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ABSTRACT 
As a new generation of multimodal systems begins to emerge, 
one dominant theme will be the integration and synchronization 
requirements for combining modalities into robust whole systems. 
In the present research, quantitative modeling is presented on the 
organization of users’ speech and pen multimodal integration 
patterns. In particular, the potential malleability of users’ 
multimodal integration patterns is explored, as well as variation in 
these patterns during system error handling and tasks varying in 
difficulty. Using a new dual-wizard simulation method, data was 
collected from twelve adults as they interacted with a map-based 
task using multimodal speech and pen input. Analyses based on 
over 1600 multimodal constructions revealed that users’ dominant 
multimodal integration pattern was resistant to change, even when 
strong selective reinforcement was delivered to encourage 
switching from a sequential to simultaneous integration pattern, 
or vice versa. Instead, both sequential and simultaneous 
integrators showed evidence of entrenching further in their 
dominant integration patterns (i.e., increasing either their inter-
modal lag or signal overlap) over the course of an interactive 
session, during system error handling, and when completing 
increasingly difficult tasks. In fact, during error handling these 
changes in the co-timing of multimodal signals became the main 
feature of hyper-clear multimodal language, with elongation of 
individual signals either attenuated or absent. Whereas 
Behavioral/Structuralist theory cannot account for these data, it is 
argued that Gestalt theory provides a valuable framework and 
insights into multimodal interaction. Implications of these 
findings are discussed for the development of a coherent theory of 
multimodal integration during human-computer interaction, and 
for the design of a new class of adaptive multimodal interfaces. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation (HCI)]: User 
Interfaces – user-centered design, theory and methods, 
interaction styles, input devices and strategies, 
evaluation/methodology, voice I/O, natural language, 
prototyping.  
General Terms 
Performance, Design, Reliability, Human factors 
Keywords 
Multimodal integration, speech and pen input, co-timing, 
entrenchment, error handling, task difficulty, Gestalt theory 

1. INTRODUCTION 
As a new generation of multimodal systems begins to emerge, 
one dominant theme will be the integration and synchronization 
requirements for combining modalities into robust whole systems. 
In this respect, the design of future multimodal systems depends 
critically on accurate knowledge of the natural integration 
patterns that typify people’s combined use of different input 
modes. Currently, the two most mature types of multimodal 
interface are ones that jointly process speech and pen input or 
speech and lip movement input [1, 10]. Within each of these 
areas, research has examined various aspects of the temporal 
synchronization patterns that characterize multimodal integration 
[5, 6, 12]. This paper will describe quantitative modeling on the 
organization of users’ speech and pen multimodal integration 
patterns, as well as present a theoretical context for interpreting 
these new data. 
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1.1 Multimodal Integration Myths  
One “myth” that misguided computationalists’ thinking about 
early multimodal system design has been the belief that users’ 
multimodal input always involves simultaneous signals [9]. More 
recently, empirical evidence has clarified that multimodal 
constructions frequently do not co-occur temporally during either 
human-computer or natural human communication. Rather, 
multimodal input often is integrated sequentially, with a 



manually-oriented input mode (e.g., natural or signed manual 
gestures, pen input) typically delivered earlier than speech input 
[7, 8, 12]. In the case of speech and pen, pen input frequently 
precedes speech with a brief lag between input modes of 1-2 
seconds [12]. Ideally, future multimodal systems should not only 
be able to process both unimodal and multimodal user input, but 
also both simultaneously and sequentially integrated multimodal 
constructions. 

Another “myth” has been the belief that all users’ multimodal 
input is integrated in a uniform way [9]. To the contrary, recent 
empirical evidence on multimodal speech and pen interaction has 
revealed an unusual bimodal distribution of user integration 
patterns. As illustrated in Figure 1, previous data indicate that 
individual child, adult, and elderly users all adopt either a 
predominantly simultaneous or sequential integration pattern 
during speech and pen multimodal constructions [9, 14, 15]. In 
these studies, users’ dominant integration pattern was identifiable 
almost immediately, typically on the very first multimodal 
command, and remained highly consistent (88-93%) throughout a 
session. These findings imply that future multimodal systems that 
can detect and adapt to a user’s dominant integration pattern 
potentially could yield substantial improvements in system 
robustness. 

