

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercialadvantage, and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

SC’03, November 15-21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011…$5.00

Traffic-based Load Balance for Scalable Network Emulation
Xin Liu and Andrew A. Chien

Computer Science and Engineering Department
University of California, San Diego

 {xinliu,achien}@cs.ucsd.edu

Abstract
Load balance is critical to achieving scalability for
large network emulation studies, which are of
compelling interest for emerging Grid, Peer to Peer,
and other distributed applications and middleware.
Achieving load balance in emulation is difficult because
of irregular network structure and unpredictable
network traffic. We formulate load balance as a graph
partitioning problem and apply classical graph
partitioning algorithms to it. The primary challenge in
this approach is how to extract useful information from
the network emulation and present it to the graph
partitioning algorithms in a way that reflects the load
balance requirement in the original emulation problem.
Using a large-scale network emulation system called
MaSSF, we explore three approaches for partitioning,
based on purely static topology information (TOP),
combining topology and application placement
information (PLACE), and combining topology and
application profile data (PROFILE). These studies
show that exploiting static topology and application
placement information can achieve reasonable load
balance, but a profile-based approach further improves
load balance for even large scale network emulation. In
our experiments, PROFILE improves load balance by
50% to 66% and emulation time is reduced up to 50%
compared to purely static topology-based approaches.

1. Introduction
Historically, network simulations/emulations have been
used extensively to explore the behavior of network
protocols [1-4]. Because of the difficulty of modeling
application behavior in detail, most of these simulations
use simple application models to exercise the protocols
and networks. However, with the advent of large-
numbers of applications which tightly couple the use of
compute, storage, and networks, techniques to study
these resources together are emerging. In particular,
large-scale network emulation is an important technique
for studying the dynamic behavior of networks,
network protocols, and emerging class of distributed
applications, including Peer-to-Peer [5] and Grid

applications [6] – where the network is an important
contributor to application performance, applications
generate large amounts of network traffic, and overall
application performance is critical. A wide variety of
simulation systems have been built to model network
behavior based on discrete event simulation [7-10].

The MicroGrid [11], an emulation tool built by our
group at UCSD to study the dynamic behavior of Grid
applications, enables the execution of complete Grid
applications (or reduced size models thereof) on a set of
virtual grid resources. To study large applications and
large network, compute, and storage resources with
high fidelity, it is necessary to use scalable parallel
machines. Thus, we have designed the MicroGrid to
support efficient parallel emulation of distributed/grid
application and resources (including compute and
network). By harnessing scalable compute resources,
the MicroGrid system and user applications together are
themselves an interesting distributed application. Here
we consider a key problem for scaling the MicroGrid,
the load balance of network emulation itself.

The load balance problem has received much attention
in parallel and distributed applications because good
solutions are critical to achieving speedups. For
network emulation, load balance is challenging because
the networks generally have irregular structure, and
traffic. As a result, each virtual network entity (router,
etc.) poses an unpredictable load. To date, most of the
existing network emulation projects [7-10] do not
provides systematic techniques to achieve load balance
(and therefore good scaling). A number of these
projects use simple hierarchical graph partitioners [12],
others use randomized clustering techniques based on
network topologies [10] which have not been
demonstrated to give broadly robust results. The
majority of these research projects provide no
automated solution, requiring users to manually
partition the network. Manual or simple heuristic
approaches are unsuitable for large-scale network
emulations of thousands of network entities. Netbed [10]
automates the solution of a closely-related but distinct

problem, mapping virtual networks to a collection of
physical switches, routers, links, and compute nodes.

In this paper, we formulate the load balance problem as
a graph partitioning problem and apply classical graph
partition algorithms[13-17] to solve it. Our solutions are
based on existing graph partition algorithms, and we
focus on how to use these algorithms effectively. The
challenge here is how to extract useful information
from the network emulation and represent it to the
graph partitioners in a way that represents the load
balance requirement in the original emulation problem.
We address this problem by means of three approaches
using a range of static and dynamic network
information, namely, Topology-Based approach (TOP),
Application Placement-Based approach (PLACE), and
Profile-Based approach (PROFILE). Based on a large-
scale network emulation system we have built in
MicroGrid, called MaSSF, we evaluate each of these
three approaches for partitioning. These studies show
that static topology and application placement
information can be used to achieve good load balance,
moreover, profile-based approach further improves the
achieved load balance for even larger scale network
emulations. The specific contributions of this paper
include:

 formulating the emulation load balance as a graph
partitioning problem, and then applying multi-
objective partitioning algorithms to it,

 designing a metric based on network topology and
application placement information to estimate
total network traffic,

 developing a scheme to profile network traffic
efficiently in the emulator and then use the profile
data to estimate network traffic,

 demonstrating that compared to topology-based
techniques (TOP), adding application placement
information (PLACE) improves load-balance
significantly, but adding profile information
(PROFILE) enables improvements of 50-66%, and

 demonstrating that PROFILE also delivers up to
50% reduction in network emulation time (speeds
it up).

