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Consistent topographic surface labelling
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Abstract

This paper describes work aimed at consistently labelling surface facets using topographic classes derived from mean
and Gaussian curvature measurements. There are two distinct contributions. Firstly, we develop a statistical model
which allows label probabilities to be assigned to the di!erent topographic classes. These probabilities capture
uncertainties in the computation of surface curvature from raw surface normal information. The probabilities are
computed using propagation of variance from the surface normal measurements. The second contribution is to
demonstrate how topographic surface labelling can be realised using probabilistic relaxation. The key ingredient is to
develop a constraint dictionary for the feasible con"gurations of the topographic labels that can occur on neighbouring
faces of the surface mesh. These constraints relate to the legal adjacency of di!erent topographic structures together with
the smoothness and continuity of uniform regions. ( 1999 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Topographic labels derived from the mean and Gaus-
sian curvatures are widely exploited as a means of repres-
enting the di!erential structure of surfaces [1}5]. The
surface labelling task commences by computing the Hes-
sian matrix from the directional second derivatives of the
surface. The mean curvature is related to the trace of the
Hessian, while the Gaussian curvature is computed from
its determinant. Once the curvatures are to hand, then
topographic labels are assigned on the basis of whether
the two curvatures are positive, negative or consistent
with zero. Based on this coarse quantisation of the curva-
ture information, the surface data may be segmented into
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meaningful topographic structures such as ridges or val-
leys, saddle points or lines, and, domes or cups. These
structures can be further organised into simply connected
elliptical or hyperbolic regions which are separated from
one-another by parabolic lines. Unfortunately, because
the Hessian matrix is based on second-derivatives the
reliable estimation of surface curvature, and hence the
extraction of topographic structure, has proved to be a
task of notorious di$culty in the analysis and range or
volumetric imagery [6}8]. Some of the limitations of the
alternative strategies for curvature estimation were un-
earthed in the comparative study of Flynn and Jain [9].

It is for these reasons that strategies aimed at circum-
venting the direct estimation of the second-derivatives
have been developed. One of the most popular ap-
proaches is to approximate the surface by a low-order
piecewise continuous surface [10}12]. The parameters of
the best-"t local patches are used to estimate curvature.
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Although, it was originally developed as a means of
extracting a topographic description of gray-scale edge
features, Haralick's facet model has found widespread
application in the interpretation of range imagery [10].
Haralick's idea is to "t a set of orthogonal polynomials to
image gray-scales. The "t parameters are used to identify
salient topographic features such as edges (ravines) and
lines (ridges). Moreover, there is a simple error analysis
for the extracted model parameters. In a genuine surface
interpretation problem, Bolle and Cooper [11] "t
Haralick's orthogonal polynomials to 3D data to identify
topographic primitives. The parameters of these poly-
nomials are used to calculate the Hessian. A Bayesian
classi"er is used to segment the surface into scene primi-
tives such as cylinders and spheres.

An alternative approach is to extract curvature in-
formation using a bi-quadric patch. Several authors have
developed variants of this idea. For instance, Besl and
Jain adopt a hierarchical "tting technique [1]. Firstly, a
local tangent plane is extracted by identifying the princi-
pal component axes for the distribution of surface data-
points using a local support neighbourhood, Next, the
plane-"t is re"ned using a cubic patch.

Several authors have directed their attention towards
understanding the statistical uncertainties involved in the
assignment of mean and Gaussian curvature labels. For
instance, Abdelmalek [12] focusses on the uncertainties
that exist when the Hessian is estimated using orthogonal
polynomials. This analysis determines an upper error
bound on the values of mean and Gaussian curvature.
The analysis commences by imposing the condition that
the depth error at each point must be smaller than twice
the noise-variance. However the resulting error bounds
are an order of magnitude greater that the actual errors.
A more faithful description of realistic data-point error
distributions is obtained by Hilton et al. [13] who ad-
dress the issue of analysis of variance to improve the
statistical "delity of the "tting process.

Despite these e!orts aimed at improving the reliability
of curvature estimation, the problem of how to re"ne
inconsistent topography has received less attention. In
essence, local surface-"tting does not guarantee that the
extracted curvature estimates are globally consistent
when viewed from the constraints imposed by the topo-
graphic structure of smooth continuous surfaces. Interro-
gation of the literature reveals that it is only Sander and
Zucker [4] who have made any serious attempt at ex-
ploiting the idea of curvature consistency to improve the
recovery of a consistent di!erential surface structure.
Their idea has been to iteratively update local Darboux
frames by imposing the constraint that the principal
curvature directions should vary smoothly across the
surface. The initial estimates of the Hessian required in
this analysis are derived from the least squares "tting
of bi-quadric patches. Consistency is measured by the
smoothness of the "eld of principle curvature directions.