Children Adults Seniors 
User SIM SEQ User SIM SEQ User SIM SEQ 
SIM integrators: SIM integrators: SIM integrators: 

1 100 0 1 100 0 1 100 0 
2 100 0 2 94 6 2 100 0 
3 100 0 3 92 8 3 100 0 
4 100 0 4 86 14 4 97 3 
5 100 0 SEQ integrators: 5 96 4 
6 100 0 5 31 69 6 95 5 
7 98 2 6 25 75 7 95 5 
8 96 4 7 17 83 8 92 8 
9 82 18 8 11 89 9 91 9 

10 65 35 9 0 100 10 90 10 
SEQ integrators: 10 0 100 11 89 11 

11 15 85 11 0 100 12 73 27 
12 9 91    SEQ integrators: 
13 2 98    13 1 99 

      Non-dominant 
integrators: 

      14 59 41 
      15 48 52 
Average Consistency 

93.5% 
Average Consistency 

90% 
Average Consistency 

88.5% 

Figure 1. Percentage of simultaneously-integrated multimodal 
constructions (SIM) versus sequentially-integrated 

constructions (SEQ) for children, adults, and seniors  

Engineering-level concepts tend to dominate whenever new 
multimodal systems are built, even though it now is widely 
recognized that well designed multimodal systems depend 
critically on guidance from cognitive science, linguistics, and 
other areas. As a new class of adaptive multimodal interfaces 
begins to be prototyped, engineers might reasonably ask whether 
users can’t just be trained to deliver their multimodal commands 
in a simultaneously integrated manner. This could expedite the 
multimodal fusion process and, in particular, could simplify the 
development of temporal constraints that are needed to build new 
time-sensitive multimodal architectures. The present research 
explores this theme of the potential malleability of users’ 
multimodal integration patterns, as well as examining variation in 

users’ integration patterns during system error handling and tasks 
varying in difficulty. 

1.2 Behavioral/Structural vs. Gestalt Theory  
As applied to multimodal communication and integration 
patterns, Behavioral/Structuralist theory and Gestalt theory each 
would predict a strikingly different if not an opposite pattern of 
results. A Behavioral/Structuralist perspective would view 
multimodal communication as being composed of a set of discrete 
signal pieces (e.g., speech and pen), and also governed by the 
same principles that apply to these individual modalities. 
Likewise, a Behavioral/Structuralist approach would assert that an 
individual’s multimodal integration pattern should be malleable, 
or subject to external conditioning via standard stimulus-response 
training techniques.  

In contrast, Gestalt theory would describe multimodal integration 
patterns as forming a unique or qualitatively different whole form, 
one that transcends the simple sum of their individual signal parts. 
The Gestalt viewpoint originally was developed as a revolt 
against both the Structuralist and Behaviorist theories that 
analyzed experience into simpler components. Literally hundreds 
of illustrations have been documented in which Gestalt patterns 
are perceived that otherwise would have been overlooked if 
complex patterns had been artificially fragmented or decomposed 
into single stimuli. One classic example is the case of 
Wertheimer’s demonstration in 1912 that two lines flashed 
successively at optimal intervals appear to move together, an 
illusion related to human perception of motion pictures [3]. 
Although Gestalt theory’s main contributions have involved 
elucidation of human perception of visual-spatial phenomena, 
they also have been applied to the perception of acoustic, haptic, 
and other information [2]. 

One of Gestalt theory’s contributions has been the description of 
principles for grouping information into a coherent whole [3, 4]. 
For example, the principle of proximity states that spatial or 
temporal proximity causes elements to be perceived as related. In 
a multimodal pen/voice interaction, speech is an acoustic 
modality that is structured temporally, and pen input is a visible 
modality that is structured both spatially and temporally. In this 
case, Gestalt theory would predict that the common temporal 
dimension would provide organizational cues for binding these 
modes into a whole multimodal communication. That is, changes 
in the co-timing of these modalities could well serve as the main 
information conveying proximity and relatedness. 

In addition, the Gestalt principle of symmetry states that people 
have a tendency to perceive symmetrical elements as part of the 
same whole. In the case of pen/voice multimodal communication, 
a symmetrical arrangement would entail closer temporal 
correspondence between signal pieces, especially on opposite 
sides of the signals. A more symmetrical multimodal integration 
pattern would be expected to include an increase in the 
proportional length between signals, and increased co-timing of 
multimodal signal onsets and offsets.  

A third principle that is potentially relevant to multimodal 
integration patterns is the principle of area, which states that there 
is a tendency to group elements in a manner that results in the 
smallest visible figure, or the briefest temporal interval. More 
specifically, this Gestalt principle would predict a larger number 
of users who are simultaneous rather than sequential integrators, 



or a larger overall ratio of simultaneous to sequential 
constructions. In any given multimodal integration pattern, 
Gestalt theory also would maintain that more than one principle 
can operate at the same time.  

The single general principle underlying all Gestalt tendencies is 
the creation of a balanced and stable perceptual form that is 
capable of maintaining its equilibrium, just as the interplay of 
internal and external physical forces shape an oil drop [3, 4]. 
During multimodal communication, any factors that threaten the 
user’s ability to achieve a goal, including threats to 
communication or task success, would be expected to set up a 
state of tension or disequilibrium. Under these circumstances, 
Gestalt theory would predict that an attempt would be made to 
fortify these basic organizational phenomena in order to restore 
balance [3, 4]. These basic Gestalt principles for organizing 
multiple elements are believed to contribute to redundant coding 
between the elements, which increases the speed and accuracy of 
perceptual processing. 

