
 Advanced Real-Time Collaboration over the Internet
Chris Joslin

MIRALab - University of Geneva
24 Rue du Général Dufour

CH1211, Genève-4, Switzerland
+41 22 705 7768

joslin@cui.unige.ch

Tom Molet
MIRALab - University of Geneva

24 Rue du Général Dufour
CH1211, Genève-4, Switzerland

+41 22 705 7023

molet@cui.unige.ch

Nadia Magnenat-Thalmann
MIRALab - University of Geneva

24 Rue du Général Dufour
CH1211, Genève-4, Switzerland

+41 22 705 7769

thalmann@cui.unige.ch

ABSTRACT

In this paper we present our Networked Virtual Environment
(NVE) System, called W-VLNET (Windows Virtual Life
Network), which has been developed on the Windows NT
Operating System (OS). This paper emphasizes the Real-Time
aspect of this NVE system, the advanced interactivity that the
system provides and its ability to transfer data across the Internet
so that geographically distant users can collaborate with each
other. Techniques for communication, scene management, facial
and body animation, and general user interaction modules are
detailed in this paper. The use of VRML97 and MPEG4 SHNC
is overviewed to stress the compatibility of the system with other
similar Virtual Reality systems. The software provides realistic
virtual actors as well as sets of applicable high-level actions in
real-time. Related issues on obtaining actor models and
animating them in real-time are presented. We also introduce a
case study to show an example of how the system can be used.

Keywords
Network Virtual Environment, Advanced Interaction, Distance
Collaboration, Real-Time Interactions, Motion Tracking,
Networks.

1. INTRODUCTION

Since the early 90’s Networked Virtual Environments [1,2,3]
have been available in some respects in many research
institutions. The idea of collaborating with someone
geographically remote has driven research on some of the most
powerful UNIX systems, but like many other real-time systems,
NVE Systems suffer from limited complexity and interactions.
NVE are like any other Virtual Environments, they attempt to
trade realism with speed. In the past only the aforementioned
powerful UNIX systems were able to handle the complex

interactions and required rendering speed of these Virtual
Environments, but now powerful multiple CPU machines, based
on the Windows OS, are able to take on such tasks.

A few commercial systems [4] are cropping up, although used
mainly through a Web Browsers Java Interface; these systems
assume a medium computer system (single processor, non-3d
graphics card) and have limited data transfer to allow low
bandwidth usage. They also use simple navigation techniques
based on mouse and keyboard interaction. These types of systems
take advantage of the users being unable to use advanced
equipment and are therefore ideally suited to the needs of such
users.

In situations where there is a requirement for greater and more
advanced interaction, these systems are limited and therefore a
more advanced system is required. This is in terms of the
following items:

• More complex scenes with higher polygon counts

• Highly representative Virtual Humans

• More Intuitive Advanced Tracking Systems

Complex Scenes are required so that interaction is made easier; a
faster recognition time by the user of objects, actions and the
general scene provides better overall interaction with the Scene.
Highly realistic Virtual Human representations are very
important for perception and, coupled with an advanced Motion
Tracking System, provide an extremely realistic representation of
the user’s movements.

In Section 2 we present the W-VLNET System and its main
component parts, including the underlying architecture (including
the changes made from the original). In Section 2.4 we introduce
how our Motion Tracking System was directly linked with the
W-VLNET system to create a completely interactive system.
Section 3 concludes the design/implementation process with a
Case Study of a student/teacher session of Virtual Dance, with
Section 4 concluding the paper.

2. The NVE System

W-VLNET system is a framework for distributed VE
applications where human-like embodiments represent real
humans; it is responsible for loading and managing scenes for
connecting users.

2.1 Overall System Architecture

The W-VLNET system is based on a previous architecture
implementation [5] running on the UNIX OS (specifically IRIX,
from Silicon Graphics). The previous system, also called
VLNET, was written and optimised for UNIX and uses a multi-
process/shared memory architecture. Shared Memory was used
as the communication medium for each process task. Although
the W-VLNET system uses a similar philosophy, the underlying
architecture was completely redesigned due to the fact that the
Windows OS does not fully utilize its Shared Memory
architecture and also to make improvements to the system.
Therefore a new architecture was implemented using a special
communication system and the concurrent task management was
done using threads.