The remainder of the paper is organized as follows.
Section 2 describes the load balance problem in detail,
framing the partitioning and mapping problem and
presenting the classical graph partitioning algorithms
we employ as tools. Section 3 provides three
approaches for solving the problem, describing the pros
and cons of each. In Section 4, we evaluate the
approaches, using a range of topologies and traffic
workloads. The results are discussed, along with
related work in Section 5, and finally Section 6

summarizes our contribution and points out some future
directions for research.

2. Problem Description

2.1 Elements of the Network Mapping Problem
In distributed network emulation, the target virtual
network can be viewed as a graph, in which hosts and
routers are viewed as graph nodes and network links are
taken as graph edges. The virtual network is emulated
by a collection of physical nodes (called simulation
engine) connected with high speed local network.
Usually, a physical node is in charge of modeling a
subset of the virtual network, and a key problem is how
to partition the virtual network and assign them to the
physical emulation nodes with balanced load. This
problem is called the network mapping problem. This is
a demanding problem because the workload on each
physical node depends on the virtual node
configurations and network traffic in that subset of
virtual network. To achieve the optimal load balance
even if the traffic were known is an NP-Complete
problem, and in practice, a network mapping problem
can be naturally modeled as a graph partitioning
problem and solved with the classical graph partitioning
algorithms.

2.2 Modeling Network Mapping as a Graph
Partitioning Problem
Typical graph partitioning algorithms generally solves
single objective partition problems such as:

Given an input graph G = (V, E) with weighted vertices
and edges, we want to partition it into k parts such that,
- each part has roughly the same number of vertex
weight (constraint)
- the edge-cut (the number of edges) that straddles
partitions is minimized (objective)

By setting the vertex and edge weights appropriately,
mapping an emulated network to a set of physical
emulation resources can be modeled as a graph
partitioning problem and solved using a generic graph
partitioning algorithm.

As a well studied problem, we expect that any high
quality graph partitioning package (in this case
METIS[18]) should produce results comparable to other
graph packages. So our challenge is how to apply the
graph partitioning algorithm in METIS to solve the
mapping problem by defining the suitable input graph
G, constraint conditions, and optimization objectives
for the graph partitioning algorithm. Our choices are
discussed in the following subsections.

 2

2.2.1 Input Graph
The input graph G is defined by two categories of
parameters: network structure and traffic information.
The network structure includes detailed network
topology, link latency, and link bandwidth. In MaSSF,
this information is stored in the network description file
and can be easily translated to a vertex and adjacent
edge graph. Network traffic information is used to
define edge weights in the graph, and it may also affect
vertex weights. In general, network traffic information
includes background traffic and foreground applications
traffic, derived from trace, model, or even live
applications. How we approximate and model the
expected traffic for the emulation is the distinguishing
key characteristic of our three different load balance
approaches. We will further focus on how to get those
information in Section 3.

2.2.2 Constraints
In a graph partitioning problem, the constraint is the
vertex weight to be balanced among multiple vertices.
In the network mapping problem, the vertex weight can
be defined as weighted sum of computation and
memory requirement on each simulation engine node.
In the MaSSF implementation, the computation
requirement mainly comes from the logic for packet
processing, which depends on network connection,
routes, and traffic intensity. It is calculated based on the
maximal bipartition flow of all traffic flowing through a
network node. The memory requirement is mainly
based on the routing table size. The routing table size is
in the order of O(n2), where n is the number of routers
in an AS (Autonomous System). We also use multiple
constraints to balance different kinds of vertex weights
together.

2.2.3 Objectives
In a graph partitioning problem, the objective is the
edge-cut to be minimized. In the network mapping
problem, the optimization can use two objectives. The
first one is to maximize link latency across partitions.
This can reduce the frequency of synchronization
among simulation engines and maximize concurrency
in the emulation, which is very important for scalability
for large scale emulation. This feature is an attribute of
our MaSSF system and all other network simulators
based on conservative discrete event simulation engines.

The second objective is to minimize the communication
of simulation events across simulation engine nodes. It
is expensive to transfer a simulation event across
physical nodes both in terms of computation overhead
and communication latency. Also, the physical network
of the simulation engine nodes is often a performance
bottleneck for the whole emulation, hence, it is

important to minimize this communication. With
detailed traffic information, we can estimate the number
of simulation events on each single link and use it to
calculate the edge weight. How to get the traffic
information is the major topic of Section 3.

2.3 Multi-Objective Graph Partitioning
In last subsection, we described two objectives. Both
objectives are important and sometimes in opposition.

Traffic
Information

Network
Structure

Graph
Preparation

Constraints
G Objectives

Graph
Partitioning
Algorithms

Partitioned
Network

Figure 1. Process of Network Mapping

So we must figure out how to set edge weights to
represent the requirement of both objectives, and still
provide the user predictable control on tradeoff. A
simple combination-based approach (e.g. simply add
two weights to a single weight) does not make sense.
Applying the algorithm presented in [18], we can
combine two dissimilar weights in a predictable way
and use the available single objective METIS
partitioning package. This algorithm is based on the
intuitive notion of what constitutes a good multi-
objective partition. That is, a good solution should be
close to the optimization solution for each single
objective. Applying this approach on our network
mapping problem, we get the following algorithm:

1) Apply the single objective algorithm for maximal link
latency across partitions, get the optimization edge-cut
Clatency.
2) Apply the single objective algorithm for minimal
network traffic across partitions, get the optimization
edge-cut Cbandwidth.
3) Assign each edge weight to

bandwidth

bandwidth

latency

latency

C
w

C
w

conbined ppw)1(−+=

, where p is the user controllable weight of the latency
objective.

