
page 1

Adaptive Systems: a solution to usability problems

DAVID BENYON

Computing Department, Open University, Milton Keynes, MK7 6AA UK

Abstract. Improving the usability of computer systems is perhaps the most
important goal of human-computer interaction research. Current
approaches to usability engineering tend to focus on simply improving the
interface. An alternative is to build intelligence into the system. However,
in order to do this a more comprehensive analysis is required and systems
must be designed so that they can be made adaptive. This paper examines
the implications for systems analysis, design and usability specification if
adaptive systems are to be a realistic solution to usability problems.

Key words: usability, adaptive systems, analysis, adaptive system
architecture

1. Introduction

Whiteside, Bennett and Holtzblatt define usability engineering as 'a
collection of techniques to support management of resources in the
development of user interfaces and computer function' (Whiteside,
Bennett and Holtzblatt, 1988). They see users' experience of the usability of
systems as the ultimate test of system quality and stress that usability,
functionality and system architecture are intrinsically linked.

The general approach to usability engineering is for user interface experts
to study the usability of an existing or prototype system and to recommend
improvements. Appropriate methods for such an analysis include experts
criticising the interface (heuristic evaluation), formal laboratory-based
usability testing, the application of HCI guidelines and structured
'cognitive walkthroughs'. Usability problems are identified and classified
and solutions proposed. These possible solutions are obtained from a
variety of sources such as experience, protocol analysis and brainstorming
sessions.

In some cases a small change to the interface may be an effective solution
to a usability problem, but in others more radical alternatives are required.
In particular, it is increasingly possible to include some measure of
intelligence - in the form of an automatic adaptive capability - in the
system. This paper considers the circumstances under which the designer
may wish to use this option and provides guidelines as to the
developments of traditional analysis and design techniques which are
required in such cases. The importance of a complete analysis is illustrated
by means of a small example which also demonstrates how the
recommended adaptive system architecture is used to specify the adaptive
system's capabilities.

This paper does not address the usability of adaptive and intelligent
systems themselves. Criticisms of adaptive systems include considerations
of feasibility (e.g. Thimbleby, 1990), excessive cost, problems of 'hunting

page 2

(Edmonds, 1987) and issues of consistency. However, none of these is
inherently damning to the notion of a system having an adaptive
capability. The desirability of the adaptive system solution to a usability
problem is an issue which demands experimental evidence, consideration
of general HCI guidelines and evaluation against other design options.
This can only be achieved given the specific circumstances and the
purpose of the system.

2. Usability requirements

Shackel (1990) recognizes that there are four components of any work
situation; user, task, system and environment. In the case of human-
computer interaction, the system is the computer system. Environment
includes physical aspects such as appropriate heating, lighting, equipment
layout, operating circumstances and so on as well as psychological aspects
such as the provision of help and training and socio-political features such
as the organizational environment in which the interaction takes place.
Usability is concerned with achieving a harmony between these
components.

Shackel proposes that usability can be seen in terms of four operational
criteria; effectiveness, learnability, flexibility and attitude. Effectiveness is
specified with respect to the performance (as measured by a characteristic
of the interaction such as the time taken to complete the task or the
number of errors made) of a range of tasks by some percentage of the users
within some proportion of the environments in which the system will
operate. Learnability is defined in terms of the time taken to learn (to
some specified level of competence) given a specified amount of training.
Learning also includes the time taken to relearn the system if details are
forgotten. Flexibility covers the amount of variation in the tasks and/or
environments which can be accommodated by the design. Attitude
concerns the acceptable levels of human cost (tiredness, effort, etc.) which
are required so that users are satisfied enough to continue to use and to
enhance their use of the system.

Whiteside, Bennett and Holtzblatt do not identify usability criteria so
precisely, preferring to deal in general with usability attributes which
should be determined, along with functional and data requirements,
during the requirements specification stage of system development.
However, both approaches emphasize that usability requirements should
be definable and measurable. This aspect of usability identifies a trend
which is reflected in recent work on usability metrics. Thus a good
usability attribute will define, precisely, what the task is (the level of
difficulty etc.), how it is to be measured and the expected level of
performance.

For example, a database system may have the following usability
requirement

In this system retrieval tasks with a level of complexity of a
single SQL type ‘select...from...where...’ statement should be
accomplished in an average of less than 25 seconds by 80% of

page 3

the users. Over twelve tasks less than 10% of users should
make more than two errors.

The problem with this approach to usability specification is that it does not
go far enough. In particular it does not consider explicitly the variety
which is inherent in many systems. Most systems will be used by
heterogeneous users who will be interacting with the system in a number
of different environments. These considerations need to be made explicit
in the definition of usability criteria.

3. Variability in Systems design.

The problems of dealing with the 'average' user of a system was illustrated
in an experiment which was conducted recently (Jennings and Benyon, in
press). During a formative evaluation of a database system, a menu
interface could only achieve an average retrieval time of 33 seconds.
However, it achieved this with less than two errors in twelve tasks. A
command interface to the database system was able to achieve a response
time of 29 seconds for all subjects, but 25% of subjects made more than 2
errors on the twelve tasks. However, the other 75% of subjects achieved an
average response time of 24 seconds with less than 1 error on the twelve
tasks.