Threads are more dominant in the Windows OS and there are
fewer restrictions imposed upon the design, as they do not
require shared memory for inter-thread communication. The
control and execution of threads was combined with the
communication architecture to create a faster communication and
execution mechanism. The communication is performed using a
First In First Out Buffer (or FIFO Buffer), which controls the
communication data flow, without limiting the data transfer. The
FIFO Buffer basically allows each thread to communicate with
any other thread.

The Thread Manager itself creates and controls the termination
of a thread for each task that has to be executed. Depending on
the type of task, a priority value is assigned to each thread to
enable tasks that should be executed quickly to have a higher
priority than other simpler tasks (such as GUI Control). The
Thread Manager limits the number of concurrently running
threads, as too many threads would cause a system to slow down.
In practical tests only about 18 threads are running and only 2/3
are active at any one time, the system is designed to handle 256
concurrent threads. The number of threads created can be
increased, if more processors are available, but in general the
number of concurrent threads is not affected by the Clients
connected, but rather by the number of concurrent activities in
the Virtual Environment (VE).

Figure 1. System Communication

The remaining control for each thread is left to the module to
determine and manage, as it is unrealistic for the Thread
Manager to be too specific to each task. These control tasks
include mutual exclusion, global memory control and wait states.
As threads are capable of being distributed across these multiple
processors, the only requirement of the individual modules
themselves is to be separated enough so that the multi-processor
architecture is made use of and thus not creating dependencies.

Figure 1 shows the communication between the main modules
running through the System Manager (which is the collective of
the Thread Manager and the FIFO Buffer)

2.2 Plugins

The entire system was designed and built around plugins; even
the communication/thread managers were both designed with
plugins in mind. The system was designed to be expandable, this
being a key issue in the previous system (i.e. the inability to
expand easily). The plugins used in this system are much the
same as any other plugins; they enable the adding, changing and
editing of any module without the need for recompilation. Also
as all the main components are also plugins, the system can be
upgraded without the user requiring major changes to the
software. Users are actively encouraged to design plugins for the
system to perform a specific task they might require. An SDK is
available, which is designed to aid users in understanding the
plugin concept specific to this system.

2.3 Scene Management

In the same way that the System Manager (Section 2.1) controls
the System, the Scene Manager controls all the aspects of the
Scene. The Scene itself is quite complex and although OpenGL
Optimizer [6] controls the actual Scene Graph, there are many
additional interactions that need to be taken care of. As there are
multiple Clients with multiple Avatars, the database used to
manage an NVE Scene Graph is more complex. The system is no
longer (as with normal Virtual Environments) controlling an
Avatar in a one dimensional array (e.g. Avatar 1,2,3 etc), the
Avatars are now multiple per Client and therefore reside in a two
dimensional array (Avatar 1 on Client 1, Avatar 1 on Client 2),
as each Client can own and control more than one Avatar. This
causes more complications in the overall design, especially as the
W-VLNET system has highly concurrent tasks being processed
throughout its architecture.

2.3.1 Database Control and Object Loading

The database used has two layers: The Client Layer and the Item
Layer. The Client layer contains a very simple reference to the
Client. The Item (an Item being either an Object or an Avatar)
Layer, which is below this, contains the references for all Objects
and Avatars in the system. This includes their name, scene graph
reference(s) and tasking locking switches. It is important to keep
track of these objects and avatars in a very strict fashion as many
complex things can happen (e.g. a Client could leave/join, crash,
become disconnected etc) and this can have a very adverse effect
if not handled correctly. Secondly, as mentioned in Section 2.1,
concurrent tasks can be performed at once on the same Object or
Avatar, and hence it is necessary to keep track of whether an
Object/Avatar is being interacted with. The inability to keep
track of these events will also have strange outcomes (such as
strange animations, or objects/avatars ending up in different
positions on different Clients), therefore the system uses a 3
layered database to track prevent such occurrences.

Objects are loaded into the Database and Scene Graph using the
VRML97 [7] loader in OpenGL Optimizer. Therefore any
VRML97 objects produced by commercial software can be
loaded into the Virtual Environment and used by all other
participating Clients.

