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Abstract

That foundational systems like first-order logic or set theory can be
used to construct large parts of existing mathematics and formal reasoning
is one of the deep mathematical insights. Unfortunately it has been used
in the field of automated theorem proving as an argument to disregard the
need for a diverse variety of representations. While design issues play a
major rôle in the formation of mathematical concepts, the theorem proving
community has largely neglected them. In this paper we argue that this
leads not only to problems at the human computer interaction end, but
that it causes severe problems at the core of the systems, namely at their
representation and reasoning capabilities.

It would be somewhat misleading to infer
that foundational systems act primarily as
a basis out of which mathematics is actu-
ally created. The artificiality of that view
is evident when one reflects that the essen-
tial content of mathematics is already there
before the basis is made explicit, and does
not depend on its existence.

R. Goldblatt [Gol84]

1 Introduction

Automated deduction tools are built with a wide range of expectations in mind.
They may serve as educational systems, be used in the study of formal systems,
as proof checkers (with different levels of sophistication) and automated theorem
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provers. In spite of partly impressive reasoning power of such systems, in many
standard applications the systems are harder to use than one would hope.

Let us take a closer look at proof checking, for instance. This task should be
easy to do (since checking a proof is supposed to be easy compared to finding
it), but in many application areas it is not easy at all to perform this task.
The deterrent to use a computer-based system is often so high that typically
they are not used – even by the developers of the systems for their own proofs.
Why is that so? Is it because their interfaces are too poor? Or is there a more
fundamental problem with them? Surely improving interfaces can strongly
help to improve existing systems, but we will argue that the main problem is
more fundamental. Standard systems are rigid in that they disregard many
important design issues which go beyond interface issues, but are concerned
with the reasoning possibilities themselves.

In the traditional theorem proving community, which we consider as our
home community, a seemingly strong argument against new approaches in the-
orem proving has been of the type “Everything you can do in your system X,
I can do in Y ,” where Y stands typically for standard first-order logic. This
kind of thought is so strong that proponents of the conventional approach to
theorem proving seem to fail to even understand why this argument – albeit
true – may be unhelpful and misleading.

For instance, Pat Hayes said in 1974 ([Hay74] quoted from [BL85, p.18]):

A more recent attack on conventional theorem-proving ... is that
it is too concerned with “machine-oriented” logic, and not enough
with “human oriented” logic. I confess to being quite unable to
understand what this could possibly mean.

In this paper we try to clarify why the argument, although it may be tech-
nically correct, is pragmatically flawed. The argument is pragmatically wrong,
since it is meant to say “Your system X is redundant and uninteresting, since
we have system Y already, which suffices for everything you possibly may want
to do.” Since this argument was widely accepted the focus in the field was set
much too narrow on the study of foundational systems, while vital aspects were
eliminated from investigation.

Of course there are exceptions and we claim in no way that we are the first
to have a look at this relationship of mathematical practice and fundamental
systems. In this paragraph we do not claim to give a comprehensive overview
of this type of work. We just mention some work in this direction, which we
think provides very important starting points to the support of the design of
mathematical concepts. In Automath, N.G. de Bruijn developed the idea
of a mathematical vernacular [Bru94], which should allow to write everything
mathematicians do in informal reasoning, in a computer assisted system as well.
In this tradition, Hugo Elbers looked in [Elb98] at aspects of connecting informal
and formal reasoning, in particular the integration of computations in formal
proofs. Francis Jeffry Pelletier [Pel91] as well as Henk Barendregt and Arjeh
Cohen [BC01] discuss related philosophical questions on the nature of proof.
Proof planning [Bun88] in general can be viewed as an attempt to simulate
informal reasoning (and integrate it with formal reasoning). Following this
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paradigm, Alan Bundy made first steps towards a Science of Reasoning [Bun91],
which goes beyond a narrow focus on a particular calculus. Ursula Martin took
in [Mar99] a close look at the mathematical practice and its relationship to
computer algebra and computer-assisted reasoning. Michael Beeson presented
in [Bee98] a system that combines deductive and computational reasoning steps.
He proposed to use the mathematical standard for checking the correctness of
proofs generated by the system, namely peer reviews.

We are not aware, however, of work in which the design process in mathe-
matics is compared to the design possibilities of computer based mathematical
support systems. In this paper, we look at design problems, which current
automated reasoning systems suffer from, and relate them in the rest of this
introduction to an old debate in mathematical philosophy, which summarises
the relationship between foundational systems and informal systems very well.

We do not doubt that one of the deepest insights in the foundations of
mathematics resulted from the epochal work by Bertrand Russell and Alfred
North Whitehead. Russell articulated the idea in the Principles of Mathe-
matics [Rus03] namely, to reduce mathematics to formal logic, and carried it
through together with Whitehead in the famous Principia Mathematica [WR10]
– a work often quoted and seldom read. Russell was at this time also in inspir-
ing discussions with Ludwig Wittgenstein and strongly acknowledges Wittgen-
stein’s contribution to his thoughts. He writes in [Rus18] (quoted from the
reprint in [Rus56, p.178]):

As I have attempted to prove in The Principles of Mathematics,
when we analyse mathematics we bring it all back to logic. It all
comes back to logic in the strictest and most formal sense.

Although there is evidence that Wittgenstein shared Russell’s view, he later
took the opposite stance and attacked Russell’s approach. In particular he
discusses the important notion of proof (quoted from [Wit56, p. 143]):

‘A mathematical proof must be perspicuous.’ ... I want to say: if
you have a proof-pattern that cannot be taken in, and by a change
in notation you turn it into one that can, then you are producing a
proof, where there was none before.

One of the reasons why the Principia are so rarely read is that the main ideas of
the proofs are no longer visible in very long and very detailed proofs. Wittgen-
stein continues (p. 176f) to question the idea to try to reduce everything to
a very small number of primitives (had the resolution calculus already been
invented at that time his attack might have been to try to reduce everything
to one single rule):

Mathematics is a motley of techniques of proof. – And upon this
is based its manifold applicability and its importance. ...
Now it is possible to imagine some – or all – of the proof systems
of present-day mathematics as having been co-ordinated in such a
way with one system, say that of Russell. So that all proofs could
be carried out in this system, even though in a roundabout way. So
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would there then be only the single system – no longer the many? –
But then it must surely be possible to shew of the one system that it
can be resolved into the many. – One part of the system will possess
the properties of trigonometry, another those of algebra, and so on.
Thus one can say that different techniques are used in these parts.