In this sort of situation, designers are faced with the problem that a single
interface cannot be designed which meets the usability requirement (as
given above). Moreover, there is a large difference in the performance of a
significant 25% of the users. Making just the menu interface available is
clearly a severe restriction on 75% of users (since it takes an average of 9
seconds per query longer for them) and may lead to other usability
problems. In such a case, designers have a number of options. They may
decide to review the usability requirements, to redesign the interface, to
provide additional help or user training or to make both interfaces
available.

A similar situation arises with respect to variety of operating
environments. A specific system may be used in an office environment
where there is ample local expertise, or where face-to-face help can be
given if required. The same system may be used by a lone user where such
support is not available. This variety of environments needs explicit
consideration in defining usability criteria.

4. Options for the designer

The job of the system designer is to achieve a harmony between users,
tasks, environments and system. Any of these may be altered in order to
improve the relationship. Users can be educated and trained. The
environments can be enriched. Tasks can be changed or the system can be
redesigned. However, systems which are adapted to interact with other
systems simply through a fixed design will always be ill-adapted to interact
with systems which are outside the scope of the design limits. For
example, a system which is designed to be used after a given amount of

page 4

user training will be ill-adapted to interact with a person who has not
received that training.

One way to facilitate interaction between two systems which are otherwise
unable to engage in a successful interaction is to use an adapter. An
adapter is a third system which mediates between the two ill-adapted
systems. This may be a software system - a ‘front-end’ - or a human
intermediary such as a librarian who helps users conduct literature
searches.

A larger number of successful interactions can be afforded by providing a
designed system with a customising or tailoring facility. Customisation
requires one system to alter the state or behaviour of another system.

The final way to support successful interaction between two systems is if
one or both systems has some mechanism which can automatically select
alternative behaviours. These are usually referred to as adaptive systems.
Adaptive systems have advantages over fixed design systems in that they
can engage in a larger number of interactions without needing to employ
an adapter, or requiring action by another system to change their state or
behaviour. However, they incur the cost of having to maintain more
complex representations; of themselves, of the systems with which they
can interact and of the interaction itself. Humans are adaptive systems.
Computer systems can be made adaptive.

Within the broad category of adaptive systems, Browne, Totterdell and
Norman (1990) identify four levels of adaptation based on the complexity
of the representations maintained by the system and the ability of the
system to utilize those representations. 'Simple' adaptive systems use a
‘hard wired’ stimulus-response mechanism. ‘Self-Regulating’ systems
monitor the effects of the adaptation on the subsequent interaction and
evaluate this through trial and error. ‘Self-mediating' systems monitor the
effect on a model of the interaction (as opposed to monitoring the effect of
the change in behaviour on the actual interaction). Hence possible
adaptations can be tried out in theory before being put into practice. In all
the other adaptive systems the models are static. 'Self-modifying' systems
are capable of changing these representations. This allows self-modifying
systems to reason about the interaction. Adaptive mechanisms (for
example, 'predictive interfaces') may also employ statistical inference
mechanisms and domain knowledge to anticipate the behaviour of the
other system (Greenberg, Darragh, Maulsby and Witten, 1991).

Browne, et al. (1990) also argue that the levels of adaptivity reflect a change
of intention moving from a designer specifying and testing the
mechanisms in a (simple) adaptive system to the system itself dealing
with the design and evaluation of its mechanisms in a self-modifying
system. Moving up the levels also incurs an increasing cost which may
not be justified. There is little to be gained by having a self-modifying
capability if the context of the interaction is never going to change.

Adaptive systems differ from other interactive systems in that they are
characterised by design variety. Rather than the designer trying to obtain a
single solution to a problem, the designer specifies a number of solutions

page 5

and matches those with the variety and the changeability of users and the
environments. Adaptive systems are a serious solution to usability
problems where a degree of variety is present. In this sense, adaptive
systems are pragmatic. Any system may require an adaptive capability
depending on the variety with which it has to deal. Some systems, such as
Natural Language (NL) systems, or Intelligent Tutoring Systems (ITS)
must be essentially different for each individual user. The functional
requirements of such systems determine that they must be adaptive. Other
systems may require only a small part of the system to be adaptive and
then only to a small number of user groups or environmental differences.

5. Architecture for adaptive systems

The designer has to consider the range of ways in which systems can be
made adaptive and to select a capability appropriate to the usability
problem at hand. The most basic architecture of an adaptive system is
illustrated in Figure 1. An adaptive system requires three models, or
representations. The sophistication of the adaptive mechanism depends
on the quality of these models.

Model of
Other system

Model of
the system

Model of
the interaction

Figure 1 General model of an adaptive system.