 3

4) Apply the single objective algorithm with the new
normalized edge weights.

3.2 Application Placement-Based Mapping
To achieve a better network mapping, we need precise
traffic information. The second approach is based on
the observation that emulated network traffic typically
consists of a background and a foreground load.
Foreground traffic is created by the target application
that a user wants to study, and background traffic is
used to provide realistic network conditions. We
estimate both traffic loads separately, then combine
them to estimate the aggregated traffic data for better
network mapping. We call this approach PLACE.

In summary, the mapping process can be modeled as
shown in Figure 1. First, it takes the network structure
and traffic information as input, creates a graph G, and
builds objectives and constraints of graph partitioning
algorithms. Then it applies partitioning algorithms to
get the partitioned network. The partitioned network
incapacitates the mapping of emulated network nodes
to physical resources. We may have different
abstraction of network mapping problems and use
different constraints and objectives in the graph
partitioning algorithm, however, we believe what we
present above is straightforward and should have
reasonable results with small overhead. The problem
left is how to collect and use the traffic information,
which will be discussed in the following section.

The background traffic is generated using simple traffic
models based on the network topology, and can be
explicitly controlled by the user of the network
emulator. In this case, it is reasonable that all traffic
generators can provide some prediction of their
generated traffic load, for example, specifying the
average traffic bandwidth between two endpoints.
Because the background traffic represents an aggregate
of traffic, such a gross characterization can be
reasonably accurate.

3. Traffic Based Network Mapping
We explore three different approaches for network
mapping. These approaches vary how network
topology, background traffic, and application traffic are
represented and used in the partition. The more
accurately an approach predicts the actual simulation
work (i.e. network traffic), the better partitioning, and
thereby better load balance are expected. However,
there are tradeoffs between the specificity of the
information used and the generality of the partition
produced.

The foreground load is typically the live traffic from a
small set of application programs. Unlike background
traffic prediction, it is difficult for users to predict the
traffic of the real application. First, the live traffic has
complex dynamic behavior that is hard to model (that is
why we need a network emulator to study it). Second,
users may not have the required knowledge to describe
this information (lacking either application knowledge
or the computer systems knowledge). As an
approximation, we determine the traffic injection points
of the application, where its processes attach to the
emulated network, assuming that the application fully
utilizes the network link at each injection point and
every node talks to all other nodes with evenly
distributed bandwidth. While this approximation may
seem coarse at first glance, it is acceptable when
considering that most target applications in emulation
are complex and network intensive.

3.1 Network Topology-Based Mapping
Our first approach only considers the virtual network
topology, link bandwidth, and latency. In this approach,
TOP, each virtual node is weighted with the total
bandwidth in and out of it. The optimization objective
is to maximize the link latency between simulation
engine nodes, as discussed in Section 2.2.3. This
maximizes decoupling, supporting efficient parallel
emulation.

 This basic approach is simple and fast, therefore, it
forms a performance baseline for our experiments. It
should work well for well-engineered networks with
evenly distributed traffic. In such networks, the link
bandwidth usually determines the routes that are placed
over the links, and since networks are typically
engineered to match the demand, link bandwidth is
closely related to real traffic. For example, this model
is expected to be effective when we want to study the
web traffic on Internet, which is composed of lots of
small web browsing flows.

With the source/destination pairs of all traffic flows, we
can compute the aggregated traffic on each link by
summing the contribution from each flow. To identify
the routes used in the emulated network, we instantiate
the emulated network and detect the actual routes used
(based on dynamically generated routing tables and
routing protocols). To get the routing information, we
implement the ICMP protocol inside the MaSSF, and
use the real Linux traceroute tool to discovery the
routing paths between each source-destination pair. To
reduce the number of traceroute execution required, we
could use one representative endpoint for each sub-
network and only discover the route paths between
those sub-network representatives.

 4

Using the average load (a single number) over the
entire emulation period neglects the critical dynamic
behavior of the network traffic and may create poor
load balance results. To solve this problem, we employ
a clustering algorithm, which automatically detects and
splits the whole emulation period into multiple
segments. Each segment is used to calculate a group of
vertex weight, which is taken as a constraint of the
graph partitioning algorithm. Using the multi-constraint
graph partitioning algorithm (METIS), it tries to
balance the requirement from different emulation stages
and achieve better results.

With this predicted traffic information, we can improve
the approach in Section 3.1 by recalculating vertex/edge
weights. This extra information also enables another
objective, which is to minimize the traffic across
partitions. In the approach, we use the multi-objective
graph partitioning algorithm described in Section 2.3.

3.3 Profile-Based Mapping
The third approach uses profiling techniques to obtain
traffic information automatically from emulation
experiments (PROFILE). The profiles are then used to
estimate future network use, and to improve the
network mapping. Typically this involves an initial
emulation experiment using an initial partition and
traffic monitoring. The emulation yields detailed traffic
information and the network can be repartitioned based
on this information.