He continues then to counter the argument that Russell and Whitehead have
constructively shown the possibility to reduce everything to one single system
(p. 185)1:

If someone tries to shew that mathematics is not logic, what is he
trying to shew? He is surely trying to say something like: – If tables,
chairs, cupboards, etc. are swathed in enough paper, certainly they
will look spherical in the end.
He is not trying to shew that it is impossible that, for every math-
ematical proof, a Russellian proof can be constructed which (some-
how) ‘corresponds’ to it, but rather that the acceptance of such a
correspondence does not lean on logic.

We try to exemplify in the rest of the paper why these matters are crucial
for automated theorem proving systems. One important issue is that of accep-
tance among mathematicians. Current automated theorem provers do not find
acceptance among mathematicians, while computer algebra systems do. On
first sight this is surprising since proving theorems can be considered as much
more a main activity of mathematicians than calculating and computing. We
believe that it has to do with the fact that in many computer algebra systems
things are as they should be, as an inexperienced but mathematically educated
user would expect them to be. That is, these systems are typically well-designed.
In automated theorem proving systems they are typically not as they should be,
not as an inexperienced user would them expect to be. For this reason we be-
lieve that the theorem proving community can learn from the computer algebra
community. We will argue that the problem of the theorem proving systems
is not just a deficiency of the interface, but that the problem with automated
theorem provers is much deeper, it goes to the core of these systems, namely
to the formal representation of mathematical knowledge and the reasoning that
can be performed with this knowledge.

2 What is Good Design?

Donald Norman gives a fascinating introduction into “The Design of Everyday
Things.” His insights are of a very general nature and we will see that the
principles for good design hold in mathematics as well.

Although Norman does not relate design to mathematics, most observations
can be translated to a mathematical context. For instance, design principles
allow us to answer questions like “Why and how do we find a proof without

1By the way, Gödel’s proof that formal systems like the Principia are necessarily incomplete
is irrelevant for this argument, since not only the Principia but any other powerful system
suffers from the same problems.
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major search effort, although it is a difficult one and we don’t know it?” Norman
states four principles why we get certain things right, although we don’t know
precisely what to do [Nor98, p.55]:

1. Information in the world. Much of the information a person needs to do
a task can reside in the world. Behavior is determined by combining the
information in memory (in the head) with that in the world.

2. Great precision is not required. Precision, accuracy, and completeness of
knowledge are seldom required. Perfect behavior will result if the knowl-
edge describes the information or behavior sufficiently to distinguish the
correct choice from all others.

3. Natural constraints are present. The world restricts the allowed behavior.
The physical properties of objects constrain possible operations: the order
in which parts can go together and the ways in which an object can be
moved, picked up, or otherwise manipulated. Each object has physical
features – projections, depressions, screwthreads, appendages – that limit
its relationship to other objects, operations that can be performed to it,
what can be attached to it, and so on.

4. Cultural constraints are present. In addition to natural, physical con-
straints, society has evolved numerous artificial conventions that govern
acceptable social behavior. These cultural conventions have to be learned,
but once learned they apply to a wide variety of circumstances.

We argue that humans make use of such principles, not only in their rela-
tionship to everyday objects like door handles, but also in their relationship to
mathematical objects like multiplication operators. Concretely, for these princi-
ples it means that mathematical objects are designed to bear information which
makes them as easy to use as possible. Many proofs which we consider as trivial
nowadays and which average students can find themselves now, were very hard
when they were first discovered. Why do many things just fall into places and
require only little search nowadays while at a time they were extremely diffi-
cult? We argue that this is due to a tremendous design effort that went into
such a particular piece of mathematics in order to make the use of the related
concepts as easy as possible. The aesthetic point that many mathematicians
follow to present a proof in a form that is as easy and concise as possible, also
pushes the practical limit of what can be proved further and further.

3 Design in Multiplication Tables

In this section we want to have a close look at one particular example of a math-
ematical concept which is carefully designed. Conventional theorem proving
systems do support design issues only to a very limited degree. Multiplication
tables form a concept that seems on a first view easy, and on a second difficult
to model in existing theorem proving systems. Multiplication tables are part of
rigorous mathematics in the sense that they appear not only as comments or
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illustrations in mathematical textbooks, but are usually introduced in defini-
tions and their properties are stated as theorems.2 We believe that the features
of the concept “multiplication table” as well as those we present in the next
section are not only a matter of presentation but that they are used to encode
and retrieve information about mathematical concepts in an efficient way and
that they ease the actual process of finding and presenting proofs.

Now let’s look concretely at multiplication tables. They ◦ d1 · · · dn

d1 c11 · · · c1n

...
...

. . .
...

dn cn1 · · · cnn

were first introduced by Cayley to represent the opera-
tion of finite abstract groups. The information encoded
into the tables is that the operation is a binary opera-
tion, defined on {d1, . . . , dn}×{d1, . . . , dn} and with range
{c11, . . . , cnn}, the operation is discrete and has a finite domain and codomain.

The table has its own notion of well-formedness, that is, all di have to occur
and have to be different, the table must be fully filled. Here you find Norman’s
principles 1, 3, and 4. Multiplication tables are designed in a way that their
structure puts “information in the world” that makes it difficult to violate well-
formedness. It is hard to imagine when you’ve got the task to define a specific
operation starting with an empty multiplication table that you forget a case,
since that would leave a hole in the structure. The table itself is of the form that
it constrains the possibilities. For instance, it is impossible to enter more than
one entry per field. This prevents any over-specification of ◦. Furthermore,
although the order of the di in the columns and rows could in principle be
different, cultural conventions prevent that.

