture in the biological commu-
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nity. It will continue to be necessary to step up efforts
to train biologists in the quantitative areas of the
physical and computer sciences. The possibility that
new paradigms in biology might be imaginable when
computation becomes firmly entrenched will pose a
significant set of new challenges once these “hard”
computational biology problems are identified. More
importantly, the biology itself will become the cen-
tral research focus for many scientists with more “tra-
ditional” appointments in the physical sciences,
mathematics, and computing areas. Perhaps the
more difficult task is the adaptation of the physical
and computing sciences communities to acquire a
deep understanding of biology, because biology in
fact will likely dominate science endeavors in the next
century, with great mass appeal and public support.

To exploit the inherent genome information derived
from knowing the DNA sequences, computational ad-
vances, along with related experimental biotechnol-
ogy, are essential. Knowing the sequence of the DNA
does not tell us about the function of the genes, spe-
cifically the actions of their protein products—un-
derstanding where, when, why, and how the proteins
act is the essence of the biological knowledge re-
quired. Encoded in the DNA sequence is a protein’s
three-dimensional topography, which in turn deter-
mines function, whereas a protein’s function is de-
pendent on the physical state of the cell and other
protein interaction partners; uncovering this se-
quence-structure-function-systems relationship is the
core goal of modern structural biology today.

The goal of computational structural and functional
genomics of the future is to link the sequencing
efforts to a high-throughput program of annotation
and modeling of both molecular structures and
functional networks. This paper represents a coop-
erative effort by researchers in government labora-
tories, universities, and industry (see Acknowledg-
ments section) to outline the current challenges of
computational biology. The authors have served both
as contributors, by writing pieces, and as editors, by
editing contributions from other researchers in the
field. There is a dominant emphasis on proteins in
this paper, and a more inclusive discussion of nu-
cleic acid modeling can be found elsewhere.1 In this
paper, we identify the computational biology prob-
lems of scale, specify the algorithmic issues of the
day, and describe the biological computational require-
ments necessary in order to reach one primary goal:
the full integration of genomic scale information
needed for understanding the organismal function.

The first step beyond the genome project:
High-throughput genome assembly,
modeling, and annotation

The first level of the biological hierarchy is a com-
prehensive genome-based analysis of the rapidly
emerging genomic data. With changes in sequenc-
ing technology and methods, the rate of acquisition
of human and other genome data is ;100 times
higher than originally anticipated. Assembling and
interpreting these data will require new and emerg-
ing levels of coordination and collaboration in the
genome research community to develop the neces-
sary computing algorithms and data management
and visualization systems.

Annotation—the elucidation and description of bi-
ologically relevant features in a sequence—is essen-
tial in order for genome data to be useful. The qual-
ity of the annotation will have direct impact on the
value of the sequence. At a minimum, the data must
be annotated to indicate the existence of gene cod-
ing regions and control regions. Further annotation
activities that add value to a genome include finding
simple and complex repeats, characterizing the or-
ganization of promoters and gene families, the dis-
tribution of guanine-cytosine (G 1 C) content, and
tying together evidence for functional motifs and ho-
mologs.

Once the basic structure of genes has been modeled,
comparison of new sequences against each other or
the existing database is one of the most essential and
revealing processes in computational comparative
genomics. Such operations relate new sequences to
archival sequences that may have meaningful infor-
mation about patterns in the sequence and its func-
tion. Such comparisons are the starting point for the
computation of phylogenetic (evolutionary) trees of
organisms or genes, pathogenicity studies for public
health, polymorphism studies (e.g., of genetic de-
fects), identification of protein motifs, model iden-
tification for gene recognition, model identification
for organism classification, functional analysis of
genomic/protein sequences, and exon identification.

The analyses and inferencing often depend on the
quality of the computed multiple sequence align-
ments (MSAs) used as input. MSAs of biological se-
quences, e.g., DNA, RNA (ribonucleic acid), or pro-
tein sequences, entail the arrangement of many (in
some cases thousands) of sequences, so that corre-
sponding positions are aligned in vertical columns,
with padding characters (nulls) added to compen-
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sate for length variations in some sequences. The
most accurate and sensitive alignments must consider
gaps in the alignment (insertions and deletions) and
are thus rather computationally intensive. The stan-
dard algorithm for this is Smith-Waterman,2 which
uses dynamic programming to produce a local op-
timal alignment between two sequences of length M
and N, and scales as O(M 3 N). The simple exten-
sion of these algorithms to multiple sequence align-
ments of K sequences requires time O(N K). For se-
quence lengths in the thousands of nucleotides, this
is barely feasible for three sequences, certainly not
for thousands of sequences. Hence, common prac-
tice is to use “progressive alignments,” an inefficient
algorithm that adds one sequence at a time to the
MSA. This is computationally tractable, but not op-
timal. It is especially problematic when the sequences
are not closely related, e.g., in computing the Tree
of Life.

Recently rediscovered hidden Markov models
(HMMs)3,4 and stochastic context-free grammars
(SCFGs)5 offer the prospect of better MSAs, by also
modeling higher order structures. The simplest are
HMMs, which are stochastic regular grammars. SCFGs
are more complex, but permit one to model nested
structures, such as the stem and loop structures com-
mon in RNA. More elaborate types of grammars per-
mit the modeling of more complex secondary and
tertiary structures. To use these models, one must
first estimate the many parameters of the model. The
resulting model can then be used to “parse” the se-
quences, and the resulting parses can be transformed
into multiple sequence alignments. Iterative estima-
tion of the HMMs entails iterative solution of com-
putations akin to the pair-wise dynamic program se-
quence comparison computations. At each iteration
we must perform M such O(N 2) computations, one
for each of the M sequences being aligned, and sum
the results.

Independent computation for each sequence offers
a clear target for parallel computation, followed by
a logarithmic summation computation. This is par-
ticularly true for large sequence collections such as
the ribosomal RNA alignments. Some researchers
have constructed fine-grained parallel systolic algo-
rithms for the dynamic programming computations,
on specialized hardware implementations or single-
instruction/multiple-data machines. However, on
multiple-instruction/multiple-data machines (with
greater costs for interprocessor communication and
synchronization), coarser partitioning of the dynamic
programming computations appears preferable. Fur-

thermore, these iterative computations often find lo-
cal optima, requiring multiple computations with dif-
ferent starting states to find the (putative) global
optimum.

One difficulty in model estimation for methods like
HMM arises from the possibility of over-fitting the
very large number of parameters in these models
(several per sequence position). Bayesian methods

have been adopted to smooth these parameter es-
timates. Bayesian methods have traditionally been
difficult to compute.6 Several researchers have re-
sorted to Gibbs sampling methods to estimate the
posterior probability distribution.7 These methods
entail the construction and simulation of a Markov
chain whose equilibrium probability distribution is
equal to the target posterior distribution. The Gibbs
sampling computations should be amenable to par-
allelization, assuming that independent parallel ran-
dom number generators are available. This is a
subject of research activity in the Monte Carlo com-
putation community,8 and code implementations are
available from several research groups.

From genome annotation to protein folds:
Comparative modeling and fold assignment

The key to understanding the inner workings of cells
is to learn the three-dimensional (3-D) atomic struc-
tures of the proteins that form their architecture and
carry out their metabolism. These three-dimensional
structures are encoded in the blueprint of the DNA
genome. Within cells, the DNA blueprint is translated
into protein structures through exquisitely complex
machinery—itself composed of proteins. The exper-
imental process of deciphering the atomic structures
of the majority of cellular proteins is expected to take
a century at the present rate of work. New devel-
opments in comparative modeling and fold recog-
nition will short-circuit this process, that is, we can
learn to translate the DNA message by computer.

The goal of fold assignment and
comparative modeling is to assign,

using computational methods,
each new genome sequence to

the known protein fold or structure
that it most closely resembles.
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The goal of fold assignment and comparative mod-
eling is to assign each new genome sequence to the
known protein fold or structure that it most closely
resembles, using computational methods. Fold as-
signment and comparative modeling techniques can
then be helpful in proposing and testing hypotheses
in molecular biology, such as in inferring biological
function, predicting the location and properties of
ligand binding sites, in designing drugs, and testing
remote protein-protein relationships. It can also pro-
vide starting models in X-ray crystallography and
NMR (nuclear magnetic resonance) spectroscopy.

The success of these methods rests on a fundamen-
tal experimental discovery of structural biology: the
3-D structures of proteins have been better conserved
during evolution than their genome sequences.
When the similarity of a target sequence to another
sequence with known structure is above a certain
threshold, comparative modeling methods can of-
ten provide quantitatively accurate protein structure
predictions, since a small change in the protein se-
quence usually results in a small change in its 3-D
structure. Even when the percentage identity of a
target sequence falls below this level, then at least
information about the overall fold topology can of-
ten be predicted. In cases where sequence identity
dips below ;25 percent, the so-called “twilight zone,”
fold assignment algorithms can often be successful
in determining the fold class for a new sequence (see
Case Study 1).

Several fundamental issues remain to amplify the ef-
fectiveness of fold assignment and comparative mod-
eling. A primary issue in fold assignment is the de-
termination of better multipositional compatibility
or scoring, functions that will extend fold assignment
further into the twilight zone of sequence homology.
In both fold assignment and comparative modeling,
better alignment algorithms that deal with multipo-
sitional compatibility functions are needed. A move
toward detailed empirical energy functions and in-
creasingly sophisticated optimization approaches in
comparative modeling will also occur in the future.

Fold assignment or threading. Recent work on fold
assignment (or “threading”) involves two main ap-
proaches: developing potentials for fold assign-
ment9–12 and hidden Markov models (HMMs) or pro-
file methods that are descended from sequence
alignment methods.13,14 The potentials can be con-
tact potentials (potentials of mean force) or they can
be more complex semiempirical potentials, involv-
ing atomic areas and other properties. Fold assign-

ment approaches further subdivide into two cate-
gories: (1) unipositional methods that consider prob-
ability distributions of amino acids at single sites and
(2) those that consider distributions on pairs (or even
triples) of amino acids within a contact distance in
a given structure. Hidden Markov models to date
have considered single site probability distributions.
We discuss these approaches next.

Contact potentials for threading. Unipositional fold
assignment approaches score each residue position
in a template structure using local 3-D environmen-
tal information such as secondary structure propen-
sity, degree of environmental polarity, and the frac-
tion of the residue surface buried and inaccessible
to solvent. The 3-D environmental information for
each residue then becomes a one-dimensional pro-
file of the tertiary structure or fold, and the com-
patibility of the 20 common amino acids is evaluated
for each position in the 1-D profile.10 Optimal 1-D
alignments of a probe sequence to a given structure
can be determined by dynamic programming,15,16 and
the subsequent score of the aligned sequence against
the template is determined by the global character-
istics of the sequence-environment fit, thereby tol-
erating locally poor scores.