The clustering algorithm first removes segments that
have little traffic. Then it gets a smooth load curve for
each physical node by calculating the average load of
each node over a larger period of time. The dominating
node of special point is the node with the maximal load.
The change of dominating node identifies a major load
variation of the emulation system. So we can split the
whole emulation period at these odd points and use
each segment as a constraint to the graph partitioning
algorithm.

The critical challenge for this approach is the efficient
collection and representation of traffic information
during profiling, and the use of this information to
repartition the network. In MaSSF, we implement the
Cisco NetFlow-like [19] function on each emulated
router. This functionality is used to record every traffic
flow on each router to a local file. The dump files
record the average bandwidth and duration of every
flow on every router. Parsing the dump files allows
computation of the aggregated traffic on every router
and link in the network. By tuning the granularity of
the NetFlow, we can get detailed network traffic
information with small overhead.

0

5000

10000

15000

20000

25000

30000

35000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Tim e Interval (2 second)

K
er

ne
l E

ve
nt

Node 0 Node 1 Node 3 Node 4

In our implementation, the real network traffic data
does not actually travel through the emulator; only
packet references are processed by it. Instead of using
the real network bandwidth (MB/s) as the bandwidth
measurement, we use the number of packets in a flow,
since the real load in the emulator depends on the
number of packets it processes. We also measure the
live traffic injection overhead by the number of requests
coming from the application.

Figure 2. Load Variation Over the Lifetime of an
Emulation

4. Experimental Evaluation

 4.1 Methodology and Experimental Setup
Using profile data, we have much more accurate traffic
information about the virtual network. We could apply
the same multi-objective graph partitioning algorithm
described in Section 2.3. However, that approach uses
the average traffic intensity over the whole emulation
period, in the process, ignoring a wealth of traffic detail
available now. For example, the load imbalance pattern
may vary at emulation stages (as shown in Figure 2),
and different nodes dominate the load imbalance at
different stages. Also, at some stages, the traffic load is
so low that even heavy load imbalance has no
appreciable affect on overall emulation performance.

To evaluate these mapping approaches, we implement
them in the MaSSF network emulator of the MicroGrid
Project [11]. MaSSF is a distributed network emulator
which supports direct execution of real applications and
also provides background traffic generators to setup a
user-controllable network traffic conditions. We apply
these approaches on a range of different emulated
network topologies and background traffic conditions.

4.1.1 Metrics
Three evaluation metrics are used in the experiments:
load imbalance, application emulation time, and
network emulation time. We define the load of a

 5

simulation engine node as the simulation kernel event
rate (essentially one per packet). Using these counters,
we calculate the overall load imbalance across all the
physical nodes. Assuming the simulation kernel event
rates are k1, k2, …, kn, for n nodes used by the
simulation engine, the load imbalance is calculated as
the normalized standard deviation of {k}.

The second metric is the application emulation time. If
load balance is improved, this improvement should
reduce the execution time of the application emulation.
Since communication is typically the performance
bottleneck for only part of the execution time, the
application emulation time is not always directly
correlated to network emulation load balance.
Nevertheless, as faster emulation is the ultimate goal of
load balance, it is an important criterion.

The third metric is network emulation time, which
directly measures how much time is required to emulate
the traffic created by the application. MaSSF records all
network traffic trace of an emulation execution, and
then replays it without real computation in the
application. When replaying, it tries to send out traffic
as fast as possible, but still follows the real application
casualty and message logic order. This is a direct
measurement of the mapping approaches.

Network
Topology Router Host Emulation

Engine Node
Campus 20 40 3
TeraGrid 27 150 5

Brite 160 132 8
Table 1. Network Topology Setup

TeraGrid Backplane Hub

30 Gb/s

TeraGrid Backplane

40 Gb/s

Other Sites

TeraGrid Border Router

10 Gb/s
10 Gb/s

10 Gb/s

Figure 3. TeraGrid Site Network Architecture for any
of the five sites, connected with 40Gbps network.

4.1.2 Hardware Configuration
The experiments use two RedHat Linux clusters. The
first cluster includes 24 dual 550MHz Pentium-II
processors, linked with 100Mbps Ethernet switch, with
2Gbps backbone bandwidth. This cluster is used for the
network simulation engine. The second cluster consists

of 8 dual 1.6GPentium-III processors, linked with 1
Gbps Ethernet switch (with 24 Gbps backbone
bandwidth). It is mainly used for the real application
execution. Two clusters are connected by a single, full
duplex gigabit Ethernet link.

4.1.3 Network Topologies
Three network topologies are used in our experiments.
The first two represent real networks, such as the
TeraGrid (Figure 3 and see http://www.teragrid.org/)
and a section of a university campus network (Campus).
To explore more complex network structures, our third
network topology Brite is created by a generic topology
generator (adapted from the BRITE[20] toolkits), which
creates Internet-like topologies and also provides
background traffic support.

4.1.4 Traffic Workloads
The experiments use aggregated traffic flows to create
background traffic. Users provide background traffic
description, such as:

Traffic [name HTTP
request_size 200KByte
think_time 12

 client_per_server 10
 server_number 10]

Here HTTP clients and severs are selected randomly
from endpoints in the virtual network. In this study, a
HTTP traffic generator is used, which has been well-
studied by other researchers [21]. While this
background traffic model is not perfect, it exercises
some range of network dynamics, allows user control of
load intensity by changing those parameters, and is
widely used [22-24]. Detailed realistic traffic
generation itself is a hot research topic and is beyond
the scope of this paper.

