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Abstract 
Load balance is critical to achieving scalability for 
large network emulation studies, which are of 
compelling interest for emerging Grid, Peer to Peer, 
and other distributed applications and middleware.  
Achieving load balance in emulation is difficult because 
of irregular network structure and unpredictable 
network traffic. We formulate load balance as a graph 
partitioning problem and apply classical graph 
partitioning algorithms to it. The primary challenge in 
this approach is how to extract useful information from 
the network emulation and present it to the graph 
partitioning algorithms in a way that reflects the load 
balance requirement in the original emulation problem. 
Using a large-scale network emulation system called 
MaSSF, we explore three approaches for partitioning, 
based on purely static topology information (TOP), 
combining topology and application placement 
information (PLACE), and combining topology and 
application profile data (PROFILE).  These studies 
show that exploiting static topology and application 
placement information can achieve reasonable load 
balance, but a profile-based approach further improves 
load balance for even large scale network emulation. In 
our experiments, PROFILE improves load balance by 
50% to 66% and emulation time is reduced up to 50% 
compared to purely static topology-based approaches. 

1. Introduction 
Historically, network simulations/emulations have been 
used extensively to explore the behavior of network 
protocols [1-4].  Because of the difficulty of modeling 
application behavior in detail, most of these simulations 
use simple application models to exercise the protocols 
and networks.  However, with the advent of large-
numbers of applications which tightly couple the use of 
compute, storage, and networks, techniques to study 
these resources together are emerging.  In particular, 
large-scale network emulation is an important technique 
for studying the dynamic behavior of networks, 
network protocols, and emerging class of distributed 
applications, including Peer-to-Peer [5]  and  Grid 

applications [6]  – where the network is an important 
contributor to application performance, applications 
generate large amounts of network traffic,  and overall 
application performance is critical.  A wide variety of 
simulation systems have been built to model network 
behavior based on discrete event simulation [7-10]. 
 
The MicroGrid [11], an emulation tool built by our 
group at UCSD to study the dynamic behavior of Grid 
applications, enables the execution of complete Grid 
applications (or reduced size models thereof) on a set of 
virtual grid resources. To study large applications and 
large network, compute, and storage resources with 
high fidelity, it is necessary to use scalable parallel 
machines.  Thus, we have designed the MicroGrid to 
support efficient parallel emulation of distributed/grid 
application and resources (including compute and 
network).  By harnessing scalable compute resources, 
the MicroGrid system and user applications together are 
themselves an interesting distributed application.  Here 
we consider a key problem for scaling the MicroGrid, 
the load balance of network emulation itself.  
 
The load balance problem has received much attention 
in parallel and distributed applications because good 
solutions are critical to achieving speedups.   For 
network emulation, load balance is challenging because 
the networks generally have irregular structure, and 
traffic.   As a result, each virtual network entity (router, 
etc.) poses an unpredictable load.  To date, most of the 
existing network emulation projects [7-10] do not 
provides systematic techniques to achieve load balance 
(and therefore good scaling). A number of these 
projects use simple hierarchical graph partitioners [12], 
others use randomized clustering techniques based on 
network topologies [10] which have not been 
demonstrated to give broadly robust results.  The 
majority of these research projects provide no 
automated solution, requiring users to manually 
partition the network.   Manual or simple heuristic 
approaches are unsuitable for large-scale network 
emulations of thousands of network entities. Netbed [10] 
automates the solution of a closely-related but distinct 



problem, mapping virtual networks to a collection of 
physical switches, routers, links, and compute nodes.   
 
