
Exact Memory Size Estimation for Array Computations without Loop Unrolling

Ying Zhao and Sharad Malik

Department of Electrical Engineering

Princeton University

Princeton, New Jersey

Email: fyingzhao, sharadg@ee.princeton.edu

Abstract

This paper presents a new algorithm for exact estimation
of the minimum memory size required by programs deal-
ing with array computations. Memory size is an important
factor a�ecting area and power cost of memory units. For
programs dealing mostly with array computations, memory
cost is a dominant factor in the overall system cost. Thus,
exact estimation of memory size required by a program is
necessary to provide quantitative information for making
high-level design decisions.

Based on formulated live variables analysis, our algo-
rithm transforms the minimum memory size estimation into
an equivalent problem: integer point counting for intersec-
tion/union of mappings of parameterized polytopes. Then,
a heuristics was proposed to solve the counting problem. Ex-
perimental results show that the algorithm achieves the ex-
actness traditionally associated with totally-unrolling loops
while exploiting the reduced computation complexity by pre-
serving original loop structure.

1 Introduction

Due to the fast increase in size and complexity of IC systems,
high-level design and power optimization techniques become
two very important research topics. To make proper high-
level design decisions, such as algorithm selection, hardware-
software partition, trade-o� between various optimization
techniques, we need techniques that can exactly and quan-
titatively measure certain cost functions, which re
ect area,
speed and power consumption of the IC systems. For pro-
grams dealing mostly with array computations, such as ap-
plications in DSP and video signal processing domain, due to
the large amount of data and computations being involved,
power consumption of memory accesses and storages is re-
sponsible for a large proportion of the power cost of the
whole system. The power cost of each memory operation
will increase as the size of memory unit increases, which
makes the memory size one of the dominant factor a�ecting
the system power cost. Thus exact estimation of memory
size required by a program is a necessity in high-level design
�eld.

The minimum memory size is equal to the maximum
number of live variables at any time during the program ex-
ecution. For programs dealing only with scalars, the estima-
tion of minimum memory size when the schedule is �xed is
relatively straghtforward, which involves counting the num-
ber of live variables after execution of each instruction. Since
the number of variables and instructions involved is rather
limited, the life time of each variable can be analyzed in-
dividually. The minimum memory size can be calculated
with reasonable computation complexity. Even when the
schedule is not �xed, the problem of �nding the schedule
with least number of memory locations is well-formulated.
Although it is still NP-hard, some heuristics have been in-
troduced [6], which achieve satisfactory results.

However, the main bodies of DSP and video signal pro-
cessing programs are loops and their data objects are mostly
multi-dimensional arrays. Due to formidable instruction and
data size, it is unrealizable to unroll all loops in the pro-
grams, treat each array element as a scalar and count the
number of live variables after execution of each instruction.
So it is impossible to extend the results for scalars directly.
Some new methods that deal with loops and arrays speci�-
cally have to be developed.

Unlike other cost functions, such as execution time, which
have very straightforward forms, memory size can not be
represented explicitly. Thus, memory size estimation for
programs dealing with arrays has not been widely studied
until now. Researchers from IMEC proposed several meth-
ods to solve this problem [5, 4]. Their methods achieve good
trade-o� between exactness of the estimation and computa-
tional complexity. However, to get the absolute lower bound
of memory size, their methods may require all loops in the
program to be unrolled in the worst case. We will discuss
their work in detail in section 7.

A new algorithm to exactly estimate the minimum mem-
ory size for programs dealing with arrays is proposed in
this paper. Based on formulized live variable analysis, it
transforms the memory size estimation into an equivalent
mathematical problem which can be solved by integer point
counting for intersection/union of mappings of polytopes.
Experimental results on some typical DSP applications show
that the algorithm gives the exact estimation of minimum
memory size without unrolling loops.

