
Implementation and Evaluation of an E�cient

Parallel Delaunay Triangulation Algorithm

Jonathan C� Hardwick

School of Computer Science

Carnegie Mellon University

Pittsburgh� Pennsylvania �����

jch�cs�cmu�edu

Abstract

This paper describes the derivation of an empirically e��
cient parallel two�dimensional Delaunay triangulation pro�
gram from a theoretically e�cient CREW PRAM algorithm�
Compared to previous work� the resulting implementation is
not limited to datasets with a uniform distribution of points�
achieves signi�cantly better speedups over good serial code�
and is widely portable due to its use of MPI as a communica�
tion mechanism� Results are presented for a loosely�coupled
cluster of workstations� a distributed�memory multicom�
puter� and a shared�memory multiprocessor� The Machi�
avelli toolkit used to transform the nested data parallelism
inherent in the divide�and�conquer algorithm into achievable
task and data parallelism is also described and compared to
previous techniques�

� Introduction

Delaunay triangulation represents an important substep in
many computationally�intensive applications� including pat�
tern recognition� terrain modelling� and mesh generation for
the solution of partial di	erential equations� Delaunay trian�
gulations and their duals� Voronoi diagrams� are among the
most widely�studied structures in computational geometry�
Voronoi diagrams have also appeared in many other �elds
under di	erent names 
��� domains of action in crystallog�
raphy� Wigner�Seitz zones in metallurgy� Thiessen polygons
in geography� and Blum�s transforms in biology� This paper
assumes that the reader is familiar with the basic de�nition
of Delaunay triangulation in R�� namely the unique trian�
gulation of a set S of points such that there are no elements
of S within the circumcircle of any triangle�

There are many well�known serial algorithms for De�
launay triangulation� The best have been extensively an�
alyzed 
�� ���� and implemented as general�purpose li�
braries 
�� ���� Since these algorithms are time and memory
intensive� parallel implementations are important both for
improved performance and to allow the solution of prob�
lems that are too large for serial machines� However� al�
though several parallel algorithms for Delaunay triangula�
tion have been described 
�� ��� ��� �� ���� practical imple�
mentations have been slower to appear� One reason is that
the dynamic nature of the problem can result in signi�cant
inter�processor communication� Performing key phases of
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the algorithm on a single processor �for example� serializ�
ing the merge step of a divide�and�conquer algorithm� as
in 
���� reduces this communication� but introduces a serial
bottleneck that severely limits scalability in terms of both
parallel speedup and achievable problem size� The use of
decomposition techniques such as bucketing 
��� ��� �� ����
or striping 
��� can also reduce communication� but relies
on the input dataset having a uniform spatial distribution
of points in order to avoid load imbalances between proces�
sors� Unfortunately� while most real�world problems are not
this uniform� few authors report the performance of their
implementations on non�uniform datasets� Of those that
do� the �D algorithm by Teng et al 
�� was up to � times
slower on non�uniform datasets than on uniform ones �on a
���processor CM���� while the �D algorithm by Cignoni et
al 
��� was up to �� times slower on non�uniform datasets
than on uniform ones �on a ����processor nCUBE�� The �D
algorithm by Ding and Densham 
��� is designed to be able
to handle non�uniform datasets� but has only been demon�
strated to scale to � processors�

A second problem is that the parallel algorithms are typ�
ically much more complex than their serial counterparts�
This added complexity results in low parallel e�ciency�
that is� they achieve only a small fraction of the perfect
speedup over good serial code running on one processor�
Again� direct comparison is di�cult because few authors
quote speedups over good serial code� Of those that do� the
�D algorithm by Su achieved speedup factors of ������� on a
���processor KSR�� 
���� for a parallel e�ciency of ������
while the �D algorithm 
��� by Merriam achieved speedup
factors of ���� on a ����processor Intel Gamma� for a par�
allel e�ciency of ������ Both of these results were for uni�
form datasets� The �D algorithm by Chew et al 
��� �which
solves the more general problem of constrained Delaunay
triangulation in a meshing algorithm� achieves speedup fac�
tors of � on an ��processor SP�� but currently requires that
the boundaries between processors be created by hand�

Blelloch� Miller and Talmor recently developed a CREW
PRAM algorithm that does not rely on bucketing and hence
can e�ciently handle non�uniform datasets 
��� It is divide�
and�conquer in style but uses a �marriage before conquest�
approach to eliminate the expensive merge step that has hin�
dered previous parallel algorithms� Additionally� when pro�
totyped in the nested data�parallel language Nesl 
�� the
algorithm was found to perform only twice as many �oating�
point operations as a good serial algorithm�

This paper describes a practical parallel Delaunay trian�
gulation program which uses the algorithm by Blelloch et
al as a coarse parallel partitioner� switching to an e�cient
implementation of Dwyer�s serial algorithm provided by the
Triangle package 
��� at the leaves of the recursion tree� The
program was parallelized using the Machiavelli toolkit 
����
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Outer Delaunay Triangulation

Figure �� Nested recursion in Delaunay triangulation algorithm by Blelloch et al 
��� Each recursive level of the outer divide�
and�conquer triangulation algorithm� which has a perfect split� uses as a substep a divide�and�conquer convex hull algorithm
which may have a much more irregular structure�

which has been designed both for the direct implementation
of parallel divide�and�conquer algorithms �as in this case��
and as an implementation layer for nested data�parallel lan�
guages� It is particularly well�suited to exploiting the nested
divide�and�conquer nature of the algorithm by Blelloch et
al� which uses an inner quickhull algorithm as a substep� as
shown in Figure ��

Since Machiavelli uses MPI 
��� as a communication
mechanism� the resulting Delaunay triangulation program is
more portable than most previous implementations� which
have used vendor�speci�c message�passing libraries 
��� ���
��� �� or shared memory directives 
���� We present re�
sults for a loosely�coupled DEC AlphaCluster� a distributed�
memory IBM SP� and a shared�memory SGI Power Chal�
lenge� Experimentally� the program achieves three times
the parallel e�ciency of previous implementations� and is
at most ��� times slower on non�uniform datasets than on
uniform ones�

The rest of the paper is arranged as follows� Section �
describes the Machiavelli toolkit� and Section � outlines the
parallel algorithm by Blelloch et al� Section � discusses key
implementation decisions� Section � presents and analyzes
performance results for a range of input distributions� Fi�
nally� Section � concludes the paper�

� The Machiavelli Toolkit

Many of the most e�cient and widely used computer al�
gorithms use a divide�and�conquer approach to solving a
problem� Examples include binary search� quicksort 
����
and fast matrix multiplication 
���� The subproblems that
are generated can typically be solved independently� and
hence divide�and�conquer algorithms have long been recog�
nized as presenting a potential source of parallelism� This
has resulted in many architectures and parallel program�
ming languages being designed speci�cally for the implemen�
tation of divide�and�conquer algorithms �see 
�� for a sur�
vey�� However� previous parallel divide�and�conquer models
have typically been limited to regular algorithms� in which
the subproblems are of equal size� This excludes a very
useful class of algorithms� for example� quicksort� selection�
and many computational geometry algorithms all have an
irregular divide�and�conquer structure� Concatenated paral�
lelism is a notable recent exception that can handle irregular
divide�and�conquer algorithms� but can only outperform a
task�parallel approach when the communication cost of re�
distributing the data is signi�cant compared to the compu�
tational cost of subdividing the task 
���� The alternative

approach of using a more general language model to han�
dle irregular algorithms runs the risk of hiding divide�and�
conquer parallelism that would otherwise be easy to exploit�
For example� although nested data�parallel languages such
as Nesl 
� and Proteus 
��� are well�suited for expressing
irregular divide�and�conquer algorithms� their current im�
plementation layer assumes a vector PRAM model 
��� This
can be e�ciently implemented on vector processors with
high memory bandwidth� but it is harder to do so on cur�
rent RISC�based NUMA multiprocessor architectures� due
to the higher relative costs of communication and poor data
locality 
����

Machiavelli 
��� is a new parallel toolkit for divide�and�
conquer algorithms that is intended to alleviate some of
these problems� It is designed to be usable both as an im�
plementation layer for languages such as Nesl� and as a
programmer�s toolkit for the direct implementation of ef�
�cient parallel programs� There were three main goals in
Machiavelli�s development� First� it must be capable of han�
dling divide�and�conquer algorithms that are both irregular
and nested� that is� algorithms that use a di	erent divide�
and�conquer algorithm as a substep� Second� it must be
portable across parallel architectures� Finally� it must be ef�
�cient� that is� it must result in parallel programs that show
signi�cant speedup over good serial programs�

To achieve the �rst goal� Machiavelli uses recursive sub�
division of asynchronous teams of processors running SPMD
code to directly implement the behavior of a divide�and�
conquer algorithm �this can be seen a generalized version
of the technique used by Barnard�s spectral bisection algo�
rithm on the Cray T�D 
���� To achieve the second goal�
Machiavelli is implemented using C and MPI �the standard
Message Passing Interface 
����� To achieve the third goal�
Machiavelli obtains parallelism from both data�parallel op�
erations within teams and from the task�parallel invocation
of recursive functions on di	erent teams� and uses good se�
rial code where possible�

The Machiavelli toolkit currently consists of a library of
vector primitives and a small run�time system� The library
implements the basic communication and team functions in
terms of MPI� as an example� Figure � shows source code
for the team�splitting phase of the Delaunay triangulation
program� The run�time system adds the ability to perform
dynamic load�balancing for irregular algorithms� Speci��
cally� it can ship a recursive serial function call to an idle
processor in order to redistribute computation 
����

A Machiavellian divide�and�conquer program consists of
both serial and SPMD parallel code� The parallel code op�

�



vec�point
parallel�DT �team T� vec�point P� vec�border B��
�

team T�new�
vec�point P�L� P�R� P�new� result�
vec�border B�L� B�R� B�new�

��� �� Compute P�L� P�R� B�L� B�R �� ���

�� Create two new teams according to ratio of
� subproblem sizes� join one of them ��

T�new 	 split�teams �T� P�L
�len� P�R
�len��

�� Split P�L�P�R and B�L�B�R between the teams ��
P�new 	 split�vec�point �P�L� P�R� T� T�new��
B�new 	 split�vec�border �B�L� B�R� T� T�new��
free �P�L�� free �P�R�� free �B�L�� free �B�R��

�� Is my new team just a single processor� ��
if �T�new
�nproc 		 � �

�� Then run serial Delaunay triangulation ��
result 	 serial�DT �P�new� B�new��

� else �
�� Else recurse in parallel code in new team ��
result 	 parallel�DT �T�new� P�new� B�new��

�
�� Teams rejoin here ��
return result�

�

Figure �� Team�splitting in Delaunay triangulation program
�see Figure ��� expressed as SPMD C code with calls to
Machiavelli library�

erates at the upper levels of recursion� and uses calls to
the library to redistribute data and subdivide the problem�
Initially� data is distributed in block fashion across all the
processors� The processors act as a data�parallel team� syn�
chronizing with each other only when necessary to exchange
data� At the �rst recursive call� the initial team splits into
two new teams� with the relative number of processors in
each new team being chosen to approximate the relative
cost of each of the sub�problems� The teams repeat the pro�
cess� recursing down to smaller and smaller teams� which
run asynchronously with respect to each another� When a
team contains a single processor� that processor switches to
serial code� Note that this can be a more e�cient serial al�
gorithm� rather than just a serial translation of the parallel
algorithm� When the serial code �nishes� parallel teams are
reformed and results are combined on the way back up the
recursion call tree�

Within the Machiavelli toolkit� data is expressed as pri�
vate scalars and distributed vectors� For communication�
teams are mapped to MPI groups� and user�de�ned types
are mapped to MPI�s derived datatypes 
���� A purely
data�parallel operation �such as an elementwise mathemat�
ical function on a vector� is implemented as a loop over
the appropriate section of data on each processor� More
complex functions� such as �nding the largest element in
a vector� involve both a local loop and an MPI reduction
operation within the current team� Finally� vector commu�
nication functions are implemented using MPI�s all�to�all
communication primitives� Optimized library functions are
provided for many of the idioms that occur in divide�and�
conquer algorithms� such as sending subsets of a vector to
sub�teams� and merging data from sub�teams into a single
vector�

Algorithm� ParDel�P� B� T �

Input� P � a set of points in R�� B� a set of Delaunay edges
of P which is the border of a region in R� containing P � and
T � a team of processors�

Output� The set of Delaunay triangles of P which are con�
tained within B�

Method�

�� If jT j � �� return Serial�P�B��

�� Find the point q that is the median along the x axis of
all internal points �that is� points in P that are not on
the boundary B�� Let L be the line x � qx�

�� Let P � � f�py � qy� jjp � qjj�� j �px� py� � Pg� derived
from projecting the points P onto a �D paraboloid cen�
tered at q� and then onto the vertical plane through the
line L�

�� Let H � Lower Convex Hull�P ��� H is a path of
Delaunay edges of the set P � Let PH be the set of
points on the path H� and �H be the path H traversed
in the opposite direction�

�� Create the input for left and right subproblems�

BL � Border Merge�B�H�

BR � Border Merge�B� �H�

PL � fp � P j p is left of Lg �
fp� � PH j p� contributed to BLg

PR � fp � P j p is right of Lg �
fp� � PH j p� contributed to BRg

TL � subset of T of size jT jjPLj��jPLj� jPRj�
TR � T � TL

�� Return ParDel�PL� BL� TL��ParDel�PR� BR� TR��

Figure �� Recursive divide�and�conquer SPMD pseudocode
for Delaunay triangulation� using the algorithm by Blel�
loch et al 
�� as a coarse partitioner �a correction has been
made to step ��� Although the algorithm uses alternat�
ing x and y cuts� for simplicity only the x cut is shown�
The three subroutines Serial� Lower Convex Hull� and
Border Merge are described in the text�

� Delaunay Triangulation Algorithm

This section brie�y outlines use of the parallel Delau�
nay triangulation algorithm by Blelloch� Miller� and Tal�
mor as a coarse partitioner� The algorithm uses the well�
known reduction of two�dimensional Delaunay triangula�
tion to the problem of �nding the three�dimensional con�
vex hull of points on a sphere or paraboloid� The result�
ing algorithm is divide�and�conquer in nature but uses a
�marriage before conquest� approach� similar to the De�
Wall triangulation algorithm 
���� which enables it to avoid
an expensive merge step� See 
�� for more details� and
http���web�scandal�cs�cmu�edu�cgi�bin�demo for an in�
teractive demonstration�

Pseudocode for the algorithm is shown in Figure �� It
has three important substeps�

Serial Delaunay� Although any serial Delaunay trian�
gulation algorithm can be used for the base case�
Dwyer�s 
��� is recommended since it has been shown
experimentally to be the fastest 
��� ����

�



Lower convex hull� The lower half of the convex hull of
the projected points is used to �nd a new path H that
divides the problem into two smaller problems� Since
the projection is based on the median point� the divi�
sion is perfect� as shown in Figure ��

Border merge� This routine takes the old border B and
merges it with the newly�found dividing pathH to form
a new border for a recursive call� The new border is
computed based on an inspection of the possible inter�
sections of points in B and H�

��� Theoretical Performance

The full Delaunay triangulation algorithm by Blelloch et
al requires O�n log n� parallel work and O�log� n� par�
allel depth on a CREW PRAM �i�e�� a total time of
O��n log n��P � log� n� on P processors�� The work com�
plexity is optimal for Delaunay triangulation� and the depth
complexity is practical for parallelization purposes�

Note that these complexities assume that the lower con�
vex hull substep is solved using a linear�work algorithm�
which is possible since we can store the points in sorted
order 
���� However� Blelloch et al found experimentally
that a simple quickhull 
��� was faster than a more com�
plicated convex hull algorithm that was guaranteed to take
linear time� Furthermore� using a point�pruning version of
quickhull that limits possible imbalances between recursive
calls 
�� reduces its sensitivity to non�uniform datasets�

With these changes� the parallel Delaunay triangula�
tion algorithm was found to perform about twice as many
�oating�point operations as Dwyer�s algorithm 
���� Fur�
thermore� the cumulative �oating�point operation count was
found to increase uniformly with recursion depth� indicating
that the algorithm should be usable as a partitioner without
loss of e�ciency�

However� as implemented in Nesl� the algorithm was an
order of magnitude slower on one processor than a good se�
rial algorithm� It was chosen as a test case for Machiavelli
due to its recursive divide�and�conquer nature� the natural
match of the partitioning variant to Machiavelli�s ability to
use e�cient serial code� and its nesting of a recursive con�
vex hull algorithm within a recursive Delaunay triangulation
algorithm� as shown in Figure ��

� Implementation

This section describes several implementation decisions and
optimizations that a	ect the performance of the �nal pro�
gram� including using the right data structures� improving
the performance of speci�c algorithmic substeps� and using
a general optimization that can be applied to many Machi�
avelli programs� Most of the optimizations relate to reduc�
ing or eliminating interprocessor communication� Further
analysis can be found in Section ��

Data structures The basic data structure used by the code
is a point� represented using two double�precision �oating�
point values for the x and y coordinates� and two integers�
one serving as a unique global identi�er and the other as
a communication index within team phases of the program�
Points are stored in vectors� which are distributed in a block
fashion across the processors of the current team� A border
is composed of corners� each of which represents the triplet
of points corresponding to two segments in a path� Corners
are not balanced across the processors as points are� but
rather are stored on the same processor as their �middle�
point� A vector of indices I links the points in P with the

corners in the borders B and H� Given these data struc�
tures� the operations of �nding internal points� and project�
ing points onto a parabola �see Figure ��� both reduce to
simple local loops�

Serial triangulation For the serial base case we use the op�
timized version of Dwyer�s algorithm that is provided by
the Triangle mesh generation package 
���� Since the input
format for Triangle di	ers from that used by the parallel
program� conversion steps are necessary before and after
calling it� These translate between the pointer�based for�
mat of Triangle� which is optimized for serial code� and the
indexed format with replication used by the parallel code�
No changes are necessary to the source code of Triangle�

Finding the median Initially a parallel version of quickme�
dian 
��� was used to �nd the median internal point along
the x or y axis� Quickmedian redistributes data amongst the
processors on each recursive step� resulting in high commu�
nication overhead� It was therefore replaced with a median�
of�medians algorithm� in which each processor �rst uses a
serial quickmedian to compute the median of its local data�
then contributes this local median in a collective communi�
cation step� and �nally computes the median of all the me�
dians� The result is not guaranteed to be the exact median�
but in practice it is su�ciently good for load�balancing pur�
poses� this modi�cation increased the speed of the overall
Delaunay triangulation program for the datasets and ma�
chine sizes studied �see Section �� by ������

Finding the lower convex hull As in the original algorithm�
a variant of quickhull 
��� is used to �nd the convex hull� re�
sulting in two nested recursive algorithms as shown in Fig�
ure �� However� in contrast to using a di	erent serial De�
launay triangulation algorithm� the serial code of quickhull
implements the same algorithm as the parallel code�

The basic quickhull algorithm tends to pick extreme
�pivot� points when operating on non�uniform point dis�
tributions� resulting in a poor division of data and a conse�
quent lack of progress� Chan et al 
�� describe a variant that
tests the slope between pairs of points and uses pruning to
guarantee that recursive calls have at most ��� of the orig�
inal points� However� pairing all n points and �nding the
median of their slopes is a signi�cant addition to the basic
cost of quickhull� Experimentally� pairing only

p
n points

was found to give better performance when used as a sub�
step of the Delaunay triangulation program �see Section ���
for an analysis�� As with the median�of�medians approach�
the global e	ects of receiving approximate results from an
algorithm substep are more than o	set by the decrease in
running time of the substep�

Combining results The quickhull algorithm concatenates
the results of two recursive calls before returning� Using
Machiavelli this corresponds to merging two teams of pro�
cessors and redistributing their results to form a new vector�
However� since this is the last operation that the function
performs� the intermediate appends in the parallel call tree
�and their associated interprocessor communication phases�
can be optimized away� They are replaced with a single call
to Machiavelli at the top level that redistributes the serial
result from each processor into a parallel vector shared by all
the processors� This general Machiavelli optimization is also
applied to merging the results of the Delaunay triangulation
algorithm itself�

�



Uniform distribution� Normal distribution� Kuzmin distribution� Line singularity�

Figure �� Examples of ���� points in each of the four test distributions �taken from 
��� for clarity� the Kuzmin distribution is
shown zoomed on the central point�� Parallelization techniques that assume uniform distributions� such as bucketing� su	er
from poor performance on the Kuzmin and line distributions�

Creating the subproblems The border merge step inter�
sects the current border B with the dividing path H� creat�
ing two new borders BL and BR and two new point sets PL

and PR� This requires a series of line orientation tests to
decide how to merge corners� To eliminate an interproces�
sor communication phase in this step� the two outer points
represented by a corner are replicated in the corner struc�
ture� All the information required for the line orientation
tests can thus be found on the local processor �the memory
cost of this replication is analyzed in Section ����� Addition�
ally� although Figure � shows two calls to the border merge
function� one for each direction of the new dividing path� in
practice it is faster to make a single pass� creating both new
borders and point sets at the same time�

� Experimental Results

The goal of this section is to validate the claims of portabil�
ity� good parallel e�ciency� and the ability to handle non�
uniform datasets� We also analyze where the bottlenecks
are� the reasons for any lack of scalability� and the e	ect of
some of the implementation decisions presented in Section �
on both running time and memory use�

To test portability� we used three parallel architectures�
a loosely�coupled workstation cluster �DEC AlphaCluster�
with � processors� a shared�memory SGI Power Challenge
with �� processors� and a distributed�memory IBM SP� with
�� processors �additional results for larger machine sizes can
be found in 
����� To test parallel e�ciency� we compared
timings to those on one processor� when the program im�
mediately switches to the serial Triangle package 
���� To
test the ability to handle non�uniform datasets we used four
di	erent distributions taken from 
���

Uniform distribution� The coordinates x and y are cho�
sen at random within the unit square�

Normal distribution� The coordinates x and y are chosen
as independent samples from the normal distribution�

Kuzmin distribution� This is an example of convergence
to a point� and is used by astrophysicists to model the
distribution of star clusters within galaxies� It is radi�
ally symmetric� with density falling rapidly with dis�
tance r from a central point� The accumulative proba�
bility function is

M�r� � �� �p
� � r�

Line singularity� This is an example of convergence to
a line� resulting in a distribution that cannot be e��
ciently parallelized using techniques such as bucketing�
It is de�ned using a constant b �set here to ������ and
a transformation from a uniform distribution �u� v� of

�x� y� � �
b

u� bu� b
� v�

Examples of these distributions are shown in Figure ��
All timings represent the average of �ve runs using di	erent
seeds for a pseudo�random number generator� For a given
problem size and seed the input data is the same regardless
of the architecture or number of processors�

��� Analysis

To illustrate the algorithm�s parallel e�ciency� Figure �a
shows the time to triangulate a relatively small problem
����k points� on di	erent numbers of processors� for each of
the three platforms and the four di	erent datasets� Speedup
is not perfect because as more processors are added� more
levels of recursion are spent in parallel code rather than
in the more e�cient serial code� However we still achieve
greater than ��� parallel e�ciency for the datasets and ma�
chine sizes tested �that is� we achieve more than half of the
perfect speedup over good serial code�� Additionally� the
Kuzmin and line distributions show similar speedups to the
uniform and normal distributions� suggesting that the algo�
rithm is e	ective at handling non�uniform datasets as well
as uniform ones�

To illustrate scalability� Figure �b shows the time to tri�
angulate a variety of problem sizes on di	erent numbers of
processors� For clarity� only the uniform and line distribu�
tions are shown� since these take the least and most time�
respectively� Again� per�processor performance degrades as
we increase the number of processors because more levels
of recursion are spent in parallel code� However� for a �xed
number of processors the performance scales well with prob�
lem size� as we would expect from an O�n log n� algorithm�

To illustrate the relative costs of the di	erent compo�
nents of the algorithm� Figure �a shows the accumulated
time per substep of the algorithm� The parallel substeps
of the algorithm� namely median� convex hull� and splitting
and forming teams� become more important as the number
of processors is increased� The time taken to convert to and
from Triangle�s data format is insigni�cant by comparison�
as is the time spent in the complicated but purely local bor�
der merge step�

�



�a� Performance vs number of processors �b� Performance vs problem size
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Figure �� Performance of Delaunay triangulation program on four input distributions and three parallel architectures� Single
processor results are for good serial code �Triangle 
����� Column �a� shows the time to triangulate a total of ���k points
as the number of processors is varied� Increasing the number of processors results in more levels of recursion being spent in
slower parallel code rather than faster serial code� and hence the speedup is not linear� The e	ect of starting with an x or
y cut is shown in the alternately poor and good performance on the highly directional line distribution� Column �b� shows
the time to triangulate ��k����k points per processor as the number of processors is varied �for clarity� only the fastest and
slowest distributions are shown for a given number of processors�� IBM SP� results are for thin nodes� using xlc �O� and
MPICH ������� SGI Power Challenge results are for R���� processors� using cc �O� and SGI MPI� DEC AlphaCluster results
are for DEC �������� workstations connected by an FDDI Gigaswitch� using cc �O� and MPICH �������
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�a� Total time in each substep
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�b� Time in each recursive level

Figure �� Two views of the execution time as the problem size is scaled with number of processors �IBM SP�� ���k points per
processor�� �a� shows the total time spent in each substep of the algorithm� The time spent in serial code remains approxi�
mately constant� while convex hull and team operations �which includes synchronization delays� are the major overheads in
the parallel code� �b� shows the time per recursive level of the algorithm� note the approximately constant overhead per level�

Figure �b shows the same data from a di	erent view�
as the total time per recursive level of the algorithm� This
clearly shows the e	ect of the extra parallel phases as the
number of processors is increased�

Finally� Figure  uses a parallel time line to show the ac�
tivity of each processor when triangulating a line singularity
dataset� There are several important e	ects that can be seen
here� First� the nested recursion of the convex hull algorithm
within the Delaunay triangulation algorithm� Second� the
alternating high and low time spent in the convex hull� due
to the e	ect of the alternating x and y cuts on the highly
directional line distribution� Third� the operation of the
processor teams� For example� two teams of four processors
split into four teams of two just before the ���� second mark�
and further subdivide into eight teams of one processor �and
hence switch to serial code� just after� Lastly� the amount of
time wasted waiting for the slowest processor in the parallel
merge phase at the end of the algorithm is relatively small�
despite the very non�uniform dataset�

��� Performance Prediction

The total running time of the program for a problem of
size n on P processors can be calculated as the sum of the
serial and parallel components per processor� The serial
time �that is� the time spent in Triangle� is O��n log n��P ��
The number of parallel phases is equal to the logarithm
of the number of processors� and the time spent in each
phase is again O��n log n��P �� so that the parallel time is
O��n log n��log P ��P �� Combining these into an equation to
predict running time� we have�

T �n� P � �
�n log

�
n��k� � k�dlog� P e�

P

Note that this simpli�ed formula ignores overheads depen�
dent only on P � since for problem sizes of interest these over�
heads are insigni�cant compared to the combined e	ects of
n and P �in practical terms� the time taken to send and re�
ceive large amounts of data far outweighs the �xed latency
of the messages�� We can then measure the parameters k�

and k� for a speci�c distribution and architecture in order to
be able to predict the running time for a given problem size
on a given number of processors� For example� for a uniform
distribution on the SGI Power Challenge� k� � �������� s�
and k� � ���� ���� s� predicts running times to within ��

��� Memory Requirements

As explained in Section �� border points are replicated in
corner structures to eliminate the need for global commu�
nication in the border merge step� An obvious objection to
this approach is that it increases the memory requirements
of the program� Assuming ���bit doubles and ���bit inte�
gers� a point �two doubles and two integers� and associated
index vector entry �two integers� occupies �� bytes� while a
corner �two replicated points� occupies �� bytes� However�
since a border is composed of only a small fraction of the
total number of points� the additional memory required to
hold the corners is relatively small� For example� in a run
of ���k points in a line singularity distribution on eight pro�
cessors� the maximum ratio of corners to total points on a
processor �which occurs at the switch between parallel and
serial code� is approximately ����� to ������ so that the
corners occupy less than �� of required storage� Extreme
cases can be manufactured by reducing the number of points
per processor� for example� with ���k points the maximum
ratio is approximately ����� to ������ Even here� however
the corners still represent less than ��� of required storage�
and by reducing the number of points per processor we have
also reduced absolute memory requirements�

��� Performance of Convex Hull Variants

Finally� we investigate the performance of the convex hull
variants described in Section �� The �nal

p
n�pair pruning

quickhull was benchmarked against both a basic quickhull
and the original n�pair pruning quickhull by Chan et al 
���
Results for an extreme case are shown in Figure �� As can be
seen� the n�pair algorithm is more than twice as fast as the
basic quickhull on the non�uniform Kuzmin dataset �over
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Figure � Activity of eight processors over time� showing the parallel and serial phases of Delaunay triangulation and its
inner convex hull algorithm �IBM SP�� ���k points in a line singularity distribution�� A parallel step level of two phases
of Delaunay triangulation code surrounding one or more convex hull phases� this run has three parallel levels� Despite the
non�uniform dataset the processors do approximately the same amount of serial work�
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Figure �� E	ect of di	erent convex hull functions on time
to triangulate ���k points on an ��processor IBM SP�� The
pruning quickhull due to Chan et al 
�� has much better
performance than the basic algorithm on the non�uniform
Kuzmin distribution� reducing its sampling accuracy pro�
duces a modest additional improvement�

all the datasets and machine sizes tested it was a factor of
��������� faster�� The

p
n�pair algorithm provides a modest

additional improvement� being a factor of ��������� faster
than the n�pair algorithm�

� Conclusions

This paper has described the use of the Machiavelli toolkit
to produce a fast and practical parallel two�dimensional De�
launay triangulation algorithm� The code was derived from
a combination of a theoretically e�cient CREW PRAM par�
allel algorithm and existing optimized serial code� The re�
sulting program has three advantages over existing work�
First� it is widely portable due to its use of MPI� it achieves
similar speedups on three machines with very di	erent com�
munication architectures� Second� it can handle datasets
that do not have a uniform distribution of points with a rel�

atively small impact on performance� Speci�cally� it is at
most ��� times slower on non�uniform datasets than on uni�
form datasets� whereas previous implementations have been
up to �� times slower� Finally� it has good absolute perfor�
mance� achieving a parallel e�ciency �that is� percentage of
perfect speedup over good serial code� of greater than ���
on machine sizes of interest� Previous implementations have
achieved at most �� parallel e�ciency�

In addition to these speci�c results� there are two more
general conclusions that are well�known but bear repeating�
First� constants matter� simple algorithms are often faster
than more complex algorithms that have a lower complexity
�as shown in the case of quickhull�� Second� quick but ap�
proximate algorithmic substeps often result in better overall
performance than slower approaches that make guarantees
about the quality of their results �as shown in the case of
the median�of�medians and

p
n�pair pruning quickhull��
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