However, there is no attempt to reconcile the quality of
the recovered surface description with the underlying
statistical uncertainties in the raw surface data. Although
their subsequent work has focussed on how to recover
singularities in the principal curvature "eld [5], there is
no real attempt to exploit the topographic structure of
the surface to improve curvature consistency.

1.1. Paper outline

Based on this review of the literature our observations
in this paper are two-fold. Firstly, the majority of topo-
graphic labelling techniques opt to make statistical esti-
mates of the Hessian by local surface "tting. The main
disadvantage of surface "tting is that the process may
have an over-smoothing e!ect on "ne surface detail. In
particular, over-smoothing due to the use of an excessive-
ly large support neighbourhood can erode important
features such as ridge-lines or surface cusps. Our second
observation is that there has been no consolidated at-
tempt to incorporate statistical information into the re-
"nement of topographic surface labels. In other words,
the process is again driven almost exclusively by the
smoothness or continuity assumption. This is a disa-
ppointing omission. It means that important constraints
provided by the adjacency structure of the topographic
labels are invariably overlooked when attempts are made
to impose curvature consistency.

These two observations provide the basic motivation
for the novel contributions of the study reported in this
paper. In the "rst instance, rather than using a conven-
tional surface-"tting technique, we make a direct esti-
mate of the Hessian matrix using statistics derived from
surface normals. The idea is to use the method of least
squares to estimate the directional second derivatives
using di!erences in the normal components over a local
support neighbourhood. This o!ers the advantage that it
simpli"es the problem of estimating the statistical uncer-
tainties inherent in the elements of the Hessian matrix.
Once the least-squares estimates are to hand, then their
associated covariance parameters can be computed from
the "t-residuals. We propagate the measured covariance
structure for the normals through to the estimation of
mean and Gaussian curvature.

Our motivation in embarking on this statistical analy-
sis is to provide probability estimates for the various
topographic-labels at individual points on the surface.
These label-probabilities are an essential pre-requisite for
the subsequent consistent labelling of the surface. It is
here that we make our second novel contribution. We are
interested in improving the consistency of the labelled
surface using relaxation labelling. Although the literature
contains a plethora of alternative schemes, these share
the common feature of requiring a representation of
the constraints which pertain to the labelling problem
in-hand. When the labelling problem is of a highly

1212 R.C. Wilson, E.R. Hancock / Pattern Recognition 32 (1999) 1211}1223



structured nature, as is the case in assigning mean and
Gaussian curvature labels, then a particularly powerful
way of representing the compatibility between adjacent
labels is to compile a dictionary of legal neighbourhood
label con"gurations. As recently demonstrated by Han-
cock and Kittler [14,15] this constraint representation
can o!er signi"cant performance gains when used in
conjunction with both discrete and probabilistic relax-
ation. Our second novel ingredient is therefore to
compile a dictionary which represents the valid con"g-
urations of topographic labels that can be consistently
assigned to neighbouring sites on the surface. In this
way we tap the rich source of constraints provided
by the highly structured nature of the topographic
surface labels. Furthermore these con"gurations
embody smoothness and continuity constraints on the
surface label con"guration. Since we adopt a triangulated
mesh structure to represent the surface, these neighbour-
hoods consist of triangular con"gurations of four sub-
triangles.

The framework adopted for combining these two sour-
ces of information is the dictionary-based relaxation
scheme of Hancock and Kittler [14]. This relaxation
process is Bayesian and requires the speci"cation of two
model components. The "rst of these are a set of initial
label-probabilities that represent the uncertainties in the
topographic label assignments. The second is a diction-
ary of legitimate label con"gurations. Although we
choose to use the dictionary-based probabilistic relax-
ation process, the model ingredients reported in the
paper can be utilised by a wide variety of consistent-
labelling schemes.

The outline of this paper is as follows. In Section 2,
we review the representation of di!erential surface struc-
ture using the Hessian matrix. Section 3 describes how
we estimate the Hessian using surface normals. In
Section 4, we detail our modelling of label uncertainty
through the propagation of variance. Section 5 outlines
the construction of a dictionary of label con"gurations.
In Section 6 we provide some experimental evaluation of
our method. Finally, Section 7 o!ers some conclusions
and provides some directions for future research.