The model of the system describes the characteristics which can be altered
i.e. the aspects of the system which are adaptable. A system model which
represents only physical aspects of the interaction such as screen displays,
dialogue content or the effects of function keys will only be able to adapt at
this level. A system model which represents the logical structure or
functioning of the system will be capable of adapting at a logical level. For
example, HAM-ANS (Morik, 1989) deals with a logical description of hotel
rooms whereas the adaptive menu system (Greenberg and Witten, 1985)
only adapts the physical arrangement of menu items. A further level of
adaptivity may be obtained if the model of the system describes the system
at the task level i.e. what the system can be used for. A complex system
may be kept functionally simple for a new user if it can adapt at the task
level. These three levels of description are necessary because each reveals
some generalisation which would otherwise not be available. The

page 6

philosophical arguments for this view can be found in Dennett (1987) and
Pylyshyn (1984) amongst others.

The model of the other system describes the attributes of the system which
the adaptive system can adapt to. This is the adaptive system's 'notional
world'. In the case of two interacting computer systems, this model is
maintained at the three levels described previously. In the case of a system
adapting to a human, the model of the other system is the user model and
may represent characteristics of individual users such as their cognitive
characteristics, personal profile and/or domain knowledge. Hence HAM-
ANS employs a model of the 'world' of its users in terms of profile data
such as their job. Intelligent tutoring systems usually see the world in
terms of the users domain knowledge (i.e. a student model).

The models of the interacting systems only define what adaptations are
possible - how the system can change and what it can adapt to. The
interaction model describes the actual adaptations which the system
makes. It also describes the inferences which can be made about the other
system from the interaction and may include evaluation mechanisms
which measure actual performance against some definition of purpose (as
represented in the model of the system). The inference, adaptation and
evaluation mechanisms constitute the system's interaction knowledge
base. In addition to this, any adaptive system must maintain a record of
the interaction - the dialogue record. The grain and length of this record is
another significant factor in determining the capability of the adaptive
system. The interaction model thus consists of a dialogue record and an
interaction knowledge base.

The architecture for an adaptive system which adapts to human users is
illustrated schematically in Figure 2. Although only one domain, user and
interaction model is shown in the Figure, any given system may have
several such models if it has to adapt to, or make inferences from a
number of other systems. For example, in Cohen and Jones’s system
(Cohen and Jones, 1989) which helps parents and psychologists understand
the learning difficulties of a student, there is a need for two user models;
one representing the 'patient' and the other the 'agent' (Spark Jones, 1989).
Similarly there may be a need for more than one domain model. There is
no requirement for every adaptive system to possess all the components
illustrated in Figure 2. However, the Figure does provide a reference
model which allows a comparison of different systems.

page 7

cognitive
model

profile
model

student
model

user model

task level
logical
level

physical
level

domain model

dialogue record

evaluation
mechanisms

adaptation
mechanisms

inference
mechanisms

interaction knowledge base

interaction model

Figure 2 Schematic outline of adaptive human-computer system

Referring systems to the components in Figure 2 allows us to classify
systems according to the amount of the architecture which they explicitly
implement and the complexity of the models which they employ. Thus
the focus of a predictive interface such as the reactive keyboard (Greenberg,
Darragh, Maulsby and Witten, 1991), the adaptive menu system
(Greenberg and Witten, 1985) or adaptive manual (Mason, 1986) is on the
inference and adaptation mechanisms and the dialogue record. In these
systems there is often no attempt to abstract long-term user characteristics
(although in one application of the reactive keyboard a long-term user
model is maintained) and the domain model is usually represented only
implicitly in the system code. The simple stimulus-response adaptive
systems contain an adaptation mechanism which selects the output on the
basis of an analysis of the dialogue record. They may include an explicit,
embedded user model which provides further conditions to control the
firing of the adaptation rules. Self-regulating adaptive systems require
inference and evaluation mechanisms since they have to learn from
interacting with the environment. They have to be able to abstract from
the dialogue record and capture a logical or task level interpretation of the
interaction. An explicit domain model is vital in such systems. Self-
mediating systems require a more sophisticated model of the interaction
and of the other system. The domain model has to include an explicit
statement of the reasoning which underlies the adaptive capabilities, so
that the system can try out alternative adaptations in theory before trying
them in practice. Self-modifying systems can change these models and
hence have meta-rules which allow the system to add, modify or delete
existing aspects of the interaction knowledge-base. Systems which can
amend the user and domain models represent another level of
sophistication.

page 8

6. The need for better analysis and design

Systems analysis is the process of understanding the problems of any
current system and establishing the requirements for any replacement
system. Systems analysis inevitably involves some design and needs to be
seen in the context of an iterative approach to systems development.

If systems analysis is to provide the designer with enough data to
formulate usability requirements successfully - and to allow the designer
to consider an adaptive system solution to usability problems - then
traditional methods of analysis which focus simply on functional and data
requirements are inadequate. An enhanced concept of systems analysis
should be seen as consisting of five interrelated and interdependent
activities;

• functional analysis aims to establish the main functions of the
system.