Although these Gestalt views have constituted a theory of 
perception, the present research explores the potential relevance 
of these concepts to users’ production of multimodal 
communication. In the context of interactive communication, it is 
well known that speakers often tailor the language they produce 
in a manner that accommodates a listener’s perceptual 
capabilities. For example, the characteristics of hyperarticulate 
speech adaptations (e.g., durational and articulatory) have been 
documented to enhance listeners’ speech perception [13]. As a 
result, one might expect to find broader applicability of Gestalt 
principles to both the perception and production of interactive 
multimodal communication patterns. 

1.3 Goals of the Present Research 
The present study investigates the relevance of the Gestalt 
principles described above to the temporal synchrony of users’ 
speech and pen multimodal integration patterns while interacting 
with a next-generation map system. Since previous research has 
documented that users are distributed bimodally into 
predominantly sequential versus simultaneous integrators, one 
specific goal was to assess the potential malleability of individual 
users’ dominant integration patterns. To support this, a new dual-
wizard simulation method was introduced, which was used to log 
a person’s integration pattern in real time, to quickly identify their 
dominant integration pattern at the beginning of a session, and 
then to adapt the system’s simulated error rate to encourage 
switching over to the non-dominant pattern. For example, if 
someone was predominantly a sequential integrator, then strong 
selective reinforcement was provided whenever they delivered a 
simultaneously-integrated multimodal construction (0% error 
rate) rather than their usual sequential pattern (40% error rate). 
Given this context, a Behavioral/Structuralist perspective would 
expect that users either would switch to using their non-dominant 
integration pattern, or at least increase the percentage of non-
dominant constructions between the first and second half of a 
session. In contrast, the Gestalt principles outlined above would 
predict that users would apply consistent co-timing of their 
multimodal signals, including onsets and offsets, as an 
organizational cue to their relatedness. In fact, the high 40% 
system error rate should precipitate a state of disequilibrium in 
users, causing them to fortify or entrench further in their existing 
pattern of co-timing. 

A second goal of this study was to model variation in users’ 
multimodal integration patterns during episodes of system error 
handling. Past research on speech hyperarticulation has 
consistently reported that users’ speech shifts to hyper-clear 
acoustic-prosodic features when they encounter system 
recognition errors and must repeat their input. One major feature 
of such hyperarticulation is an increase in total utterance duration, 
typically ranging 9-19% [11,13]. However, to date there has not 
been parallel work on hyper-clear communication patterns during 
unimodal pen or multimodal interaction. The present study was in 
part designed to examine how users would adapt a multimodal 
construction that incorporates speech as just one of multiple 
communication modalities. A Structuralist perspective that 
focuses on the analysis of a single modality would expect that 
elongation of the speech signal should replicate when speech is 
combined multimodally. In contrast, Gestalt theory would predict 
that hyperarticulation in a multimodal context could well take on 
a qualitatively different form, for example with adaptations in co-
timing now becoming the main vehicle conveying change. In this 
case, elongation of the individual speech signal might be 
attenuated or absent altogether. Furthermore, Gestalt theory 
would predict that actual error handling episodes, like a high 
base-rate of system errors, should precipitate a state of 
disequilibrium, causing users to fortify their existing co-timed 
pattern. 

A third specific goal of this research was to examine change in 
users’ multimodal integration patterns while completing tasks 
varying in difficulty. In this study, participants interacted with 
map tasks that varied from low to very high difficulty with 
respect to the spatial intensiveness of information. Once again, 
Gestalt theory would predict that the demands generated by 
increasingly difficult tasks should precipitate a state of 
disequilibrium, which would cause users to progressively fortify 
their co-timed patterns. 

The long-term goal of this research is the development of a 
coherent general theory of multimodal integration during human-
computer interaction. This research also aims to contribute 
temporal models of multimodal integration patterns, which will 
play a critical role in establishing the temporal constraints needed 
for optimal multimodal signal fusion and for building a new 
generation of adaptive time-sensitive multimodal architectures. 

2. METHODS  
2.1 Subjects 
There were 12 adult subjects, aged 21-58, five male and seven 
female. All were native speakers of English and paid volunteers. 
None of the subjects were computer scientists, and participants 
had varying degrees of computer experience.  