2. Representing di4erential surface structure

In this paper we are interested in estimating the local
di!erential structure of surfaces using computed esti-
mates of the surface normal directions. This is to be
contrasted with the "tting of a local surface patch and
estimating curvature from the computed parameters of
the patch. We commence by providing some of the for-
mal ingredients of our surface representation. Fig. 1 illus-
trates the basic geometry used in estimating curvature
from surface normal information. In particular, the local
surface orientation is determined by the direction of the

Fig. 1. A local co-ordinate system on the surface.

surface normal n"(n
x
, n

y
, 1)T. When the surface is repre-

sented by a twice di!erentiable function z"f (x, y) , then
the components of the normal are related to the surface
gradient in the following manner:

n"A
L f

Lx

L f

Ly

1 B . (1)

In this continuous case, the di!erential structure of the
surface is captured by the Hessian matrix

H"A
L2f

Lx2

L2f

LxLy

L2f

LxLy

L2f

Ly2 B (2)

The eigen-structure of the Hessian matrix can be used to
gauge the curvature of the surface. The two eigen-values
of H are the maximum and minimum curvatures. The
orthogonal eigen-vectors of H are known as the princi-
pal curvature directions. The mean-curvature of the sur-
face is found by averaging the maximum and minimum
curvatures. Finally, the Gaussian curvature is equal to
the product of the two eigenvalues.

In the case when surface normal information is being
used to characterise the surface, then the Hessian matrix
takes on the following form

H"A
a b

b c B . (3)

The diagonal elements of the Hessian are related to the
rate-of change of the surface normal components via the
equations

a"
Ln

x
Lx

, (4)

c"
Ln

y
Ly

. (5)
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Fig. 2. Elements of the dictionary for the D-label.

Treatment of the o!-diagonal elements is more subtle.
However, if we assume that the surface can be represent-
ed by a twice di!erentiable function z"f (x, y), then we
can write

b"
Ln

x
Ly

"

Ln
y

Lx
. (6)

In the next section we will describe how the elements of
the Hessian, i.e. a, b and c, can be estimated from raw
surface normal data using the method of least-squares.

With estimates of the elements of the Hessian to-hand,
we can compute the mean (H) and Gaussian (K) curva-
tures of the surface. According to the de"nitions given
above

H"

1

2
(a#c), (7)

K"ac!b2. (8)

The signs and zeros of these two quantities can be used to
label the surface according to topographic class. The
di!erent classes are de"ned in Table 1. There are adjac-
ency constraints applying to the curvature labels. In
particular, the cup (C) and dome (D) surface types may
not appear adjacent to each other on a surface. More-
over, elliptic regions on the surface (those for which K is
positive) must be separated from hyperbolic regions
(those for which K is negative) by a parabolic line (where

Table 1
Topographic classes

Class Symbol H K Region-type

Dome D ! # Elliptic
Ridge R ! 0 Parabolic
Saddle ridge SR ! ! Hyperbolic
Plane P 0 0 Hyperbolic
Saddle-point S 0 ! Hyperbolic
Cup C # # Elliptic
Valley V # 0 Parabolic
Saddle-valley SV # ! Hyperbolic

K"0). Parabolic lines are e!ectively zero crossings of
the mean or Gaussian curvatures. In other words, domes
and cups are enclosed by ridge or valley-lines. Moreover,
domes or cups cannot be adjacent to saddle-structures.
In Section 5 we will exploit these constraints to construct a
dictionary to represent the spatial organisation of the
topographic labels.

3. Computing the Hessian using sampled normals

In this section we describe how to make a statistical
estimate of the Hessian matrix from a sample of surface
normals. Speci"cally, we use the method of least squares
to estimate the elements of H and to compute the errors
associated with these estimates.