2.3.2 Avatar Loading and Animation

A real sense of presence within a Virtual Environment is
extremely important and the use of Virtual Human
Representatives aids in this reality perception. Therefore, in line
with the use of standards, HANIM/MPEG4 [8] compatible
bodies are used in conjunction with MPEG4 compatible faces [9]
to produce Virtual Representative Humans (or Avatars). Each
Client is expected to load at least one representative avatar,
which also has to be uploaded to the Server and distributed to the
other connected Clients (See Section 2.5). The Avatar files
themselves are compressed into zip files, making the transfer to
the Server lighter in comparison with uncompressed files
(normally 7-8 times larger), but even these files are between
600K and 1M and hence a caching mechanism was also
implemented to reduce wait times and bandwidth utilization. The
caching mechanism works in two ways; firstly it acts in the
normal way, which is to check if a copy of the file exists locally
(the files name, date stamp and size are compared with the local
copy) and then just transfers the basic information (like
posture/position), which is extremely small in comparison. The
second caching mechanism is used if the user has a low
bandwidth connection to the server; it basically uses a default
avatar representation (also stored locally) for all avatars, hence
reducing the requirement to download other client’s
representative avatar. There are several camera perspectives in
the scene to enable the user more sense of the environment.
There is one camera per loaded Avatar (the Client can only move
between the Clients own Avatars cameras, this allows a 1st
person view), a Birds-Eye camera, which is completely
independent of any Avatar movement (allowing a 3rd person
view), and a Follower Camera which is set at a distance away
from the Avatar, but followers the Avatar as it moves.

MPEG4 Compatible Animation Parameters are used to animate
the Avatar. Face Animation Parameters (or FAPs) are used to
describe a movement of key feature points on the face (there
being 66 key feature points in the MPEG4 specification). Body
Animation Parameters (or BAPs) specify the relevant body joint
degree of freedom at a given instant in time

Animation on the NVE System is done completely on a
frame/frame basis. Each frame (of either BAPs and FAPs) is
compressed using a simple loss-less compression technique and,
using a sequential numbering system, is sent directly to the
Server and distributed to other clients (see Section 2.5.2). This
means that a Client can stop its animation at any time, or adjust
it accordingly; there is no set time for which an animation can
last. This works equally well for both file animations (animation
streams stored in files) and for Motion Tracking Units (see
Section 2.4). The loss-less compression is used to reduce the
overall packet size of a body animation (as the animation of all
the joints can produce up to 296 values that are 4 bytes in size),
combine this with other necessary data and the packet is almost

1Kbytes in size. As the normal Maximum Transmission Unit
(MTU [10]) is 576 bytes, this is too large for normal Internet
transmissions (where the restricted MTU size is often observed).
The loss-less compression uses the upper and lower limits of
each of the 296 values and reduces the size of each value to the
maximum bit value required. Also, even in the worst case,
conditions only a maximum 110 values are used. Hence the
packet can be compressed to roughly within the MTU restriction.
A Quantizer value could be used to reduce this value, with the
cost of reducing the accuracy of the animations, but a better
approach would be to use either Huffman or Arithmetic Coding
to produce better loss-less compression. Quantizing the values
produces very little reduction in the packet size, at the cost of
very poor animations and therefore is not used.

2.3.3 Picking and Object Manipulation

To really interact with virtual environment, it is necessary to use
object picking and manipulation and as it is a collaborative
environment the object on one Client must be seen moving on all
the other connected Clients.

Picking is done on the basis of the Clients representative Avatar.
The Avatar moves towards an object and then all objects within
the View Frustum and within a specific range (variable, with
default of 1 metre) are then selected as being pickable objects.
The database of pickable objects is dynamically changed as the
Avatar moves around (whilst in picking mode). The pick mode
then cycles through all pickable objects stored in the picking
database and once the user has selected an object, a message is
sent to the Server to ask for picking permission. If another client
has not selected the object, the object is picked and highlighted
(selecting is done either by a button press, or by moving when
the object is picked). This allows request of picking is very fast
and prevents multiple Clients picking the same object. The
object is then moved with the Avatar as it moves (much in the
same way as an object is moved in real life). The object can be
deselected to unpick the object. All object movements are sent to
the other Clients so that their databases are completely up-to-
date. Once a client has unpicked the object, a message is sent to
the Server.