In this paper, we formulate the load balance problem as 
a graph partitioning problem and apply classical graph 
partition algorithms[13-17] to solve it. Our solutions are 
based on existing graph partition algorithms, and we 
focus on how to use these algorithms effectively. The 
challenge here is how to extract useful information 
from the network emulation and represent it to the 
graph partitioners in a way that represents the load 
balance requirement in the original emulation problem. 
We address this problem by means of three approaches 
using a range of static and dynamic network 
information, namely, Topology-Based approach (TOP), 
Application Placement-Based approach (PLACE), and 
Profile-Based approach (PROFILE). Based on a large-
scale network emulation system we have built in 
MicroGrid, called MaSSF, we evaluate each of these 
three approaches for partitioning. These studies show 
that static topology and application placement 
information can be used to achieve good load balance, 
moreover, profile-based approach further improves the 
achieved load balance for even larger scale network 
emulations. The specific contributions of this paper 
include: 
 

 formulating the emulation load balance as a graph 
partitioning problem, and then applying  multi-
objective partitioning algorithms to it,  

 designing a metric based on network topology and  
application placement information to estimate 
total network traffic,  

 developing a scheme to profile  network traffic 
efficiently in the emulator and then use the profile 
data to estimate  network traffic,  

 demonstrating that compared to topology-based 
techniques (TOP), adding application placement 
information (PLACE) improves load-balance 
significantly, but adding profile information 
(PROFILE) enables improvements of 50-66%, and 

 demonstrating that PROFILE also delivers up to 
50% reduction in network emulation time (speeds 
it up). 

  
The remainder of the paper is organized as follows.   
Section 2 describes the load balance problem in detail, 
framing the partitioning and mapping problem and 
presenting the classical graph partitioning algorithms 
we employ as tools.  Section 3 provides three 
approaches for solving the problem, describing the pros 
and cons of each.  In Section 4, we evaluate the 
approaches, using a range of topologies and traffic 
workloads.  The results are discussed, along with 
related work in Section 5, and finally Section 6 

summarizes our contribution and points out some future 
directions for research. 

2. Problem Description 

2.1 Elements of the Network Mapping Problem 
In distributed network emulation, the target virtual 
network can be viewed as a graph, in which hosts and 
routers are viewed as graph nodes and network links are 
taken as graph edges. The virtual network is emulated 
by a collection of physical nodes (called simulation 
engine) connected with high speed local network. 
Usually, a physical node is in charge of modeling a 
subset of the virtual network, and a key problem is how 
to partition the virtual network and assign them to the 
physical emulation nodes with balanced load. This 
problem is called the network mapping problem. This is 
a demanding problem because the workload on each 
physical node depends on the virtual node 
configurations and network traffic in that subset of 
virtual network.  To achieve the optimal load balance 
even if the traffic were known is an NP-Complete 
problem, and in practice, a network mapping problem 
can be naturally modeled as a graph partitioning 
problem and solved with the classical graph partitioning 
algorithms. 

2.2 Modeling Network Mapping as a Graph 
Partitioning Problem 
Typical graph partitioning algorithms generally solves 
single objective partition problems such as:  
 
Given an input graph G = (V, E) with weighted vertices 
and edges, we want to partition it into k parts such that, 
- each part has roughly the same number of vertex 
weight                     (constraint) 
- the edge-cut (the number of edges) that straddles 
partitions is minimized               (objective) 
 
By setting the vertex and edge weights appropriately, 
mapping an emulated network to a set of physical 
emulation resources can be modeled as a graph 
partitioning problem and solved using a generic graph 
partitioning algorithm.  
 
As a well studied problem, we expect that any high 
quality graph partitioning package (in this case 
METIS[18]) should produce results comparable to other 
graph packages. So our challenge is how to apply the 
graph partitioning algorithm in METIS to solve the 
mapping problem by defining the suitable input graph 
G, constraint conditions, and optimization objectives 
for the graph partitioning algorithm. Our choices are 
discussed in the following subsections. 
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2.2.1 Input Graph 
The input graph G is defined by two categories of 
parameters: network structure and traffic information. 
The network structure includes detailed network 
topology, link latency, and link bandwidth. In MaSSF, 
this information is stored in the network description file 
and can be easily translated to a vertex and adjacent 
edge graph. Network traffic information is used to 
define edge weights in the graph, and it may also affect 
vertex weights. In general, network traffic information 
includes background traffic and foreground applications 
traffic, derived from trace, model, or even live 
applications.  How we approximate and model the 
expected traffic for the emulation is the distinguishing 
key characteristic of our three different load balance 
approaches. We will further focus on how to get those 
information in Section 3. 