We commence by assuming that we have a set of
surface normal measurements associated with a tenta-
tive surface. Moreover, we assume that the variance in
the surface normal components is known. For instance,
in the case of volumetric intensity images with the surface
normals estimated using directional edge-detection oper-
ators, then Sharp and Hancock [16,17] have shown how
the variance-covariance matrix for the surface normals is
determined by the intensity noise-variance together with
the autocorrelations of the "lter kernels. Let n

0
represent

the surface normal at the position (x
0
, y

0
, z

0
) and let

n
m

be a neighbouring surface normal with position
(x

m
, y

m
, z

m
). If the normals are close to each other, then

we can approximate the change in the components of the
surface normal using a "rst-order Taylor expansion. Ac-
cordingly,

*n (m)
x

"

Ln
x

Lx
*x(m)#

Ln
x

Ly
*y(m), (9)

*n (m)
y

"

Ln
y

Lx
*x(m)#

Ln
y

Ly
*y(m), (10)

where the measured change in the components of the
surface normal is given by n

m
!n

0
"(*n (m)

x
, *n(m)

y
, 0)T.

The displacements in point co-ordinates are
*x(m)"x

m
!x

0
and *y(m)"y

m
!y

0
. Substituting from
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Eqs. (4)} (6), we can rewrite the Taylor expansion in terms
of elements of the Hessian matrix, i.e.

*n(m)
x

"a*x(m)#b*y(m), (11)

*n(m)
y

"b*x(m)#c*y(m). (12)

These equations govern the parallel transport of the
vector across the curved geometry of the surface. So, to
"rst-order, the change in the normal is linear in the
elements of the Hessian matrix. Unfortunately, for
the single neighbouring normal these equations are un-
der-constrained and we cannot recover the Hessian.
However, if we have a sample of N neighboring surface
normals, then there are 2N homogenous linear equations
in the elements of H and the problem of recovering
di!erential structure is no-longer under-constrained. Un-
der these circumstances, we can estimate the elements of
the Hessian matrix using the method of least-squares.

To proceed, we make the homogeneous nature of the
equations more explicit by writing

*n (m)
x

"*x(m) ) a#*y(m) )b#0 ) c,

*n (m)
y

"0 ) a#*x(m) )b#*y(m) ) c. (13)

In order to simplify notation, we can write the full system
of 2N equations in matrix form as

N"XP (14)

where N is an aggregated column-vector of normal com-
ponents

N"A
*n (1)

x
*n (1)

y
*n (2)

x
F B ,

The design matrix X is a matrix of co-ordinate displace-
ments

X"A
*x(1) *y(1) 0

0 *x(1) *y(1)

*x(2) *y(2) 0

F B
and P is the parameter vector

P"A
a

b

c B .

When the system of equations is over-speci"ed in this
way, then we can extract the set of parameters that
minimises the vector of error-residuals N!XP. We pose

this parameter recovery process as a least-squares es-
timation problem. In other words we seek the vector of
estimated parameters P] "(a; , b< , c; )T which satisfy the
condition

P] "arg min
P

(N!XP)T(N!XP). (15)

The solution-vector is found by computing the pseudo-
inverse of the design matrix X thus

P] "(XTX)~1XTN. (16)

The resulting least-squares estimates of the elements of
the Hessian can be used to compute the mean and Gaus-
sian curvatures using Eqs. (7) and (8).

4. Covariance propagation

Rather than assigning the topographic labels de"ned
in Table 1 by thresholding the estimated values of the
mean and Gaussian curvature, we adopt a relaxation
method. Speci"cally, we aim to iteratively re"ne a set of
initial label probabilities using dictionary-based prob-
abilistic relaxation. In order to embark on this endeavor,
we will require a probabilistic characterisation of the
uncertainties in the mean and Gaussian curvatures. We
use the variance-covariance matrix for the estimated
values of H and K to provide the necessary measure
of uncertainty. This matrix is computed by propagating
the variance from the surface-normal components. In
our experiments we will use surfaces segmented from
volumetric intensity images to evaluate our labelling
process. We commence from the assumption that the
components of the surface normal are un-correlated and
have the same variance v. The changes *n

x
, *n

y
are

calculated from the di!erence of a normal to some central
reference normal thus

*n (m)
x

"n (m)
x

!n (0)
x

,

*n (m)
y

"n (m)
y

!n (0)
y

.