Unipositional methods demonstrated impressive
ability for determining similar topological folds for
proteins with less than 25 percent sequence identity
in some cases. However, only 25 percent of genome
sequences recognize their 3-D-protein fold with a suf-
ficient threshold of confidence to be considered a
successful fold assignment. One reason for this mod-
est success rate of threading is that the repertoire
of folds is thought to be incomplete. This repertoire
(or library) is growing modestly through the current
efforts of structural biologists, and a strong Struc-
tural Genomics Initiative will give a major boost to
fold assignment in the future. It has been estimated
that the success rate of fold assignment algorithms
will increase to roughly 50 percent once these miss-
ing folds are identified structurally. For the remain-
ing 50 percent of genome sequences to be assigned
to folds, there must be advances in the directions dis-
cussed here.

The first advance is to move to multipositional com-
patibility functions. Pair-wise threading potentials
typically consider the propensity of two amino acids
to be within a specified distance using a score func-
tion compiled from a database of structures. Addi-
tional features can be used in addition to the iden-
tity of the amino acids, such as the secondary
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structure type, relative exposure to water, relative
position, and local atomic density.

Some attempts have been made to go beyond pair-
wise potentials, but determination of higher order
probability distributions is limited by the data avail-
able from the present number of structures. New
structures made available from the Structural
Genomics Initiative would provide some assistance
in this regard; however, the number of new struc-
tures is unlikely to dramatically increase the order
of probability distributions that can be reliably es-
timated. Therefore, further improvements in pair-
wise and other potentials of mean force will rest on
better identification of the relevant physical effects
determining the relation of sequence to structure,
and on improved algorithms to extract information
about these effects from limited data.

Hidden Markov models. Hidden Markov models
consider single site probability distributions for
amino acids, but have the added feature of a Mark-
ovian transition matrix between “hidden” states.3

The hidden states effectively perform a choice among
a set of position-dependent amino acid probability
distributions. In contrast to threading methods,
HMMs do not use an explicit scoring function to score
the match of an amino acid with its environment,
nor do they typically consider pair-wise interactions.
HMMs rely heavily on position-specific scoring func-
tions that, in combination with the hidden Markov
states, match appropriate probability distributions
to sequence positions. Prior knowledge about amino
acid probability distributions can be incorporated in
a Bayesian framework for HMMs using “Dirichlet
prior” probability distributions.17

HMMs can be used for fold identification by perform-
ing a standard sequence-based homology search us-
ing the probe sequence to generate homologous se-
quences. These sequences can be used to construct
an HMM based on the probe, and then the sequences
from a library of folds can be matched against the
HMM. Similarly, one can construct separate HMMs
for each member of a library of folds, and then score
the probe sequence against each model. Construc-
tion of HMMs is typically an iterative process involv-
ing successive periods of model building, searching
with the given model, and model refinement. Align-
ment to an HMM can be performed in an efficient
recursive manner, similar to dynamic programming.
The results of a typical HMM are illustrated in Case
Study 2.

Methods for comparative modeling. Comparative
modeling remains the only method at present that
can provide models with an RMS (root-mean-square)
error lower than 2 Å (angstroms).18–22 All current
comparative modeling methods consist of four se-
quential steps. The first step is to identify the pro-
teins with known 3-D structures that are related to
the target sequence. The second step is to align them
with the target sequence and to pick those known
structures that will be used as templates. The third
step is to build the model for the target sequence
given its alignment with the template structures. In
the fourth step, the model is evaluated using a va-
riety of criteria. If necessary, the alignment and
model building are repeated until a satisfactory
model is obtained. The main difference between the
different comparative modeling methods is in how
the 3-D model is calculated from a given alignment
(step three above).

The original and still widely used method is mod-
eling by rigid body assembly. The method constructs
the model from a few core regions, and loops and
side chains, which are obtained from dissected re-
lated structures. This assembly involves fitting the
rigid bodies on the framework, which is defined as
the average of the Ca atoms in the conserved regions
of the fold. Another family of methods, modeling
by segment matching, relies on approximate posi-
tions of conserved atoms from the templates to cal-
culate the coordinates of other atoms. This is
achieved by the use of a database of short segments
of protein structure, energy or geometry rules, or
some combination of these criteria. The third group
of methods, modeling by satisfaction of spatial re-
straints, uses either distance geometry or optimiza-
tion techniques to satisfy spatial restraints obtained
from the alignment of the target sequence with ho-
mologous templates of known structure. In addition
to the methods for modeling the whole fold, numer-
ous other techniques for predicting loops and side
chains on a given backbone have also been described.
These methods can often be used in combination
with each other and with comparative modeling tech-
niques.

Perhaps the most promising comparative model-
building technique is the comparative modeling by
satisfaction of spatial restraints. The reason is that
this approach is based only on optimization of an
objective function, and it thus allows an efficient ex-
ploration of various representations of protein struc-
ture, methods of optimization, and objective func-
tion forms. The computational complexity of this
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Case Study 2

Sequence comparisons against model protein families to understand human pathology

Reference

1. S. Huang, B. Li, S. Mian, M. D. Gray, J. Oshima, and J. Campisi, �The Premature Aging

Syndrome Protein WRN Is a 3' to 5' Exonuclease,�Nature Genetics 20, 114�116 (1998).

The similarities and differences between two plant and archeal members of
a family of glycosidases that includes a protein implicated in aging. Ribbons 
correspond to the beta-strands and alpha-helices of the underlying TIM 
barrel (red) and family 1 glycosidase domain (cyan). Amino acid side chains 
drawn in magenta, yellow, and green are important for structure and/or 
function. The loop in yellow denotes a region proposed to be important for 
substrate recognition.

Reprinted with permission from S. Mian, “Sequence, Structural, Functional, 
and Phylogenetic Analyses of Three Glycosidase Families,” Blood Cells, 
Molecules and Diseases 24, No. 2, 83–100 (June 1998).

L2

idden Markov model (HMM) -based search methods have been shown to improve both the sensitivity 
and selectivity of database searches by employing position-dependent scores to characterize and build a 

model for an entire family of sequences. HMMs have been used to analyze proteins using two complementary 
strategies. In the first, a sequence is used to search a collection of protein families, such as Pfam, to find 
which of the families it matches. In the second approach, an HMM for a family is used to search a primary 
sequence database to identify additional members of the family. The latter approach has yielded insights into 
protein involved in both normal and abnormal human pathology, such as Fanconi Anaemia A, Gaucher 
disease, Krabbe disease, polymyositis scleroderma, and disaccharide intolerance II. HMM-based analysis of 
the Werner syndrome protein sequence (WRN) suggested it possessed exonuclease activity, and subsequent 
experiments confirmed the prediction.1 Like WRN, mutation of the protein encoded by the Klotho gene leads 
to a syndrome with features resembling aging. However, Klotho is predicted to be a member of the family 1 
glycosidase (see figure). Eventually, large-scale sequence comparisons against HMMs for protein families will 
require enormous computational resources to find these sequence-function correlations over genome-scale 
size databases.

H
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approach is directly tied to methods such as global
optimization, described later in this paper. This flex-
ibility is essential for improving comparative protein
modeling. It will also facilitate simultaneous use of
different sources of information when calculating a
model of a given protein. For example, a model may
be constructed that is consistent with the template
structures, potentials of mean force, NMR restraints,
cross-linking experiments, site-directed mutagene-
sis data, etc.

The best comparative techniques can generally pro-
duce models with good stereochemistry and overall
structural accuracy that is slightly higher than the
similarity between the template and the actual tar-
get structures, when the modeling alignment is cor-
rect. The errors in comparative models can be di-
vided into five categories: (1) side-chain packing
errors, (2) distortions and rigid body changes in re-
gions that are aligned correctly (e.g., loops, helices),
(3) distortions and rigid body changes in insertions
(e.g., loops), (4) distortions in incorrectly aligned re-
gions (loops and longer segments with low sequence
identity to the templates), and (5) incorrect fold re-
sulting from an incorrect choice of a template.

The combined consequence of these errors is that
the comparative method can result in models with
a main-chain RMS error as low as 1 Å for 90 percent
of the main-chain residues, if a sequence is at least
40 percent identical to one or more of the templates.
In this range of sequence similarity, the alignment
is mostly straightforward to construct, there are not
many gaps, and structural differences between the
proteins are usually limited to loops and side chains.
When sequence identity is between 30 and 40 per-
cent, the structural differences become larger, and
the gaps in the alignment are more frequent and
longer. As a result, the main-chain RMS error rises
to ;1.5 Å for about 80 percent of residues. The rest
of the residues are modeled with large errors because
the methods generally cannot model structural dis-
tortions and rigid body shifts, and they cannot re-
cover from misalignments. Insertions longer than
about eight residues usually cannot be modeled ac-
curately at this time. Model evaluation methods are
frequently successful in identifying the inaccurately
modeled regions of a protein. To put the errors into
perspective, we list the differences among experimen-
tally determined structures of the same protein: the
1.0Å accuracy of main-chain atom positions corre-
sponds to X-ray structures defined at a low resolu-
tion of about 2.5 Å and with an R factor of about
25 percent, as well as to medium-resolution NMR

structures determined from 10 interproton distance
restraints per residue.

Future improvements of comparative modeling
should aim to (1) model proteins with lower simi-
larities to known structures (e.g., less than 30 per-
cent sequence identity), (2) increase the accuracy of
the models, and (3) make modeling fully automated
(see Case Study 3). The improvements are likely to
include simultaneous optimization of side-chain and
backbone conformations in side-chain modeling, si-
multaneous optimization of a loop and its environ-
ment in loop modeling, and simultaneous optimiza-
tion of the alignment and the model. At the same
time, better potential functions and possibly better
optimizers are needed. The potential function should
guide the model away from the templates in the di-
rection toward the correct structure. An addition of
atomic or residue-based potentials of mean force to
the homology-derived scoring could be one way of
achieving this goal. This is a difficult problem, as il-
lustrated by the fact that no present force field or
potential of mean force can produce a model with
a main-chain RMSD (root-mean-square deviation)
from the X-ray structure smaller than about 1 Å, even
when the starting conformation is the X-ray struc-
ture itself. For example, molecular dynamics simu-
lations in solvent generally have a main-chain RMSD
of more than 1 Å, and the most detailed lattice fold-
ing simulations result in models with an RMS error
larger than 2 Å. Since most of the main-chain atoms
in two homologs with at least 40 percent sequence
identity usually superpose with an RMSD of about 1
Å, it is currently better to aim to reproduce the tem-
plate structures as closely as possible rather than to
venture away from the templates in the search for
a better model.