2.2.2 Constraints 
In a graph partitioning problem, the constraint is the 
vertex weight to be balanced among multiple vertices. 
In the network mapping problem, the vertex weight can 
be defined as weighted sum of computation and 
memory requirement on each simulation engine node. 
In the MaSSF implementation, the computation 
requirement mainly comes from the logic for packet 
processing, which depends on network connection, 
routes, and traffic intensity. It is calculated based on the 
maximal bipartition flow of all traffic flowing through a 
network node. The memory requirement is mainly 
based on the routing table size. The routing table size is 
in the order of O(n2), where n is the number of routers 
in an AS (Autonomous System). We also use multiple 
constraints to balance different kinds of vertex weights 
together. 

2.2.3 Objectives 
In a graph partitioning problem, the objective is the 
edge-cut to be minimized. In the network mapping 
problem, the optimization can use two objectives. The 
first one is to maximize link latency across partitions. 
This can reduce the frequency of synchronization 
among simulation engines and maximize concurrency 
in the emulation, which is very important for scalability 
for large scale emulation. This feature is an attribute of 
our MaSSF system and all other network simulators 
based on conservative discrete event simulation engines.  
 
The second objective is to minimize the communication 
of simulation events across simulation engine nodes. It 
is expensive to transfer a simulation event across 
physical nodes both in terms of computation overhead 
and communication latency. Also, the physical network 
of the simulation engine nodes is often a performance 
bottleneck for the whole emulation, hence, it is 

important to minimize this communication. With 
detailed traffic information, we can estimate the number 
of simulation events on each single link and use it to 
calculate the edge weight. How to get the traffic 
information is the major topic of Section 3. 

2.3 Multi-Objective Graph Partitioning 
In last subsection, we described two objectives. Both 
objectives are important and sometimes in opposition.  

Traffic 
Information 
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Structure 

Graph 
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Constraints 
G Objectives 

Graph 
Partitioning 
Algorithms 

Partitioned 
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Figure 1. Process of Network Mapping  
 
So we must figure out how to set edge weights to 
represent the requirement of both objectives, and still 
provide the user predictable control on tradeoff. A 
simple combination-based approach (e.g. simply add 
two weights to a single weight) does not make sense.  
Applying the algorithm presented in [18], we can 
combine two dissimilar weights in a predictable way 
and use the available single objective METIS 
partitioning package. This algorithm is based on the 
intuitive notion of what constitutes a good multi-
objective partition. That is, a good solution should be 
close to the optimization solution for each single 
objective. Applying this approach on our network 
mapping problem, we get the following algorithm: 
 
1) Apply the single objective algorithm for maximal link 
latency across partitions, get the optimization edge-cut 
Clatency. 
2) Apply the single objective algorithm for minimal 
network traffic across partitions, get the optimization 
edge-cut Cbandwidth. 
3) Assign each edge weight to 

bandwidth

bandwidth

latency

latency

C
w

C
w

conbined ppw )1( −+=  

, where p is the user controllable weight of the latency 
objective. 
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4) Apply the single objective algorithm with the new 
normalized edge weights. 

3.2 Application Placement-Based Mapping 
To achieve a better network mapping, we need precise 
traffic information. The second approach is based on 
the observation that emulated network traffic typically 
consists of a background and a foreground load. 
Foreground traffic is created by the target application 
that a user wants to study, and background traffic is 
used to provide realistic network conditions. We 
estimate both traffic loads separately, then combine 
them to estimate the aggregated traffic data for better 
network mapping.  We call this approach PLACE. 

 
In summary, the mapping process can be modeled as 
shown in Figure 1. First, it takes the network structure 
and traffic information as input, creates a graph G, and 
builds objectives and constraints of graph partitioning 
algorithms. Then it applies partitioning algorithms to 
get the partitioned network. The partitioned network 
incapacitates the mapping of emulated network nodes 
to physical resources. We may have different 
abstraction of network mapping problems and use 
different constraints and objectives in the graph 
partitioning algorithm, however, we believe what we 
present above is straightforward and should have 
reasonable results with small overhead. The problem 
left is how to collect and use the traffic information, 
which will be discussed in the following section.  