Foreground traffic is created live from real Grid
applications, including ScaLapack[25] and GridNPB3.0
[26]. ScaLapack is a linear algebra package widely used
for scientific computing, and is implemented atop
MPICH-G (which in turn uses a network of TCP/IP
connections). In our experiments, it calculates a matrix
equation of size 3000x3000 using 10 nodes, and runs
for about 10 minutes on our emulation platform.
GridNPB3.0 is a widely used set of grid benchmarks in
a workflow style composition in data flow graphs
encapsulating an instance of a slightly modified NPB
task in each graph node, which communicates with
other nodes by sending/receiving initialization data.
GridNPB includes a range of computation types and
problem sizes, and in our experiments we use the
combination of Helical Chain (HC), Visualization
Pipeline (VP), Mixed Bag (MB) applications, all run at

 6

class S size. These programs run for about 15 minutes
on our platform.

4.2 Experiment Results

4.2.1 Load Imbalance
Application workloads are executed on three network
topologies (Campus, TeraGrid, and Brite) with
moderate background traffic, and the measured load
imbalance for two applications (ScaLapack and
GridNPB) is shown in Figures 4 and 5. The figures
report the normalized load imbalance across the
physical simulation engine nodes for each combination
of mapping approach and network topology. Each
mapping approach produces significantly different
results. The application placement-based mapping
(PLACE) improves significantly on topology-based
mapping (TOP) for both ScaLapack and GridNPB
applications. The profile-based mapping (PROFILE)
further improve the load imbalance up to 66% and 48%
for ScaLapack and GridNPB respectively. For both
workloads, the profile-based mapping approach delivers
the best performance among three approaches. This is
as expected, since it uses detailed traffic information
from previous simulation execution to partition the
network.

Load Imbalance for ScaLapack

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Campus TeraGrid Brite

Lo
ad

 Im
ba

la
nc

e

TOP

PLACE

PROFILE

Figure 4 Load Imbalance for ScaLapack

Load Imbalance for GridNPB

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Campus TeraGrid Brite

Lo
ad

 Im
ba

la
nc

e

TOP

PLACE

PROFILE

Figure 5 Load Imbalance for GridNPB

The improvement of profiled-based mapping over
placement-based mapping for GridNPB is more

significant than that for ScaLapack. This is due to the
fact that for ScaLapack, the application-placement
based traffic prediction is very close to the actual traffic
pattern, so there is little improvement to be had for
PROFILE. For GridNPB, in contrast, the traffic is more
irregular and the application-placement based
prediction is less accurate. As a result, significant load
imbalance remains for PLACE, leaving more room for
improvement for PROFILE.

We can also see that the scale of the emulation affects
the achieved load balance. The Campus network uses 3
simulation engine nodes, the TeraGrid uses 5 nodes,
and the Brite network uses 8 nodes. The normalized
load imbalance increases when the number of
simulation engine nodes is increased, as you’d expect if
work were held constant (it is not across these
experiments). When the emulation scales up, load
balance is more critical to achieving high performance.

ScaLapack Emulation Time

0

200

400

600

800

1000

Campus TeraGrid Brite

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

TOP

PLACE

PROFILE

Figure 6 Emulation Time for ScaLapack

GridNPB Emulation Time

0

200

400

600

800

1000

Campus TeraGrid BriteE
x
e
c
u
t
i
o
n

T
i
m
e
(
s
e
c
o
nd

)

TOP

PLACE

PROFILE

 Figure 7 Emulation Time for GridNPB

4.2.2 Application Emulation Time
The emulation time of both applications is shown in
Figures 6 and 7. For ScaLapack, the use of application
placement-based mapping (PLACE) reduces overall
emulation time significantly (about 40%), and the use
of the profile-based mapping (PROFILE) further
reduces the emulation up to 50%. For the GridNPB
workload, we can see the benefits of both PLACE and

 7

Since the network topology and background traffic are
quite different, we cannot compare the execution time
directly to the experiments in Section 4.2.1. But by
comparing the result of the different network topologies,
it is clear that the profile-based approach still creates
the best partition for this large network emulation.

PROFILE mappings, but the improvement is much
smaller (about 17%). As we have mentioned before, the
emulation time is not a direct measurement of load
imbalance, and because the execution time of GridNPB
is computation rather than communication-intensive,
improvement of the emulator gives little overall
runtime benefit.
 4.2.4 Network Emulation Time in Isolation
To provide further insight, we show the fine-grained
load imbalance of the Campus network emulation in
Figure 8. We collected the actual load of simulation
engine nodes in two second intervals and calculate the
load imbalances for each period. As shown in Figure 8,
the load imbalance of profile-based approach is actually
greatly improved compared to the topology-based
mapping approach, even the overall execution time is
not significantly improved.