The rest of this paper is organized as follows. In section
2, the polytope model for perfectly nested loop is described.
Section 3 gives a brief review of the integer point counting
problem. Section 4 proposes our algorithm to estimate the
minimum memory size required by a perfectly nested loop
at both iteration level and statement level and then extends

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

to deal with imperfectly nested loops and whole programs.
Section 5 shows the heuristic for solving counting problems.
Experimental results are presented in section 6 to show the
exactness of our algorithm. Section 7 introduces some re-
lated work.

2 Problem Overview

2.1 Polytope Model

Since the main bodies of DSP progrms are loops, we start
with single perfectly nested loops. As can be seen later, the
algorithm working on perfectly nested loops can be extended
to deal with imperfectly nested loops and whole programs.

Based on the polytope model [7], a perfectly nested n-
deep loop is de�ned in the iteration space IS, which is a
polytope in space Zn bounded by the loop bounds. Every
point I in IS is an n-tuple that corresponds to a particular
iteration.

In this model, a loop can be described as:

I 2 IS; S1 : Y1[f1(I)] = F1(X11[g11(I)];X12[g12(I)] : : :)

...

Si : Yi[fi(I)] = Fi(Xi1[gi1(I)];Xi2[gi2(I)] : : :)

... (1)

Si is the ith statement in the loop nest;
Yi[fi(I)] is an array de�ned by Si;
Fi is the function performed by Si;
Xij[gij(I)]s are source operands of Fi;
fi(I) and gij(I) are index functions. They are mappings
from Zn ! Zm where m is the dimension of the
corresponding array.
In most cases, the index functions are a�ne functions

of loop indices. In other words, fi(I) and gij(I) can be
represented as AI + b, where A is a m � n matrix (index
matrix), b is a m� 1 constant vector.

2.2 Minimum Memory Requirement

Given a loop as described in (1) and assuming primary
inputs(PIs) are stored in the memory before the execu-
tion of the loop and primary outputs(POs) will be stored in
memory after the execution, we can claim:

Min size =max(#(PIs);#(POs);Maxt(#(live varst))

Min Size: number of memory locations required;
t: any time instant during the loop execution.
It is obvious that estimation of minimum memory size

involves exact counting of the number of live variables at
every time instant during the loop execution.

2.3 A Simple Example

We use a loop for matrix multiplication to illustrate the
basic idea of minimum memory size estimation.

for i= 1 to n do

for j= 1 to n do

for k=1 to n do

C[i,j] = C[i,j] + A[i,k] * B[k,j]

Suppose matrices A;B are PIs and C is PO. Before
the execution, 2n2 memory locations are required to store
A and B. When C[1; j](1 � j � q � 1) are computed,
all the elements of A and B have to be kept alive, since
they will be used later. New memory locations have to be
allocated to store the elements of C. After C[1; n] = C[1; n]+
A[1; 1] � B[1; n] has been executed, A[1; 1] will not be used
again. So C[1; n] can use the location of A[1;1]. From now
on, no new memory locations have to be allocated. The
minimum memory size required is: 2n2+n� 1. A complete
description of memory allocation for the above example is
shown in Figure 1.

(a) Initial memory allocation
(b) After C[1,j] have been generated
(c) After C[2,j] have been generated
(d) After C[3,j] have been generated

Freed memory location

A[1,1] A[1,2] A[1,3]

A[2,1] A[2,2] A[2,3]

A[3,1] A[3,2] A[3,3] B[3,1] B[3,2] B[3,3]

B[2,1] B[2,2] B[2,3]

B[1,1] B[1,2] B[1,3]

(a)

B[3,1] B[3,2] B[3,3]

B[2,1] B[2,2] B[2,3]

B[1,1] B[1,2] B[1,3]

A[2,1] A[2,2] A[2,3]

A[3,1] A[3,2] A[3,3]

C[1,3]

C[1,1] C[1,2] (b)

C[1,1] C[1,2]

C[1,3] C[2,1] C[2,2]

C[2,3] C[3,1] C[3,2]

C[3,3]

(d)

B[3,1] B[3,2] B[3,3]

B[2,1] B[2,2] B[2,3]

B[1,1] B[1,2] B[1,3]