Note that there are particular reasoning methods connected to the repre-
sentation. To check the basic property of closedness, one has to go through the
elements of the table and check whether for all elements holds cij ∈ {d1, . . . , dn}.
The commutativity of ◦ is checked by verifying that the table is symmetric with
respect to the diagonal. This intuitive form of reasoning depends on the cul-
tural convention to use the same order for rows and columns. Another cultural
convention is to write a (potential) unit element as first element (or second ele-
ment in the presence of a zero, which typically goes in the first place). With this
convention, it is checked that d1 is a unit element by establishing the equality
of the columns under ◦ and d1 and the rows right to ◦ and d1. Inverse elements
can be checked by establishing that each column and each row contain the neu-
tral element exactly once. These reasoning patterns follow partly the design
principle number 2, since they are natural and easy to reconstruct. From the
group properties only associativity requires a logic level proof.3

Of course, it is possible to define the same operation in a logic, possible
formalisations are for example:

2We use here the word “rigorous” and not “formal” in order to distinguish it from “for-
mal logic” and mechanical systems. Mathematicians would probably use the word “formal,”
since they are happy with these concepts as a level of formalisation that clarifies concepts
unambiguously.

3Surely, for people experienced with this type of proof, there isn’t anything to prove any-
more, but it boils all down to trivial computations, which – according to a principle which
Barendregt calls the Poincaré principle [Poi02, BC01] – can be considered as not being a part
of the proof. This is different for beginners, whose perspective we have taken here.
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• First order: extend the signature by a function constant ◦ and add the
assumptions d1 ◦ d1 = c11 ∧ d1 ◦ d2 = c12 ∧ . . . ∧ dn ◦ dn = cnn.

• Higher order: use the description operator4 to define the operation as
◦ ≡ λx.ιy.(x = (d1, d1) ∧ y = c11) ∨ . . . ∨ (x = (dn, dn) ∧ y = cnn).

While the special representation of multiplication tables can be translated into
these general logical formalisms, parts of the information stored in the mathe-
matical representation are lost. In the first case the compoundness of the table
representation is hard to reconstruct. We are speaking about a set of equa-
tions suitable for equational reasoning steps, but to recognise that the set of
equations is suitable for an abstract method for closedness or commutativity
as mentioned before is not so obvious. Also the special reasoning methods for
proving commutativity, inverse elements, and neutral element are not so ob-
vious, but require search in a set of formulae. From a human interface point
of view, the lack of structure in the formulae puts the burden of guarantee-
ing well-definedness on the human. He or she has to be careful not to forget
the definition of one element or to over-define one expression by inserting two
formulae like, for instance, d1 ◦ d1 = d1 and at a different place d1 ◦ d1 = d2.

Although, the higher order formalisation of the operation seems preferable
over the first order one since it encodes ◦ as one compound object, here as well
it is hard to recognise what kind of function is encoded. Actually, there is a
proof obligation to be shown in an application of the function to arguments,
namely that there is really a unique element with these properties.

If one decides to live with such limitations of the formalisation then complex
concepts as multiplication tables can still be made available via an interface.
Manipulations on the objects of the interface would have to be translated to
the corresponding inference steps applied to the underlying formalisation. Be-
sides the possible problems in the efficiency of such an implementation due to
translation to the formalisation level, execution and retranslation, there seems
to be a conceptional discrepancy. Why should the interface have more knowl-
edge about the objects than is available in the representation language? When
the interface has more knowledge about the object why should a manipulation
on this level be translated to the lower level? The combination of different
interfaces, e.g. when a complex concept contains other complex objects would
have to be considered. The extension for new concepts would have to be imple-
mented on two levels: for the interface and in form of formalisations (and for
the interfaces of concepts related to the new object).

In our view, a better possibility is to add data structures for complex con-
cepts to the object language of the logic. For multiplication tables this could
be an array of size n × n. In this case there is an object that corresponds to
a multiplication table. However, depending on how this is done, another ba-
sic property may be missing: an array is not just a function. The functional
behaviour has to be modelled by another definition for the application of ar-
rays. It seems that logic is used as an interface, that is, logic is used to specify
mathematical representations instead of offering them.

4The description operator ι returns the element of a singleton. ιy.P [y] denotes the unique
element c such that P [c] holds, if such a unique element exists.
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This point to the necessity for a well-designed extension of the underlying
formalism. There is no perfect formalism as can be seen by the arguments of the
proponents for the different formal systems and the still ongoing search for ‘the
mathematical vernacular.’ The extensions are usually general in the sense that
they are applicable in many mathematical situations. Examples for extensions
are subtypes, dependent types and/or a built-in recursion principle. They have
all in common, that complex concepts are made primitive in the sense that proof
obligations in the object logic are moved to specialised procedures, e.g. type-
checking. Since it is not always possible to stay in the extended language, for
instance, the primitives can become objects of mathematical theorems, there
has to be a relativisation of primitives into the object language. A possible
drawback is that the extensions do not force to make use of them. It is still
possible to use formalisations that do not make use of the extension, which leads
to different formalisations (probably incomparable in the object language) of the
same concept in mathematics. We will discuss sorts as extension in section 5.1.

When we take together that different extensions are useful for different pur-
poses, and that there exists a wide variety of complex concepts with specialised
procedures in mathematics, then the introduction of new primitives and the pos-
sibility for their relativisation seem to be the basic principle for well-designed
mathematical concepts, that is, implementations for mathematical concepts
that have their basic features built-in.

While programming languages like Caml (see e.g., http://caml.inria.
fr/) foster for the transition between different data structures, this is typically
difficult in deduction systems. We will briefly discuss the little theory approach
in Imps [FGT92] later (see section 5.2).

4 Mathematical Representations

In this section we look at further examples – in addition to the multiplication
tables – for mathematical concepts and procedures which are difficult to rep-
resent directly in standard foundational systems. Although we do not relate
them in detail to the design principles discussed in section 2, it wouldn’t be
hard to establish similar relationships here as well. We try to argue later that
all these examples show that mathematical representations are very flexible and
extendible, that new concepts may require new representations and that closed
systems do not offer the necessary flexibility to design concepts to the level of
sophistication which is achieved in informal mathematics.