All experiments above use the emulated application as
targets, and the computation and communication are
mixed together. To further understand the direct effect
on network emulation, we use the MaSSF replay
function to study the network emulation performance in
isolation, as mentioned in Section 4.1.1. Figures 9 and
10 show that the emulation time for network traffic is
improved significantly for ScaLapack replays, in
consistent with the result of overall emulation time in
Figure 6. For GridNPB, the network emulation time is
also reduced by 30%, even when the execution time for
the whole application shows less difference in Figure 7.

Fine-Grained Load Imbalance

Figure 8 Fine-Grained Load Imbalance of GridNPB

4.2.3 Scalability
To evaluate the effectiveness of our three mapping
approaches for larger network emulations, we use
BRITE to build a network topology with 200 routers
and 364 hosts. The emulation itself uses 20 simulation
engine nodes and ScaLapack uses 10 additional nodes.
Since the current BRITE tool cannot create networks
using BGP routers, all the routers are created in a single
AS. The routing table size increases rapidly with the
number of routers in the network, so our hardware
infrastructure currently limits us to networks with about
200 routers. However, we can still increase the number
of hosts and the background traffic intensity to produce
a larger network and increase the size of the emulation.
The result is presented in Table 2.

ScaLapack TOP PLACE PROFILE
Load Imbalance
(Std. Deviation) 1.019 0.722 0.688

Execution
Time(second) 559.332 484.573 460.544

Table 2. Results of ScaLapack on Larger Network

ScaLapack Network Emulation

0

100

200

300

400

500

600

Campus TeraGrid Brite

Ti
m

e(
se

co
nd

)

TOP

PLACE

PROFILE

Figure 9 ScaLapack Isolated Network Emulation

GridNPB Network Emulation

0

100

200

300

400

500

600

Campus TeraGrid Brite

Ti
m

e(
se

co
nd

)

TOP

PLACE

PROFILE

Figure 10 GridNPB Isolated Network Emulation

4.3 Summary
Experimental results show that network mapping using
static network topology and predicted traffic
information can improve load balance in large scale
network emulation. The topology-based approach (TOP)
is fast and simple, and the placement-based approach

0
0.5

1
1.5

2
2.5

3
3.5 Load Imbalance

TOP
PROFILE

1 5 9 13 21 25 29 33 37 41 45 49 53 57 61 65 17

Time Interval (2s)

 8

(PLACE) can improve the performance for application
with evenly distributed traffic load. For more irregular
application and real large emulation, the profile-based
approach (PROFILE) is most effective. Depending on
the special network structure and traffic load, it can
improve load balance by up to 66% and speed up the
emulation up to 50%.

5. Discussion and Related Work
Load balance is known to be an important problem for
the scalability of distributed network simulations or
emulations, however there are only a few efforts in
network simulation/emulation community [7-10] to
solve this problem. Many projects use either manual
partitioning or simple graph partitioning based on
network topology. The DaSSF [27] simulator uses the
METIS graph partitioning package and link latencies
for load balance. It does not use link capacities or any
further detailed traffic information. Others[10] uses the
greedy k-cluster algorithm: for k nodes in the core set,
randomly selects k nodes in the virtual topology and
greedily selects links from the current connected
component in a round-robin fashion.

Netbed's assign [28] maps virtual topologies which
include endpoint resources as well as network
structures onto a heterogeneous combination of routers,
switches, and computers. Critical issues are time to
compute mapping, physical resources used, and
sufficient link capacity. Thus, assign chooses specific
endpoint and network resources and subject to the
constraints optimizes their quantity. Load balance is
not a direct focus. In contrast, our MaSSF partitioner
focuses on balancing the computational cost of the
network simulation, while also optimizing core
bandwidth use. Load balance is computed on the basis
of network structure, predicted irregular traffic load,
and profiled traffic, to improve efficiency. The MaSSF
partitioner currently assumes homogeneous physical
resources for network simulation. Improved emulation
efficiency is used to achieve the same real-time
performance with less resources or larger system
emulation with fixed resources.

In this paper, we address load balance problem in a
more systematic fashion. Both placement-based and
profile-based approaches exploit detailed network
topology and traffic information to partition the virtual
network, and therefore are expected to achieve better
load balance for most situations when compared to
simple hierarchical partition. For example, by
minimizing the network traffic across partitions, it
attempts to limit a large traffic flow to small number of
partitions. Our experimental results confirm this
intuition. To get good results from the placement-based
approach, an application should have balanced traffic

amongst all application nodes, such as the ScaLapack
program. For more irregular or complex application, the
profile-based approach works better. Our experiments
also show that NetFlow information can accurately
represent the traffic information in the network, thus be
used to create a well-balanced network partition. This
provides a great chance for scalable network emulation.