The major factor that limits the use of comparative
modeling in the cases of less than 30 percent se-
quence identity is the alignment problem, as dis-
cussed in the fold recognition problem. In principle,
the alignment can be derived by any of the sequence
or sequence/structure alignment methods, but in
practice even careful manual editing frequently re-
sults in significant alignment errors. At 30 percent
sequence identity, the fraction of incorrectly aligned
residues is about 20 percent and this number rises
sharply with further decrease in sequence similar-
ity. This limits the usefulness of comparative mod-
eling, because no current modeling technique can
recover from an incorrect input alignment. It would
appear that fold recognition methods are a natural
solution to the alignment problem in comparative
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modeling. However, while these techniques are suc-
cessful in identifying related folds, they appear to
be somewhat less successful in generating correct
alignments, although improvements in alignment for
fold recognition is a goal of future work. To reduce
the errors in the model stemming from the align-
ment errors, iterative changes in the alignment
during the calculation of the model are needed.
Provided the objective function is capable of distin-
guishing a good model from a bad one, the iterative
realignment and reselection of templates will min-
imize the effect of errors in the initial alignment and
selection of templates.

Finding the best alignment. Even if perfect fold as-
signment can be achieved, there remains a compu-
tational bottleneck in providing a predicted 3-D struc-
ture that must begin with proper alignment of the
sequence to the structure. As discussed, significant
error is present in comparative modeling unless a
successful alignment onto a target is realized.

Alignment with unipositional compatibility func-
tions, which adds the independent contributions of
a single position of a test sequence to a single po-
sition in the target fold, offers the advantage of us-
ing well-established dynamic-programming algo-
rithms to find the optimal alignment, although poor
gap and insertion penalty parameters can render this
optimum somewhat arbitrary. HMMs offer effective
position-dependent insertion/deletion penalties as
well as an efficient alignment procedure, but ignore
more than single site probabilities, as do other unipo-
sitional compatibility functions.

Alignment of a genome sequence to 3-D structure
using pair-wise potentials is more difficult than us-
ing unipositional potentials. Branch and bound al-
gorithms have been shown to yield the optimal align-
ment when they converge,23,24 but since the general
threading problem for multipositional potentials is
NP-complete,25 branch and bound algorithms will not
converge in all cases. Nevertheless, they are often
extremely useful. Approximations can also be em-
ployed, such as the frozen approximation,26 in which
one assumes that the interaction of test sequence po-
sition j with the amino acid k9 of the target structure
would be similar to k in the sequence. Once the se-
quence is optimally aligned using the frozen approx-
imation, the multipositional compatibility function
is used to score the sequence-structure match. Al-
lowing only a limited number of gaps between sec-
ondary structure elements, and exhaustively enumer-
ating all possible resulting threadings, has been

implemented for multipositional compatibility func-
tions and has been successful for a subset of inter-
esting cases.

Low-resolution folds to structures with
biochemical relevance: Toward accurate
structure, dynamics, and thermodynamics

As we move to an era of genetic information at the
level of complete genomes, classifying the fold to-
pology of each sequence in the genome is a vital first
step toward understanding gene function. However,
the ultimate limitation in fold recognition is that
these algorithms only provide “low-resolution” struc-
tures. It is crucial to enhance and develop methods
that permit a quantitative description of protein
structure, dynamics, and thermodynamics, in order
to relate specific sequence changes to structural
changes, and structural changes to associated
functional/phenotypic change.

These more accurate approaches will greatly improve
our ability to modify proteins for novel uses such as
to change the catalytic specificity of enzymes and
have them degrade harmful waste products. While
often the tertiary fold of proteins involved in disease
change dramatically upon mutation, those whose fold
remains invariant may have quantitative differences
in structure that can have important macroscopic ef-
fects on function that can be manifested as disease.
More accurate screening for new drug targets that
bind tightly to specific protein receptors for inhibi-
tion will require quantitative modeling of pro-
tein/drug interactions. Therefore, the next step is the
quantitative determination of protein structure start-
ing from the fold prediction, and ultimately directly
from sequence. Bottlenecks in time- and size-scales
are the primary difficulty in predicting and folding
protein structure27–29 and simulating protein func-
tion and thermodynamics (see Case Study 4), and
we discuss these issues in this section.

Empirical force fields. The translation of protein se-
quence to protein structure rests upon a central
dogma of biology: proteins adopt their lowest free en-
ergy conformation as their functional state. Thus, key
to the success in any computational method that aims
to provide sequence to structure predictions, or re-
finements, is that the energy function model used to
represent the biological system yields the functional
structure of known proteins as its lowest free energy
state. Empirical protein force fields, which have
formed the major component of all computational
studies of protein structure, function, and dynamics
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to date, give encouraging results in this regard. How-
ever, this conclusion is only qualitatively true for a
handful of known proteins, and we need to explore
the various ways in which protein surfaces can be
modeled according to increasing levels of sophisti-
cation depending on the quantitative need.

Empirical protein force fields represent bonds and
angles as harmonic distortions, dihedrals by a trun-
cated Fourier series, and pair-wise nonbonded in-
teractions via Lennard-Jones 6–12 terms and Cou-
lomb’s Law for electrostatic interactions between
point charges. VMM denotes this empirical function
and is usually given as:

VMM 5 O
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There are several protein force fields of this type in
use,30–32 and it is clear that they are improving in their
ability to represent protein conformations near the
native fold, but they have not been fully tested out-
side of this local region on the energy surface. If wa-
ter is included, and long-range electrostatic effects
with methods such as Particle Mesh Ewald33,34 are
used, a simulation will conserve the protein back-
bone to within 1–2Å RMS of the crystal or NMR struc-
ture.35 This is roughly in experimental error since
solution NMR and X-ray crystal structures often dif-
fer in backbone RMS by about 1 Å.36 Some testing
indicates that they do not always perform well out-
side of this local region, and therefore their useful-
ness in protein structure prediction and folding,
which requires a good nonlocal description of the
surface, is uncertain.37

Beyond the empirical force fields for proteins is the
problem of describing a solvent environment and its

influence on the protein’s conformational behavior.
The importance of hydration as a major contributor
to protein stability and driving force for folding is
widely accepted; in particular it is the hydrophobic
interaction that is thought to be dominant, as has
been originally pointed out by Kauzmann.38 Simple
models of hydration have been added to empirical
protein force fields to attempt a better balance be-
tween computational cost and accuracy.39,40 One
functional form of a simple model is to use a gen-
eralized Poisson-Boltzmann treatment for the elec-
trostatics, and to include a solvent-accessible surface
area term to describe the free energy attributable to
the hydrophobic effect.41,42

Development of a new set of implicit water poten-
tials for biomolecular simulations is also an impor-
tant direction.43 The purpose is to incorporate the
statistical properties of water into solute-solute in-
teractions and thereby avoid the computational lim-
itations of simulating the polar solvent, which can
be a major obstacle to biomolecular simulations in
some cases. Success in developing the implicit solute-
solute potentials should lead to future peptide and
protein simulations without explicit simulation of the
water molecules, with their devastating spatial and
temporal scales. These implicit potentials can be fit
to a convenient functional form and used in simu-
lations of proteins to describe the important struc-
tural influence of aqueous hydration on protein con-
formations. They are physically complex but can be
evaluated with reasonable computational cost, and
they are commensurate with both folding studies and
protein structure prediction approaches using op-
timization, since they constitute a well-defined con-
tinuous force field, unlike the simpler descriptions
above.

Explicit inclusion of molecular water is the most un-
ambiguous way to describe a solvent environment
around a protein, and has in fact been used in many
molecular dynamics simulations. Empirical water
force fields have been developed for the neat liquid
over the last several decades,44–48 and more recently
including explicit polarization,49–53 and some do quite
a reasonable job of reproducing a large number of
molecular properties, such as the partial radial dis-
tribution functions, thermodynamic, and transport
properties.45 While further improvement in the in-
terface between water and protein force fields is war-
ranted, explicit solvent calculations are important for
quantitative studies of interaction of water with the
protein.
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A fundamental difficulty encountered in the simu-
lation of biomolecular systems is the need to eval-
uate long-range Coulombic forces, the first term in
the double sum in Equation 1. The conventional eval-
uation of the Coulombic energy and Cartesian de-
rivatives at a given protein configuration requires on
the order of N 2 FLOPS (floating-point operations per
second), where N is the number of atom centers. The
proper accounting of long-range forces is introduced
through the Ewald summation.33,34,54,55 Typical pro-
tein in water simulations periodically replicate the
system in three spatial dimensions, and divide the
long-range Coulombic interactions into a short-range
part that is evaluated in real space (as a direct sum
over atomic positions) and a long-range part eval-
uated in reciprocal space. Smooth Particle Mesh
Ewald (SPME) employs a Cardinal B-spline-based ap-
proximation to the atomic charge density, which can
be generated using Fast Fourier Transforms (FFTs),
to calculate the Coulombic forces in reciprocal space
in order NlogN. 34

For system sizes beyond 103 atoms, these algorithms
have largely reached their crossover to NlogN scal-
ing. Figure 1 gives an estimate of the number of up-
dates of Equation 1 and its Cartesian derivatives that
can be accomplished with NlogN scaling algorithms
on a 100 teraflop computer for a 10000 atom system
(equivalent to a 100 amino acid protein and 3000
water molecules). In addition, these Ewald-type cal-
culations can be parallelized readily.55,56 The real
space part of the sum can be treated using a stan-
dard domain decomposition strategy while the re-
ciprocal space part of the sum requires the efficient
parallelization of a three-dimensional FFT with cut-
offs in both reciprocal and real space. The force field
represented in Equation 1 effectively incorporates
many-bodied effects such as polarization effects
through the parameters, but only requires the eval-
uation of two body forces. In particular, the molec-
ular charge distribution is represented by partial
charges of fixed magnitude assigned to atoms or sites,
and the molecular charge distribution does not re-
spond to the environment explicitly. More explicit
inclusion of many-body polarization and many-body
dispersion requires the evaluation of many-bodied
forces, and can be accomplished through the use of
a Drude model.

In a Drude model, the electronic degrees of free-
dom associated with a site/atom are treated by two
noninteracting charges of opposite sign tethered to-
gether by a harmonic spring.57–60 The negative charge
has a small mass, and the positive charge is fixed on

the site/atom. Charges associated with different sites
interact via Coulomb’s Law. A classical treatment,
minimization of the energy with respect to the light
particle positions, yields many-body polarization up
to dipole order. A quantum mechanical treatment
yields dipole and higher many-body polarization as
well as many-body dispersion. Modern path integral
techniques can be used to simulate quantum Drude
models efficiently.61,62 Finally, the Drude model
scales like NlogN although the computational over-
head is larger than a fixed charged treatment.