 
The background traffic is generated using simple traffic 
models based on the network topology, and can be 
explicitly controlled by the user of the network 
emulator.  In this case, it is reasonable that all traffic 
generators can provide some prediction of their 
generated traffic load, for example, specifying the 
average traffic bandwidth between two endpoints. 
Because the background traffic represents an aggregate 
of traffic, such a gross characterization can be 
reasonably accurate.   

3.  Traffic Based Network Mapping  
We explore three different approaches for network 
mapping.  These approaches vary how network 
topology, background traffic, and application traffic are 
represented and used in the partition.  The more 
accurately an approach predicts the actual simulation 
work (i.e. network traffic), the better partitioning, and 
thereby better load balance are expected.  However, 
there are tradeoffs between the specificity of the 
information used and the generality of the partition 
produced.  

 
The foreground load is typically the live traffic from a 
small set of application programs.  Unlike background 
traffic prediction, it is difficult for users to predict the 
traffic of the real application.  First, the live traffic has 
complex dynamic behavior that is hard to model (that is 
why we need a network emulator to study it). Second, 
users may not have the required knowledge to describe 
this information (lacking either application knowledge 
or the computer systems knowledge).  As an 
approximation, we determine the traffic injection points 
of the application, where its processes attach to the 
emulated network, assuming that the application fully 
utilizes the network link at each injection point and 
every node talks to all other nodes with evenly 
distributed bandwidth.  While this approximation may 
seem coarse at first glance, it is acceptable when 
considering that most target applications in emulation 
are complex and network intensive.  

3.1 Network Topology-Based Mapping  
Our first approach only considers the virtual network 
topology, link bandwidth, and latency.  In this approach, 
TOP, each virtual node is weighted with the total 
bandwidth in and out of it.  The optimization objective 
is to maximize the link latency between simulation 
engine nodes, as discussed in Section 2.2.3.  This 
maximizes decoupling, supporting efficient parallel 
emulation. 
 

 This basic approach is simple and fast, therefore, it 
forms a performance baseline for our experiments.  It 
should work well for well-engineered networks with 
evenly distributed traffic. In such networks, the link 
bandwidth usually determines the routes that are placed 
over the links, and since networks are typically 
engineered to match the demand, link bandwidth is 
closely related to real traffic.  For example, this model 
is expected to be effective when we want to study the 
web traffic on Internet, which is composed of lots of 
small web browsing flows. 

With the source/destination pairs of all traffic flows, we 
can compute the aggregated traffic on each link by 
summing the contribution from each flow. To identify 
the routes used in the emulated network, we instantiate 
the emulated network and detect the actual routes used 
(based on dynamically generated routing tables and 
routing protocols). To get the routing information, we 
implement the ICMP protocol inside the MaSSF, and 
use the real Linux traceroute tool to discovery the 
routing paths between each source-destination pair. To 
reduce the number of traceroute execution required, we 
could use one representative endpoint for each sub-
network and only discover the route paths between 
those sub-network representatives. 
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Using the average load (a single number) over the 
entire emulation period neglects the critical dynamic 
behavior of the network traffic and may create poor 
load balance results. To solve this problem, we employ 
a clustering algorithm, which automatically detects and 
splits the whole emulation period into multiple 
segments.  Each segment is used to calculate a group of 
vertex weight, which is taken as a constraint of the 
graph partitioning algorithm. Using the multi-constraint 
graph partitioning algorithm (METIS), it tries to 
balance the requirement from different emulation stages 
and achieve better results.  

With this predicted traffic information, we can improve 
the approach in Section 3.1 by recalculating vertex/edge 
weights. This extra information also enables another 
objective, which is to minimize the traffic across 
partitions. In the approach, we use the multi-objective 
graph partitioning algorithm described in Section 2.3. 

3.3 Profile-Based Mapping 
The third approach uses profiling techniques to obtain  
traffic information automatically from emulation 
experiments (PROFILE).  The profiles are then used to 
estimate future network use, and to improve the 
network mapping.  Typically this involves an initial 
emulation experiment using an initial partition and 
traffic monitoring. The emulation yields detailed traffic 
information and the network can be repartitioned based 
on this information.  

