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XCS [1][2] represents a new form of Learning Classifier System [3] that uses accuracy as a means

of guiding fitness for selection within a Genetic Algorithm. The combination of accuracy-based

selection and a dynamic niche-based deletion mechanism achieve a long sought-after goal – the

reliable production, maintenance, and proliferation of the sub-population of optimally general

accurate classifiers that map the problem domain [4]. Wilson [2] and Lanzi [5][6] have

demonstrated the applicability of XCS to the identification of the optimal action-chain leading to

the optimum trade-off between reward distance and magnitude. However, Lanzi [6] also

demonstrated that XCS has difficulty in finding an optimal solution to the long action-chain

environment Woods-14 [7]. Whilst these findings have shed some light on the ability of XCS to

form long action-chains, they have not provided a systematic and, above all, controlled

investigation of the limits of XCS learning within multiple-step environments. In this investigation

a set of confounding variables in such problems are identified. These are controlled using carefully

constructed FSW environments [8][9] of increasing length. Whilst investigations demonstrate that

XCS is able to establish the optimal sub-population [O] [4] when generalisation is not used, it is

shown that the introduction of generalisation introduces low bounds on the length of action-chains

that can be identified and chosen between to find the optimal pathway. Where these bounds are

reached a form of over-generalisation caused by the formation of dominant classifiers can occur.

This form is further investigated and the Domination Hypothesis introduced to explain its

formation and preservation.
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 1. Introduction

XCS [1][2] represents a new form of Learning Classifier System [3] that uses

accuracy as a means of guiding fitness for selection within a Genetic Algorithm.

The combination of accuracy-based selection and a dynamic niche-based deletion

mechanism achieve a long sought-after goal – the reliable production,

maintenance, and proliferation of the sub-population of optimally general accurate

classifiers that map the problem domain. Much has now been written on XCS and

its operation, and the interested reader is referred to [1][2][4][14] and [15] for

further details. This paper assumes a familiarity with the operation of XCS.

Although a number of significant results have been achieved in regard to the

ability of XCS within single-step environments, research into the performance of

XCS within multiple-step environments has been more limited. Wilson [1][2]

provided a proof-of-concept demonstration of the operation of XCS within the

Woods2 environment. Lanzi [5] identified that within certain Woods-like

environments XCS was unable to identify optimum generalisations. This was

attributed to two major factors: an inequality in exploration of all states in the

environment allowing over-general classifiers to appear accurate, and an input

encoding that meant that certain generalisations were not explored as often as

others. Lanzi [6] sought to apply these lessons to more complex Woods-based

environments and discovered that XCS was additionally unable to establish a

solution to the long chain Woods-14 problem [7]. This was due in part to the

number of possible alternatives to explore in each state that prevented XCS from

attributing equal exploration time to later states within the chain. Further work

[10][11][12][13] has examined the use of memory bits to overcome the problem

of perceptual aliasing within multiple-step environments.

Whilst these investigations have generated useful, and at times dramatic, results

and shed considerable light upon the operation of XCS within multiple-step

environments, they have not investigated the limits of XCS learning within these

environments in a systematic manner. To establish some limits on the capabilities

of XCS the problems of action chain length, exploration complexity and input

encoding complexity must be disentangled. This paper presents investigations that
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seek to establish some limits of XCS within the area of action chain length. Test

environments are constructed to ensure that the three problems identified by Lanzi

are controlled in such a way that a single issue can be focused upon. It could be

argued that this requires potentially artificial environments that may never be

found within real test situations. It is recognised that the problem of exploration

complexity is intrinsically tied to this area of investigation and is worthy of

separate study. The problem is here referred to as "action chain learning" rather

than "rule chain learning" because XCS chains action sets rather than individual

classifiers, although in some respects the ideas of "rule chaining" and "action

chaining" can be synonymous.

2. A Highly Controllable Environment

In order to investigate this area empirically a suitable test environment is required.

The Woods environment is a useful general learning test, but is not easily scaled

with fine control in either length or complexity. Therefore, the Woods

environments are set aside in favour of a Finite State World (FSW) environment

similar to that proposed by Grefenstette [8] and used extensively by Riolo [16, 17,

18]. A FSW is an environment consisting of nodes and directed edges joining the

nodes. Each node represents a distinct environmental state and is labelled with a

unique state identifier. Each node also maintains a message that the environment

passes to the XCS when at that state. Each directed edge represents a possible

transition path from one node to another and is labelled with the action(s) that will

cause movement across the edge in the stated direction to a destination node. An

edge may lead back to the same node. Each node has exactly one label and

message, and each message is unique within a Markovian FSW and normally

equivalent to the node's label. At least one node must be identified as a start state,

signifying that the XCS will be operating in that state when each new learning

trial begins. If more than one start state is provided the actual state from which a

trial is started is selected arbitrarily from the available start states. Additionally,

one or more nodes are identified as terminal states. Transition to any one of these

states represents the end of a learning trial and each will have an associated

reward value representing an environmental reward that is passed to XCS upon

transition into such a state. Terminal states do not have any transitions emanating
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from them - upon arrival the trial is ended, the next iteration will represent a new

trial and the environment will reset to a [selected] start state.