• data analysis is concerned with understanding and representing the
meaning and structure of data in the application. Data analysis and
functional analysis go hand in hand to describe the information
processing capabilities of the system (Benyon, 1990).

• task knowledge analysis focuses on the cognitive characteristics
required of the users by the system e.g. the search strategy required,
cognitive loading, the assumed mental model etc. This analysis is
device dependent (Benyon, 1992) and hence requires some design to
have been completed before it can be undertaken.

• user analysis determines the scope of the user population which the
system is to respond to. It is concerned with obtaining attributes of
users which are relevant to the application such as the required
intellectual ability, cognitive processing ability and prerequisite
knowledge required. The anticipated user population will be analysed
and categorised according to aspects of the application derived from
task, functional, data and environment analysis.

• environment analysis which covers the environments within which
the system is to operate. This includes physical aspects of the
environment and ‘softer’ features such the amount and type of user
support which is required.

Although formal methods exist for data and functional analysis and
several cognitive task analysis methods are emerging (Diaper, 1988,
Barnard, 1987) there are few formal techniques for conducting user and
environment analysis. Checklist approaches can be found in (Catterall,
Taylor, and Galer, 1991 and Macaulay, Fowler, Kirby, and Hutt, 1990) and
various application specific user modelling techniques are described in
(Kobsa, A. and Wahlster, W., 1989), but generic, analytic techniques are
still wanting. One contribution which work on user modelling may make
to this area is to provide a framework within which user analysis can be
more thoughtfully conducted.

page 9

The process of analysis results in the specification of system requirements.
Once these have been obtained, the application can be specified at the three
levels identified in the domain model and the mappings between them.
The application should be represented in terms of structure and functions
at each of these levels. A number of notations such as Entity-relationship
diagrams (Benyon, 1990) and dataflow diagrams (DeMarco, 1979) are
available for this purpose.

The application described in this manner is suitable for implementation as
the domain model in an adaptive system.

• the task level describes the (external) tasks, or goals which the system
is to support

• the logical level describes the logical functioning and structure of the
application.

• physical design is concerned with the layout of screens and the
construction of icons, etc. (the representational aspects) and with the
operational aspects

• the task/logical mapping describes the cognitive processing required
by users as they translate their goals into the system’s functionality

• the logical/physical mapping describes the consistency, learnability
and other aspects of the actual system use.

At some point in the system development process, the designer may
decide that the system requires an adaptive capability. Designers should
make such a decision on the basis of the analysis which has been
conducted. For example, an automatic meeting scheduling system may
include the requirement that individual user preferences for dates and
times of meetings are taken into consideration. Such a requirement would
demand an adaptive mechanism. A particularly important part of system
design is the transition from a logical to a physical design (when functions
are allocated either to the human or to the machine). A decision to be
made by designers is that if a function is allocated to the user, it will
require them to face additional cognitive processing, but if it is allocated to
the machine, then the system will require an adaptive capability. This
decision is informed by cognitive task analysis which considers the mental
load imposed on the user by possible designs. For example, the simple
adaptive mechanisms now being provided by modern spell-checkers
illustrates how the task of correcting spelling mistakes is increasingly
allocated to the machine rather than the user.

Once the adaptive capability option has been identified, the adaptive
system must be developed in parallel with the application. The
specification of the adaptive system part of the application requires the
specification of the domain, user and interaction models. This in turn
requires the designer to focus on what needs to be adapted and what it
needs to adapt to. It may be that the whole system is to be adaptive. In this
case, the domain model and the system design are the same thing.
However usually, only a part of an application will require an adaptive

page 10

capability and so it is this part which must be isolated and specified in the
domain model.

7. Example

This is an extended version of the example in (Benyon and Murray, 1993).
It illustrates in terms of the models presented in the earlier parts of this
paper, the processes which were undertaken and decisions which were
arrived at during the development of an exemplar adaptive system
(Jennings, Benyon and Murray, 1991, Jennings and Benyon, in press). It is a
small example which is intended to be illustrative of the approach and to
provide a suitable vehicle for demonstrating the content of the
representations which are required for any adaptive system.

The outline specification of the system may be taken as follows;

The purpose of the system is provide access to data about students and staff
in a university. The system is to easily usable, with no prior training (a
'walk-up-and-use' system). It is to be used by managers and administrative
staff who will require the system only very infrequently and also by
clerical staff who will use the system regularly.

7.1 ANALYSIS

During the analysis and design of the basic system the following analyses
were made

Data Analysis There would be two files; one containing staff details and
the other student details

Functional
Analysis

The system should support simple queries of the form
Select <attributes> From <file> Where <selection criteria>

User Analysis Users vary in terms of how often they use the system and
in their previous experience of computer systems.

Task Knowledge
Analysis

The user will have to enter the required file, attributes and
selection criteria.

Environment
Analysis

Owing to the large number of possible sites for access to the
database, there is unlikely to be much human or
documentary support available for users.