In consequence, the covariance matrix for the normal
changes is given by

&
N
"v A

1 0 2 0 2 2

0 1 0 2 0 2

2 0 1 0 2 2

F B . (17)

Since the parameter-vector P] is related to the computed
surface normals in a linear fashion according to Eq. (16),
the parameter covariance matrix is given by

Rp"(XTX)+1XTRNX (XTX)+1. (18)
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For the sake of convenience, we denote the elements of
Rp as follows:

Rp"A
vaa vab vac
vba vbb vbc
vca vcb vcc

B . (19)

Since the mean and Gaussian curvatures are computed
from the trace and determinant of the Hessian matrix, we
can proceed no further with the linear propagation of
variance. However, if we perform a "rst-order error anal-
ysis, then the variances and covariance for the mean and
Gaussian curvatures are approximately given by

v
HH

"vaa#vcc#2vac , (20)

v
KK

"c2vaa#a2vcc#4b2vbb#2acvac

!4cbvab!4abvbc , (21)

v
KH

"cvaa#avcc#(a#c)vac!2bvab!2bvbc . (22)

Speci"cally, the H!K covariance matrix is

Rl"A
v
HH

v
KH

v
KH

v
KK
B . (23)

4.1. Label probabilities

Our motivation for performing the analysis of errors
on the values of H and K was to provide probability
estimates for the di!erent curvature label types at a point
on the surface. This is achieved by adopting a Gaussian
distribution for the mean and Gaussian curvatures. The
basic model assumes that the observed values of the
curvatures h

m
and k

m
deviate from their true values under

Gaussian measurement errors. The distribution of errors
is controlled by the H!K covariance matrix &

l
. If

x"(h!h
m
, k!k

m
)T is the di!erence between the true

measurement vector (h, k)T and the observed measure-
ment vector (h

m
, k

m
)T, then the assumed distribution is as

follows

p(H"h
m
, K"k

m
)"

1

2nJ DRl D
e!1

2
xTR~1

1
x. (24)

We now provide an illustration of how this probability
distribution can be used to assign curvature label prob-
abilities. We take as our example the saddle class S which
requires H"0 and K(0. The probability of the saddle
label is taken to be equal to the cumulative probability
distribution over the range of H and K for which the
saddle condition holds. In other words,

P(0)(S)"P
0

~=

p (H"h
m
, K"k) dk. (25)

To proceed, suppose that the components of the in-
verse covariance matrix are A

hh
, A

hk
and A

kk
, i.e.

&~1
l

"A
A

hh
A

hk
A

hk
A

kk
B . (26)

On substituting for the inverse covariance matrix in the
probability distribution of Eq. (24) and performing
the integration in Eq. (25), the initial probability for the
saddle-class is given by

P(0)(S)"
JA

hh
D&

l
D1/2

e!kÈ
2
(A2

hk
!A

hh
A

kk
)

]
1

2 G1#erf CS
2

A
hh
Ahm#

A
hk

A
hh

k
mBDH . (27)

The remaining initial label probabilities are obtained by
computing the relevant cumulative distribution function
over the range of H and K values for which the relevant
topographic label applies (see Table 1).

5. Labelling the surface

Equipped with the values of K and H, the local surface
structure can be characterised using the standard eight
topographic label classes from Table 1. However, be-
cause of uncertainties in the surface normals, these labels
are likely to be noisy and subject to classi"cation error.
In particular neighbouring surface labels may be incon-
sistent with one-another when viewed from the per-
spective of legal di!erential structure. In other words,
they may violate the constraint that elliptical and
hyperbolic regions must be simply connected, and be
separated from one-another by thin parabolic lines.
Furthermore, regions of the same label type may be
fragmented by noise. It should be noted that these obser-
vations only apply to smoothly and continuously curving
surfaces.

In order to quantify these observations, we construct
an exhaustive dictionary of allowed label con"gurations
which satisfy these constraints. It should be noted that
if we wish to construct a dictionary which e!ectively
smoothes noisy surface labels to create contiguous
regions, we must guarantee that the scale over which
the smoothing takes place is appropriate. In other words,
if we construct a dictionary which allows only smooth
label con"gurations, we must ensure that the surface
varies smoothly over the scale of a dictionary item. It is
for this reason that we adopt the surface mesh repres-
entation of Wilson and Hancock [18] in which the den-
sity of surface elements is proportional to the surface
curvature and the surface is smooth over adjacent ele-
ments of the mesh.
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Fig. 3. Elements of the dictionary for the SR-label.

5.1. Dictionary

As mentioned above, there are strong adjacency con-
straints on the valid label con"gurations appearing on
the neighbourhoods of some classes of surface. One of the
goals of the work reported in this paper is to describe
a methodology for enumerating and encoding these con-
straints in a dictionary for the topographic labels. Of
course, the construction of a dictionary depends critically
on the choice of neighbourhood topology. In the experi-
mental section later we will be demonstrating the utility
of the method on triangular surface meshes. In this case
the natural neighbourhood consists of a triangle and it's
three directly adjoining elements. We will therefore con-
"ne our attention exclusively to this arrangement of
objects in constructing the dictionary.