The clustering algorithm first removes segments that 
have little traffic. Then it gets a smooth load curve for 
each physical node by calculating the average load of 
each node over a larger period of time. The dominating 
node of special point is the node with the maximal load. 
The change of dominating node identifies a major load 
variation of the emulation system. So we can split the 
whole emulation period at these odd points and use 
each segment as a constraint to the graph partitioning 
algorithm.  

 
The critical challenge for this approach is the efficient 
collection and representation of traffic information 
during profiling, and the use of this information to 
repartition the network. In MaSSF, we implement the 
Cisco NetFlow-like [19] function on each emulated 
router.  This functionality is used to record every traffic 
flow on each router to a local file.  The dump files 
record the average bandwidth and duration of every 
flow on every router. Parsing the dump files allows 
computation of the aggregated traffic on every router 
and link in the network.  By tuning the granularity of 
the NetFlow, we can get detailed network traffic 
information with small overhead. 
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In our implementation, the real network traffic data 
does not actually travel through the emulator; only 
packet references are processed by it.  Instead of using 
the real network bandwidth (MB/s) as the bandwidth 
measurement, we use the number of packets in a flow, 
since the real load in the emulator depends on the 
number of packets it processes.  We also measure the 
live traffic injection overhead by the number of requests 
coming from the application.  

Figure 2. Load Variation Over the Lifetime of an 
Emulation 

4. Experimental Evaluation 

 4.1 Methodology and Experimental Setup 
Using profile data, we have much more accurate traffic 
information about the virtual network.  We could apply 
the same multi-objective graph partitioning algorithm 
described in Section 2.3. However, that approach uses 
the average traffic intensity over the whole emulation 
period, in the process, ignoring a wealth of traffic detail 
available now. For example, the load imbalance pattern 
may vary at emulation stages (as shown in Figure 2), 
and different nodes dominate the load imbalance at 
different stages. Also, at some stages, the traffic load is 
so low that even heavy load imbalance has no 
appreciable affect on overall emulation performance.  

To evaluate these mapping approaches, we implement 
them in the MaSSF network emulator of the MicroGrid 
Project [11].  MaSSF is a distributed network emulator 
which supports direct execution of real applications and 
also provides background traffic generators to setup a 
user-controllable network traffic conditions. We apply 
these approaches on a range of different emulated 
network topologies and background traffic conditions.  

4.1.1 Metrics 
Three evaluation metrics are used in the experiments: 
load imbalance, application emulation time, and 
network emulation time.  We define the load of a 

 

 5



simulation engine node as the simulation kernel event 
rate (essentially one per packet).  Using these counters, 
we calculate the overall load imbalance across all the 
physical nodes. Assuming the simulation kernel event 
rates are k1, k2, …, kn, for n  nodes used by the 
simulation engine, the load imbalance is calculated as 
the normalized standard deviation of {k}. 
 
The second metric is the application emulation time. If 
load balance is improved, this improvement should 
reduce the execution time of the application emulation.  
Since communication is typically the performance 
bottleneck for only part of the execution time, the 
application emulation time is not always directly 
correlated to network emulation load balance.  
Nevertheless, as faster emulation is the ultimate goal of 
load balance, it is an important criterion. 
 
The third metric is network emulation time, which 
directly measures how much time is required to emulate 
the traffic created by the application. MaSSF records all 
network traffic trace of an emulation execution, and 
then replays it without real computation in the 
application. When replaying, it tries to send out traffic 
as fast as possible, but still follows the real application 
casualty and message logic order. This is a direct 
measurement of the mapping approaches. 
 

Network 
Topology Router Host Emulation 

Engine Node 
Campus 20 40 3 
TeraGrid 27 150 5 

Brite 160 132 8 
Table 1. Network Topology Setup 
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Figure 3. TeraGrid Site Network Architecture for any 
of the five sites, connected with 40Gbps network. 