2.2 Task  
Subjects were presented with a scenario in which they acted as 
non-specialists working to coordinate emergency resources during 
a major flood in Portland, Oregon. To perform this task, they 
were given a multimodal map-based interface on which they 
received textual instructions from headquarters. They then used 
this interface to deliver multimodal input to the system by both 
speaking and making an appropriate mark on the map. Tasks 
involved gathering information (e.g., “Find out how many 
sandbags are at Couch School Warehouse”), placing items (e.g., 



“Place a barge in the river southwest of OMSI”), creating routes 
(e.g., “Make a jeep route to evacuate tourists from Ross Island 
Bridge”), closing roads (e.g., “Close Highway 84”) and 
navigating on the map (e.g., “Move north on the map”). 

Figure 2 shows a screen shot of the interface used in the 
experiment. In this example, the message from headquarters was 
“Show the railroad along the east waterfront between Broadway 
Bridge and Fremont Bridge.” Each command was designed for 
multimodal input. For example, a user working with the task in 
Figure 2 might say “This is the railroad” and draw a line along the 
river on the map (see Figure 2, Area b). 

 
Figure 2. Flood management user interface 

The tasks included four levels of difficulty: low, moderate, high 
and very high. Low difficulty tasks required the user to articulate 
just one piece of spatial-directional information (e.g., north, 
west), or one location (e.g., Cathedral School). Moderate 
difficulty tasks contained two pieces of spatial-
directional/location information, high difficulty tasks contained 
three pieces, and very high difficulty tasks contained four such 
pieces. Table 1 lists sample commands from each difficulty level.  

Table 1. Examples of task difficulty levels, with spatial-
location lexical content in italics 

Difficulty Message from Headquarters 

Low Situate a volunteer area near Marquam Bridge 

Moderate Send a barge from Morrison Bridge barge area to 
Burnside Bridge dock 

High Draw a sandbag wall along east riverfront from 
OMSI to Morrison Bridge 

Very High Place a maintenance shop near the intersection of 
I-405 and Hwy 30 just east of Good Samaritan 

 

2.3 Procedure 
Volunteers were first oriented to the system and task by an 
experimenter, who provided instructions, answered questions, and 
offered feedback or help. Instruction was given until the subject 
was fully oriented and ready to work alone, which typically took 

about ten minutes. Following this orientation, the experimenter 
left the room and users began their session.  The first ten tasks 
comprised an identification band that was used to determine the 
user’s natural multimodal integration pattern (i.e., their tendency 
to deliver the two input modes in a simultaneous or sequential 
manner). After this, users completed another 82 tasks.  

Task instructions were delivered by the system in textual form on 
the lower part of the screen (see Figure 2, Area a), below a map of 
the appropriate area of Portland (Area b). There also was a text 
area for system feedback (Area c), in which confirmation or error 
messages were displayed. Users were told to complete tasks with 
this map-based system using their own words, and to use both pen 
and speech to communicate each command. The experimenter’s 
instructions were unbiased with respect to how users could 
integrate modalities. If participants asked, they were told that they 
could use speech and pen input in any way they wished, as long 
as they used both modalities for each task. The system was 
introduced to users as an open-microphone implementation, so 
they did not need to tap the pen on the screen before speaking. 

Upon completion, volunteers were interviewed about their 
interaction with the system, their integration pattern, and any 
errors they experienced, and were debriefed on the purpose of the 
study. Until that point, all users believed they were interacting 
with a fully functional system. The experiment lasted about one 
hour per participant. 

2.4 Simulation Technique 
2.4.1 Dual Wizard Technique 
A novel simulation technique was developed for the present 
research that used two “wizards,” or simulation assistants. The 
wizards, an Input Wizard and an Output Wizard, worked 
autonomously in separate rooms.  

The Input Wizard’s function was to make an initial determination 
of a user’s natural integration pattern based on the ten-command 
identification band, and then to record the users’ multimodal 
integration pattern in real time throughout the session. To do this, 
the Input Wizard observed the user’s integration pattern by video 
feed during each task interaction, and recorded this pattern as 
either simultaneous or sequential. This information then was 
routed to both a data log and to the Output Wizard’s system. 
Subsequent fine-grained video analyses determined that this real-
time Input Wizard assessment was correct 99% of the time.  

In a nearby room, the Output Wizard monitored the content of the 
user’s input and then responded with appropriate feedback that 
was sent directly to the user’s display. In addition to sending 
confirmations, the Output Wizard could send tailored feedback, 
such as “please use both pen and speech” or “use your own 
words,” as needed.  All Output Wizard messages were pre-
scripted to expedite simulation response times. Finally, although 
the system required input from both wizards before it could 
proceed, no explicit coordination between the wizards was 
necessary. 

2.4.2 Random Error Generator 
The system included a random error generator that simulated 
system errors. When triggered, this mechanism occasionally 
overrode the system’s response (transmitted by the Output 
Wizard), and instead responded with a failure-to-understand 
system message, such as “Will you try again, please?” Error 



messages were delivered in the system feedback area (Figure 2, 
Area c), which was momentarily highlighted in red. 