A[3,1] A[3,2] A[3,3]

C[1,1] C[1,2]

C[1,3] C[2,1] C[2,2]

C[2,1]

(c)

Figure 1: Memory allocation during 3X3 matrix multiplica-
tion

3 Integer Point Counting

Our algorithm transforms the estimation of minimum mem-
ory size into an equivalent mathematical problem: integer
point counting of intersection/union of mappings of param-
eterized polytopes. Figure 2 shows the basic problems for
integer point counting and their relationship with array el-
ement access. Polytopes are used to represent the iteration
space of nested loops and mappings of polytopes correspond
to array elements accessed by the loop. The polytopes in
our algorithm are with parameterized bounds. While inte-
ger point counting for images of parameterized polytopes is
still a problem under research [2, 3, 8], based on the charac-
teristics of array access pattern in most DSP programs, we
propose a heuristic to deal with it (section 5).

4 Estimate Minimum Memory Size

Although lots of work has been done for memory size estima-
tion for scalar programs, for programs dealing with arrays,
it is unrealistic to unroll all the loops and treat each array el-
ement as a scalar due to the intractable increase of problem
size. Besides, since the number of iterations may be very
large, it is prohibitively expensive to check the number of
live variables after the execution of each instruction. Fortu-
nately, the execution order of iterations in a loop can be de-
scribed formally and the index functions of arrays are mostly
a�ne functions of loop indices. As shown later, through the
algorithm we proposed, a uniform function to represent the
number of live variables after execution of each iteration can
be derived when the schedule is �xed. Thus, the minimum
memory size can be computed by �nding the maximum value
of the function over all iterations.

n i

j

m

Integer point

Loop: for i = 1 to n do
 for j = 1 to m do
 ...

Integer point counting gives out the
number of iterations in the loop.

Integer point

i+j=m+nj
m

i+j=2 n i

2. Integer point counting for mappings of parameterized polytopes

Map polytopes P1 along vector(1,−1)
The target is to count the number of distinctive values of i+j
when (i,j) is in P1.

1. Integer point counting for parameterized polytopes

Polytopes P1={(i,j)|1<=i<=n, 1<=j<=m}
The target is to count the number of integer points in P1.

Loop1: for i =1 to n do
 for j =1 to m do
 A[i+j] =

Loop2: for i = 1 to n do
 for j = 1 to m do
 = A[2i+j]

i+j=m+n

i+j=2

j
m

n i
Integer point

2i+j=2n+m

2i+j=3 in

m
j

a

a
a

a

Integer point counting gives
out the number of elements
of A that are defined in Loop1
and used in Loop2.

3. Integer point counting for intersection/union of
smappings of parameterized polytopes

Map P1 along vector (1,−1) and (2,−1) and
enumerate the intersection of the two mappings.

The target is to count the number of integers , such as
 satisfies both of the following two conditions:
(1) there exist (i1,j1) in P1, such that i1+j1 = ;
(2) there exist(i2,j2) in P2, such that 2i2+j2 = .

Loop: for i = 1 to n do
 for j = 1 to m do
 A[i+j] = ...

Integer point counting gives
out the number of elements
of A accessed by the loop.

Figure 2: Integer point counting vs. array access

In this section, we consider memory size estimation for
perfectly nested loops. We assume that all live variables are
stored in memory, since the size of register �les is trivial
compared to the memory size.

4.1 Statement Level Estimation

Suppose there are N statements in a perfectly nested loop,
Mi(I

�) is the number of live variables after the ith state-
ment Si has been executed at iteration I�. The memory
size required can be represented as:

Min Size = maxi(maxI�(Mi(I
�) j I� 2 IS)) (2)

As can be seen in section 4.2, we can get each Mi(I
�)

as a function of I�. Basically, we count the number of live
variables after execution of each statement, thus we call this
method statement level estimation. Although we can get
exact answer through this method, the computation com-
plexity is high, both for deriving multiple functions and
computing maximum value for them. Theorem 1 enables
us to simplify the computation.