We commence by considering the dome-class (D) for
which K'0 and H(0. This is an example of an elliptic
region. It can therefore be connected to other dome
labels. In fact if smoothness and continuity consider-
ations are to be satis"ed, the label must be connected to
one or more other dome labels. In other words, smooth-
ness considerations rule out the case in which a dome
label is surrounded by non-dome labels. It cannot be
adjacent to any class other than the saddle-ridge for
which K(0 and H(0, and these two labels are separ-
ated by a ridge line. The ridge and valley labels fall into
the category of parabolic lines. In other words, they must
form the boundaries between hyperbolic regions and
elliptical regions. Speci"cally, they are e!ectively zero
crossings of Gaussian curvature. In consequence the
ridge label intercedes between elliptical domes and hy-
perbolic saddle-ridges, and resides on the mesh edges
separating these two labels. The con"gurations satisfying
these two constraints are shown in Fig. 2. It should be
noted that all sections of the dictionary are rotation

invariant. The cup-class (C) is symmetric with the dome
under reversal of the sign of the mean curvature (H).
Under this transformation, the ridge-label is replaced
with the valley label. The dictionary for the cup class is
therefore constructed by performing the mappings
DPC, RP< and SRPS< in Fig. 2.

The two hyperbolic region labels have a more complic-
ated neighbourhood structure. The saddle-valley and the
saddle-ridge labels must again form contiguous patches.
However, they can be bounded by both the converse
saddle surface and the dome or cup of appropriate mean-
curvature. For instance the saddle-ridge can be adjacent
to the dome and the saddle-valley. Again smoothness
considerations rule out an unconnected central label. The
set of legal dictionary-items for the saddle ridge which
satisfy these three constraints are shown in Fig. 3 (exclud-
ing the rotational symmetries). The saddle-valley is again
symmetric under reversal of the sign of the mean-curva-
ture.

5.2. Probabilistic relaxation

In order exploit the highly structured nature of the
surface labelling constraints, we have chosen to employ
the technique of probabilistic relaxation. However, it
should be pointed out that the model ingredients de-
veloped in this paper could equally be applied to other
consistent labelling schemes. Our reasons for choosing
probabilistic relaxation are two-fold. In the "rst instance,
the method draws on labelling constraints using an ex-
haustive list or compilation of valid neighbourhood label
con"gurations. In our surface labelling application the
dictionary is simply that described in the previous sec-
tion. The second reason is that the framework is Bayesian
and combines evidence for label assignments. Rather
than commencing from hard and potentially erroneous
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label assignments, the initial characterisation is in terms
of a posteriori label probabilities. In other words, diction-
ary-based relaxation allows us to exploit and combine
both consistent surface label structure and the covariance
structure of the H-K curvatures.

According to the original formulation of Hancock and
Kittler [14], the local labelling is described by a set of
probabilities. Speci"cally, P(n) (S

i
"u) is the weight of

evidence assigned to the label assignment u at site S
i
for

the iterative epoch n of the algorithm. Initially, these
probabilities are calculated using the computed values of
H and K, together with their known covariance struc-
ture. The label-probabilities are iteratively updated using
the following non-linear relaxation rule:

P(n`1)(S
i
"u)"

P(n) (S
i
"u)Q(n)(S

i
"u)

+
u{|) P(n)(S

i
"u@)Q(n) (S

i
"u@)

. (28)

The critical ingredient in the update formula is the sup-
port function Q(n)(S

i
"u) which combines evidence from

the context-conveying neighbourhood K
i
of the surface-

site S
i

for the label assignment u3). Here )"

MD, R, SR, S, S<, <, CN denotes the complete set of cur-
vature labels. According to Hancock and Kittler [14], the
support function takes on the following product-form:

Q(n) (S
i
"u)" +

"|# (u)
G <
k|K

i

P(n)(S
k
"j

k
)

P(S
k
"j

k
) H

]P(S
l
"j

l
∀l3K

i
). (29)

In the above formula #(u) denotes the set of label con"g-
urations from the dictionary that assign the label u to the
centre-object, i.e. S

i
. The complete dictionary is the set of

con"gurations

#"Z
u|)

#(u). (30)

We have used K
i
to denote the index-set of the objects

that form the local neighbourhood of the site S
i
. With

this notation, the dictionary item ""Mj
k
; k3K

i
N is a

con"guration of valid topographic labels on the neigh-
bourhood K

i
. In the work reported here, the dictionary

consists of the set of curvature label con"gurations de-
scribed in Section 5.1. The structure of the label model is
represented by the prior probabilities, P(S

l
"j

l
∀l3K

i
)

for the legal label con"gurations belonging to the dic-
tionary. Here we assume that the dictionary items occur
with uniform a priori probabilities, i.e.