While subjects completed the initial ten-command identification 
band, the error generator delivered a fixed 20% error rate. 
Afterwards, the system paused briefly while the user’s integration 
pattern was determined, which was based on a minimum of six 
out of ten commands exhibiting a simultaneous or sequential 
multimodal integration pattern. The random error generator then 
was set to deliver a 40% error rate, randomly distributed across 
commands, whenever the subject used their natural integration 
pattern. In contrast, a 0% error rate was delivered whenever the 
subject used their non-dominant pattern. For example, if a user 
delivered eight sequentially-integrated multimodal commands 
during their identification band, they were classified as a 
sequential integrator. Subsequently, they received a 40% error 
rate for any sequential commands, but no errors for simultaneous 
ones. Using this simulation software and contingent delivery of 
errors, the present study investigated whether users could be 
trained to switch from their natural multimodal integration pattern 
to the non-dominant pattern.  

2.5 Research Design  
As shown in Figure 3, the research design involved an initial pre-
training phase during which a user's dominant multimodal 
integration pattern was identified during the first 10 commands, 
followed by two 41-command phases during which the user's 
integration pattern was tracked. These latter two phases were 
summarized separately for the first versus second half of the main 
session. The specific nature of training was contingent on a user's 
dominant integration pattern, as described in section 2.4.2. Based 
on this, the twelve subjects were divided into sequential 
integrators (SEQ), for whom training was designed to encourage 
simultaneous constructions, and simultaneous integrators (SIM), 
for whom training encouraged sequential integrations. 

i
d

SVHS video editing equipment to the nearest .1 second. Data 
from two previous studies have shown that inter-coder reliability 
for these measurements is accurate to the nearest .1 second [12, 
14]. These time codes were collected from the video analysis and 
entered into a customized Access database interface. This flexible 
interface permitted checking the data for valid input and was 
designed to filter, compare, and summarize data. Based on the 
speech and pen time codes, this analysis tool also calculated the 
following durational information for each multimodal interaction: 

Absolute Intermodal Overlap/Lag – During simultaneous 
integrations, the absolute duration of signal overlap was 
summarized in milliseconds (ms) for each multimodal command. 
During sequential integrations, the duration in ms from the end of 
the first signal to the start of the second one was summarized. 
Intermodal Overlap Ratio – During simultaneous integrations, the 
ratio of signal overlap was calculated by dividing the absolute 
intermodal overlap by the total multimodal signal duration. 
Intermodal Onset Differential – For each simultaneous 
multimodal command, the time in ms was recorded between the 
beginnings of the first and second input mode signals. 
Intermodal Offset Differential – For each simultaneous 
multimodal command, the time in ms was recorded between the 
ends of the first and second input mode signals. 
Speech Duration – For each multimodal command, the duration 
of the speech signal was recorded in ms. For the subset of 
verbatim matched speech analyses, only original input and first 
repetition pairs with identical lexical content were analyzed.  
Pen Duration – For each multimodal command, the duration of 
the pen signal was recorded in ms. For the subset of verbatim 
matched analyses, only original input and first repetition pairs 
involving the same type of gesture or pen mark were analyzed 
(e.g., two arrows).  
Multimodal Command Duration – The total duration of each 
 

During the main training phases, two additional within-subject 
factors were evaluated: error handling and task difficulty. For 
error handling, a user's multimodal integration pattern was 
compared when a user originally input information (i.e., no errors 
occurred), during first repetitions following a single system error, 
and during second and further repetitions when a system error 
persisted (i.e., spiraled). For task difficulty, a user's multimodal 
ntegration patterns were analyzed across tasks varying in 
ifficulty, including low, moderate, high, and very high tasks. 

2.6 Data Capture and Transcript Coding 
All sessions were videotaped, and multimodal speech and gesture 
data were analyzed for multimodal integration patterns and 
temporal synchronization, as well as for the degree of consistency 
and early predictability exhibited in users’ patterns over their 
session. In addition, for each multimodal command, the start and 
end times of the pen and speech signals were hand-coded using 

multimodal command was recorded in ms from the start of the 
first signal to the end of the final signal. 

2.7 Reliability 
Interlabeler agreement was calculated for independent coders. 
Measurements of start and end of the speech and pen signals were 
compared between the coders, and 89% of all measurements 
matched to within .1 second.  When broken down by mode, 85% 
of pen measurements and 92% of speech measurements were 
reliable to within .1 second. 

3. RESULTS 
The following sections summarize users’ multimodal integration 
patterns, as well as changes in the temporal synchronization of 
their integration patterns over the course of the session, during 
error handling, and as a function of task difficulty. A total of 1615 
multimodal constructions were analyzed, or an average of 135 for 
each of the 12 subjects.  