4.1.2 Hardware Configuration 
The experiments use two RedHat Linux clusters.  The 
first cluster includes 24 dual 550MHz Pentium-II 
processors, linked with 100Mbps Ethernet switch, with 
2Gbps backbone bandwidth. This cluster is used for the 
network simulation engine. The second cluster consists 

of 8 dual 1.6GPentium-III processors, linked with 1 
Gbps Ethernet switch (with 24 Gbps backbone 
bandwidth). It is mainly used for the real application 
execution. Two clusters are connected by a single, full 
duplex gigabit Ethernet link. 

4.1.3 Network Topologies 
Three network topologies are used in our experiments. 
The first two represent real networks, such as the 
TeraGrid (Figure 3 and see http://www.teragrid.org/) 
and a section of a university campus network (Campus). 
To explore more complex network structures, our third 
network topology Brite is created by a generic topology 
generator (adapted from the BRITE[20] toolkits), which 
creates  Internet-like topologies and also provides 
background traffic support. 

4.1.4 Traffic Workloads 
The experiments use aggregated traffic flows to create 
background traffic. Users provide background traffic 
description, such as: 
 

Traffic [name   HTTP 
request_size 200KByte 
think_time 12 

 client_per_server 10 
 server_number 10] 
 
Here HTTP clients and severs are selected randomly 
from endpoints in the virtual network. In this study, a 
HTTP traffic generator is used, which has been well-
studied by other researchers [21]. While this 
background traffic model is not perfect, it exercises 
some range of network dynamics, allows user control of 
load intensity by changing those parameters, and is 
widely used [22-24]. Detailed realistic traffic 
generation itself is a hot research topic and is beyond 
the scope of this paper. 
 
Foreground traffic is created live from real Grid 
applications, including ScaLapack[25] and GridNPB3.0 
[26]. ScaLapack is a linear algebra package widely used 
for scientific computing, and is implemented atop 
MPICH-G (which in turn uses a network of TCP/IP 
connections).  In our experiments, it calculates a matrix 
equation of size 3000x3000 using 10 nodes, and runs 
for about 10 minutes on our emulation platform. 
GridNPB3.0 is a widely used set of grid benchmarks in 
a workflow style composition in data flow graphs 
encapsulating an instance of a slightly modified NPB 
task in each graph node, which communicates with 
other nodes by sending/receiving initialization data. 
GridNPB includes a range of computation types and 
problem sizes, and in our experiments we use the 
combination of Helical Chain (HC), Visualization 
Pipeline (VP), Mixed Bag (MB) applications, all run at 
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class S size.  These programs run for about 15 minutes 
on our platform. 

4.2 Experiment Results 

4.2.1 Load Imbalance 
Application workloads are executed on three network 
topologies (Campus, TeraGrid, and Brite) with 
moderate background traffic, and the measured load 
imbalance for two applications (ScaLapack and 
GridNPB) is shown in Figures 4 and 5. The figures 
report the normalized load imbalance across the 
physical simulation engine nodes for each combination 
of mapping approach and network topology.  Each   
mapping approach produces significantly different 
results. The application placement-based mapping 
(PLACE) improves significantly on topology-based 
mapping (TOP) for both ScaLapack and GridNPB 
applications. The profile-based mapping (PROFILE) 
further improve the load imbalance up to 66% and 48% 
for ScaLapack and GridNPB respectively. For both 
workloads, the profile-based mapping approach delivers 
the best performance among three approaches. This is 
as expected, since it uses detailed traffic information 
from previous simulation execution to partition the 
network.  
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Figure 4 Load Imbalance for ScaLapack  
 

Load Imbalance for GridNPB
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Figure 5 Load Imbalance for GridNPB 
 
The improvement of profiled-based mapping over 
placement-based mapping for GridNPB is more 

significant than that for ScaLapack. This is due to the 
fact that for ScaLapack, the application-placement 
based traffic prediction is very close to the actual traffic 
pattern, so there is little improvement to be had for 
PROFILE. For GridNPB, in contrast, the traffic is more 
irregular and the application-placement based 
prediction is less accurate.  As a result, significant load 
imbalance remains for PLACE, leaving more room for 
improvement for PROFILE.  
 