Simulation methodologies for dynamics and ther-
modynamics. A dynamical description of how pro-
tein atoms and water molecules evolve in time can
be determined by solving Newton’s equations of mo-
tion. A typical simulation is initiated by inserting a
large biomolecule into a box of solvent, removing
the overlapping solvent molecules, equilibrating and
performing a long simulation. New positions and ve-
locities are determined numerically using various fi-
nite difference algorithms, and the propagated er-
ror in the updated quantities is proportional to the

Figure 1 An estimate of the number of updates of
Equation 1 and its Cartesian derivatives that can
be accomplished with NlogN scaling algorithms
on a 100 teraflop computer for a 10000 atom
system (equivalent to a 100 amino acid protein
and 3000 water molecules)
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power of the time step. Extended system equations
of motion and associated numerical integrators have
been developed that allow extensions from micro-
canonical ensemble dynamics to sampling of states
in the canonical ensemble, as well as the isothermal-
isobaric ensembles.63–65

The stability of these finite difference numerical in-
tegrator algorithms is dependent upon a time step
that is commensurate with the fastest timescale in
the system. Bond vibrations have an amplitude of 0.01
Å and therefore limit the use of the central differ-
ence equations to time steps on the order of 1 fem-
tosecond (10215 seconds). Constraint dynamics that
effectively project out the force along bonds (SHAKE
or RATTLE) can increase the time step to 2 femto-
seconds (fs), so that the next fastest timescales arise
from bond angle distortions. However, freezing bond
angles has a significant adverse effect on developed
structural and timescale properties of protein dynam-
ics so that “Shaking” bond lengths and the 2 fs
timescale resolution was part of the scaling behav-
ior for simulations of protein-water and protein-pro-
tein interactions.

Recent advances in modern numerical integrators
can now separate out the natural timescales of mo-
tions that depend on the strength of forces associ-
ated with each term in Equation 1.66–71 Based on a
factorization of the evolution operator used in quan-
tum statistical mechanics, a formal decomposition
of the integration time step allows bonds to be up-
dated more frequently than angle bends, and angle
bends more often than short-range forces, and short-
range forces more often than long-range forces. This
formally correct multiple time step integration has
been shown to generate about an order of magni-
tude improvement in computational efficiency in bi-
omolecular systems, although resonance artifacts can
reduce this gain in efficiency in practice. The decrease
in computer time results from the fact that the most
expensive terms in Equation 1, the double sum over
atoms, need to be updated less often than local in-
teractions, i.e., the single sum terms in Equation 1.
Calculations performed using multiple time step in-
tegration methods in isothermal or isobaric-isother-
mal ensembles are very scalable. Each time step re-
sults in a collective “move” and parallelization can
proceed using standard domain decomposition par-
adigms.

It is a difficult task to efficiently sample the confor-
mational space of large complex single domain pro-
teins. Large proteins relax on timescales of an order

of a second in solution, a benchmark atomistic sim-
ulations cannot approach at present. It would be use-
ful, therefore, to extend the practical range of
polypeptide sizes that can be simulated and can be
said with reasonable confidence to have achieved
conformational equilibrium. Although improved nu-
merical integration and equations of motion have
helped, several orders of magnitude improvement
in efficiency need to be obtained.

In umbrella sampling, a series of simulations are per-
formed using not the true direct potential energy
function but the true potential energy function plus
a biasing potential. 72,73 The biasing potential is char-
acterized by a set of parameters that serve to adjust
the strength of the bias along a “reaction coordinate.”
The biasing potential forces the dynamics to sample
regions of the “reaction coordinate” that may not
otherwise be explored extensively. Thus, a series of
calculations at selected parameter sets can be per-
formed to “drag” the system through its configura-
tion space, along the reaction coordinate “in the
shade of the umbrella” formed by the biasing po-
tential. It is possible to achieve large reductions of
computational effort if the reaction coordinate con-
tains the rate limiting pathway(s) through configura-
tion space. In general, umbrella sampling creates a
simple level of parallelism because calculations em-
ploying a different set of biasing parameters can be
performed independently. Postprocessing using the
weighted histogram method74 can be used to elim-
inate the systematic bias in a formally exact man-
ner.

The next level of complexity involves borrowing
methods from the path integrals molecular dynam-
ics literature.61,75 Specifically noncanonical, order N
variable transformations increase the sampling ef-
ficiency of Gaussian random coil calculations by a
factor of over 200. Most of the increase in efficiency
can be ascribed to the noncanonical variable trans-
formation that permits the long wavelength fluctu-
ations of the coil to occur on a fast timescale. Ap-
plying such transformations with umbrella sampling
has allowed the efficient and accurate determination
of the hinge bending free energy surface of the mu-
tant T4 lysozyme (in vacuo) and in computer water
solution.75

Finally, proteins have a much more complex con-
figuration space than random coils, hinge bending
modes, or intermediate size peptides. It is therefore
useful to implement yet another class of variable
transformation borrowed from the Monte Carlo
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literature that can, in principle, make true
protein/polypeptides “resemble” a random coil
model by analytically eliminating torsional barriers
along the peptide backbone. The fast random coil
methodology can then be applied “on top” of this
first transformation. The idea behind the new tech-
nique is to create through the use of noncanonical
variable transformations a smooth effective energy
landscape without a concomitant modification of the
potential energy surface itself.75 In contrast, stan-
dard torsional dynamics schemes seek to eliminate
motion in directions tangential to the backbone di-
hedrals to promote the use of larger time steps and
barrier crossing events but do alter the heights of
the barriers in the coordinate space. The new method
should also be contrasted to importance sampling
schemes where barriers are cut by an ad hoc mod-
ification of the potential energy surface and must be
“regrown” by an (a posteriori) reweighing of the tra-
jectories. In the new method, the reweighing occurs
dynamically, through the properties of the nonca-
nonical variable transformation. Preliminary results
are promising.

Quantum mechanical algorithms. Modeling protein
structure or enzyme reactions at higher levels of ac-
curacy involves two simulation approaches at
present. One is semiempirical or ab initio quantum
mechanical (QM) methods that possess sufficient or
even high accuracy for various biochemical proper-
ties of interest, but are currently limited to relatively
small chemical systems and nondynamic simulations.
Another is classical molecular dynamics (MD), which
simulates the motions of atoms in their chemical con-
text for relatively large systems and long timescales,
but with empirical force fields that often have insuf-
ficient accuracy, and altogether fail to treat the break-
ing and forming of bonds, that is especially impor-
tant for enzymatic reactions. We have outlined much
of the methodological and computing kernels of clas-
sical MD algorithms in the previous section, and fo-
cus this section on QM methods.

The next generation of quantum chemistry algo-
rithms will exploit new theories and technology that
will reduce the scaling requirements of the HF, DFT,
and MP2 methods.76 The simplest level of ab initio
QM simulation is the Hartree-Fock (HF) method. This
method produces very accurate bond lengths and an-
gles and reasonable reaction energies. Potentially
more accurate structures and reaction energies can
be determined with density functional theory (DFT)
that shares HF’s favorable scaling properties. Prom-
ising new algorithms, such as the MP2 method, should

allow for very accurate energetic calculations on the
chemically significant segments of many biochem-
ical reactions. However, for certain properties, such
as reaction barriers that are particularly important
in nonequilibrium biochemical processes, more so-
phisticated QM methods, such as the coupled-clus-
ter (CC) theory including all single and double ex-
citations (CCSD) and with perturbative triples
(CCSD(T)), may be required. If we consider the se-
ries of theoretical models, HF or DFT methods, MP2,
CCSD, CCSD(T), for a given size basis set, and varying
molecular size M, then in the simplest analysis their
computational requirements scale as M 4 , M 5 , M 6 ,
and M 7 , respectively. However, recent research has
contributed to a rapid breaking down of the com-
putational bottlenecks in HF, DFT, and MP2 calcula-
tions.

Two steps are involved in one HF/DFT energy and
derivative calculation. The first step is the construc-
tion of the effective one-electron Hamiltonian ma-
trix, usually termed the Fock matrix, given a density
matrix. The second is the evaluation of a new den-
sity matrix, usually via the generation of new mo-
lecular orbitals or Kohn-Sham orbitals. That HF and
DFT methods naively scale as the fourth power of
molecular size arises because of the evaluation of
electron-electron interactions via four center two-
electron integrals. However, the number of nonneg-
ligible two-electron integrals does not grow quarti-
cally with the size of the molecule, but grows as M 2

when the molecular size is large enough (i.e., the two
atomic orbitals (AOs) comprising each pair must
overlap in order to make a distribution containing
non-negligible charge). This realization, together
with advances in the speed of two-electron integral
evaluation77 (integrals are generated as they are
needed rather than stored), combine to permit rou-
tine calculations on systems approaching the 100
heavy (i.e., nonhydrogen) atom range.

Linear scaling in the assembly of the Fock matrix
follows directly from the collectivization of distant
electron-electron interactions via multipole expan-
sions with controlled error bars known as fast mul-
tipole methods.78,79 In the face of linear scaling meth-
ods for electron integral evaluation, the generation
of a new density matrix via diagonalization that scales
as M 3 will eventually become dominant for large mo-
lecular sizes. Current effort has been directed toward
methods for updating the density and/or orbitals
without explicit diagonalization, taking advantage of
the fact that for most molecules, such as proteins,
the density matrix is spatially localized.80,81
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It is important to emphasize that DFT and existing
functionals capture only certain types of electron cor-
relation, and therefore the quality of DFT calcula-
tions are still under debate. We note that the devel-
opment of new DFT functionals is an active area of
research.82–84 A potentially feasible alternative is the
MP2 method that is the simplest wavefunction-based
theory of electron correlation. In most current quan-
tum chemistry program packages MP2 scales as M 5;
the M 5 scaling is a consequence of the formulation
of MP2 using delocalized MOs (molecular orbitals),
which arise from standard HF calculations. However,
the MOs can be localized, and there has been some
preliminary progress toward developing versions
of MP2 theory based on localized orbitals. The
“local-MP2” method scales only quadratically with
molecular size, and comes to within a few percent
of reproducing the exact MP2 energy with a given ba-
sis.85

The simulation of certain enzyme catalyzed reaction
mechanisms involving homolytic bond breaking (i.e.,
the breaking of electron pairs) or, if transition metal
atoms are involved in the active site, will require
more accurate electron-correlated quantum chem-
ical methods, e.g., coupled cluster (CCSD),86 that
presently scale as M 6–M 7 . For example, a CCSD en-
ergy calculation should be feasible for a 40-atom sys-
tem on a teraflop computer, which is sufficiently large
to include a typical enzyme substrate and several cat-
alytic amino acid residues.

Despite the great value of the static properties that
can be calculated using QM methods, many biolog-
ical processes are inherently dynamical. Such prob-
lems include processive reactions (DNA or protein
synthesis) and processes such as macromolecular
conformational changes (DNA unwinding and allo-
steric enzyme regulation). Empirical force fields,
without the inclusion of electrostatic polarization,
cannot accurately describe the solvation of highly
charged biomolecules and such force fields are in-
herently unable to treat bond-making and -break-
ing reactions. Improvements will be made to these
classical force fields, but a shift to quantum mechan-
ical force fields (vide infra) will be required to achieve
quantitatively accurate enzymatic simulations.