2.3.4 Proximity, Collision Detection and Gravity

In order to provide greater interaction within the virtual
environment proximity detection was implemented. The
proximity function is actually a collaboration of several common
functions (which can be turned on or off as necessary, according
to requirements and computing resources). The functions that are
coordinated together are: Proximity, Collision Detection and
Response, and Gravity. Although gravity is not directly combined
into the same task, it does work hand in hand with Collision
Detection and Response. Gravity is applied to each and every
object/avatar apart from the basic scene (as defined by the Server
as the default object); each object/avatars speed is stored in the
database (as specified in Section 2.3.1) and a simple
gravitational equation is applied to each object/avatar. This
equation is designed to be fast (real time) and to move each
object/avatar a large finite distance each time the equation is
applied.

Head

Spine base

Spine

C4

L5
L3

L1

T1
0

T6

T1

C2

Proximity and collision detection is done in the same loop. The
reason for this is that the collision detection function checks for
all impending collisions of objects/avatars with other
objects/avatars and then implements the response mechanism to
prevent the actual intersection of the two objects or avatars.
Proximity performs the former part of this calculation also,
although more with respect to checking whether an object or
avatar is less than a set distance away. The Proximity detection is
used to enable greater interaction within the Scene (i.e. allowing
objects to be more dynamic). Scene file specifies a proximity
sensor to be applied either to an Object or an Avatar and a set of
trigger conditions, (can be triggered by Object only,
Object/Avatar or the local Users representation) plus the
proximity distance, see Figure 2.

Collision Detection and Response at this time is extremely
simple (to preserve the real-time aspect). To perform Collision
Detection a Bound-Box is placed around each individual object
and therefore simple intersections are detected. The response
mechanism is currently designed only to stop an object/avatar
from causing an intersection. This response mechanism and the
application of gravity work in conjunction with each other, i.e.
when the gravity mechanism is used, then the response
mechanism must be implemented. More complex response
mechanisms are expected in the future.

Figure 2. Proximity Triggers

2.4 Real-Time Motion Tracking
2.4.1 Body Posture and Tracking

The real-time motion capture engine is based on a set of fourteen
magnetic sensors (Figure 3). These sensors measure the motion
of the major human limbs (head, spine, shoulders, elbows, hips,
knees and ankles). Optionally, two digital gloves are used to
track the wrists and fingers movements. The sensors’ raw
measurements are converted into anatomical angles suited to
skeleton hierarchies using an efficient technique [11].

This converter is driven by orientation measurements to
remove, as much as possible, dependencies on the distorted
(non-linear) position measurements of magnetic sensors.

Only one sensor position is used to recover the position of the
virtual human. The key features of this engine are:

• Automatic instant sensors calibration procedure.

• Human specific optimisations such as dedicated evaluation
for shoulders and hips twisting, floor and anti-skating
corrections.

• Control of the whole spine using three sensors (Figure 4).

Figure 3. Magnetic sensor locations

Figure 4. Control of the spine using three sensors

The motion capture engine exists as a dedicated external
application that sends BAPs to the System Manager Layer, which
in turn applies the posture to the virtual human before final scene
rendering. That way, the computational load is spread across
separate processors. This introduces a slight lag (~0.5s) between
the performed movement and the rendered related posture, but
we found it worthwhile in comparison to the pipelining solution
where all steps are performed within the same application. In the

Head

Shoulder

Elbow

Spine base Pelvis

Hip

Knee

Spine

Ankle

latter solution, the lag varies between 0.3s and 0.7s depending on
the rendered scene complexity. This lag is produced by a
combination of the communication time and the computational
effort.

2.4.2 MPEG-4 Body Animation Parameters

The human motion capture process is built on top of a proprietary
skeleton structure [12] modelling joints using Euler angle
sequence decompositions. These angles are very similar to the
MPEG4 BAP. In order to animate MPEG4/HANIM hierarchies,
the joint angles are translated from our internal hierarchy to the
MPEG4 BAP. These computations basically consist of finding
the MPEG4 counterparts (or indexes) for each joint angle, and
applying simple data encoding (our internal angles are float
values and MPEG4 parameters are encoded as 32 bit Integers).
In few cases (e.g. fingers parameters), there is a slight posture
difference between our internal model and the MPEG4 default
postures. Consequently, we need to account for this default
posture difference by adding angle offsets prior to encoding. By
using key framing these offsets are identified by setting the
proprietary hierarchy in the MPEG4 default posture by using key
framing.