4.1 Matrices

A matrix is a two dimensional array that may contain numbers or more complex
objects. It has similarities with multiplication tables and a possible formal
definition as lists of lists is the same as the one of multiplication tables. However
its usage is very different, and human mathematicians have different methods
attached to these concepts. Matrices are typically used to represent linear
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mappings and other transformations in vector spaces. The equation5


α 0 · · · 0

0
... T−1

0

 ·


1 uT

0
... BT
0

 =


α αuT

0
... T−1BT
0


is taken from a proof about the tridiagonalisation of matrices.

In principle matrices over a field F can be represented in logic by functions
from an index set into F . However, this representation does not lend itself to
the definition of multiplication of matrices in which product elements are calcu-
lated by traversing the left matrix left-right and the right matrix of the product
top-down. The generalisation of this principle makes it easy to establish the re-
lationship accounted for above. Furthermore the explicit matrix representation
exhibits advantages mentioned above for multiplication tables.

In informal mathematics it is very easy to introduce a representation like
matrices and then extend it to represent properties like the one in the equation
above in a very concise form. Once properties about such a representation
have been proved – like that the usual rule for the multiplication of matrices,
also holds for matrices of matrices, provided the dimensions fit – objects in the
new representation can be used as first class citizens to prove further properties
– like the property expressed by the equation above. The extension of the
multiplication rule to matrices of matrices makes actually the justification for
the equation above very easy. For proving theorems, it is not necessary to go
back to the low level descriptions that were originally used in order to define
these matrices. Such a low level proof would actually be very hard to achieve
from the high-level proof. In other words, if one wanted to view the high-level
representation in the equation above as a mere interface matter, the interface
would have to perform very complex procedures in order to link the simple
high-level proof to a complicated low-level one.

Note that matrices are available in computer algebra systems as primitives
and that direct manipulations are possible. This, however, does not make it
obsolete to introduce them directly into automated theorem proving systems
as well. For instance, the matrices used in the equation above cannot be eas-
ily defined in a computer algebra system, since they represent more than one
instance, they are generalised matrices representing any matrix that has the
same ‘form.’ Establishing the equation itself cannot be done by computation,
but requires reasoning. Once established it can become a further computation
rule.

4.2 Dynamic Representations

A feature of mathematical representations is that they are dynamic in the sense
that as new knowledge is available the basic representation of objects may
change. For instance, the existence of inverse elements of a group G can be

5Mathematicians store information even in the letters they choose for their objects. With-
out further information it is relatively easy to reconstruct that T−1, B, and T should represent
submatrices since they make use of upper-case letters, while the Greek α stands for a scalar,
and u denotes a vector.
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formalised by ∀x∈G∃y∈G x ◦ y = e ∧ y ◦ x = e with the unit element e. Since
for each group element there exists exactly one inverse element, the inverse of
an element x is usually denoted with the help of a function as inv(x). Whereas
the introduction of a function denoting the inverse elements is possible in most
of the interactive theorem proving systems, the question whether the concept
group should be introduced as group(G, ◦), group(G, ◦, e), group(G, ◦, e, inv)
seems to be more subtle.

The first formalisation eases the possibility to inherit properties of sub-
sumed concepts with group(G, ◦) ⇒ monoid(G, ◦). The latter formalisation
makes the unit elements and inverse elements directly accessible but already
contains the uniqueness of the inverse element of an element in form of the
inverse function. The process of the actual exploration of basic principles of
group theory that starts with the tuple (G, ◦) and later introduces the neutral
and inverse elements as useful parameters of the concept can hardly be mod-
elled in current automated reasoning systems. Rather it is necessary to choose
one formalisation and to stick to it. This way it is not only the case that the
introduction of a concept cannot be modelled adequately, but perhaps more
seriously re-representations of concepts are not supported. However, while one
representation may be best suited for one task, it may turn out to be unsuitable
for a different one. In the latter situation mathematicians change representa-
tions. Different formalisations model different views on something that is one
single mathematical concept to a mathematician. If a mathematician had to
use one of the standard theorem proving systems, he or she would need to
know in advance which choice of representation to make, since the choice of
a good formalisation is crucial for the success. But how do you know which
formalisation is best, when you start to explore something?

Another example of dynamic re-representation, which is very simple, but
for which the different reasoning complexities are striking, is when associativity
holds for an operation +. Once associativity is established, no mathematician
would still use brackets, but the notation for a term like ((1 + x) + y) would
change to 1 + x + y. The property is encoded into the notation and can be
retrieved from the given term. On a reasoning level this simple shift in repre-
sentation can make a dramatic difference. For a term with n + 1 summands
there are 1

n+1

(
2n
n

)
different ways to put brackets in.6 That means for a medium

sized expression with just 10 summands there are already 4862 ways to repre-
sent it. If all these representations are part of the search process it is no surprise
that automated theorem provers find such expressions difficult. The design of
these systems does not allow for a change in representation, a user must write
down unnecessary brackets in order to be syntactically correct, the brackets,
however, don’t help but unnecessarily confuse the reasoner. These all are signs
of bad design. In the next sub-section we will look more closely at the change
of representation.

6Even notation can be an object for mathematical investigations. The formula gives the
Catalan numbers.
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4.3 Change of Representations

Sometimes an appropriate reformulation of a problem into another represen-
tation is already the key step to find a proof. Different representations allow
to apply knowledge from different sources to a problem. The importance of
re-representation was pointed out by George Pólya [Pól62, vol.2, p.80]:

When you are handling material things (for instance, when you are
about to saw a limb off a tree) you automatically put yourself in the
most convenient position. You should act similarly when you are
facing any kind of problem; you should try to put yourself in such a
position that you can tackle the problem from the most accessible
side. You turn the problem over and over in your mind; try to turn
it so that it appears simpler. The aspect of the problem that you
are facing at this moment may not be the most favourable: Is the
problem as simply, as clearly, as suggestively expressed as possible?
Could you restate the problem?

Of course you want to restate the problem (transform it into an
equivalent problem) so that it becomes more familiar, more attrac-
tive, more accessible, more promising.