However, there are still two user decided magic
numbers in our three approaches. The first is the
tradeoff between the maximal latency and minimal
edge-cut traffic. Since the effect of maximal latency
changed on different physical resources and number of
physical nodes used in the emulation, the user may try
different ratios himself and find the best priority ration.
In current implementation, the default latency/traffic
priority ratio is 6:4. The performance is not very
sensitive to this ratio, and this ratio should be good for a
switch connected cluster with less than 100 nodes.
Usually the more simulation engine nodes used, the
greater the importance of latency priority. Another
magic number is the tradeoff between computation
requirement and memory requirement. When the
simulation engine has enough physical memory, the
weight of memory should be small. However, when the
result partition is so uneven that some partitions gets
too many virtual nodes and it is likely to run out of
memory on those nodes. So we must increase the
weight of memory when the physical memory becomes
a possible bottleneck of the system. In our experiments,
we use the m=10+x*x as the memory requirement for a
router, where x is the size of an AS. It will be part of
our future work to adjust these parameters
automatically. For example, given a partition, MaSSF
can predict more accurate memory requirements on
every simulation engine node. If the memory imbalance
will hurt performance or correctness, then it can adjust
the memory weight and repartition automatically.

Mapping results of these approaches also largely
depend on the quality of graph partitioning algorithms.
There are a large number of graph partitioning packages
targeted at parallel computing since the early 90’s,
including METIS[18], Chaco[17], Jostle[13],
PARTY[15], and Zoltan[29]. While the standard graph
partitioning algorithms create high-quality partition
results for calculation on structured graph and mesh,
their expressibility is still quite limited to address
complex applications [16]. It is critical for users to
setup correct application models to get the good results
out of these partitioning algorithms, and this is exactly
what we are doing in this paper. Our choice of METIS
is mainly due to its flexibility in supporting multiple
constraints and multiple objectives.

 9

Reference 6. Conclusion and Future Work
 Load balance is critical to achieve scalability for large

network emulation and it is also a challenging task. By
carefully mapping the virtual network to physical
resources using multi-objective graph partitioning
algorithms, we achieve good load balance and better
scalability in network emulation. The accurate
prediction of network traffic is critical to the success of
this approach. Our studies show that the static network
topology and application placement information can be
exploited to achieve good balance for some application.
In our experiments, it reduces the load balance by up to
66%. The profile-based mapping uses detailed traffic
information and further reduces the application
emulation time up to 50%, and this approach is
promising to achieve scalable network emulation.

1. Fugui Wang, P.M., Sarit Mukherjee, Dennis
Bushmitch, A Random Early Demotion and
Promotion Marker for Assured Services. IEEE Jour.
on Selected Areas in Communications, 1999.

2. Tao Ye, S.K., David Harrison, Biplab Sikdar, Bin
Mo, Hema Tahilramani Kaur, Ken Vastold,
Boleslaw Szymanski, Network Management and
Control Using Collaborative On-line Simulation.
Proc. IEEE International Conference on
Communications,, June 2001.

3. D. Katabi, M.H., and C. Rohrs. Internet congestion
control for future high bandwidth-delay product
environments. in Proc. ACM SIGCOMM. 2002.
Pittsburgh, PA.

Currently, profiling is required for each emulation --
the specific topology and application. This is quite an
overhead for large scale emulation or parameter sweep
experiments. Moreover, it is not accurate if the
application shows great dynamic behavior under
different network conditions. It is desirable if we can
figure out the application traffic pattern after a couple
of profile runs and then we can use the profile data for
other similar emulations.

4. Christina Parsa, J.J.G.-L.-A. Improving TCP
Congestion Control over Internets with
Heterogeneous Transmission Media. in
Proceedings of the 7th IEEE International
Conference on Network Protocols (ICNP). 1999.

5. Oram, A., Peer-to-Peer: Harnessing the Power of
Disruptive Technologies. March 2001: O'Reilly.

6. Ian Foster, C.K.e., The Grid: Blueprint for a New
Computing Infrastructure. 1999: Morgan
Kaufmann.

Load imbalance happens due to burst/variation of
traffic injected from the application. Static partitions
are fundamentally limited for large emulation if traffic
varies widely. Even the clustering and multi-constraint
partitioning algorithm discussed in Section 3.3 won’t
solve the basic problem. Dynamic remapping the virtual
network during the emulation is the only solution. Such
dynamic remapping is a major challenge for distributed
emulators like MaSSF.

7. Pei Zheng, L.N. EMPOWER: A Network Emulator
for Wireless and Wireline Networks. in Infocom
2003. 2003. San Francisco.

8. Rob Simmonds, R.B., and Brian Unger. Applying
parallel discrete event simulation to network
emulation. in 14th Workshop on Parallel and
Distributed Simulation (PADS 2000). May 28-31,
2000. Bologna, Italy. Acknowledgements

The authors and research are supported in part by the
Defense Advanced Research Projects Administration
through United States Air Force Rome Laboratory
Contracts AFRL F30602-99-1-0534 and the National
Science Foundation thru NSF EIA-99-75020 Grads and
NSF Cooperative Agreement ANI-0225642 (OptIPuter)
to the University of California, San Diego Support from
Hewlett-Packard is gratefully acknowledged.

9. Brian White, J.L., Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler,
Chad Barb, and Abhijeet Joglekar. An Integrated
Experimental Environment for Distributed Systems
and Networks. in Proceedings of 5th Symposium on
Operating Systems Design and Implementation
(OSDI). December 2002.

10. Amin Vahdat, K.Y., Kevin Walsh, Priya
Mahadevan, Dejan Kostic, Jeff Chase, and David
Becker. Scalability and Accuracy in a Large-Scale
Network Emulator. in Proceedings of 5th
Symposium on Operating Systems Design and
Implementation (OSDI). December 2002.