After encoding all parameters, the new posture information is
sent to the client application using TCP for Communication
(Figure 5). A simplified virtual human representation can be
displayed within the external motion capture application to
provide a diagnostic level feedback. This feature is mainly used
to determine incorrect sensor positioning and other hardware
related problems.

Figure 5. External Motion Capture application

processing pipeline.

2.5 Networking
2.5.1 Overview

The network topology used for this NVE System is based on the
Client/Server approach, as shown in Figure 6. This approach
assumes all the Clients, requiring common interaction, connect to
the same Server. Each Server hosts one or more Scenes, contains

the master scene database and controls the distribution of data to
all Clients.

Figure 6. Client/Server Architecture.

2.5.2 Client Connection

Each Client connects to the Server via a single entry port. As
soon as the connection is established the Server moves the Client
to another port to keep the entry port free. The new port is
established as the control port between the Server and the Client
and is used as a reliable data exchange for network control. The
Server then exchanges information with the Client to establish its
identity, the channels it wishes to connect to and it also tests the
data connection to determine an estimation of the bandwidth.
The Server then sets up several channels according to the
Client’s request; these are as follows:

• Stream – Used for data that needs to be transmitted rapidly
and at a steady rate. The channel does not retransmit data,
in case of loss or error. The port is connectionless using
UDP to transfer data.

• Update – This is similar to the Stream Channel, requiring
only UDP connectionless port, but it has error control (using
re-transmission), so data sent is treated with more care.

• File – Using a TCP connection-orientated port, File data (or
very large data > 1K bytes) is transferred over this port.
Complete Error Control and Packet Re-send are
implemented for this Channel.

• Control – Also using TCP, this channel is the one used
during the Server/Client phase and stays connected until the
end of the session.

The Client generally requires the Update Channel and the
Control Channel is not optional. However it can deny connection
for the Stream and File Channels. This might be for a number of
reasons: to preserve bandwidth, or CPU processing time, or the
data transmitted is not required. The Update Channel transfers
data such as Object/Avatar transforms and Avatar Animations.
The Stream Channel is mainly used for Audio/Video
Connections that might be required, for instance in sending real-
time voice communication.

The Update and File channels that use error/flow control are
done on top of the TCP/UDP protocols, this is make sure the
network isn’t saturated, and that the data arrives basically intact.
It also uses a negative acknowledgement system to determine lost
packets. The Server is used as a distributor for the data between
Clients, so that any data that needs to be sent is done so via the
Server.

Disconnection is done in reverse order, the Channels are
disconnected first and then the Control Port sends a command to
the Server to disconnect completely. The Server can force
disconnection in the same way, which allows for a clean
disconnection of ports and allows the Server to accept new
connections without restarting.

2.5.3 Server Database

After the Client connects and downloads the main Scene, and
once the main static Objects and Avatars (common throughout
the Servers online status) have been downloaded into the Scene
Graph, the Server Database is consulted to determine all the
dynamic Objects/Avatars in the Scene. Each Client has the
ability, at any time during connection, to add their Avatar(s), and
Object(s) into the Scene to enable greater interaction.

The Scene Database contains the information on Objects and
Avatars that have been uploaded by Clients, their transformation
matrices, and the file reference in the Server’s local Cache
(which works in exactly the same way as the Client Cache). This
information is distributed to each Client when a Client uploads
the information. This information is also referenced when a
Client connects for the first time, the Database is searched and
all details are sent to the connecting Client to enable it to be
completely up-to-date with the current state of the Scene. Avatars
also have an extra field that stores the Avatars body posture.
Both Audio and Video streams are not stored in the database as
their data is dynamic.

When a Client disconnects, all uploaded Avatars are removed
from the database (and corresponding messages distributed to all
Clients); however, as Objects may still be in use by other
Clients, the Objects move their ownership reference number to
the Server (which is Client 0) to avoid problems with later
connecting Clients.

2.5.4 Communication Protocol

A common Communication Protocol is used over the Update
Channel to enable simple message passing to exist. This protocol
uses a generic packet that contains fields for common data types,
and three generic fields provide access for other units.

• Message Type – Identifier for Message Packet, declares
contents

• Animation Stream – 400 Bytes used for different types of
animation and data (FAP, BAP, Text etc).