P(S
l
"j

l
∀l3K

i
)"

1

+
u{|) D#(u) D

. (31)

Finally, P(S
i
"u) is the single-object prior for assigning

the label u to the site S
i
. Here we model the priors by

counting the number of times the dictionary makes the

assignment of the label u to the centre-object. In other
words,

P(S
i
"u)"

D#(u) D
+

u{|) D# (u) D
. (32)

With these ingredients in place the relaxation scheme
is iterated to locate the "nal consistent labelling of the
surface.

6. Experimental evaluation

In this section we o!er some experimental validation
of our surface-labelling algorithm. There are two aspects
to this study. In the "rst instance, we provide some
real-world evaluation of the method on surface-data ex-
tracted from MRI data. In order to evaluate the method
under controlled conditions, the second set of experi-
ments are conducted using synthetic surfaces. The aim
here is to compare the labellings obtained with ground-
truth data. In particular, we illustrate some of the iter-
ative properties of curvature labelling process. We also
measure the sensitivity of the surface labels to controlled
levels of added noise.

6.1. Real world data

The real world application of our curvature labelling
technique concerns surface-data extracted from a vol-
umetric MRI image of a human head. The processing
chain used to extract the surface data is as follows. We
commence by extracting connected contours on the indi-
vidual slices in the MRI volume by applying an edge
following snake to the raw grey-scale values. The snake
attaches itself to boundaries closest to the perimeter of
the slices. As a result, the recovered 3D data-points lie on
the boundary surface of the head. Once the surface points
are to hand, we extract a triangulated surface mesh. The
mesh used in our experiments is described in recent
papers by Wilson and Hancock [18,19]. This mesh is
"tted to the raw surface data-points using a series of split
and merge operations aimed at optimising a local vari-
ance-bias criterion. The neighbourhoods used in our
curvature labelling experiments consist of a centre-
triangle together with the three triangles that share an
edge.

The data used in our study is a frontal view of the head
which contains "ne surface detail around the nose and
eye-sockets. Fig. 4 illustrates the surface-segmentation
process. Initially, the surface-mesh is relatively noisy. The
triangulation provides only a rough initial surface repres-
entation. The mesh adapts to this surface by decreasing
the density on the relatively smooth forehead, and in-
creasing the surface density around the highly curved
nose and eye-sockets (see Fig. 4). Noisy surface structure
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Fig. 4. Initial and "nal con"guration of the mesh over a surface extracted from 3D slice data.

is smoothed away. There is no evidence for over-"tting
with a spuriously high mesh-density in the proximity of
surface-noise.

We illustrate the labelling of the segmented surface in
Fig. 5. The "gure shows an iterative sequence of winner-
take-all labellings derived from the probabilities de-
livered by the relaxation process. Initially, the labelling
contains many local inconsistencies. These are most
marked in the highly curved regions around the eye
sockets and on the ridge of the nose. After application of
the relaxation process, most of the local inconsistencies
are corrected. The hyperbolic and elliptical regions dis-
play impressive connectivity. The algorithm reaches
stable convergence after approximately 20 iterations.

6.2. Simulated surface data

The real-world experiments described in the previous
subsection reveal in a qualitative way that our labelling
scheme has some practical utility. However, since
ground-truth is not available it does not allow sensitivity
limits to be established. In order to furnish operating
limits for our curvature labelling process, we provide
some experiments on simulation data with known
ground-truth.

We commence by generating surfaces with controlled
levels of additive Gaussian noise. The surfaces simulate
range images. The additive Gaussian noise models sens-
ing errors in the surface height distribution. The raw
height data is triangulated using sample points from the
surface. The mesh optimisation algorithm of Wilson and
Hancock [18] is then applied to produce a surface tri-
angulation. The points within these triangles then pro-
vide the surface normal information required for the
initial surface-curvature estimation.