Considering the user and task knowledge analysis suggests that two
interfaces are required. HCI guidelines suggest that regular users are likely
to prefer a user-determined dialogue (e.g. the structured query language,
SQL). Infrequent users and new users are more likely to prefer a system-
determined dialogue such as a menu interface. The menu interface also
reduces memory load as it assists users in navigating through the database
and relieves them of the need to remember SQL syntax, file and attribute
names. Hence two interfaces should be provided, an SQL type interface
and a menu type interface.

The result of the environment analysis meant that a help system had to be
developed. This process produced a design which provided a separate help

page 11

system for the SQL type interface and the requirement that all information
would be available on the screens in the menu type interface.

The system was then prototyped and evaluated with a number of users.
During the evaluation several user characteristics were examined to
determine what affect they may have on the interaction. It was known,
from the user analysis, that users would vary in terms of their frequency
of use of the proposed systems and their previous experience. Hence
performance using the system was correlated with users level of
experience. Additionally, a measure of users' spatial ability was taken.
Previous research into individual differences in cognition (Dillon and
Schmeck, 1983, Dillon, 1985 and Sternberg, 1985) and individual
differences in HCI (Egan, 1988, see also Benyon, 1993) suggested that spatial
ability (i.e. an individual’s position on a standard psychometric test which
involved the mental rotation of objects) was an important factor in
determining performance in information retrieval tasks (Egan, 1988). It
was felt important in this case that such cognitive differences should be
examined.

The following additional requirements were identified as a result of the
further analysis.

Task Knowledge
Analysis

Revealed that a group of users had trouble using the command
language system and that this was related to the users spatial
ability and their level of experience with command languages.
Users who had both a low spatial ability and no experience of
command languages performed less effectively (on average
they made more errors and took longer to complete a task)
than the other users (those with high spatial ability or those
with low spatial ability and high or low experience).

Functional
Analysis

There is a need to edit commands to save having to re-type
long queries.

The command interface was much quicker to use (average task
completion time 24 seconds) than the menu interface (average
task completion time 33 seconds) for 75% of users.

A simple line editor was developed for the SQL type interface and the
provision to go backwards through the menu screens was provided for the
menu interface

As a result of this analysis, the following system requirements were
determined.

7.2 SYSTEM REQUIREMENTS

System requirements may be described in terms of functional, data and
usability requirements.

page 12

 Functional requirements

The system supports three tasks; 1. Process Query, 2. Change criteria, 3. Get
help. These map onto the logical functions (task 1 maps to logical
functions 1.1, 1.2, etc.) and physical functions as shown in table 1.

Logical Level Physical Level

Menu interface Command language
interface

1.1 Select File select option 1 or 2 from
 screen s1 press <enter>

1.2 Specify
required
attributes

select option 1 or 2 from
screen s2 press <enter>

Enter

Select <attributes>

from <file>

where <selection criteria>

1.3 Specify
selection criteria select option 1, 2, 3 or 4 from

screen s3 press <enter>

1.4 Get data press <enter>. press <enter>

2.1 Edit File

2.2 Edit attributes P = get previous screen b moves cursor backwards

2.3 Edit selection
criteria

F = go to first screen f moves cursor forwards

3. Get help all help information to be
included on the displayed
screens

type hlp <enter>

use arrows to scroll

type quit <enter>
to return to database system

Table 1. Logical/Physical mapping of system functions

 Data Requirements

Data on Staff and Students

Data for Help system

Data on previous query

 Usability Requirements

Table 2, adapted from the ideas presented in (Whiteside et al., 1991 and
Shackel, 1990), describes the usability attributes relevant to this application,

page 13

given the original requirements that the system should be a 'walk-up-and-
use' system. The 'Effectiveness' and 'Attitude' attributes were derived
from prototyping the system. The 'Learnability' and 'Flexibility' attributes
are included for completeness even though they did not form part of this
study.

Attribute Measuring
Concept

Measuring
Method

Planned Level

Learnability Ability to enter
required query
successfully

Time taken less than 2
minutes

Effectiveness-1 number of errors proportion of
errors to tasks

For all users <= 1
error in 12 tasks

Effectiveness-2 processing speed average time
taken to
complete task
(ATCT)

For all users -
average task
completion time
<25 secs on
command
interface, <35
secs using menu
interface

Attitude-1 Attitude
questionnaire

overall score score > 80%

Flexibility-1 environmental
changes

No measure required system is
already flexible.

Flexibility -2 task changes No flexibility with respect to tasks.