3.1 Multimodal Integration Patterns 
One subject displayed a predominantly sequential integration 
pattern, while the other 11 subjects were simultaneous integrators. 
The average within-subject integration pattern consistency was 
97% during both the initial identification band (range 83-100%) 
and also during the main task (range 81-100%). No subject 

ID  
Band 

Main Training Session 
(1st half) 

10 commands 41 commands 41 commands

(2nd half) 

Figure 3. Research design summary 



switched their dominant integration pattern to the non-dominant 
one over the course of the session, in spite of the high 40% error 
rate they received when they continued using their natural 
integration pattern. For sequentially-integrated commands, 83% 
involved pen input delivered before speech.  

3.2 Temporal Synchronization Patterns  
3.2.1 Absolute Intermodal Signal Overlap/Lag  
For subjects who were simultaneous integrators, the absolute 
signal overlap increased from a mean of 1.41 seconds to 1.87 
seconds between the first and second half of the session, or a 
relative increase of 33%. Correspondingly, for the sequential 
integrator the absolute intermodal lag increased from a mean of 
0.27 seconds to 0.44 seconds, a relative increase of 63%, as 
shown in Table 2. An a priori paired t-test on logged absolute 
values confirmed that subjects entrenched significantly in 
whatever their dominant integration pattern was, with 
simultaneous integrators exhibiting increased signal overlap and 
sequential ones increased lag during the second half of their 
session, t = 1.81 (df = 11), p < .05, one-tailed.  

During error episodes, absolute intermodal overlap/lag (logged 
values) entrenched significantly between a user’s original input 
attempt and their first repetition following an error, a priori 
paired t-test, t = 1.82 (df = 11), p < .05, one-tailed. Likewise, the 
contrast between original input and second or subsequent 
repetitions was significant, a priori paired t-test on absolute 
logged values, t = 3.28 (df = 11), p < .0035, one-tailed. Table 2 
summarizes that simultaneous integrators increased their signal 
overlap from 1.50 to 1.68 to 1.77 seconds during error spirals, a 
total relative increase of 18%, while the sequential integrator 
correspondingly increased their lag from .45 to .49 to .63. 

Table 2. Average increasing signal overlap in seconds for SIM 
integrators and increasing lag for SEQ integrators 

Integration 
Pattern 

First 
Half 

Second 
Half 

Origina
l Input 

First 
Repeat 

Deeper 
Repeats 

SIM 1.41 1.87 1.50 1.68 1.77 
SEQ 0.27 0.44 0.45 0.49 0.63 

 

With respect to task difficulty, mean absolute signal overlap/lag 
revealed no significant change between the low and moderate 
difficulty levels, t < 1. However, a significant increase was 
observed between moderate and high task difficulty, a priori 
paired t-test on logged absolute values, t = 3.02 (df = 11), p < 
.006, one-tailed. An additional significant increase was observed 
between high and very high difficulty levels, t = 1.81 (df = 11), p 
< .05, one-tailed. Table 3 summarizes this progressive integration 
pattern entrenchment with increased task difficulty for all data. 

Table 3. Average signal overlap in seconds for SIM 
integrators and lag for SEQ integrators with increased  

task difficulty 

Integration 
Pattern Low Moderate High Very 

High 
SIM 1.18 1.23 2.43 2.98 
SEQ .26 .42 .50 .33 

 

An additional analysis compared a subset of this absolute signal 
overlap/lag data as a function of task difficulty, but in this case 
carefully matched the four task difficulty levels by type of task 

(e.g., placing an object, creating a route). For this subset, mean 
absolute signal overlap/lag once again increased progressively 
with task difficulty, this time with a significant increase between 
low and moderately difficult tasks, a priori paired t-test, t = 2.49 
(df = 35), p < .009, one-tailed. An additional significant increase 
was found between moderate and high difficulty tasks, t = 2.50 
(df = 34), p < .009, one-tailed. An additional increase was 
observed between the high and very high levels, although not a 
significant one, t = 1.10, N.S. For this more carefully matched 
subset, the average signal overlap/lag increased from 1.10 to 1.75 
seconds between low and very high task difficulty, or a total of 
59%. 

3.2.2 Intermodal Overlap Ratio  
For subjects who were simultaneous integrators, the ratio of total 
speech and pen signal overlap to total multimodal signal duration 
increased from a mean of .50 in the first half of the session to .56 
in the second half, a significant increase by a priori paired t-test, t 
= 2.71 (df=10), p < .015, one-tailed.  