The primary advancement will be the merging of the
QM and molecular dynamics methods to allow so-
called first principles MD, where quantum mechan-
ical forces will be used to drive the classical motions
of the atoms.87–89 Extension to dynamics simulations
requires considerable methods development; the DFT

force calculation must be converted to a linear-scal-
ing method, and the entire molecular dynamics sim-
ulation must be implemented on a massively paral-
lel computer. Even with these improvements, first
principles MD will not yet be feasible for long time
scales and large molecular sizes such as that outlined
for empirical force fields (see Case Study 5). How-
ever, this capability will allow the solving of a large
number of fundamental biophysical problems that
have been inconclusively addressed by existing clas-
sical MD methods. These problems include the de-
termination of the hydration structure of the DNA
nucleoside bases; the energetic factors leading to
DNA base pairing; the hydration of the DNA back-
bone and basic sites; and the role of polarization in
the stability of protein a-helices, for example.

Optimization and search strategies to construct bio-
chemically relevant protein structures. The quan-
titative determination of protein structure will be crit-
ical in extending the information that emerges from
fold prediction to structures that are relevant for in-
vestigation of biochemical questions. It is well un-
derstood that current de novo and fold analysis tech-
niques provide structural information that is “low
resolution,” i.e., structures are typically 4–8Å RMS
deviation from structural models emerging from NMR
or X-ray structure determinations (these structures
are typically precise to a level of 0.25 Å–0.75 Å). To
extend the resolution of such structures to levels anal-
ogous to that from experimental structure determi-
nation methods, and hence to biochemically relevant
levels, requires further refinement employing the
types of force fields used in the folding free energy
mapping calculations noted above. Only once we
have achieved such resolution can we be confident
in the use of these structural models as starting points
in drug discovery and functional assessment meth-
ods.

The problem of determining the full three-dimen-
sional arrangement of the protein molecule in its
most pragmatic guise is to ignore timescale bottle-
necks for simulating the kinetics and mechanisms for
how proteins fold, and instead determine effective
ways of moving on the surface by walking through
barriers. The conformational space of a protein is
very high in dimensionality and complexity, so both
local and global minima are of interest. The com-
plexity of real protein surfaces rule out exhaustive
enumeration of minima, so that sophisticated con-
formational searches and/or global optimization ap-
proaches are necessary to rapidly access the relevant
regions of the energy surface. A large number of con-
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Case Study 5

Ab initio molecular dynamics simulations

e have recently performed a new X-ray diffraction study of liquid water under ambient conditions at 
the  Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory that takes advantage 

of various state-of-the-art features of a modern-day experiment,1 including quantitative characterization of 
the X-ray source together with the use of a more sophisticated Charge Coupled Device (CCD) area 
detector. We presented a goo(r) for water consistent with our recent experimental data gathered at the 
ALS, and we outlined what features of goo(r) should be reproduced by a simulation method.2

We evaluated the performance of some of the first fully quantum treatments of electronic structure in 
aqueous simulations,3-5 all of which rely on a local density approximation to density functional theory. The 
differences between experiment and the ab initio results arise from several sources that typically have 
been investigated and overcome in the classical simulation literature, including dependence on initial 
conditions, length of the simulations, variation in system properties that arise with temperature, density, 
and finite size effects. Given the current computational expense that prohibits box sizes typically used in 
empirical force field simulations at present, these are largely technical limitations that will clearly diminish 
over time, and we would expect quantitative agreement to improve in the future.

Comparison of ALS experimental goo(r) (gray line) with ab initio molecular dynamics simulations. 
(A) Silvestrelli and Parrinello3 ab initio simulation of 10ps for 64 water molecules, average ionic temperature 
of 318K (red line), Sprik et al.4 ab initio simulation of 5ps for 32 water molecules, average ionic temperature 
of 303K (black dashed line). (B) Schwegler et al.5 ab initio simulation of 2ps for 54 water molecules, average 
ionic temperature of ~300K (red line); more recent ab initio simulation by Schwegler et al. 5ps for 54 water 
molecules, average ionic temperature of ~294K (black dashed line).
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formational search or optimization strategies have
been developed to tackle protein structure predic-
tion.

Simulated annealing, genetic algorithms, “nonlocal”
dihedral angle Monte Carlo, and various mathemat-
ical optimization methods attempt to search more
globally than local minimization algorithms.90–102

Simulated annealing is based on statistical mechan-
ical theories for freezing in which the system is ar-
tificially “heated” to a high temperature and slowly
cooled to “crystallize” to the lowest energy minimum.
The correct cooling protocol and schedule is vital
since a too-rapid descent in temperature can result
in trapping into metastable minima; advances in com-
puting can allow the cooling rate to be a few orders
of magnitude slower. Genetic algorithms define a set
of genes composed of structural variables and their
connection to a potential energy function; new genes
are evolved by genetic crossover and random mu-
tation, and genes that are unfit are eliminated from
the population. Eventually, a population of genes
(variables) is left, which in principle generates the
lowest energy value. Nonlocal Monte Carlo meth-
ods have been developed where large moves are
made with reasonably high acceptance when a small
number of dihedral angles (backbone torsions f or
c, or side-chain torsions) are varied according to
probability maps of their amplitude derived from a
representative set of proteins.

Mathematical optimization research is a more gen-
eral approach for obtaining solutions to large non-
linear systems with numerous local minima, with pro-
tein folding being a recent example. Constrained
optimization methods rely on the availability of suf-
ficiently well-defined constraints so that the desired
solution is the only available minimum, or one of few
available minima, in the optimization phase of the
algorithm. Alternatively, global optimization and
conformational search techniques attempt to system-
atically search the potential energy surface to find
all low-lying minima including the global energy min-
imum.

The technique of “diffusion smoothing” is based on
analogies to diffusion and heat conduction. A
smoothing operator is applied to the potential en-
ergy surface to remove shallow minima and “absorb”
them in nonshallow minima that become even
deeper. Stochastic/perturbation is a global optimi-
zation algorithm that consists of two phases.103 In
the first phase, a set of initial configurations is ei-
ther designed or randomly generated, and each is

used as a starting point for a local minimization. The
best of the resulting local minimizers forms a pool
used in the next phase. The second phase consists
of repeatedly selecting conformations and modify-
ing them using a small-dimensional global optimi-
zation probabilistic algorithm of Rinnooy Kan.

The useful application of these conformational
search and optimization strategies is itself compu-
tationally intensive since it typically requires ;105–
106 evaluations of an energy function and its deriv-
ative such as that given in Equation 1. These
optimization approaches are useful in many contexts,
including atomic-level structure prediction, for use
in comparative modeling, docking of small ligands
into protein active sites, or finding optimal protein-
protein interaction geometries.

Advancing biotechnology research: In silico
drug design

Only a small percentage of a pool of viable drug can-
didates actually lead to the identification of a clin-
ically useful compound, with typically over $200 mil-
lion spent in research costs to successfully bring it
to market. On average, a period of 12 years elapses
between the identification and FDA (Food and Drug
Administration) approval of a successful drug, with
the major bottleneck being the generation of novel,
high-quality drug candidates. While rational, com-
puter-based methods represent a quantum leap for-
ward for identifying drug candidates, substantial in-
creases in compute power are needed to allow for
both greater selection sensitivity and genome-scale
modeling of future drugs.

Table 1 gives an estimate of the method and current
computational requirements to complete a binding
affinity calculation for a given drug library size. Go-
ing down the table for a given model complexity is
a level of computational accuracy. The benefits of
improved model accuracy must be offset against the
cost of evaluating a model over the ever-increasing
size of the drug compound library brought about by
combinatorial synthesis, and further exacerbated by
the high throughput efforts of the genome project
and structural annotation of new protein targets.

Models and algorithms for in silico drug design.
Docking methods are computational algorithms de-
veloped to both predict the three-dimensional struc-
tures of ligand-receptor complexes, and to evaluate
the relative affinity or free energy of binding for these
bound ligands or drugs.104–109 The need for improved
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docking and scoring methods is now especially acute
given the future direction toward high-throughput
annotation of genomes to generate new protein
structural targets, combined with revolutionary ad-
vances in combinatorial synthesis of small molecule
docking candidates.

The current combinatorial library paradigm is to de-
sign diverse drug libraries aimed at multiple but un-
known targets or directed ligand libraries aimed at
optimizing hits against individual targets. An inverted
procedure is possible in which one or many libraries
are screened on the computer against many targets
to determine which libraries have the most desirable
characteristics for which targets. This general ap-
proach can also include an “optimization” cycle
where augmented libraries are scored against the best
targets.

The fundamental attractiveness of this approach is
that potential targets for all compounds can be ad-
dressed at a much earlier time and at much lower
cost per compound, and is consistent with genome-
scale drug design efforts. The basic challenge is how
to improve the accuracy of the fundamental dock-
ing algorithms themselves while rapidly screening in-
creasingly larger drug databases both in-house and
in the public domain.

Docking methods for geometric optimization of a
candidate drug into a target active site is a solved
problem when both the ligand and the target are
treated as rigid objects. In some cases, limited flex-
ibility is introduced by dividing the ligand into sev-

eral rigid fragments that are docked separately. In
either case, these binding complexes are then eval-
uated with an empirical scoring function, which we
discuss later. This represents the level of sophisti-
cation that is currently available from commercially
available software packages. This approach is likely
to identify, at best, one weakly binding compound
per database of 100000 chemicals, because there are
too many false negatives generated.

Introduction of full flexibility of at least the ligand
for docking into a rigid target in order to refine the
binding geometry has been shown to lead to better
binding energetics, and therefore finding better drug
leads in general. Flexible ligand and rigid target rep-
resents the upper limits of what can be attempted
with current computational resources. When the
peptide backbone and side chains of the target mol-
ecule are also treated as flexible, allowing the mol-
ecule to undergo locally induced conformational
changes upon ligand binding, the resulting induced
fit seems to be essential to understand ligand spec-
ificity. Large-scale screening with full flexibility of
both ligand and localized areas of the target is well
beyond reach with current computational resources,
since only a few compounds can be screened within
a practical time interval. Essentially increased use
of geometric refinement with at least full ligand flex-
ibility, and ideally at least localized target flexibility,
via standard optimization techniques for large librar-
ies of drug compounds, is an accessible and desir-
able goal in using future teraflop computing. Once
a drug is geometrically docked, scoring of the bind-
ing affinity of a drug-receptor complex ranges from

Table 1 Estimates of current computational requirements to complete a binding affinity calculation for a given drug library
size

Modeling Complexity Method Size
of

Library

Required
Computing

Time

Molecular mechanics SPECITOPE 140000 ;1 hour
Rigid ligand/target LUDI 30000 1–4 hours

CLIX 30000 33 hours
Molecular mechanics Hammerhead 80000 3–4 days
Partially flexible ligand DOCK 17000 3–4 days
Rigid target DOCK 53000 14 days
Molecular mechanics/ ICM 50000 21 days

fully flexible ligand,
rigid target

Molecular mechanics/ AMBER, 1 ;several days
free energy perturbation CHARMM

QM active site and
MM protein

Gaussian,
Q-Chem

1 .several weeks
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statistical multivariate equations that correlate X-
ray crystal structural data of ligand-receptor com-
plexes with experimental free energies of binding,
to physically-based molecular mechanics approaches,
to computationally intensive free energy perturba-
tion methods.