Table 2 Usability Requirements

7.3 MEETING THE REQUIREMENTS

Apart from the details of physical design decisions (such as the actual
layout of screens, the file design, the implementation of the system, etc.),
these requirements raise a major logical design decision. Since there is a
requirement for two interfaces, a necessary task which needs to be
performed is to select the menu or command interface. Should this task be
allocated to the system or should the user make the selection? The
experimental results1 suggested that users with a low score on the spatial
ability test ('low spatial ability') and no command language experience
would perform badly using the command interface and hence should be
provided with the menu interface. However, since users cannot really be
expected to know what their spatial ability is they are not in a position to
make an appropriate selection. Furthermore, the only way of determining
users' spatial ability scores is to test them. But because the spatial ability
test takes 20 minutes to administer, this would clearly cause other usability
problems. The decision to allocate the selection of an appropriate interface

1 These results are discussed in (Jennings, Benyon and Murray, 1991 and Jennings and Benyon,
in press).

page 14

to the system (an 'interface selection agent') raises another usability issue.
If the system suddenly changes the interface, users may be perturbed.

Hence, taking these considerations into account, some further usability
requirements arise (table 3);

Attribute Measuring
Concept

Measuring
Method

Planned Level

Effectiveness-3 selection of
interface

interface
selection agent

system selects
interface

Attitude-2 feeling of control ask users users may
override
system's
suggestion of
interface

Table 3 Additional usability requirements

7.4 DESIGN OF THE ADAPTIVE SYSTEM

The purpose of the adaptive system is simply to select the more
appropriate interface for the users in order that the system can meet its
usability requirements i.e. to make fewer than 1 error/12 tasks and to
maintain the average task completion time (ATCT) at < 25 seconds using
the command interface and <35 seconds using the menu interface.

The adaptive system only needs to know enough about the domain in
order to provide the required functionality. In this case, the experimental
evidence suggested that the number of errors made by users using the
command interface correlated significantly with a combination of two user
characteristics; the level of their spatial ability and command language
experience. In turn, command language experience is affected by the
frequency of computer use. Hence the relevant user characteristics
required for the user model component of the adaptive system are spatial
ability, command language experience and the frequency of system use.
The relevant aspects of the interaction which the adaptive system needs
are knowledge of the number of tasks the user had completed using the
command language interface and the number of errors which they had
made.

The adaptive system component of the application can be described in
terms of the architecture outlined in section 5.

Domain model

The domain model in this case consists of four attributes, one at the task
level, two at the logical level and one at the physical level of description
(table 4).

page 15

Level Description Attribute Name Values

Task A Task is a successful
completion of a query

tasks {1...N}

Logical An error is defined as;
an incorrect formulation of a
query (including specifying
attributes in the wrong place,
etc.)
a missing or incorrect operator
(such as <, > etc.)
an inappropriate command
(e.g. typing ‘select....’ when in
the help system)

errors {1...N}

Logical The average task completion
time is calculated as the total
time to complete a block of 12
tasks divided by 12.

ATCT {1....N}
seconds

Physical An interface is a coherent style
of interaction

interface {menu,
command}

Table 4 Domain model for the adaptive system

User model

The user model contains data on the user’s personal profile, cognitive
characteristics and the student model (table 5). The student model inherits
all the attributes from the domain model and is updated from the
dialogue record. Initially it is assumed that users have a high spatial ability
and will be presented with the command interface. Mandatory attributes
have to be provided before the user can use the database. An important
aspect of defining the user model is to establish how the particular data
will be obtained.

page 16

Model Attribute Name How Obtained Values Initial values

Cognitive spatial ability inferred from
the interaction
(see inference
rule 1)

{high, low} high

Profile command
experience

1. by asking user
(mandatory)

2. inference rule
1

{high, low,
none}

null2

Profile Frequency of
computer use

by asking user
(mandatory)

{frequent,
occasional}

null

Student Tasks from dialogue
record

{1...N} null

Student ATCT from dialogue
record

{1...N}
seconds

null

Student Errors from dialogue
record

{1...N} null

Student Interface from dialogue
record

{menu,
command}

command

Table 5 User model for the adaptive system

Interaction Model

The interaction model defines the data which the system will obtain from
the interaction (the dialogue record) and the inferences, adaptations and
evaluations which the system can make. The inference rules exploit the
data in the dialogue record to update the user model. The adaptation rules
exploit the data in the user model in order to effect the changes. In this
case the components are;

Dialogue Record

The dialogue record records details of the number of errors made and the
number of tasks completed. It updates the student model.

It consists of the data items; (Number of Tasks, Number of errors)

Interaction Knowledge base

The Interaction Knowledge base describes the inferences, adaptations and
evaluations which the system can make.

Inference rule 1

If interface = command and errors> 1 and tasks = 12

then spatial ability = low and command experience = none

Adaptation Rule 1

2null indicates the absence of a value

page 17

if spatial ability = high

then interface = command

Adaptation Rule 2

if spatial ability = low and command experience = low and computing =
frequent

then interface = command

Adaptation Rule 3

if spatial ability = low and command experience = none and frequency of
computer use = occasional

then interface = menu

7.5 IMPLEMENTATION

The system was implemented using the knowledge-engineering
environment KEE™. Users are implemented as objects which can exist in
the different 'worlds' of the two interfaces. The final implementation used
a co-operative adaptation strategy in order to comply with the usability
attribute Attitude-2. When the system detected that a user was
experiencing difficulties with the command interface (inference rule 1),
the user was advised that a menu interface was available. At this point the
user could inspect their user model and amend it if required. Thus users
were kept fully informed of the basis for the computer's
recommendations.