We exemplify this importance by different forms of re-representations:

• functions: Given an Euclidean space R with a metric function | | : R ×
R → R then for each pair A,B ∈ R of disjoint points there exists exactly
one distance preserving function gB

A : R → R with g(0) = A, g(|AB|) =
B. With the help of this function the lines in Euclidean space can be
interpreted as images of the real numbers. Notions of the real numbers,
as intervals, correspond to notions in the abstract Euclidean space, namely
line segments.

• representation theorems: Poincaré’s model for the hyperbolic plane, where
a line has infinitely many parallel lines through one point, is a unit disk,
where circle segments correspond to hyperbolic lines. With this represen-
tation it becomes possible to re-represent constructions in the hyperbolic
plane as constructions in the Euclidean plane.

• theory change: Geometric constructions can be represented as field exten-
sions. The question of the possibility to construct a square equal in area
to a circle using compass and ruler can be re-represented to the question
whether π belongs to a particular class of algebraic numbers (which it
does not since it is transcendental).

• inheritance: The properties of monoids and groups are inherited by the
multiplicative and additive substructures of rings and fields.

• diagrams: P ∈ [AB], B ∈ [AQ] ⇒ P ∈ [AQ], B ∈ [PQ] which is obvious
when this situation is expressed in a diagram: r

A
r

P
r

B
r

Q
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And of course there exist re-representations between different theories. Some
of them changed the structure of mathematics itself:

• Cartesian geometry: arithmetic representation for geometry. This makes
it possible to reduce geometrical problems to arithmetic problems and
solve them arithmetically. This is actually the starting point of Descartes’
idea to take arithmetic as a foundational system so that all problems
should be translated to arithmetic and then solved by equation solving.

• set theory: mathematical concepts are representable as sets. Set theory is
another foundational system on which most of mathematics can be based
in principle.

• group theory: the group concept can be used to represent geometric trans-
formations, permutations, and the solvability of polynomials.

Certain forms of representations are very important to form new concepts.
The theorem that every permutation can be decomposed into transpositions,
that is, can be represented as a product of transpositions, makes the definition
of even and odd permutations suggestive. It is hard to imagine how to define
the concept without this particular representational form. Once these concepts
have been formed they become the starting point for the introduction of other
concepts like the alternating group.

Let’s look at a different example, the concept of real numbers. Real num-
bers can be defined as Dedekind cuts or Cauchy sequences. However, Cantor’s
second diagonalisation proof that the reals are uncountable is difficult to imag-
ine without having the representation in the decimal (dual, or another) number
system.

Often the opposite of a change in the representation happens in mathemat-
ics, that is, so-called overloading is used. The use of the same notation for
different concepts, e.g. | | in the example above for the concept of distance, ·
for operations that behave like the well-known multiplication on natural num-
bers. · is used to represent multiplications between scalars and vectors, vectors
and matrices, or matrices and matrices (as in section 4.1). Even formally in-
correct notation, as equality for isomorphisms, is used to enable the transfer
of knowledge from a known concept to a new concept. Certain sort and type
systems allow for some kind of overloading, but they do not offer the kind of
knowledge transfer that humans achieve this way in using overloaded symbols
in an analogical way.

4.4 Structured Knowledge

A mathematical textbook is usually highly structured with definitions, theo-
rems and proofs as main categories. This categorisation is reflected in the
formalisations for deduction systems. A closer look reveals that there exists a
finer classification. For instance, definitions can be simple, inductive, or im-
plicit. Some theorems are explicitly introduced as tools which can be applied
in other situations or contain equivalence statements that are useful for re-
representation. A proof can contain subproofs that will be repeatedly used for



On the Design of Mathematical Concepts 13

other theorems and that are emphasised to be important by the author, and a
proof may contain an algorithm for the construction of mathematical objects.

A typical schema for the introduction of mathematical concepts is that a
definition is followed by theorems giving simple properties and typical exam-
ples for this concept. One could argue that this structure has no significance
for deduction systems because it is solely beneficial for the human process of
learning and understanding. We try to show that the structure can become
important as a basis for the reasoning process.

Take as an example the continuity of functions. The basic properties that
are usually provided after this definition are that continuity is preserved for the
sum, product, and composition of continuous functions. Usually as an example
the identity on the reals will be given. Now suppose it is required to show that
any polynomial is continuous. Instead of going back to the definition itself,
the basic properties of the concept and the example of the identity function
are used to prove the continuity of polynomials. The basic properties can be
seen as attached to the definition and preferably used to prove simple proof
obligations.

Of course it is possible to argue that the attached properties can be retrieved
from a database that consists only of the plain structure of definitions and
theorems. However, it is then difficult to query for a property like continuity of
+. Should the query consist of all theorems containing the symbol ‘continuous’,
the symbol ‘+’, both, or any expression that is equivalent to the definition of
the concept? The structure that is lost in the plain logic representation would
have to be reconstructed through elaborated query techniques that give useful
results.

Note that the standard mathematical practice to build hierarchies of math-
ematical concepts is a very important means to reduce complexity in theorem
proving. For instance in set theory, it is possible to define symbols like ⊂, ∪, ∩
by ∈. When you build a topology on top, using functions like ◦ for inner and¯
for closure, you can carry through most proofs on a level where you make use
of abstract properties of ⊂, ∪ and ∩ and can avoid totally to go down to the
level of elements that involves ∈.

Another category of mathematical knowledge form examples. They are
crucial for the understanding of concepts. This is not only important to give
semantics to syntactically defined concepts, but it can also be very relevant on
the level of syntactic proof construction. We exemplify this for the theorem
that “Groups G of order greater than two have non-trivial automorphisms.”
It seems to be hard to synthesise automorphisms directly only from the given
assumption that G is a group. In this case, the standard human heuristic to
try one of the typical examples, x 7→ gxg−1 and x 7→ x−1, provides already the
crucial idea to prove this theorem.