Theorem 1 For a loop with N statements,

jMin Size�maxI(Mj(I) j I 2 IS) j� 4, 1 � i � N .

Min Size is minimum memory size required;
4 =max(N � 1; j N � 1�#(S1)� : : :�#(SN) j);
#(Si) is number of source operands in Si.
4 is a number comparable to the number of statements

in the loop. It is very small comparing to the overall memory
size. That means, maxI(Mi(I) j I 2 IS)(1 � i � N)
are all very close to the minimum memory size. So it is
enough to compute any maxI(Mi(I) j I 2 IS) and use it
to approximate the Min Size. In section 4.2, we will show
the algorithm to compute maxI(MN (I) j I 2 IS), which
is called iteration level estimation, since the number of live
variables is counted after the execution of each iteration.

4.2 Iteration Level Estimation

We illustrate the iteration level estimation process with the
following example, where matrices A;B are PIs and D are
POs:

for i=1 to 8 do

for j=1 to 7 do

C[i,j] = A[i,j] + B[i,j];

C[i+n,j] = A[i,j] * B[i,j];

D[i,j] = C[2i,j] + C[i+j,j];

After the execution of iteration I�, IS is divided into:

Executed iterations P1(I�) = fI j I � I�g
Unexecuted iterations P2(I�) = fI j I � I�g

Figure 3 shows an example for the partition.
The variables that satisfy both the following two condi-

tions should be kept alive:
a. they have been generated before:

S1 = f(PIs) [([(Yi[fi(I)] j I 2 P1(I�)))g (3)

where: ([(Yi[fi(I)] j I 2 P1(I�))) covers all the
destination operands of the executed iterations.
It includes all the variables that have been de-
�ned by the loop.

I* = (4,2)

j

7

8 i

Executed iteration

Unexecuted iteration

Figure 3: Example of iteration space partition

b. they will be accessed later:

S2 = f(POs) [([(Xij[gij(I)]) j I 2 P2(I�)))g (4)

where: ([(Xij[gij(I)] j I 2 P2(I�))) covers all
the source operands of the unexecuted iterations.
It includes all the variables that will be accessed
by the loop later.

For the above example,

S1 = A [B [(C[i; j] [C[i+ n; j] [D[i; j] j (i; j) 2 P1)

S2 = D [(A[i; j] [B[i; j] [C[i+ j; j] [C[2i; j]) j (i; j) 2 P2)

The number of variables in the intersection of S1 and S2
equals the memory size required at current time instant. In
the actual computation process, we �rst count the number
of live variables in each array individually. For array C in
the above example, to get the number of its live elements
just after execution of iteration I�. Two sets of elements
have to be computed:

1. The elements of C that have been generated.
Since the elements of C can be de�ned by either
one of the �rst two statements, the set of (i; j)
pairs and (i+ n; j) pairs that have been touched
by the executed iterations cover the coordinates
of all the generated elements, which can be rep-
resented as:

f([i; j] j (i; j) 2 P1g [f[i+ n; j] j (i; j) 2 P1g

2. The elements of C to be accessed later.
These are the elements of C whose coordinates
equals one of (i + j; j) pairs or (2i; j) pairs that
will be touched by the unexecuted iterations. Their
coordinates can be represented as:

f[i+ j; j] j (i; j) 2 P2g [f[2i; j] j (i; j) 2 P2g

The elements of C whose coordinates have been touched
by the executed iterations and will also be touched by the
unexecuted iterations have to be kept alive. Thus, by count-
ing the number of di�erent coordinates in the intersection
of the above two sets, we get the number of live elements of
C just after the execution of iteration I�.

Since I� is not �xed, P1 and P2 are parameterized poly-
topes. The basic operations involved are enumerating the
intersection/union of mappings of parameterized polytopes.
After the enumerations have been done, we get a symbolic
function of the number of live variables in each array, with
the I� as free variable. Sum up the functions of all arrays, we
get the overall minimum memory size required by the loop
currently as a function of I�. The remaining problem is to
�nd the maximum value of this function over all iterations.
The whole process of our algorithm is shown below.