We can also see that the scale of the emulation affects 
the achieved load balance. The Campus network uses 3 
simulation engine nodes, the TeraGrid uses 5 nodes, 
and the Brite network uses 8 nodes.  The normalized 
load imbalance increases when the number of 
simulation engine nodes is increased, as you’d expect if 
work were held constant (it is not across these 
experiments). When the emulation scales up, load 
balance is more critical to achieving high performance.  
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Figure 6 Emulation Time for ScaLapack  
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 Figure 7 Emulation Time for GridNPB    

4.2.2 Application Emulation Time 
The emulation time of both applications is shown in 
Figures 6 and 7. For ScaLapack, the use of application 
placement-based mapping (PLACE) reduces overall 
emulation time significantly (about 40%), and the use 
of the profile-based mapping (PROFILE) further 
reduces the emulation up to 50%. For the GridNPB 
workload, we can see the benefits of both PLACE and 
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Since the network topology and background traffic are 
quite different, we cannot compare the execution time 
directly to the experiments in Section 4.2.1. But by 
comparing the result of the different network topologies, 
it is clear that the profile-based approach still creates 
the best partition for this large network emulation.  

PROFILE mappings, but the improvement is much 
smaller (about 17%). As we have mentioned before, the 
emulation time is not a direct measurement of load 
imbalance, and because the execution time of GridNPB 
is computation rather than communication-intensive, 
improvement of the emulator gives little overall 
runtime benefit.   
 4.2.4 Network Emulation Time in Isolation 
To provide further insight, we show the fine-grained 
load imbalance of the Campus network emulation in 
Figure 8. We collected the actual load of simulation 
engine nodes in two second intervals and calculate the 
load imbalances for each period. As shown in Figure 8, 
the load imbalance of profile-based approach is actually 
greatly improved compared to the topology-based 
mapping approach, even the overall execution time is 
not significantly improved.  

All experiments above use the emulated application as 
targets, and the computation and communication are 
mixed together. To further understand the direct effect 
on network emulation, we use the MaSSF replay 
function to study the network emulation performance in 
isolation, as mentioned in Section 4.1.1. Figures 9 and 
10 show that the emulation time for network traffic is 
improved significantly for ScaLapack replays, in 
consistent with the result of overall emulation time in 
Figure 6.  For GridNPB, the network emulation time is 
also reduced by 30%, even when the execution time for 
the whole application shows less difference in Figure 7.  

 
Fine-Grained Load Imbalance 

 
Figure 8 Fine-Grained Load Imbalance of GridNPB 

4.2.3 Scalability 
To evaluate the effectiveness of our three mapping 
approaches for larger network emulations, we use 
BRITE to build a network topology with 200 routers 
and 364 hosts. The emulation itself uses 20 simulation 
engine nodes and ScaLapack uses 10 additional nodes. 
Since the current BRITE tool cannot create networks 
using BGP routers, all the routers are created in a single 
AS. The routing table size increases rapidly with the 
number of routers in the network, so our hardware 
infrastructure currently limits us to networks with about 
200 routers. However, we can still increase the number 
of hosts and the background traffic intensity to produce 
a larger network and increase the size of the emulation.  
The result is presented in Table 2. 
 

ScaLapack TOP PLACE PROFILE 
Load Imbalance 
(Std. Deviation) 1.019 0.722 0.688 

Execution 
Time(second) 559.332 484.573 460.544 

Table 2. Results of ScaLapack on Larger Network 
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Figure 9 ScaLapack Isolated Network Emulation 
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Figure 10 GridNPB Isolated Network Emulation 

4.3 Summary 
Experimental results show that network mapping using 
static network topology and predicted traffic 
information can improve load balance in large scale 
network emulation. The topology-based approach (TOP) 
is fast and simple, and the placement-based approach 
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(PLACE) can improve the performance for application 
with evenly distributed traffic load. For more irregular 
application and real large emulation, the profile-based 
approach (PROFILE) is most effective. Depending on 
the special network structure and traffic load, it can 
improve load balance by up to 66% and speed up the 
emulation up to 50%.  