Table 4. Average percentage intermodal overlap for 
simultaneous integrators 

First 
Half 

Second 
Half 

Original 
Input 

First 
Repeat 

Deeper 
Repeats 

50% 56% 52% 54% 56% 
 

During error handling, subjects’ overlap ratios did not increase 
significantly between original attempts and first repetitions, t = 
1.50, N.S. However, they did increase significantly between 
original attempts (.52) and deep spirals (.56) (i.e., second 
repetitions and beyond), a priori paired t-test, t = 2.17, (df = 10), 
p < .003, one-tailed.  

3.2.3 Intermodal Onset Differential 
For subjects who were simultaneous integrators, the intermodal 
onset differential decreased significantly or the onsets moved 
closer together during error episodes, with the means changing 
from .83 to .66 to .59 seconds between original, first, and deeper 
repeats, respectively. This represented a significant decrease in 
signal onsets (log) between both original and first repeats, a priori 
paired t-test, t =  4.63, (df = 10), p < .0005, one-tailed, and 
between original and deeper repeats, t = 2.48, (df = 10), p < .02, 
one-tailed. The total relative decrease in onsets between original 
and deeper repeats was 29%. The first row of Table 5 summarizes 
these results. Finally, no significant change was found in onsets 
between the first and second half of a session, t < 1, N.S. 

Table 5. Changes in mean onset & offset duration in seconds 

 First 
Half 

Second 
Half 

Original 
Input 

First 
Repeat 

Deeper 
Repeats 

Onset N.S. 0.83 0.66 0.59 
Offset 0.85 0.66 N.S. 

 

3.2.4 Intermodal Offset Differential 
For subjects who were simultaneous integrators, the second row 
of Table 5 shows that the average intermodal offset differentials 
decreased from .85 to .66 seconds between the first and second 
half of a session, a relative decrease of 22%. An a priori paired t-
test on offset differentials (log) confirmed this significant 
decrease, t = 4.19, (df = 10), p < .001, one-tailed. However, 



during error episodes the offset differential did not change 
significantly, t < 1, N.S.  

3.2.5 Speech Duration 
Speech duration did not change significantly from the first to 
second half of a session, t = 1.38, N.S., nor did it change 
significantly when all data were compared during error handling, 
t < 1, N.S. However, when a subset of 115 speech durations were 
compared that had been matched on verbatim lexical content, 
original versus first repeats averaged 1.65 and 1.73 seconds, a 
4.8% relative increase, which was significant by a priori paired t-
test, t = 2.37, (df = 114), p < .01, one-tailed. 

3.2.6 Pen Duration 
Pen duration likewise did not change significantly between the 
first and second half of a session, t < 1, N.S. During error 
handling, no significant change in pen duration was found 
between original input to first repeats, t < 1, N.S. However, pen 
duration (log) did increase from 1.76 to 1.92 seconds between 
original input and deeper repeats by a priori paired t-test, t = 
2.93, (df = 11), p < .01, one-tailed. This represented a 9% relative 
increase in pen duration during deeper spiral errors. However, on 
a subset of pen durations that contained carefully matched 
gestural marks, no significant change was found in duration (log) 
between original input and first repetitions, t < 1, N.S. 

3.2.7 Multimodal Command Duration 
There were no significant changes in total multimodal signal 
duration between the first and second half of a session, t = 1.37, 
N.S., nor were there any significant changes during error 
handling, t < 1, N.S.  

3.3 Post-Experimental Interview 
Based on post-experimental interview data, 67% of participants 
were able to describe their basic multimodal integration pattern, 
whereas the remaining 33% were completely unaware of it. The 
majority of participants, or 83%, spontaneously commented about 
the system errors that they experienced. Most believed that 
systems errors were caused by their spoken word choice (58%), 
type of pen marks (42%), speech articulation (33%), or 
multimodal signal co-timing (33%). For example, one user 
reported about their co-timing, “…when I drew a line I would 
draw the line the whole time I was saying the sentence and end at 
the exact same time.” A few users also mentioned that they 
believed consistency was important in their interaction style with 
the computer. 

4. DISCUSSION 
This research summarizes a comprehensive body of evidence 
demonstrating that changes in co-timing provide the main 
organizational cues for binding speech and pen input during 
multimodal communication. Furthermore, users’ dominant 
multimodal integration pattern was strikingly consistent (97%) 
and resistant to change, even when strong selective reinforcement 
was delivered to encourage switching from a sequential to 
simultaneous integration pattern, or vice versa. Instead, both 
sequential and simultaneous integrators showed evidence of 
entrenching further in their dominant integration patterns (i.e., 
increasing their intermodal lag during sequential integrations and 
overlap during simultaneous integrations) over the course of an 
interactive session, during system error handling, and when 

completing increasingly difficult tasks. As shown in Table 2 (left 
side), subjects who were simultaneous integrators increased their 
signal overlap significantly from 1.41 to 1.87 seconds between 
the first and second half of the session, a relative increase of 33%. 
Likewise, for sequential integrators the absolute intermodal lag 
increased from .27 to .44 seconds, or by 63%. Convergent results 
based on an overlap ratio further underscored these findings. The 
high degree of consistency in multimodal integration patterns 
may in part have reflected users’ adoption of a “success strategy” 
in interactions with the computer. However, these systematic 
changes in multimodal signal co-timing occurred in spite of the 
fact that users varied widely in explicit awareness of their own 
integration patterns. 