We begin by demonstrating the ability of the algorithm
to recover from noise using a simple spherically curved

surface of radius 200 units and with additive Gaussian
noise of variance 1 unit in the z-direction. Fig. 6 shows
the initial curvature labelling on the left and the "nal
labelling after application of the algorithm on the right.
The initial labelling is corrupted with large numbers of
spurious labels and inconsistencies between adjacent
labels. After relabelling, the labels on the cup surface are
completely consistent; initial some 61% of labels are
correct and after application of the algorithm all labels
are correct.

Our next set of experiments use a more complex sur-
face which contains all the di!erent label classes. Fig. 7
shows the initial labelling of a cosine surface with addi-
tive Gaussian noise of variance 1 unit. The surface labels
are colour coded according to the following convention.
Domes appear as red, saddle ridges are yellow, saddle
valleys are mauve and cups are blue. Notice that in the
initial labelling the abutting boundaries of the di!erent
regions are intrinsically inconsistent when viewed from
the perspective of the topographic label-set. Fig. 8 shows
the labelling of the surface after 12 iterations of the
dictionary-based relaxation scheme. The green edges
appearing in the updated labelling are parabolic lines
(i.e. either ridges, valleys or saddles), which are consis-
tently labelled between the appropriate regions. The
overall consistency of the labels from the standpoint
of smoothness constraints is considerably improved.
Initially some 61% of labels are correct; after applica-
tion of the scheme, this improves to 81%. Study of the
ground truth labelling (Fig. 9) reveals that most of these
errors occur in the saddle label classes. Although these
saddle regions appear in qualitatively correct positions
relative to the elliptic classes, mis-location of the region
boundaries results in incorrect labels relative to ground
truth.

We have performed a more systematic study of the
labelling scheme under controlled noise conditions. In
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Fig. 5. Iterative sequence showing successive topographic labels for 3D slice data; Red labels represent domes, blue labels are cups,
yellow labels are saddle ridges and purple labels are saddle valleys. (a) Initial labelling, (b) iteration 8, (c) iteration 16, (d) "nal labelling.

Fig. 6. Initial and "nal labelling of a noisy spherical surface.

Figs. 10 and 11 we investigate the labelling performance
as a function of noise-variance in the raw data-point
heights. The two plots respectively show the results for
the spherical and cosine surfaces. These "gures underline

in a more quantitative way some of the qualitative obser-
vations made earlier. The two curves in the plots show
the initial and "nal fractions of correct labels when a win-
ner-take-all decision is made. In both cases the "nal
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Fig. 7. Initial labelling of cosine surface.

Fig. 8. Final labelling of cosine surface.

labelling represents a considerable improvement in accu-
racy over the initial non-contextual assignment of topo-
graphic labels. It is interesting to note that this is the case
for both the spherical surface, which is of uniform topo-
graphic composition, and the cosine surface, which
is more structured. However, in the case of the cosine
surface, the improvement over the initial labelling is
not as marked for large values of the height noise-
variance.

Fig. 9. True labelling of cosine surface.

7. Conclusions

Our main contributions in this paper are twofold.
In the "rst instance, we have demonstrate how topo-
graphic surface labelling can be realised using a
constrained dictionary of feasible surface-label con"g-
urations. These con"gurations observe certain con-
straints on the adjacency of di!erent topographic classes
together with their region continuity or line contiguity.
The second contribution is to develop a statistical model
which allows the topographic surface-labels to be as-
signed probabilities based on the measured values of the
mean and Gaussian curvatures. These probabilities
model the assignment of topographic classes using sur-
face normal information. We have also shown how these
two elements can be integrated using a relaxation
scheme. Results have shown that the resulting labelling is
a considerable improvement over the raw topographic
labels.

There are a number of ways in which the ideas
developed in this paper can be extended. In the "rst
instance, we intend to construct a more realistic model
of the distribution of curvature error. At the moment
there is little justi"cation for our Gaussian distribution
model. Secondly, we intend to explore alternative curva-
ture representations. These include the perceptually
motivated angular shape-index of Koenderinck [20].
This will have a number of implications for our
surface model. In the "rst-instance, the dictionary
will have a more natural structure. Studies directed at
these issues are in progress and will be reported in due
course.
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Fig. 10. Graph of the performance of the surface-labelling scheme on a noisy sphere surface.

Fig. 11. Graph of the performance of the surface-labelling scheme on a noisy cosine surface.
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