5. Discussion and Related Work 
Load balance is known to be an important problem for 
the scalability of distributed network simulations or 
emulations,  however there are only a few efforts in 
network simulation/emulation community [7-10] to 
solve this problem. Many projects use either manual 
partitioning or simple graph partitioning based on 
network topology. The DaSSF [27] simulator uses the 
METIS graph partitioning package and link latencies 
for load balance.  It does not use link capacities or any 
further detailed traffic information.  Others[10] uses the 
greedy k-cluster algorithm: for k nodes in the core set, 
randomly selects k nodes in the virtual topology and 
greedily selects links from the current connected 
component in a round-robin fashion.  
 
Netbed's assign [28] maps virtual topologies which 
include endpoint resources as well as network 
structures onto a heterogeneous combination of routers, 
switches, and computers. Critical issues are time to 
compute mapping, physical resources used, and 
sufficient link capacity.  Thus, assign chooses specific 
endpoint and network resources and subject to the 
constraints optimizes their quantity.  Load balance is 
not a direct focus. In contrast, our MaSSF partitioner 
focuses on balancing the computational cost of the 
network simulation, while also optimizing core 
bandwidth use.  Load balance is computed on the basis 
of network structure, predicted irregular traffic load, 
and profiled traffic, to improve efficiency.  The MaSSF 
partitioner currently assumes homogeneous physical 
resources for network simulation. Improved emulation 
efficiency is used to achieve the same real-time 
performance with less resources or larger system 
emulation with fixed resources. 
 
In this paper, we address load balance problem in a 
more systematic fashion. Both placement-based and 
profile-based approaches exploit detailed network 
topology and traffic information to partition the virtual 
network, and therefore are expected to achieve better 
load balance for most situations when compared to 
simple hierarchical partition. For example, by 
minimizing the network traffic across partitions, it 
attempts to limit a large traffic flow to small number of 
partitions.   Our experimental results confirm this 
intuition. To get good results from the placement-based 
approach, an application should have balanced traffic 

amongst all application nodes, such as the ScaLapack 
program. For more irregular or complex application, the 
profile-based approach works better.  Our experiments 
also show that NetFlow information can accurately 
represent the traffic information in the network, thus be 
used to create a well-balanced network partition. This 
provides a great chance for scalable network emulation. 
 
However, there are still two user decided magic 
numbers in our three approaches. The first is the 
tradeoff between the maximal latency and minimal 
edge-cut traffic. Since the effect of maximal latency 
changed on different physical resources and number of 
physical nodes used in the emulation, the user may try 
different ratios himself and find the best priority ration. 
In current implementation, the default latency/traffic 
priority ratio is 6:4. The performance is not very 
sensitive to this ratio, and this ratio should be good for a 
switch connected cluster with less than 100 nodes. 
Usually the more simulation engine nodes used, the 
greater the importance of latency priority.  Another 
magic number is the tradeoff between computation 
requirement and memory requirement. When the 
simulation engine has enough physical memory, the 
weight of memory should be small. However, when the 
result partition is so uneven that some partitions gets 
too many virtual nodes and it is likely to run out of 
memory on those nodes. So we must increase the 
weight of memory when the physical memory becomes 
a possible bottleneck of the system. In our experiments, 
we use the m=10+x*x as the memory requirement for a 
router, where x is the size of an AS. It will be part of 
our future work to adjust these parameters 
automatically. For example, given a partition, MaSSF 
can predict more accurate memory requirements on 
every simulation engine node. If the memory imbalance 
will hurt performance or correctness, then it can adjust 
the memory weight and repartition automatically. 
 
Mapping results of these approaches also largely 
depend on the quality of graph partitioning algorithms. 
There are a large number of graph partitioning packages 
targeted at parallel computing since the early 90’s, 
including METIS[18], Chaco[17], Jostle[13], 
PARTY[15], and Zoltan[29]. While the standard graph 
partitioning algorithms create high-quality partition 
results for calculation on structured graph and mesh, 
their expressibility is still quite limited to address 
complex applications [16]. It is critical for users to 
setup correct application models to get the good results 
out of these partitioning algorithms, and this is exactly 
what we are doing in this paper. Our choice of METIS 
is mainly due to its flexibility in supporting multiple 
constraints and multiple objectives. 
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