• Message String – 32 Byte Text Identifier (e.g. Filename)

• Message Value 1,2,3 – Used for general values and
references.

• Transformation Matrix – 4 by 4 float value. Used because
most objects/avatars will require transformations in nearly
every packet.

The Stream Channel uses a simplified version of this, with a
Message Identifier and a Transformation Matrix as a header and
then 500 Bytes of compressed data. The File Channel splits all
data into manageable packets and then sends it directly over the
channel. Waiting for an acknowledgement from the receiving end
that all data was received correctly, otherwise a packet-by-packet
re-send message is transmitted to the sending end. The Control
Channel receives a simple message packet regarding the state of
the Server (connections, load, Client status etc). The Client then
has an approximate database of the connected clients (to reduce
network load, the updates of the Client database are performed
only once every ten seconds).

2.5.5 Practical Results

The actual system itself is limited by the certain physical
constraints that then limit the number of connecting users. The
Server can handle approximately 15000 connections, but only if
the processor and network can handle it. In practical trials, this
number is limited to around 256 concurrent client connections.
The Clients themselves are mainly limited by the rendering time,
the more Clients that present themselves with virtual
embodiments, the more time it will require to render and hence
the frame rates drop. For a few users, the avatars can be quite
detailed, but this detail can be dropped in favour of more users
(although would need to be a pre-arranged agreement). Using the
latest in graphics hardware, approximately 70 simplified avatars
can be included into a scene. This is a comparatively low number
in comparison to the number which the Server can handle, but as
70 avatars working together is not practical in the real sense,
scene partitioning could be used to introduce more avatars, but
still retain a real-time system. However currently a system with
this number of Avatars is limited to a good network (10Mbits/s)
it is not currently practical for Internet usage. Also as the number
of users increase, the delay (inherited from the system processing
time and the network) also increases on an approximately linear
scale (approximately 8ms per user).

2.6 Multimedia Objects

As can be seen from the Channel distribution, different types of
data can be exchanged. The list of currently added data
types/streams is as follows:

• Audio Stream – The basic stream of audio is transferred at

16Kbits/s and compressed using the G.728 [13] Audio
Compression Codec. However for larger bandwidth systems,
or systems with less bandwidth but greater CPU power, the
G.711 (64Kbits/s) and G.723.1 (5.3Kbits/s and 6.4Kbits/s)
audio codecs both use the same audio channel. Each audio
stream is given a reference object in order that 3D Audio
can be created.

• Speech – Speech communication over this type of system is
useful for Clients connected over very low bandwidth
connections. The Speech itself is transmitted as plain ASCII

text and this is passed to a Text-to-Speech Engine [14]. This
converts the text into phonemes and visemes, visemes being
the corresponding lip movement of phonemes.

3. Dance Case Study

The case study is a scenario for a Teacher (using the motion
tracking system at one location) to teach dance to a student (also
using one motion tracking system in another geographically
remote location). Both teacher and student were cloned by our in-
house cloning system, to obtain a virtual copy of both humans,
and attached to a motion tracking system, as shown in Figure 7
(one at University of Geneva and the other at EPFL,
Switzerland). An overlaid musical sequence is used to enable the
teacher and student to synchronize with each other, both teacher
and student can see each other (virtually) on a screen (as shown
in Figure 8) and therefore the teacher is able to see what the
student is doing wrong and the student can watch the teacher to
see what should be done.

Figure 7. Real Teacher and Student

Figure 8. Virtual Teacher and Student

The system is fully interactive, allowing each participant the
ability to see not only the exact movements of their counterparts,
but also to talk with each other. This type of scenario is typical of
an NVE System being used to its maximum benefit and certainly
is difficult to replace with other conventional systems (such as
Video Conferencing). The scenario is not limited to two
participants; more users could join to provide a teacher with a
class of students, providing the motion tracking equipment is
available. To increase the teacher sense of submersion and also
to enable a clearer perception of the situation a lightweight head-
mounted display could be used, although as dance typically uses
very jerky movements, hence the display should be rugged and
should secure to the teacher so that the movement is not
restricted.