The authors also acknowledge the contributions of Alex
Olugbile and Huaxia Xia to the system infrastructure
which made this work possible. We also appreciate the
feedback from anonymous reviewers and Andrew
Lawrence Wendelborn, our paper shepherd, who all
helped to significantly improve the paper. 11. H. Song, X.L., D. Jakobsen, R. Bhagwan, X.

Zhang, K. Taura, and A. Chien. The MicroGrid: a
Scientific Tool for Modeling Computational Grids.

 10

 11

in IEEE Supercomputing (SC 2000). 2000. Dallas,
USA.

12. Jason Liu, a.D.M.N. Learning Not to Share. in
Proceedings of the 15th Workshop on Parallel and
Distributed Simulation (PADS 2001). 2001. Lake
Arrowhead, CA.

13. C. Walshaw, M.C., S. Johnson, and M. Everett.
JOSTLE: Partitioning of Unstructured Meshes for
Massively Parallel Machines. in Parallel CFD'94.
1994. Tyoto, Japan.

14. F. Pellegrini, J.R. SCOTCH: a software package
for static mapping by dual recursive bipartitioning
of process and architecture graphs. in High-
performance Computing and Networking, Proc.
HPCN'96. 1996. Springer, Berlin.

15. Preis R., D.R., PARTY - A Software Library for
Graph Partitioning. Advances in Computational
Mechanics with Parallel and Distributed Processing,
1997: p. 63-71.

16. Hendrickson, B., Graph Partitioning Models for
Parallel Computing. Parallel Computing Journal,
2000. 26(12): p. 1519--1534.

17. B. Hendrickson, R.L., The Chaco User's Guide:
Version 2.0. 1994, Sandia Tech.

18. Kirk Schloegel, G.K., and Vipin Kumar. A New
Algorithm for Multi-Objective Graph Partitioning.
in Euro-Par'99 Parallel Processing. 1999.
Springer Verlag, Heidelberg.

19. Cisco Systems, NetFlow. 2001.

20. Alberto Medina, A.L., Ibrahim Matta, and John
Byers. BRITE: An Approach to Universal Topology
Generation. in In Proceedings of the International
Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems-
MASCOTS '01. 2001. Cincinnati, Ohio.

21. Paul Barford, M.C. Generating Representative
Web Workloads for Network and Server
Performance Evaluation. in Measurement and
Modeling of Computer Systems 1998. 1998.

22. David P. Olshefski, J.N., and Dakshi Agrawal.
Inferring Client Response Time at the Web Server.
in Proceedings of the ACM International
Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS 2002). 2002.
Marina del Rey, CA.

23. Rong Pan, B.P., Konstantinos Psounis, and Damon
Wischik. SHRINK: A Method for Scalable
Performance Prediction and Efficient Network
Simulation. in IEEE INFOCOM. 2003.

24. Jaeyeon Jung, B.K., and Michael Rabinovich.
Flash crowds and denial of service attacks:
Characterization and implications for CDNs and
web sites. in Proceeding of 11th World Wide Web
conference. 2002. Honolulu, Hawaii.

25. A.Petitet, S.B., J.Dongarra, B.Ellis, G.Fagg,
K.Roche, and S.Vadhiyar. Numerical Libraries and
the Grid: The GrADS Experiment with
ScaLAPACK. in International Journal of High
Performance Computing Applications. 2001.

26. Frumkin, R.F.V.D.W.a.M., NAS Grid Benchmarks
Version 1.0. 2002, NASA Ames Research Center.

27. James Cowie, H.L., Jason Liu, David Nicol and
Andy Ogielski. Towards Realistic Million-Node
Internet Simulations. in Proceedings of the 1999
International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA'99). June 28 - July 1, 1999.
Las Vegas, Nevada.

28. Robert Ricci, C.A., Jay Lepreau, A Solver for the
Network Testbed Mapping Problem. 2002,
University of Utah Flux Group.

29. K. Devine, B.H., E. Boman, M. St.John, and C.
Vaughan. Design of Dynamic Load-Balancing
Tools for Parallel Applications. in Proceedings of
the International Conference on Supercomputing.
2000. Santa Fe.

	1. Introduction
	2. Problem Description
	2.1 Elements of the Network Mapping Problem
	2.2 Modeling Network Mapping as a Graph Partitioning Problem
	2.2.1 Input Graph
	2.2.2 Constraints
	2.2.3 Objectives

	2.3 Multi-Objective Graph Partitioning

	3. Traffic Based Network Mapping
	3.1 Network Topology-Based Mapping
	3.2 Application Placement-Based Mapping
	3.3 Profile-Based Mapping

	4. Experimental Evaluation
	4.1 Methodology and Experimental Setup
	4.1.1 Metrics
	4.1.2 Hardware Configuration
	4.1.3 Network Topologies
	4.1.4 Traffic Workloads
	4.2 Experiment Results
	4.2.1 Load Imbalance
	4.2.2 Application Emulation Time
	4.2.3 Scalability
	4.2.4 Network Emulation Time in Isolation
	4.3 Summary

	5. Discussion and Related Work
	6. Conclusion and Future Work
	Acknowledgements