4.5 Limited Coverage of Mathematical Activities by Logic

When we take mathematical textbooks as basis for what is part of mathematics
and what not, we can find statements that are not expressible in formal lan-
guages at all. Naturally comments or diagrams, and a number of models are
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not represented. Historic statements, statements about the relevance of prop-
erties and concepts and so on are part of mathematics, but not part of logic,
although they are often important for a deeper understanding and an informed
proof search.

But even at the level of problem formulation, it is not always possible to
apply a formal system in a straightforward way. Let’s look for instance at the
mathematical task (provided in some context and for a concrete function f):
“Determine the maximum of f(x) in the interval [a, b].” Since the task ask for
the value it is not clear whether the obvious formalisation “∃x∈[a,b] max(f, x)”
reflect the meaning of the sentence. Assume somebody comes up with the
argument “Since f is a continuous function on a compact interval it has a
maximum.” This might be a correct argument to prove the logical formulation
but it would not solve the original task. On a closer look adequacy of the logical
statements depends on the logic used. If interpreted in a constructive way the
logical formulation is adequate; if interpreted classically it is not. While there
are constructive and classical systems around, it seems to be inappropriate that
one has to decide for a constructive system once and for all, in order to be able
to formulate a standard task like the one above. In mathematical practice
one wants to know a concrete value x0, but the proof that the function has a
maximum at x0 is typically done classically and not constructively.

While one can hardly cover all aspects of mathematics in a computer-based
system, it seems for many applications – like the recently emerging applications
in education – important to find a coverage which is as broad as possible.

4.6 A ‘Natural’ Calculus

The suggestions for a ‘Mathematical Vernacular’ [Bru94] seem not to question
that all concepts of mathematics are sufficiently expressible in a language con-
sisting of functions and relations, potentially enriched by types or sorts. The
design of the Vernacular seems not to be focused on the objects mathematicians
are interested in, but on the reasoning framework.

The strength of a formal system can be measured by the de Bruijn factor,
that is, the ratio of the length of the proof in the formal system compared to
its version in a mathematical textbook.7 A reassuring observation is that in
the experiments with Automath and Mizar the de Bruijn factor remained
constant for the proofs of a wide range of differently complex theorems.

Even if we agree with the conclusion that the proofs constructed in formal
calculi are already in principle an approximation of standard mathematical
proofs, it is important to note that such a comparison is based on the output
of mathematical work, the language used by mathematicians to communicate
proofs in textbooks and articles. While a comparison of such completed proofs,
proofs after all search is finished may be interesting, they often do not resemble
the proof construction. As an example look at standard ε-δ-proofs. In the proof
construction you compute a sufficient criterion on δ, choose δ as a function of ε

7The notion is not without problems, since mathematical proofs are not standardised with
respect to their detailedness. Furthermore there are other aspects for the quality of a proof
than its length.
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and than you prove that with this δ the difference of the function values is indeed
smaller than ε. In a finished proof a crucial part of the proof construction,
namely the construction of δ, is redundant and hence not presented. For this
reason it is impossible to understand prima facie why δ has been selected as it
is.

Traditionally, the formulations of final proofs are minimalist and mathe-
maticians repress their original ideas, even the order of steps can be different,
in favour of an objective rigorous style. As Pólya [Pól54, p. vi], pointed out:

We secure our mathematical knowledge by demonstrative reasoning,
but we support our conjectures by plausible reasoning ... Demon-
strative reasoning is safe, beyond controversy, and final. Plausible
reasoning is hazardous, controversial, and provisional. ... In strict
reasoning the principal thing is to distinguish a proof from a guess,
a valid demonstration from an invalid attempt. In plausible rea-
soning the principal thing is to distinguish a guess from a guess, a
more reasonable guess form a less reasonable guess. . . . [plausible
reasoning] is the kind of reasoning on which his [a mathematician’s]
creative work will depend.

The ‘demonstrative reasoning’ corresponds to a formulation in reasoning
steps that were investigated by logicians. In this sense current deduction sys-
tems are suitable as proof checkers for existing and well-understood parts of
mathematics but lack to act as proof assistants for the exploration and con-
struction of new mathematical knowledge. How can ‘plausible reasoning’ be
modelled? Proof planning follows the paradigm of proof search on an abstract
level and can be seen as an important step into this direction. But as described
in [BMM+01] even proof planning depends on structural restrictions of the
underlying calculus and uses a formal language as the only representation for
mathematical concepts.

There might be the view that we can come up with a more powerful logic
which provides the best possible representation. Marvin Minsky gave a strong
argument why this wouldn’t be the case in artificial intelligence in general, but
why multiple representations are necessary. He recommends [Min92]:

Everywhere I go I find people arguing about which representation
to use. One person says, “It is best to use Logic.” The next person
says, “No, logic is too inflexible. Use Neural Networks.” The third
person says, “No, Neural Nets are even less flexible, because you
have to reduce everything to mere numbers. Instead, you should
use Semantic Networks. Then, the different kinds of things can
be linked by concepts instead of mere numbers!” But then the
first person might complain, “No, Semantic Nets are too arbitrary
and undefined. If you use Formal Logic, that will remove those
ambiguities.”

What is the answer? My opinion is that we can make versatile AI
machines only by using several different kinds of representations in
the same system! This is because no single method works well for
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all problems; each is good for certain tasks but not for others. Also
different kinds of problems need different kinds of reasoning. For
example, much of the reasoning used in computer programming can
be logic-based. However, most real-world problems need methods
that are better at matching patterns and constructing analogies,
making decisions based on previous experience with examples, or
using types of explanations that have worked well on similar prob-
lems in the past. How can we encourage people to make systems
that use multiple methods for representing and reasoning? First
we’ll have to change some present-day ideas. For example, many
students like to ask, “Is it better to represent knowledge with Neu-
ral Nets, Logical Deduction, Semantic Networks, Frames, Scripts,
Rule-Based Systems or Natural Language?” My teaching method
is to try to get them to ask a different kind of question.“First de-
cide what kinds of reasoning might be best for each different kind of
problem – and then find out which combination of representations
might work well in each case.”