Overall the rapidly calculated multivariate functions
perform as well as computationally intensive free en-
ergy perturbation calculations, with estimated rel-
ative binding free energies of about 2 kcal/mole,
which corresponds to a binding affinity error
(;10DG error/1.4) of about 30-fold. The quality of these
scoring functions provides a qualitative filter for or-
dering the binding affinity of drugs in large databases,
but is not a reliable predictor of the most active drug
molecules. Ranking drug affinity among many ligands
for a given target is where multivariate functions
work well, but it is unlikely that these existing scor-
ing functions could determine specificity of a single
drug against different receptors.

Both molecular mechanics and free energy pertur-
bation methods have the advantage of being based
on physical interactions, so that alternative problems
can be treated by the same approach. Molecular me-
chanics functions with solvent-accessible surface area
descriptions for solvation have on average performed
significantly worse than multivariate functions in the
past, with binding free energy errors typically being
3 kcal/mole/. However, quite good correlation of the
enzyme inhibitor activity of 33 inhibitors of HIV-1 pro-
teases were determined by a purely molecular me-
chanics scoring function, and recent reported results
for some new empirical force fields perform as well
as correlated MP2 QM methods.

Based on these classical approaches, the cost of eval-
uating a 100000 compound library against 100000
gene products would take on the order of a full year
on a dedicated teraflop computer. Certain large
pharmaceutical companies have in-house databases
approaching 500000 drugs, and revolutionary com-
binatorial synthesis approaches are going to expand
these databases even further. If we add on top of
that additional modeling accuracy requirements to
better screen drugs, i.e., better empirical force fields,
longer refinement stages in the calculation, and
greater target flexibility, the search for better drug
candidates will utilize well teraflop capabilities on
a sustained basis, and is inherently scalable beyond
this projected computing goal.

State-of-the-art quantum chemistry algorithms are
also worth consideration in the future since we can
expand the applicability of quantum mechanics/
molecular mechanics (QM/MM) methods to simulate
a greatly expanded QM subsystem for enzymatic stud-
ies, or even estimation of drug binding affinities. An
estimate of the cost of using QM methods for eval-
uating a single energy and force evaluation system
of 104 heavy atoms would require resources that can
handle ;1016 FLOPS. Parallel versions of these meth-
ods have been implemented and are available at a
number of universities and government laborato-
ries.110–113 On current generation teraflop platforms,
QM calculations of unprecedented size are now pos-
sible, allowing HF optimizations on systems with over
1000 atoms and MP2 energies on hundreds of atoms.
The presently available traditional-scaling (;N 3)
first principles molecular dynamics code is running
efficiently on serial platforms, including high-end
workstations and vector supercomputers. The ulti-
mate goal is to develop linear scaling quantum mo-
lecular dynamics code. It will be important to adapt
these codes to the parallel architectures, requiring
rewriting parts of existing programs and developing
linear scaling algorithms.

Linking structural genomics to systems
modeling: Modeling the cellular program

The cellular program that governs the growth, de-
velopment, environmental response, and evolution-
ary context of an organism does so robustly in the
face of a fluctuating environment and energy sources.
It integrates numerous signals about events the cell
must track in order to determine which reactions to
turn on, off, or slow down and speed up. These sig-
nals, which are derived both from internal processes,
other cells, and changes in the extracellular medium,
arrive asynchronously, and are multivalued in mean-
ing. The cellular program also has memory of its own
particular history as written in the complement and
concentrations of chemicals contained in the cell at
any instant. The circuitry that implements the work-
ing of a cell and/or collection of cells is a network
of interconnected biochemical, genetic reactions, and
other reaction types.

The experimental task of mapping genetic regula-
tory networks using genetic footprinting and two-hy-
brid techniques is well underway, and the kinetics
of these networks is being generated at an astound-
ing rate. Technology derivatives of genome data such
as gene expression micro-arrays and in vivo fluores-
cent tagging of proteins through genetic fusion with
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the green fluorescent protein (GFP) can be used as
a probe for network interaction and dynamics. If the
promise of the genome projects and the structural
genomics effort is to be fully realized, then predic-
tive simulation methods must be developed to make
sense of these emerging experimental data.114–121

First is the problem of modeling the network struc-
ture, i.e., the nodes and connectivity defined by sets
of reactions among proteins, small molecules, and
DNA. Second is the functional analysis of a network
using simulation models built up from “functional
units” describing the kinetics of the interactions.

Prediction of networks from genomic data can be
approached from several directions. If the function
of a gene can be predicted from homology, then prior
knowledge of the pathways in which that function
is found in other organisms can be used to predict
the possible biochemical networks in which the pro-
tein participates. Homology approaches based on
protein structural data or functional data for a pro-

tein previously characterized can be used to predict
the type of kinetic behavior of a new enzyme. Thus
structural prediction methods that can predict the
fold of the protein product of a given gene are fun-
damental to the deduction of the network structure.

The nonlinearity of the biochemical and genetic re-
actions, along with the high degree of connectivity
among substrates, products, and effectors in these
reactions, make the qualitative analysis of their be-
havior as a network difficult (see Case Study 6). Fur-
thermore, the small numbers of molecules involved
in biochemical reactions (typical concentrations of
100 molecules/cell) ensure that thermal fluctuations
in reaction rates are expected to become significant
compared to the average behavior at such low con-
centrations. Since genetic control generally involves
only one or two copies of the relevant promoters and
genes per cell, this noise is expected to be even worse
for genetic reactions. The inherent randomness and
discreteness of these reactions common inside liv-

novel gene expression time series analysis algorithm known as the Correlation Metric Construction (CMC) 
uses a time-lagged correlation metric as a measure of distance between reacting species. The constructed 

matrix R is then converted to a Euclidean distance matrix D, and multidimensional scaling, MDS, is used to 
allow the visualization of the configuration of points in high dimensional space as a two-dimensional stick and 
ball diagram. The goal of this algorithm is to deduce the reaction pathway underlying the response dynamics, 
and was used on the first few steps of the glycolytic pathway determined by experiment.1

The reconstituted reaction system of the glycolytic pathway, containing eight enzymes and 14 metabolic 
intermediates, was kept away from equilibrium in a continuous-flow, stirred-tank reactor. Input concentrations 
of adenosine monophosphate and citrate were externally varied over time, and their concentrations in the 
reactor and the response of eight other species were measured. The CMC algorithm showed a good prediction 
of the reaction pathway from the measurements in this much-studied biochemical system. Both the MDS 
diagram itself and the predicted reaction pathway resemble the classically determined reaction pathway (see 
Figures 3A, 3B, and 5 in Reference 1). In addition, CMC measurements yield information about the underlying 
kinetics of the network. For example, species connected by small numbers of fast reactions were predicted to 
have smaller distances between them than species connected by a slow reaction.

 

Reference

1. A. Arkin, P. D. Shen, and J. Ross, �A Test Case of Correlation Metric Construction of �

a Reaction Pathway from Measurements,�Science 277, 1275�1279 (1997).

A

Case Study 6

Modeling the reaction pathway for the glycolytic biochemical system

Adam Arkin
University of California, Berkeley
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ing cells can have significant macroscopic conse-
quences.

There are three bottlenecks in the numerical anal-
ysis of biochemical reaction networks. The first is the
multiple timescales involved. Since the time between
biochemical reactions decreases exponentially with
the total probability of a reaction per unit time, the
number of computational steps to simulate a unit of
biological time increases roughly exponentially as re-
actions are added to the system or rate constants are
increased. The second bottleneck derives from the
necessity to collect sufficient statistics from many runs
of the Monte Carlo simulation to predict the phe-
nomenon of interest. The third bottleneck is a prac-
tical one of model building and testing: hypothesis
exploration, sensitivity analyses, and back calcula-
tions will also be computationally intensive.

Methods and models for deducing genetic and bio-
chemical network structures. First we describe the
problem of modeling the network connectivity us-
ing time series analysis. Most of the time series anal-
ysis techniques that have been applied to gene
expression data fall into the category of statistical,
distance-based methods. The idea is to define a dis-
tance metric on the space of species concentration
that associates smaller distances with directly inter-
acting species, larger distances with indirectly relat-
ing species, and very large distances with species that
do not interact at all. Once a distance matrix has been
constructed—an assignment of a number to each pair
of species under consideration—analysis techniques
such as clustering can be used to draw further mean-
ing from the distance matrix and to represent pu-
tative interspecies relationships graphically.

The simplest distance-based technique for analyz-
ing gene expression time series is that of simple cor-
relation. The species are treated as random varia-
bles and a correlation coefficient is calculated for
each pair of species and used as a measure of dis-
tance between chemical species. Simple correlation
reveals linear, simultaneous relationships between
variables. If two mRNA concentrations co-vary lin-
early, either positively or negatively, with time and/or
perturbation values, this covariance will be reflected
in a correlation distance measure. However, nonlin-
ear relationships between variables are not measured
by correlation coefficients, nor are time shifted lin-
ear relationships. Since gene regulation networks are
thought to follow a logic best described by nonlin-
ear hybrid algebraic differential equations, such a
measure would seem to be lacking. However, the ap-

plication of such a simple distance measure com-
bined with clustering techniques has resulted in valu-
able and unexpected insights (see Case Study 6).

The computational cost of evaluating the correla-
tion distance matrix with a simple correlation dis-
tance metric is NM 2/ 2, where M is the number of
genes being monitored over N time points. Since
there are an estimated 100000 genes along the hu-
man genome, calculating a distance matrix over 2000
observational time points spanning embryonic de-
velopment would cost 1013 operations. Once a dis-
tance matrix has been constructed, analysis and vi-
sualization techniques must be applied in order to
derive meaning from the distance matrix that adds
additional computational overhead to the cost of the
initial matrix construction.

The next-simplest distance-based techniques for an-
alyzing gene expression time series use time-delayed
correlations between variables at different time lags
in order to construct a distance matrix. For every pair
of species, a correlation coefficient is calculated for
the pair at all possible time lags. In its simplest ver-
sion, the distance between the two species is then
taken to be the maximum correlation coefficient cal-
culated, or some function of this maximum.

Time-shifted correlations reveal linear, potentially
time-lagged relationships between variables. Being
able to capture time-shifted relationships between
species is an important feature for a gene expres-
sion distance metric to have, because it allows de-
tection of cascade-like regulation mechanisms—
fairly common transcription-level gene expression
control structures. The simple no-lag correlation
metric can miss such relationships altogether. As with
the simple correlation metric described previously,
nonlinear relationships between variables are not
measured by time-shifted correlation coefficients.
Though this is a serious limitation, time-shifted cor-
relation metrics can be considered a valuable step
up in the representational hierarchy from simple cor-
relation, because they are able to capture linear,
time-invariant system dynamics. Because correla-
tions must be calculated at all possible time lags be-
tween variable pairs, constructing a time-shifted cor-
relation matrix is more expensive than constructing
the simpler metric.