4. Conclusion and Future work

In our work, we have presented the W-VLNET System, a
powerful multithreaded system that is capable of running not
only the Virtual Environment, but connecting two or more users
together in a Networked Virtual Environment. The environment
itself is made more real by the integration of an animation system
that completely animates the user’s virtual representation, and
simple collision detection and response. This was coupled with
our real-time body animation capturing system and full audio
support for both sound and music, that adds to the realism of the
experience. The W-VLNET System was designed and executed
on Windows OS machine.

Finally, both systems actively use the latest standards for scene
and virtual avatar representations (VRML97 and MPEG4) to
enable greater interoperability between the two systems
presented here and other commercial products.

To complete the work, we have designed, created and tested a
complex dance scenario that allowed a distance teaching session
to be implemented. This allowed us to visualize problems, prove
the work in a real situation and finally to self-regulate ourselves
and focus our research.

In future work we aim to augment the overall experience of the
virtual environment by improving the collision models and
improving the depth of the multimedia inputs (including video)
and the audio perception in the environment. We also plan to
implement scene partitioning to increase the number of Avatars
in the scene and reduce the network usage at the same time using
Animation Levels of Detail, better packet compression and
Server filtering. We also aim to improve the connection between
the motion tracking and the W-VLNET system.

5. Acknowledgements

The work presented in this paper was funded by the VPARK
project, which is a European Community funded project (ACTS
project Number AC353). We would like to thank Uwe Berner,
Mireille Clavien, Nabil Sidi-Yacoub and Marlene Arevalo for
their help during the case study demonstration and especially to
Gabby Reider and Mahmood Davari for their dance performance.

6. References

[1] M. J. Zyda, D. R. Pratt, J.S. Falby, P. Barsham, K.M.
Kelleher, “NPSNET and the Naval Postgraduate School
Graphics and Video Laboratory”, Presence, Vol.2, No.3, pp.
224 –258 (1993)

[2] C. Carlsson, O. Hagsand, “DIVE – A Multi-User Virtual
Reality System”, Proceedings of IEEE VRAIS’93, (1993)

[3] M.R. Macedonia, M.J. Zyda, D.R. Pratt, P.T. Barnham,
“NPSNET: A Network Software Architecture for Large-
Scale Virtual Environments”, Presence; Teleoperators and
Virtual Environments, Vol.3, No.4, (1994).

[4] Blaxxun Interactive - http://www.blaxxun.de/

[5] I. S. Pandzic, T. K. Capin, N. Magnenat-Thalmann, D.
Thalmann, "VLNET: A Networked Multimedia 3D
Environment with Virtual Humans", Proc. Multi-Media
Modeling MMM `95 (ISBN 981-02-2502-4), (1995).

[6] Silicon Graphics – OpenGL Optimizer,
http://www.sgi.com/software/optimizer/

[7] Virtual Reality Modeling Language (VRML),
http://www.web3d.org/vrml/vrml.htm

[8] H-ANIM Humanoid Animation Working Group,
Specification for a Standard Humanoid Version1.1,
http://ece.uwaterloo.ca/~h-anim/spec1.1/

[9] W.S. Lee, M. Escher, G. Sannier, N. Magnenat-Thalmann,
"MPEG-4 Compatible Faces from Orthogonal Photos", Proc.
Computer Animation 99, pp.186-194, (1999).

[10] W. Richard Stevens, TCP/IP Illustrated - Volume 1, 1994,
pp. 29.

[11] T. Molet, R. Boulic and D. Thalmann, “Human Motion
Capture Driven by Orientation Measurements”, Presence,
MIT, Vol.8, No.2, 1999, pp. 101-115.

[12] R. Boulic, T. Capin, Z. Huang, L. Moccozet, T. Molet, P.
Kalra, N. Magnenat-Thalmann, I. Pandzic, K. Saar, A.
Schmitt, J.Shen and D. Thalmann, “The HUMANOID
Environment for Interactive Animation of Multiple
Deformable Human Characters”, Proc. Eurographics’95,
Maastricht, 1995, pp. 337-348.

[13] http://www.itu.ch

[14] S. Kshirsagar, M. Escher, G. Sannier, N. Magnenat-
Thalmann, "Multimodal Animation System Based on the
MPEG4 Standard", Multimedia Modelling 99, pp. 215-232,
(1999)

Columns on Last Page Should Be Made As Close As

Possible to Equal Length