As we have seen for multiplication tables different types of representations
allow for specialised and efficient reasoning methods connected to them, op-
posed to search on the logic level. Mathematicians carefully design their con-
cepts to keep the search spaces small. We need to understand this aspect of
mathematical reasoning much better in order to understand the versatility of
the reasoning capabilities of human mathematicians.

Historically the development of many concepts went the way that certain
meta expressions were introduced, which were later reified and become object
expressions. The development of number systems might illustrate this. Having
natural numbers and fractions, irrational numbers and negative numbers as well
were considered as odd ones out, which only later became first class citizens.
Then imaginary numbers were the odd ones and negative square roots were
considered as strange entities which were used only for convenience. Likewise,
functions were first concrete in nature, and only much later it was possible to
speak about abstract function spaces.

5 Representations of Mathematics on Computers

Up to here we have strongly argued how important a broad range of specialised
constructs is for the adequate representation of mathematical knowledge and
for proof construction. Representations find their analogues in data structures
used in existing implementations of mathematical software systems, a range
of general purpose and specialised theorem proving systems, computer algebra
systems, and educational software. These data structures provide functionality
and the ability to implement mechanisms working on them. In this section we
want to take a brief look at some important features of systems from which
ideas can be borrowed to realise a flexible system of the kind we envisage.
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5.1 Sorted Extensions to Logic

Sorted logic is a good example to exemplify the importance of careful de-
sign. It is an old insight that sorted logic (more carefully put, some classes
of sorted logics) can have significant advantages over unsorted logic. Let us
just consider the case of standard first-order logic with and without its order
sorted extension. Sorts can be considered as special unary predicate symbols.
Typical formulations in sorted logic are ∀xHuman Mortal(x), socrates<−Human,
¬Mortal(socrates). The equivalent in unsorted logic is ∀x Human(x) ⇒ Mortal(x),
Human(socrates), ¬Mortal(socrates). The translation from the sorted to the un-
sorted logic is called relativisation. The possibility to relativise any sorted
problem formulation can be and is used as an argument against the use of
sorted logic in line with the standard argument “Everything you can do in your
system of sorted logic, I can do in unsorted logic.” This argument is – although
correct – unhelpful because of the counterargument “Everything you can do in
your unsorted logic, I can do in sorted logic, but in a smaller search space!”

The reason for the smaller search space is due to a better design realised
by the sorted system. Although the formalism of sorted logic is equivalent in
strength to the unsorted one, a concrete formulation (which makes use of sorts in
a non-trivial way, that is, whose relativisation is not equal to itself) is not. It is
actually weaker, since certain things can not be derived in sorted logic which can
be derived in unsorted logic (concretely, formulae like Human(1) ⇒ Mortal(1)
are syntactically possible and can be derived in unsorted logic, but the equiv-
alent is rejected in sorted logic). To generalise this observation: A particular
design is better than an alternative one if certain redundant, or heuristically
uninteresting derivations cannot be made.

The integration of sorts in a system also demonstrates how subtle design
issues can be. We can’t discuss this in detail here, but we will give some indi-
cation. It should be noted that sorts are not necessarily exclusively beneficial.8

If we take standard order-sorted logic we have for each relation like Human and
Mortal to decide whether we want to formalise it by a sort symbol or by a pred-
icate symbol. If we want to prove some statement like ¬Human(pegasus), we
cannot formalise Human as a sort symbol. This is a serious flaw in standard sort
systems, also it is not possible to model the genesis of concepts in an adequate
way. In order to perform the reasoning above we need to know socrates<−Human
a priori. It is not possible to infer that Socrates is a human being later in the
reasoning process. This unduly limits the flexibility of the system. Ideally you
would want to have the advantages of a sorted formulation whenever possible,
but also benefit from the flexibility of the unsorted formulation when neces-
sary. To our knowledge only Christoph Weidenbach’s system [Wei93] offers
these possibilities.

5.2 Little Theories

Another important logic-based approach which approximates mathematical rea-
soning well is the little theory approach of Imps [FGT92]. A theory given by

8For a detailed discussion why sorts/types may be harmful see [Lam95].
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a signature and a set of axioms can be imported into another theory, if there
exists a theory interpretation which maps the constants and axioms of a source
theory to expressions and theorems of a target theory. With this approach
theorems can be reused in other theories and new theories can be defined as
combination of existing theories.

As we can see in textbooks from different areas of mathematics, there is no
fixed hierarchy of theories. Each textbook presumes knowledge from different
areas of mathematics and by this induces a partial order of theories. That
there exists a total order of theories is rather a theoretical result than used in
everyday mathematics. The attempt to realise this total order prohibits the
flexibility to use theorems constructed for one area in another area. The little
theory approach also allows to relate different formulations with each other
without necessitating a hierarchy.

5.3 Data Structures in Computer Algebra Systems

Computer algebra systems offer many more primitive data structures such as
matrices than standard theorem proving systems. With these structures it is
possible to cover large parts of the ‘computational’ part of mathematics. As we
tried to show, there is a grey area in which deduction and computation go hand
in hand (cf. sub-section 4.1), since any structure in a computer algebra system is
concrete, while mathematical expressions often make use of ellipses, for instance,
expressions which contain dots like x1, x2, . . . , xn, or the multiplication table
and matrix in sections 3 and 4.1. A promising first approach in the direction
of formalising ellipses in reasoning can be found in [BR99].

5.4 Data Structures for Reasoning

Koedinger and Anderson [KA90] introduce a representation different from a
purely logical formalisation called diagram configuration model (DC) for dia-
grammatic reasoning in geometry. The representation is based on DC schemas
that encode typical geometric situations that were identified through observa-
tions on the problem solving behaviour of experts in this domain. The schemas
contain the main property of the situation, the subsumed properties and the
different ways under which the schema can be established. The level of ab-
straction allows for an efficient inference algorithm that introduces the DCs as
inference steps.

Mateja Jamnik describes in [Jam01] a diagrammatic representation for the-
orems and inference steps based on this data structure that allows to infer
theorems in arithmetic. The proofs constructed in the diagrammatic represen-
tation can be translated to proof planning and then formally verified with a
theorem prover.