If all the interactions in a network were linear, then
multivariate linear regression would provide the best
estimate of the dependence of one variable in the
system on the others. However, the dependence on
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the activity (or concentration) of one component as
a function of the others is most often very nonlin-
ear. In this case, linear dependency measures must
be discarded in favor of general measures of depen-
dency such as the transinformation. The transinfor-
mation is defined in terms of the joint probability
distributions of sets of variables. There are a num-
ber of analyses that exploit this measure to produce
and test network hypotheses against multivariate, of-
ten time-resolved, data.

In order to estimate the dependence of one variate
on another, we must calculate conditional probabil-
ities, that is, the probability that one variable is in
one state (concentration range) given that another
variate is in another state. Enough data must be col-
lected so that the deduced relationships among var-
iables can be deemed statistically significant. For
these analyses this amount in data can be estimated
via the x2 statistic. If we assume that every chemical
variable in our system can take on only Q different
biologically significant states, then the data constraint
states that for credible analysis the minimum num-
ber of data, d, (where each data element represents
the observation of all N variables) is governed by:

d $ 5Q N

Thus, over 5000 observations must be made for a
system of ten binary variables. Obviously, this data
constraint is extremely harsh for biochemical systems
in which the number of biologically significant con-
centrations can be relatively large and the number
of variables orders of magnitude greater than ten.
Therefore methods must be developed for breaking
large biochemical networks into smaller subnet-
works, which can be probed using this method.

From the time-series data a statistical analysis must
predict the most probable network of interactions
between chemical species that produced the ob-
served system dynamics. To do so, the method must
effectively check every possible network of connec-
tions among the measured species. While the num-
ber of such network structures rises exponentially
with the number of variables composing the system,
practically, the number of possible networks is greatly
reduced with constraints on the solution by insert-
ing chemical and genetic knowledge into the anal-
ysis, and to simply assume limited dependencies
within the network.

Limiting the number of variables that can directly
cause variations in an observation severely reduces

the model space that it is necessary to test. For each
variable, j, one finds the strength of the relationship
between j and all other pairs of (perhaps time-
lagged) variables. If the strength of the interaction
is statistically significant, then retain that pair in the
dependency set for the variable j. If after testing all
pairs the dependency set is empty, conclude that j
does not depend on any other variable in the sys-
tem. Otherwise, conclude that all variables in the de-
pendency set are causative factors for j.

This is an N(N 2 1)/ 2 step algorithm (each step is
composed of calculating the transinformation for
each pair of variables). Each of these steps involves
a three variable by M data point evaluation of a dis-
tribution estimation algorithm. All of these opera-
tions are repeated for each of the N variables, thus
the scaling law is on the order of N 3M. However,
the number of data points necessary to estimate the
joint distributions in the transinformation for var-
iables with Q states is of the order Q N . The final scal-
ing law for the estimation becomes approximately
N 3Q N. Actually, there is some redundancy in the dis-
tribution estimation steps that might be exploited to
slightly reduce this Q N dependency.

However, the assumptions behind this algorithm,
that three-way transinformations are enough to pre-
dict interactions of order greater than three, can lead
to errors of omission in eukaryotic systems, in par-
ticular. Given that eukaryotic systems can have many
multiprotein complexes containing four or more pro-
teins, this heuristic may have to be extended to cover
at least four- and five-way interactions, N 4Q N 2
N 5Q N scaling.

Methods and models for cellular network analysis.
The nonlinearity of the biochemical and genetic re-
actions, along with the high degree of connection
(sharing of substrates, products, and effectors)
among these reactions, make the qualitative anal-
ysis of their behavior as a network difficult. Further-
more, the small numbers of molecules involved in
biochemical reactions (typical concentrations of 100
molecules/cell) ensure that thermal fluctuations in
reaction rates are expected to become significant
compared to the average behavior at such low con-
centrations. Since genetic control generally involves
only one or two copies of the relevant promoters and
genes per cell, this noise is expected to be even worse
for genetic reactions. The inherent randomness and
discreteness of these reactions can have significant
macroscopic consequences such as that common in-
side living cells.
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Chemical systems evolve with time because of
changes in their constituent molecules when those
molecules collide and react. Since naturally occur-
ring molecular collisions are random, the temporal
evolution of any chemically reacting system is sto-
chastic. Elementary kinetic theory shows that, un-
der conditions in which reactive molecular collisions
are separated by many nonreactive molecular col-
lisions, the temporal evolution of the system’s state,
X(t), constitutes a jump Markov process. That is,
X(t) performs a “random walk” in real time over the
N-dimensional integer lattice space, hopping from
one lattice point to another as successive reactions
occur.

An algorithm simulating jump Markov processes has
been rigorously derived from the same premises that
lead to the master equation (ME). The ME defines
evolution of X(t) s probability function P(x, tux0, t0),
while the simulation generates sample trajectories
or “realizations” of X(t). The heart of the simula-
tion is a procedure for randomly deciding, at any time
t when the system’s state X(t) is known, at what time
t 1 t the next reaction in the system will occur and
which reaction, Rm , will be the next reaction.

Using a mathematically exact procedure for gener-
ating random values for t and m, the simulation
moves the system forward in time from one reactive
collision to the next, continually updating the chem-
ical species population levels in accordance with the
outcomes of the selected reactions. The statistical
properties of the system behavior are estimated us-
ing statistics from multiple simulations under iden-
tical conditions.

From a modeling standpoint, the simulation has two
advantages over the ME: it is straightforward to ap-
ply even to complicated coupled chemical reaction
schemes, and the results of the simulation are directly
comparable with experimental results obtained on
real systems. The primary computational bottleneck
of a simulation approach to the master equation is
that it can be expensive to model behavior of sys-
tems with many reacting species over extended time
intervals.

There are three bottlenecks in the numerical anal-
ysis of biochemical reaction networks; the first two
pertain to using the ME approach. The first is the
multiple timescales involved. Since the time between
biochemical reactions decreases exponentially with
the total probability of a reaction per unit time, the
number of computational steps to simulate a unit of

biological time increases roughly exponentially as re-
actions are added to the system or rate constants are
increased.

The second bottleneck derives from the necessity to
collect sufficient statistics from many runs of the
Monte Carlo simulation to predict the phenomenon
of interest. Often, such phenomena as phase-vari-
ation of coat-proteins in pathogenic virus and bac-
teria, oncogenesis or DNA mutation, occur at very
low frequencies. Many runs of the Monte Carlo al-
gorithm are necessary to properly estimate the prob-
abilities of these events if they are to be analyzed via
a stochastic simulation.

The third bottleneck is a practical one of model build-
ing and testing: hypothesis exploration, sensitivity
analyses, and back-calculations will also be compu-
tationally intensive before master equation ap-
proaches can be applied to learn about the behavior
of a proposed network model.

One approach to the first bottleneck problem is to
develop a mode-switching algorithm that can change
to numerical methods more efficient than the ME
when certain conditions are met. A promising ap-
proach is to develop a simulation algorithm that “in-
terpolates” between the master equation simulation
and the standard ordinary differential equations
(ODEs) used for described deterministic chemical ki-
netics. By first approximating the master equation
by a Fokker-Planck equation (FPE), a subsequent
step allows the generalization of the FPE to deter-
mine an approximate Langevin equation (LE). An
algorithm would provide a decision as to how the
dynamics should be propagated—using the Monte
Carlo ME, the LE, or the ODE method. The decision
would be based on criteria such as its current con-
centration, the concentration of those species with
which it directly interacts, and the rate of the reac-
tions in which it participates. As a simulation
progresses, the mode of propagation for each spe-
cies may switch, but switching between regimes must
not introduce biased errors in the integration, ne-
glect of the fluctuations should not lead to ablation
of certain system behaviors, and some estimate must
be made of the error introduced by adding heuristic
submodels. This will require multiple exploratory
simulations to be performed wherein the effect of
varying parameters in the heuristic models is mea-
sured.

The above discussion has focused on spatially ho-
mogeneous chemical systems where rapid mixing
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prevents the formation of persistent concentration
gradients. Treating spatially inhomogeneous systems
is more difficult. The usual deterministic approach
is to convert the ordinary differential reaction rate
equations into partial differential equations that in-
corporate Fick’s macroscopic diffusion law. For a sto-
chastic treatment, one has to subdivide the system
volume into approximately homogeneous spatial
subvolumes, and then allow diffusive exchanges of
molecules between adjacent subvolumes. Stochas-
tic simulation becomes even more computationally
expensive in the spatially inhomogeneous case be-
cause of the many “diffusive exchange reactions” that
must be simulated in addition to the chemical re-
actions.

Some stochastic simulations on spatially inhomoge-
neous systems have been reported, but there are un-
resolved technical issues associated with the choice
of the subvolume size and the form of the proba-
bility rates for diffusive molecular transfers. An
accelerated stochastic simulation algorithm for
homogenous systems will inevitably be useful in ac-
celerating the inhomogeneous case, since inhomo-
geneous systems are diffusively interacting assem-
blages of homogeneous subsystems.

In order to simulate the necessary statistics for a
given chemical system, many runs of the Monte Carlo
algorithm must be executed in parallel. About 4(1 2
p)/f e

2p samples are required to estimate the prob-
ability, p, of a binary random event with 95 percent
confidence where f e is the desired maximum frac-
tional error in p. Thus, a low probability event that
occurs in one cell 1 percent of the time, and is to be
predicted within 60.05 percent, would require
;10000 simulations. Many genetic and biochemi-
cal processes are composed of tens of genes, hun-
dreds of proteins, complexes, and small molecules.
In these cases the computational load is restrictive.

Eventually the largest system of genes and proteins
that will probably have to be simulated is on the or-
der of 100 genes and regulatory elements and 500
proteins, complexes, and small molecules and maybe
10 cellular compartments or locals. This is currently
well beyond the scaling laws of current simulation
algorithms and the 0.1 teraflop computing of today.
The issues that must be addressed in this area are
the disparate timescales requiring new mode-switch-
ing algorithms, and the gathering of the necessary
statistics to quantify event likelihood. While the sec-
ond issue unambiguously benefits from greater tera-
flop machines, the former does too since algorithm

switching will likely only realize an order of magni-
tude savings in simulation time.

In addition, various computational and experimen-
tal data are vital to restricting the network structure
and analysis space, i.e., more generally integrating
domain knowledge into time-series analysis is re-
quired to be computationally feasible. Sources of
information include not only experimental, but
computational data such as large-scale sequence
comparisons, phylogeny information, protein fold
recognition, folding and prediction of structure, en-
zymology, and evaluation of ligand-receptor affin-
ities and multiprotein interactions. These areas are
compute-bound in their own right, and their connec-
tion to modeling of the cellular program is a natural
outgrowth of the ambition of the computational bi-
ology effort of the future.