Algorithm Mem size(IS;Min Size)
f

Inputs:IS(iteration space)
Output:Min Size(minimum memory size)
P1 = fI j I � I�g;
P2 = fI j I � I�g;
foreach array A
f
if A is PIs Im1(A) = A;

/* Im1: Generated elements */
else foreach access of A as destination
Im1(A) = Im1(A) [Map(P1; fi);

/* fi : index function */
if A is POs Im2(A) = A;

/* Im2: Elements to be accessed */
else foreach access of A as source
Im2(A) = Im2(A) [Map(P2; gi);

/* gi : index function */
Im(A) = Im1(A) \ Im2(A);
Mem size(I�)+ = Count(Im(A));

g
foreach iteration I� 2 IS

f
compute Mem size(I�);
if Min Size < Mem size(I�);
Min Size = Mem size(I�);

g

gend algorithm

For further clari�cation of our method, we illustrate the
algorithm using the matrix multiplication example.

Just after iteration I� = (i�; j�; k�),
P1 = f(i; j; k) j (i; j; k) � I�g;
P2 = f(i; j; k) j (i; j; k) � I�g;
For each array, we have:

Im1(A) = A; Im2(A) = Map(P2; space(i; k))

Im1(B) = B; Im2(B) =Map(P2; space(j; k))

Im1(C) =Map(P1; space(i; j)); Im2(C) = C

Im1(4) covers generated elements of array 4;
Im2(4) covers the elements to be accessed in array 4.
Number of live variables in each array are:

Count(Im(A)) = (n� i� + 1)n j
�

< n

(n� i�)n+ (n� k�) j
�

= n

Count(Im(B)) = n2 i
�

< n

(n� j�)n+ (n� k�) i
� = n

Count(Im(C)) = (i� � 1)n+ j�

where:
Im(4) = Im1(4) \ Im2(4), which covers the coordi-

nates of the live variables array 4;
Count(Im(4)) gives out the symbolic enumeration of

Im(4), with i�; j�; k� as free variables.
When i� < n; j� = n; k� = 1, the minimum memory size

is 2n2 + (n � 1). The result is the same as our analysis in
section 2.3.

4.3 Imperfectly nested loop

Until now, we have solved memory size estimation for single
perfectly nested loops. However, in real DSP and video
signal processing applications, imperfectly nested loops are
frequently encountered. Besides, a whole program can be

j

i

7
6
5
4
3
2
1

0 1 2 3 4 5 6 7 8
Polytope B

i

j

0 1 2 3 4 5 6 7 8

7
6
5
4
3
2
1

Polytope A

i

j

0 1 2 3 4 5 6 7 8

7
6
5
4
3
2
1

Intersection of A and B

j

i0 1 2 3 4 5 6 7 8

7
6
5
4
3
2
1

Union of A and B

Figure 4: Intersection/union of polytopes

considered as an imperfectly nested loop, whose outermost
loop has just one iteration.

In imperfectly nested loops, some loop nests are parallel
with other loops nests or blocks of statements within some
outer loop nests. Usually, there are multiple iteration spaces.
Here, we only consider loops without conditional statements.
However, our algorithm can be extended to deal with loops
with conditional statements, since it can be applied to all
the possible execution paths and the maximum number of
live variables at any time over all the execution paths is the
minimum memory size required.

Theorem 2 For an imperfectly nested loop, we only need to
do iteration level estimation for all the innermost loop nests

to get the minimum memory size required.

The algorithm proposed in section 4.2 can still be applied
to do iteration level estimation. However, more detailed
analysis is needed for the partition of iteration spaces. We
will not discuss the detailed process here.

5 Counting heuristic

In our current implementation, a heuristic is proposed to
deal with the enumeration of the interaction/union of images
of parameterized polytopes.