7.6 IMPROVING THE SYSTEM

The above design illustrates how the proposed architecture and enhanced
analysis and design may be used to develop adaptive systems. The system
has explicit user, domain and interaction models which gives the system a
highly flexible design. The fact that this system does not actually need a
user model as it stands does not detract from the utility of the approach. In
this example the domain independent characteristic of spatial ability has
been inferred from the interaction and may subsequently be used by other
adaptive systems. The adaptive system learns characteristics of the system
with which it is interacting.

As it stands, the system is a fairly simple, rule-based adaptive system.
However, it is straight forward to see how this system can be developed
into a higher level adaptive system.

The move to a self-regulating system requires the system to monitor its
own success. To do this an evaluation mechanism may be added. This
simply alerts the designer to the fact that the system is not achieving one
of its objectives (table 6).

Evaluation rule 1

if ATCT > 25 and interface = command

or if ATCT > 35 and interface = menu

then Print evaluation report

page 18

Table 6 Adding an evaluation rule

If the system is to be a self-mediating system then it needs to include an
explicit statement of its own rationale, i.e. it needs to evaluate the
adaptations against a mode l of the interaction. This model can be realised
in a number of ways, but perhaps the clearest is to include specific
propositions on which the design rationale is based. Two propositions
could be included in the (logical level) of the domain model. Proposition
P1 represents the belief that users make fewer errors using the menu
interface. Proposition P2 represents the belief that the user uses the
interface which is offered by the system. Another evaluation rule
(evaluation rule 2) can be included in the interaction knowledge base
which makes the justification for the selection of the menu interface
explicit (table 7).

proposition P1 := Errors with Interface = menu < errors with interface =
Command

proposition P2 := If interface = X, THEN user uses Interface = X

Evaluation rule 2

If spatial ability = low and command experience = none and frequency of
computer use = occasional

then (since P1 and P2) interface = menu

Table 7 Adding justification for the adaptation to the system

A self-modifying system has access to its knowledge and has the ability to
amend the representations - of user, of domain or of the interaction - if
necessary. For example, at present the system only adapts if the user's
command experience is none. If it transpires that users with a low
command experience are experiencing difficulties with the command
interface, the system could add a new rule (Table 8).

Evaluation rule 3

If interface = command and errors> 1 and tasks = 12

and command experience = low and spatial ability = low

THEN ADD Adaptation rule

if spatial ability = low and command experience = low and computer use =
occasional

then interface = menu

Table 8 Illustrating adding a rule to the interaction knowledge base

8. Conclusions

Usability is concerned with achieving a harmony between users, tasks,
environments and the system. It will be improved if designers pay
attention to the options which are available. One of these is to develop
adaptive systems.

page 19

Adaptive systems can improve usability if it can be shown that without
the adaptive capability, the system would have performed less effectively.
For example, if we can determine characteristics of users (of which they
themselves may be unaware) which affect the interaction and if these can
be measured reliably and used efficiently to alter the interaction then
usability can be improved. These factors may be factual knowledge which a
user may understand badly or misunderstand completely (e.g. some
concept such as the concept of a paragraph in a word processing package or
some function such as rm in Unix), cognitive factors such as the user’s
level of spatial ability, their preferred learning style or field dependency.
Alternatively, they may be personal 'profile' characteristics such as
previous experience, age, gender or job requirement. It is likely that in
many cases, the relevant user characteristics will be a combination of
these. In the example given here, a formative evaluation of a database
system revealed that three user characteristics - two profile (frequency of
computer use and command language experience) and one cognitive
(spatial ability) - were significant in affecting the ability of users to employ
successfully a particular interface.

The development of adaptive systems must be seen within the framework
of developing human-computer systems. The need for an adaptive system
emerges as a design decision during the development of an interactive
system. In some cases (e.g. a NL interface) this design decision may occur
very early in the development process, but in other systems it may not
appear until later. The purpose and functions of the adaptive system must
be carefully formulated and understood before they are expressed within
the adaptive system architecture. Using the architecture described in this
paper provides a reference model by which alternative systems and
designs can be compared.

As with usability criteria, it is important that the scope of the adaptive
mechanism of any system is carefully and precisely specified. Using the
architecture described here, this can be achieved. Browne, et al. (1990)
recommend the use of adaptive system metrics alongside usability metrics.
This paper has presented a comparable formulation which places adaptive
systems in the context of usability. Usability metrics identify the objective
of the adaptive system (in the example, usability attribute Effectiveness-3)
and the impact on implementation(Effectiveness-2). The adaptation
mechanism (Adaptation rules) identifies what triggers the adaptive
capability. The assumption on which the adaptive mechanism is based is
specified in the system requirements and the domain model identifies the
recommendation underlying the adaptive mechanism. The generality of
the system is defined by the characteristics contained in the user model
since the user model identifies all the characteristics of the users which
have been considered for the adaptive mechanism.