Other simulation issues for computational
biology

The advanced computational biology simulations de-
scribed in this paper will require computer perfor-
mance well beyond what is currently available, but
computational speed alone will not ensure that the
computer is useful for any specific simulation
method. Several other factors are critical including
the size of primary system memory, also referred to
as random access memory (RAM), the size and speed
of secondary storage, and the overall architecture
of the computer. Many parallel processing computer
architectures have been developed over the years,
but the dominant parallel architecture that has
emerged is the distributed-memory, multiple-instruc-
tion multiple-data (MIMD) architecture, which con-
sists of a set of independent processors with their
own local RAM memory interconnected by some sort
of communication channel. Such an architecture is
characterized by the topology and speed of the in-
terconnection network, and by the speed and mem-
ory size of the individual processors.

Just as with the computer hardware, there have been
a large number of software programming paradigms
developed for parallel computers. A great deal of
research has gone into developing software tools to
assist in parallel programming or even to automat-
ically parallelize existing single-processor software.
Selected parallelization and debugging tools can as-
sist and new programming models such as object-
oriented programming (using C11 or FORTRAN90)
can help hide the details of the underlying computer
architecture. At the current time, however, efficiently
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using massively parallel computers primarily involves
redesigning and rewriting software by hand. This is
complicated by the facts that the best serial (single
processor) algorithms are often not the best suited
for parallel computers and the optimal choice of al-
gorithm often depends on the details of the com-
puter hardware.

The different simulation methods presently used
have different requirements of parallel computer
hardware. Simulation methods that involve calculat-
ing averaged properties from a large number of
smaller calculations that can be individually run on
gigaflop class processors are most ideally suited for
parallelism. These methods include classical and
quantum Monte Carlo simulation. In these simula-
tions a minimal amount of initial data can be sent
to each processor, which then independently calcu-
lates a result that is communicated back to a single
processor. By choosing an appropriate size of prob-
lem for each single processor (problem granulari-
ty), these algorithms will work efficiently on virtu-
ally any MIMD computer, including separate
computer workstations linked by local-area networks.

The quantum chemical and molecular dynamics
methods, or certain optimization algorithms, in which
all processors are applied to the calculation of a sin-
gle chemical wave function or trajectory, involve
much greater challenges to parallelization and in-
volve greater constraints on the parallel computer
architecture. Since all processors are involved in a
single computation, interprocessor communication
must occur. It is the rate of this communication, char-
acterized in terms of raw speed (bandwidth) and ini-
tialization time (latency) that usually limits the ef-
ficient use of parallel computers. The minimal
necessary communication rate depends exquisitely
on the simulation type, choice of algorithm, and
problem size. Generally, it is essential software de-
sign criteria that, as the problem scales to larger size,
the ratio of computational operations per commu-
nication decrease (or at least remain constant), so
that for some problem size, the communication rate
will not constitute a bottleneck. Moreover, it is im-
portant that the work per processor, or “load bal-
ance,” scale evenly so that no processors end up with
much larger computational loads and become bot-
tlenecks. In a broad sense, the nature of computa-
tional biology simulations—in particular the phys-
ical principle that interactions attenuate with
distance—will ensure that scalable parallel algo-
rithms can be developed, albeit at some effort.

Even given the very broad range of simulation meth-
ods required by computational biology, it is possible
to provide some guidelines for the most efficient com-
puter architectures. Regarding the size of primary
memory, it is usually most efficient if a copy of the
(6 3 N) set of coordinates describing a time step
of a molecular dynamics simulation or the (N 3 N)
matrices describing the quantum chemical wavefunc-
tion, can be stored on each processing element. For
the biological systems of the sort described in this
paper, this corresponds to a minimum of several hun-
dred megabytes of RAM per processor. Moreover,
since many of the simulation methods involve the
repeated calculation of quantities that could be
stored and reused (e.g., two electron integrals in
quantum chemistry or interaction lists in molecular
dynamics), memory can often be traded for computer
operations so that larger memory size will permit
even larger simulations.

Similarly, general estimates can be made for the min-
imal interprocessor communication rates. Since the
goal of parallel processing is to distribute the effort
of a calculation, for tightly coupled methods such as
quantum chemical simulations, it is essential that the
time to communicate a partial result be less than the
time to simply recalculate it. For example, the quan-
tum chemical two-electron integrals require 10–100
floating point operations to calculate, so that they
can be usefully sent to other processors only if that
requires less than ;100 cycles to communicate to
send the 8- or 16-byte result. Assuming gigaflop
speeds for individual processing elements in the
parallel computers, this translates roughly to
gigabyte/sec interprocessor communication speeds.
(Note that many partial results involve vastly more
operations, so that they place a much weaker con-
straint on the communication rate.)

Information technologies and database manage-
ment. “Biology is an Information Science”122 and the
field is poised to put into practice new information
science and data management technologies directly.
Two major conferences are emerging within the field
of computational biology (ISMB—Intelligent Systems
for Molecular Biology; and RECOMB—Research in
Computational Biology). Each year, associated work-
shops focus on how to push new techniques from
computer science into use in computational biology.
For example, at ISMB-94, a workshop focused on
problems involved in integrating biological databas-
es; follow-up workshops in 1995 and 1996 explored
Common Object Request Broker Architecture**
(CORBA**) and Java** as methods to be used toward
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integration solutions. In 1997, a postconference
workshop focused on issues in accurate, usable an-
notations of genomes. In 2000, a preconference
workshop explored how to use text-processing and
machine-translation methods for building ontologies
to support cross-linking between databases about or-

ganisms. All of these criteria require ultra-high-speed
networks to interconnect students, experimental bi-
ologists, and computational biologists and publicly
funded data repositories. This community will, for
example, benefit directly from every new distributed
networking data exchange tool that develops as a re-
sult of Internet2 and the high-speed Energy Sciences
Network.

Data warehousing addresses a fundamental data
management issue: the need to transparently query
and analyze data from multiple heterogeneous
sources distributed across an enterprise or a scien-
tific community. Warehousing techniques have been
successfully applied to a multitude of business ap-
plications in the commercial world. Although the
need for this capability is as vital in the sciences as
in business, functional warehouses tailored for spe-
cific scientific needs are few and far between. A key
technical reason for this discrepancy is that our un-
derstanding of the concepts being explored in an
evolving scientific domain change constantly, lead-
ing to rapid changes in data representation. When
the format of source data changes, the warehouse
must be updated to read that source or it will not
function properly. The bulk of these modifications
involve extremely tedious, low-level translation and
integration tasks that typically require the full atten-
tion of both database and domain experts. Given the
lack of the ability to automate this work, warehouse
maintenance costs are prohibitive, and warehouse
“up-times” severely restricted. This is the major road-
block to a successful warehouse solution for scien-
tific data domains. Regardless of whether the scien-
tific domain is genome, combustion, high-energy
physics, or climate modeling, the underlying chal-
lenges for data management are similar and present

in varying degrees for any warehouse. We need to
move toward the automation of these scientific tasks.
Research will play a vital role in achieving that goal
and in scaling warehousing approaches to dynamic
scientific domains. Warehouse implementations have
an equally important role; they allow one to exer-
cise design decisions, and provide a test-bed that
stimulates the research to follow more functional and
robust paths.

Ensuring scalability on parallel architectures. In all
of the research areas, demonstrably successful par-
allel implementations must be able to exploit each
new generation of computer architectures that will
rely on an increased number of processors to real-
ize multiple teraflop computing. We see the use of
software support tools as an important component
of developing effective parallelization strategies that
can fully exploit the increased number of processors
that will comprise a 100 teraflop computing resource.
However, these software support libraries have
largely been developed on model problems at a finer
level of granularity than “real life” computational
problems. But it is the “real life” problems that in-
volve complexity in length scales, timescales, and se-
vere scalings of algorithmic kernels that are in need
of the next and future generations of multiple tera-
flop computing. The problems described in this pa-
per provide for a more realistic level of granularity
to investigate the improved use of software support
tools for parallel implementations.

Even when kernels can be identified and parallel al-
gorithms can be designed to solve them, often the
implementation does not scale well with the num-
ber of processors. Since multiple teraflop comput-
ing will only be possible on parallel architectures,
problems in scalability are a severe limitation in re-
alizing the computational biology goals outlined
here. Lack of scalability often arises from straight-
forward parallel implementations where the algo-
rithm is controlled by a central scheduler and for
which communication among processors is wired to
be synchronous. In the computer science commu-
nity, various paradigms and software library support
modules exist for exploring better parallel implemen-
tations. These can decompose the requirements of
a problem domain into high-level modules, each of
which is efficiently and portably supported in a soft-
ware library that can address issues involving com-
munication, embedding, mapping, etc., for a scien-
tific application of interest.

Data warehousing addresses
the need to transparently

query and analyze data from
multiple heterogeneous

sources.
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These tools allow different decompositions of a par-
allel implementation to be rapidly explored, by han-
dling all of the low-level communication for a given
platform. However, these paradigms and their sup-
porting software libraries usually are developed in
the context of model mathematical applications,
which are at a finer level of granularity than “real
life” computational science problems. A unique op-
portunity exists to use some of the computational
science problems described in the previous chapters
to refine or redefine the current parallel paradigms
currently in use. The outcome of this direction could
be broader than the particular scientific application,
and may provide insight on how to improve the use
of parallel computing resources in general.

Conclusions

The Human Genome Project was undertaken with
the goal to advance fundamental biological under-
standing and provide the basis for future advances
in biotechnology, agriculture, environmental reme-
diation and quality, and health and medical practice.
The successes in the analysis of entire genomes have
dramatically changed how the biochemistry of liv-
ing cells is viewed, and provide clear directions for
the future of mathematical and computational mod-
eling of molecular, cellular, developmental, and phys-
iological behavior, work that, in turn, will open new
experimental horizons.

Modeling multiple levels of biological complexity is
well beyond even the next generation of supercom-
puters, but each increment in the computing infra-
structure makes it possible to move up the biolog-
ical complexity ladder and tackle problems that could
not be previously solved. Along with the maturation
of the biosciences, an equally dramatic explosion in
computer and information science technology has
also taken place. As a consequence, there is excep-
tional synergism to be gained from exploiting these
twin scientific revolutions.

For two decades, each advance in computing power
has brought a new level of realism to simulation of
biodynamics and has increased the scale of problems
that physical instrumentation can address within bi-
ology. A challenge for the computational biology
field arising from these new opportunities is to ex-
pand training and educational opportunities at the
interface of biology with computer and information
science, bioengineering, and the physical sciences.
Computational science is now poised to be a part-
ner in the armament of biological tools, maintain-

ing an essential triangle of theory, computation, and
experimentation seen in other scientific areas, but
now coming into full fruition for structural and func-
tional genomics of the future.
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