These examples are important in our context since they show that at least
for particular domains it is possible to build special reasoners for diagrammatic
reasoning which are distinct from a purely logic based system, but which can
be formally linked to such a system. An adequate data structure for diagrams
seems to be the key point for the success of both approaches. Only this data
structure allows the implementation of an efficient inference mechanism.
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6 Discussion

One of the deepest insights in the foundations of computing was Turing’s paper
on computable numbers, which clarified by a construct which we now call a
Turing machine what can and cannot be computed by computers. This does
not mean, however, that the core field of Computer Science would offer to users
just Turing machines in which they have to write their programs and if they
don’t like the idea tell them that everything they may possibly want to do
with computers can be written as a Turing machine. It is not even the case
that computer languages are built as extensions of Turing machines or compiled
into Turing machines. The field of automated theorem proving seems to have
followed a different approach. While it is built upon the deep logical insights of
the first half of the 20th century, the rich wealth of structure and representations
in mathematics has not been mirrored sufficiently yet in formal systems.

In this paper, we presented aspects of mathematical representations that we
think are highly relevant for mathematical theorem proving and that can – if
at all – be implemented in traditional theorem proving systems only with great
difficulty. We think that the lack of acceptance of theorem proving systems
among mathematicians (compared with the success of computer algebra sys-
tems) is also due to these shortcomings. Deduction systems offer – compared
to computer algebra systems – often only limited added value: formal correct-
ness, but at a very high price, namely a significant overhead to formulate and
prove mathematics. While the production of a large body of formally correct
proofs for known theorems does usually not correspond to the research interests
of mathematicians, the exploration of new problems is not very well supported
as we observed in section 4.

Current deduction systems ideally offer the potential benefit that they can
relieve users from the tedious task of checking trivial subproblems, so that the
human can concentrate on the interesting parts of the problem. In practice,
however, it is typically more work even for an experienced human mathemati-
cian to formulate the problems in the first place so that an automated theorem
prover can prove them than to do the job directly him/herself. We think, when
a theorem proving system is to have a real application as either a proof assis-
tant or a proof tutor, it has to take care of the representation that is used by
mathematicians.

The mathematical representation is not only important for the user inter-
face and presentation of proofs, but for theorem proving itself, since the rep-
resentation is used to optimise problem solving and the transfer and access of
knowledge. The observations presented in section 4 reveal that mathematical
knowledge is highly structured and special representations are important for
mathematical problem solving. Data structures that realise these aspects may
allow for the definition of detailed problem classifications for which special but
efficient mechanisms can be found. In sub-sections 5.1 and 5.4 we gave ex-
amples for data structures and implementations of this kind. Mathematical
representation appears furthermore to be dynamic and flexible. Modelling this
flexibility is on the one hand important for the user interface, because it would
give the choice of representation to the user. On the other hand, this flexibility
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is the key point for the combination of different representations.

We have summarised some approaches to good design in section 5. More
work in this direction is necessary to offer well-designed tools to mathemati-
cians and other people interested in computer assisted mathematics. While
certain parts might turn out to be straightforward other aspects will require a
much deeper understanding. To give one example for the size of the task, if we
wanted to integrate multiplication tables as a primitive in automated reason-
ing systems, it should be relatively easy to offer concrete multiplication tables
(or matrices) with all the advantages mentioned in sections 3 and 4 (as it is
relatively easy to offer order-sorted sorts). However, it will be difficult to of-
fer general type multiplication tables (or matrices) which contain ellipses, and
flexible ways to reason about them. Human beings have an amazing capability
to reify structures in their space of discourse. We seem not to have yet a deep
understanding of these capabilities.

This paper compared approaches in mathematics and in existing theorem
proving system. We were with it not so ambitious to try to offer solutions for
the deficiencies of existing systems, but we want to conclude with some thoughts
how a strong reasoning system could look like to model mathematical practice
more adequately. We think that our examples indicate that it will be impossible
to build a system with a fixed syntax which incorporates all possible types of
mathematical structures. Rather we think that a system should be extendible
by the user. This puts a very important principle at risk, namely the simplicity
of a proof checker that can check proofs generated with the system (called de
Bruijn principle in [BC01]). It is important since it means that the correctness
of proofs does not depend on the (currently not achievable) correctness of a
very big and complex system for proof construction, as long as there is a small
reliable system that can check generated explicit proof objects. One wouldn’t
want to sacrifice this principle light-heartedly, since much of the motivation
(at least in some of the expectations as laid out in the introduction) for using
computer-based systems would be at stake. We think, however, that it should
be possible to develop a system which is flexible and extendible in the sense we
discussed and allows for an only slightly more complicated checker. We imagine
that this can be achieved by providing explicit semantics to each extension,
which founds the extension in the original system.

While the investigation of such a system remains future work, we imagine
that it should firstly be its own meta-system, so that it is possible to use its
representations as starting point for the formation of new concepts (care about
paradoxes has to be taken). Secondly, a flexible system for the definition of
mathematical structures as well as establishing their formal relationships would
have to be provided by such a system. Thirdly, a graphical user interface
should facilitate the possibility to relate mathematical structures to a form,
which is familiar to mathematicians. Particularly important are in this context
spatial and diagrammatic representations. While there are approaches to all
these points, to our knowledge no single system offers yet an integrated flexible
approach.
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1902.
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[Pól62] G. Pólya. Mathematical Discovery – On Understanding, Learning,
and Teaching Problem Solving. Princeton University Press, New
Jersey, USA, 1962.

[Rus03] B. Russell. The Principles of Mathematics. George Allen & Unwin
Ltd, London, UK, 2nd edition, 1937 edition, 1903.

[Rus18] B. Russell. The philosophy of logical atomism. The Monist,
28/29:495–527/32–63,190–222,345–380, 1918. republished in
[Rus56, p.177-281].

[Rus56] B. Russell. Logic and Knowledge. Allen & Unwin, London, 1956.

[Wei93] C. Weidenbach. Extending the resolution method with sorts. In
Proc. of the 13th IJCAI, pages 60–65, Chambéry, France, 1993.
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