There are many reasons for not having an adaptive capability in a system,
but it is short-sighted of designers to reject this option until it has been
considered alongside other design options. The recognition that an
adaptive capability may be desirable leads to an improved systems analysis

page 20

and design. Adaptive systems as solutions to usability issues are here to
stay.

9. References

Barnard, P. (1987) Interacting Cognitive Subsystems, In Carroll, J. M. (Ed..)
Interfacing Thought: Cognitive aspects of human-computer interaction
MIT Press

Benyon D. R. and Murray, D. M. (1993) Applying user modelling to
human-computer interaction design In Artificial Intelligence Review 6, 43
- 69

Benyon, D. R. (1990) Information and Data Modelling, Blackwell Scientific
Publications, Oxford

Benyon, D. R. (1992) The Role of Task Analysis in Systems Design. In
Interacting with Computers, 4(1)

Benyon, D.R. (1993) Accommodating Individual Differences through an
Adaptive User Interface In Adaptive User Interfaces - Results and
Prospects, Schneider-Hufshcmidt, M., Kuhme, T. and Malinowski, U.
(eds.) Amsterdam: North-Holland

Browne, D.P., Totterdell, P.A. and Norman, M.A. (1990) Adaptive User
Interfaces London: Academic Press.

Catterall, B.J., Taylor, B. C. and Galer, M. D. (1991) The HUFIT Planning,
Analysis and Specification Toolset: Human Factors as a Normal Part of the
I.T. Product Design Processing Karat, J. (Ed.) Taking Software Design
Seriously London; Academic press

Cohen, R. (1989) and Jones, M. Incorporating User Models into Expert
Systems for Educational Diagnosis. In Kobsa, A. and Wahlster, W. (1989)
User models in dialog systems Berlin: Springer-Verlag

DeMarco, T. (1979) Structured Analysis, System Specification Prentice-Hall

Dennett, D. (1989) The Intentional Stance Cambridge, Mass., MIT Press

Diaper, D. (Ed.) (1989) Task Analysis for Human-Computer Interaction
Chichester, UK: Ellis Horwood

Dillon, R. F. (1985) Individual Differences in Cognition Volume 2 ,
London, Academic Press

Dillon, R. F. and Schmeck, R. R. (1983) Individual Differences in Cognition
Volume 1 London, Academic Press

Edmonds, E.A. (1987) Adaptation, Response and Knowledge, Knowledge-
Based Systems, Vol. 1(1), Editorial.

Egan, D. E. (1988) Individual differences in Human-Computer Interaction
in Helander, M. (ed.) Handbook of Human-Computer Interaction . Elsvier-
Science 1988

Greenberg, S. and Witten, I.H. (1985) Adaptive personalized interfaces -a
question of viability, Behaviour and Information Technology , Vol. 4(1).

page 21

Greenberg, S., Darragh, I., Maulsby, D. and Witten, I.H. (1991) Predictive
Interfaces. What will they think of next? presented at CHI '91
(unpublished)

Jennings F. and Benyon, D. R. (in press) Database Systems. Different
Interfaces for Different Users

Jennings, F., Benyon, D. R. and Murray, D. M. (1991) Adapting Systems to
individual differences in cognitive style. In Acta Psychologica, vol. 78 (1-3),
December

Kobsa, A. and Wahlster, W. (1989) User models in dialog systems Berlin:
Springer-Verlag

Macaulay, L. A., Fowler, C. J. H., Kirby, M. A. R. and Hutt, A. F. T. (1990)
USTM: A New Approach to Requirements Specification, in Interacting
with Computers 2 (1)

Mason, M.V. (1986) Adaptive command prompting in an on-line
documentation system, International Journal of Man-Machine Studies,
Vol. 25, 33-51.

Morik, K. (1989) User models and conversational settings: modelling the
user's wants. In Kobsa, A. and Wahlster, W. (1989) User models in dialog
systems Berlin: Springer-Verlag

Pylyshyn, Z. W. (1984) Computation and Cognition MIT press, Cambridge,
Ma.

Shackel, B. (1990) Human Factors and Usability in Preece, J. and Keller, L.
(Eds.) Human-Computer Interaction Hemel Hempstead, UK; Prentice Hall

Spark Jones, K. (1988) Realism about user modelling in Kobsa, A. and
Wahlster, W. (1989) User models in dialog systems Berlin: Springer-
Verlag

Sternberg, R. J. (1985) Human Abilities. An information processing
approach. Freeman and Co., New York

Thimbleby, H. (1990) User Interface Design Wokingham: Addison Wesley

Whiteside, J., Bennett J. and Holtzblatt, K. (1988) Usability Engineering:
our experience and evolution. In Helander, M. (ed.) Handbook of Human-
Computer Interaction. Elsvier-Science