For most applications in the image and signal process-
ing domain, the memory space of the portion of an array
touched by P1 (set of executed iterations) or P2 (set of un-
executed iterations) is usually a convex polytope that can be
represented as concatenation of unoverlapped blocks. Dur-
ing the estimation process, we always compute the intersec-
tion/union of any two polytopes block by block and rep-
resent the result as another set of blocks. Thus, the �nal
object for counting is also a concatenation of unoverlapped
blocks. And for each block, the counting is as easy as the
multiplication of the metrics in each dimension. Figure 4
shows how to compute the intersection and union of two
polytopes.

Now, the computation complexity problem arises. For a
set of m blocks and a set of n blocks, both the intersection
and union may have at most m � n blocks. Thus, in our
algorithm, the number of blocks may increase as the com-
putation goes on. In the worst case, each block may �nally
degenerate into individual element. In general, suppose an

array has t1 times write accesses (with i1; :::; it1 blocks re-
spectively) and t2 read accesses (with j1; :::; jt2 blocks re-
spectively). Initially, the union of the t1 polytopes (also the
union of the t2 polytopes) is computed. It generates two sets
of blocks, with at most i1�i2:::�it1 blocks and j1�j2:::�jt2
blocks each. The intersection of these two sets may have at
most i1 � i2:::� it1 � j1 � j2:::� jt2 blocks. Of course, the
number of blocks in any set can never be larger than the
size of the array.

In practice, the situation is much better due to the regu-
lar array access patterns in most image and signal processing
applications:

1. The number of blocks in the initial polytopes
is small. For the 5 examples we used to test
the proposed algorithm, the maximum number
of blocks in the initial polytopes is 3.
2. During the computation process, the increase
in the number of blocks is not fast. For the exam-
ples we work on, the maximum number of blocks
appearing in the �nal list for counting is 5.

6 Experimental results

The presented algorithm has been implemented under the
SPAM framework, a compiler dealing with code optimiza-
tion for retargetable compilation for embedded DSPs from
Princeton University [1, 9]. And it is tested using several
typical DSP applications: the auto-correlation algorithm
from GSM; 2D Wavelet, motion detection; 2D DCT. The
experimental results for both statement and iteration level
estimation are listed in table 1. The results of statement
level estimation are acquired by applying our algorithm af-
ter execution of each statement, which are the same as the
minimum memory size. In the iteration level estimation,
computation is performed only to the innermost loop nests.
The complexity of the applications are represented by: num-
ber of arrays, number of statements (equals the number of
functions in the statement level estimation, and number of
loops (equals the number of functions in the iteration level
estimation). The last column in table 1 gives the di�er-
ence of computed memory size between the two estimation
methods. From the comparison, we can see that the number
of functions we need to compute (computation complexity)
can be reduced by using the iteration level estimation, while
the di�erence between the two estimation methods is always
very small.

7 Related Work

Greef et al. proposed a method to do the memory size es-
timation for programs dealing with arrays. The method,
which is based on formal mathematical model describing
memory occupation of arrays, consists of two steps: intra-
array and inter-array storage optimization [4]. The basic
idea is to let variables share the same memory locations as
much as possible. In [5], Balasa et al. described another
method: arrays are partitioned into non-overlapped basic
sets using operand and de�nition domains. A new data-

ow graph is produced where the nodes are basic sets and
arcs are dependences between groups of variables covered
by basic sets. The nodes are weighted with the size of their
corresponding basic sets and the arcs are weighted with the
exact number of dependences between the basic sets corre-
sponding to the nodes. After the partition, each basic set

applications arrays Statment Level Iteration Level Di�erence

Memory Function Memory Function
(statements) (innermost loops)

GSM Auto-
correlation 4 169 7 168 3 1
Qmf split 5 177 8 177 3 0
2D Wavelet
N=16, M=10 11 832 16 832 3 0