In the context of error handling, this entrenchment of multimodal 
signal co-timing was the dominant feature of users’ hyper-clear 
multimodal language, creating a qualitatively new phenomenon of 
multimodal hypertiming, unlike the unimodal speech 
hyperarticulation reported previously during human-computer 
interaction. Table 2 (right side) shows the pattern of co-timing 
entrenchment that occurred specifically during error handling 
episodes, with the signal overlap for simultaneous integrators 
increasing significantly from 1.50 to 1.77 seconds between 
original input and second or later repetitions, or by 18%. 
Similarly, sequential integrators increased their lag from .45 to 
.63 seconds, or 40%. Once again, convergent findings emerged 
from the data on intermodal overlap ratios. In the present data, 
these unique multimodal temporal changes now overshadowed 
the attenuated speech elongation previously reported for unimodal 
speech hyperarticulation. In previous reports, the total utterance 
duration for spoken language has consistently shown relative 
increases of 9-19% when the same person repeats the same lexical 
content after a system error [11, 13]. However, during the present 
multimodal communications total speech utterance duration on 
matched verbatim lexical content increased less than 5%, and 
total pen duration did not increase at all. 

Users’ multimodal synchronization patterns also showed a clear 
pattern of entrenchment as the present map-based spatial tasks 
became progressively more elevated in difficulty. In fact, 
multimodal signal overlap/lag increased steadily from 1.10 to 
1.75 seconds for tasks varying from low to very high difficulty, or 
by 59% total. To summarize, as spatial tasks become more 
challenging, both sequential intermodal lags and simultaneous 
overlaps increased. 

From a theoretical viewpoint, Gestalt principles correctly 
predicted that users would apply consistent co-timing of their 
multimodal signals as an organizational cue to their relatedness. 
Clearly, the temporal dimension of multimodal organization 
becomes especially important for establishing the relatedness of 
multimodal signals when one or more of the modalities involved 
has no spatial instantiation. In fact, from a Gestalt perspective the 
high 40% error rate would have precipitated a state of 
disequilibrium in users, causing them to fortify or entrench further 
in their existing co-timing patterns. This included an increase in 
the symmetrical co-timing of signal onsets and offsets under 
different circumstances, as observed in Table 5. In addition, when 
users’ communication was specifically threatened by system 
errors or by increasingly demanding spatial tasks, Gestalt theory 
correctly predicted that they would fortify these aspects of their 
multimodal signal co-timing in order to restore the equilibrium 



needed to support a listener’s successful perceptual processing. 
Finally, Gestalt theory predicted that simultaneous users and 
integration patterns would be more prevalent than sequential 
ones, due to the bias toward creation of briefer rather than longer 
temporal intervals. As shown in Figure 1, 70% of users from 
children through the elderly are predominantly simultaneous 
integrators. In summary, the Gestalt principles of proximity, 
symmetry, and area, as well as the general concept of 
disequilibrium, all have provided a valuable framework for 
understanding the present speech and pen multimodal integration 
patterns. In this research, the theoretical utility of these principles 
has been demonstrated for the production of multimodal 
communication patterns, rather than the perceptual focus of most 
previous Gestalt research. 

One implication of these results is that future computational 
systems will need to accurately model users’ existing multimodal 
integration patterns, including the major parameters like system 
errors and task difficulty that cause these patterns to vary 
systematically, rather than naively assuming that users can be 
trained to adopt to a particular style. The basic data on users’ 
multimodal integration patterns present very fertile opportunities 
for adaptive processing, since users are divided into two basic 
types, with early predictability and very high consistency. 
Quantitative empirical modeling of the type described in this 
paper is expected to provide a scientific foundation for accurately 
predicting the major variation in users’ integration patterns. Such 
models can be used to guide the development of new strategies 
for adapting temporal thresholds in future time-sensitive 
multimodal architectures during the fusion process, potentially 
yielding substantial improvements in system response speed, 
robustness, and overall usability. 

The long-term goal of this research is the development of a 
coherent theory of multimodal integration during human-
computer interaction. To achieve this goal, future research could 
benefit by exploring other specific implications of Gestalt theory 
for the organization of multimodal communication patterns. In 
addition, further research should begin exploring the generality of 
the present results on pen/voice multimodal integration patterns 
for other modality combinations.  
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