Motion Detection
M=N=32,m=n=4 5 1372 3 1372 1 0
2D DCT N=64 5 4230 9 4228 3 2

Table 1: Experimental results for some DSP applications

can be treated as a scalar. The heuristic traversal deal-
ing with scalars can be used to determine the best possible
order in which the basic sets should be produced with mem-
ory size as cost function. When a basic set is alive, it is
allocated enough memory locations to store all its elements.
Thus, under this scheme, they only consider memory reuse
between various basic sets. The memory size can be esti-
mated based on the size of basic sets and the number of
dependences between basic sets. Due to the possible large
size of basic sets, the number of memory locations computed
through this method may be much higher than the absolute
lower bound. To improve that, loops are unrolled before the
partition process. Thus, arrays can be divided into smaller
basic sets. The smaller the arrays are divided, the more ex-
act the estimation. In the worst case, to get the absolute
lower bound of memory size, the basic sets have to reduce to
individual variables. In their paper, integer point counting
of polytope mappings and intersection of polytope mappings
is used to determine the size of basic sets and the number
of dependences between basic sets (the intersection of basic
sets). However, the polytopes they deal with are with con-
stant bound. In comparison, the bounds of the polytopes
in our algorithm are functions of I�, where I� can be any
node in the iteration space. By using the proposed count-
ing heuristic, our algorithm can get the exact memory size
without unrolling the loops.

8 Conclusion and Future Work

In this paper, a new algorithm to exactly estimate the min-
imum memory size required by programs dealing with ar-
ray computations without unrolling the loops is presented.
Starting from single perfectly nested loops, our algorithm
transforms the memory size estimation into an equivalent
mathematical problem: integer point counting for intersec-
tion/union of mappings of parameterized polytopes. By
using the proposed counting heuristic, the number of live
variables after each iteration can be represented symboli-
cally with tuples in the iteration space as free variables.
Thus, the minimum memory size can be computed by �nd-
ing the maximum value of the symbolic function over all
iterations. Then, the method is extended to deal with im-
perfectly nested loops and whole programs. To decrease
computation complexity, several theorems are proposed to
simplify the estimation process. Experimental results on
some typical DSP applications demonstrate the exactness
of our algorithm. The algorithm provides the basis for com-
paring memory cost of di�erent algorithms. Thus, it can
be used to help making proper high-level design decisions.
Further work includes considering automatic address gener-
ation for array elements to really achieve the lower bound of

memory size and application of the algorithm in �nding the
optimal transformations given memory size as cost function.

Acknowledgments

This research was funded by DARPA and the New Jersey
Center for Multimedia Research.

References

[1] A.Sudarsanam. Code optimization libraries for retar-
getable compilation for embedded digital signal proces-
sors. Phd thesis, Princeton University, May 1998.

[2] P. Clauss. Counting solutions to linear and nonlinear
constraints through ehrhart polynomials: Applications
to analyze and transform scienti�c programs. 10th ACM
Int. Conf. on Supercomputing, May 1996.

[3] P. Clauss. Handling memory cache policy with integer
points countings. Euro-Par'97, pages 285{293, 1997.

[4] H. M. E.De Greef, F.Catthoor. Array placement for
storage size reduction in embedded multimedia sys-
tems. 11th International Conference on Application-

speci�c Systems, Architectures and processors, July 1997.

[5] H. D. M. F. Balasa, F. Catthoor. Background memory
area estimation for multi-dimensional signal processing
systems. IEEE Trans. on Comp-aided Design, CAD-14,
1995.

[6] A. F.J.Kurdahi. Real: a program for register allocation.
Proc. 24th DAC, pages 210{215, June 1987.

[7] C. Lengauer. Loop parallelization in the polytope model.
in e.best. CONCUR'93, Lecture Notes in Computer Sci-
ence 715, pages 398{416, 1993.

[8] W. Pugh. Counting solutions to presburger formulas:
How and why. Proc. of the 1994 ACM SIGPLANConfer-

ence on Programming Language Design and Implemen-
tation, 1994.

[9] A. Sudarsanam and S. Malik. Simultaneous reference
allocation in code generation for dual data memory bank
asips. To be published in ACM Transactions on Design
Automation for Electronic Systems, 1999.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