FSW are more precise than Woods environments - each state has a distinct label

so that aliasing problems do not occur, and configurations that would not be

possible within a Woods environment can be created, as demonstrated below:

s1
s4

s2
0

0
0

s3
1 0

s0

Whereas within the Woods environments it is not possible to create long action

chains without aliasing problems (unless more sensory stimuli were introduced,

thereby changing the base problem), within FSW it is possible to extend the chain

of states as far as desired. It is therefore is simple to extend environments whilst

controlling the complexity generated by the number of states, their stimuli, and

their interconnection. FSW are thus ideal for the controlled tests required within

this work.

3. Confounding Variables

In investigating some limits on the length of action chains that XCS can learn, it

has to be recognised that there are many inter-related factors that can influence

learning.

a) Exploration Complexity

Consider a FSW environment with a chain of n states where each non-terminal

state si has two edges, one to the next state si+1 and one back to itself. In such an

environment the probability of reaching state si+1 from si is 0.5 in explore mode.

For successive states the probability remains the same. Thus, the probability of

moving from any non-terminal state si to another state on this chain si+m will be

0.5m. Therefore, as the length of a state chain increases the ability of explore mode

within XCS to explore the chain will dramatically decrease when there remains

only one start state on the chain. Clearly the more possible pathways there are to

choose, the more problematic exploration becomes. Within XCS this problem is

overcome for the exploration of the optimal action chain once that action chain
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has been explored sufficiently to dominate the system prediction of the chain

because exploitation can then utilise this route and continue to learn the optimum

prediction. However, the discovery of this optional route remains a major hurdle.

An aspect of this problem was identified by Lanzi [6] when studying the Woods14

problem [7], and Lanzi noted that it could be solved by employing a biased

exploration strategy. The very existence of this problem indicates one of the areas

that must be controlled in order to carry out this investigation.

b) Environment 'Shape'

Although intrinsically related to the issue of exploration complexity, the issue of

environment 'shape' is worthy of separate mention. Certain environments will, by

nature of their degree of connectivity, include areas that are more difficult to

reach. Lanzi [5] noted that the Maze6 environment was difficult for XCS to find

optimum solutions within because exploration rates for some areas were higher

due to the shape of the environment. Furthermore, if an environment provides

opportunities for looping back to earlier states (or even to the same state) the

frequency in which a reward state is encountered will diminish, leading to longer

periods between external reinforcement. There is potentially much more work to

be done in this area to understand it fully that is beyond the scope of this research

effort.

c) Input encoding

The fundamental power of XCS is its ability to generalise whilst learning. The

application of the Generalisation Hypothesis [2] and the Optimality Hypothesis

[4] to multiple-step XCS learning has not been investigated, but confirmation of

this ability is surely a key objective for XCS research.

The prediction of classifiers within the XCS population in a multiple-step

environment will be updated either as a result of payoff from the environment or

as a result of payoff generated by moving the Animat controlled by the XCS into a

position where a different classifier can operate and receive an environmental

payoff. Where payoff is not received from the environment, the stable prediction

of the classifier will be dependent upon the stable prediction of the classifiers that

operate in the following step. The payoff received by the action set in the previous
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iteration is calculated from equation 1, where Si is the set of System Predictions

from the action sets formed during matching in the current iteration. The update

for the prediction within a classifier is calculated (ignoring the initial section of

the MAM technique for the present) using equation 2:

ri-1 ← γ.max(Si) [eq. 1]

pi-1 ← pi-2 + β (r i-1 - p i-2) [eq. 2]

The discount factor γ will reduce the payoff to the preceding classifiers so that

when moving further back in time from the classifier that received the

environmental payoff the stable prediction of the classifiers will decrease by a

power of γ each time. In an ideal situation the stable prediction of a classifier t

steps away from the environmental reward R should therefore be:

γ tR [eq. 3]

 Unfortunately it is possible that as the payoff diminishes down the action sets that

are invoked as progress is made through a chain of states in even a simple single-

chain FSW, the generalisation mechanism of XCS will generalise over the

classifiers covering the early states. The ability of XCS to generalise may be

dependent upon the amenability of the input messages attributed to each state.

Lanzi [6] has already noted that an over-redundant encoding can affect the ability

of XCS to operate effectively in the presence of generalisation pressure due to the

inadequate or uneven exploration of some of the message bits. It could be the case

that potential generalisations over similar actions in separate states may be aided

or hindered by the coding of the messages from these states.

d) Parameterisation

The rate at which XCS learns its strength values is fundamentally controlled by

the learning rate parameter β. This adjusts the rate at which the current error,

prediction, and fitness estimates are adjusted and reflects the responsiveness of

these values to changing environmental input. In multiple-step environments the

rate of learning is also affected by the discount factor parameter γ. This parameter

reflects the rate of decline in payoff down the sequence of action sets leading to a

rewarding state. A high value of γ will result in a lower differentiation in payoff

between the states. Whilst this may allow longer action chains to survive, the
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closer payoff values may prevent the generalisation capabilities of XCS rapidly

finding the accurate yet general classifiers that can be proliferated through the

action of the G.A. and subsumption. Lower values of γ may help this

generalisation process, but possibly at the cost of reduced length chains.

In addition to these parameters affecting the learning rate, other parameters such

as the choice of explore-exploit strategy, the frequency of the genetic algorithm,

the amount of effector covering, the time until a classifier is regarded as

experienced will all affect the learning of action chains to one degree or another.

None of these parameterisation issues has been investigated, and this remains a

fertile area for future work.

4. Experimental Hypotheses

Within XCS the discount factor γ reduces the payoff to the classifiers within

preceding action sets. This payoff reduction has two purposes. Firstly it reflects

the increasing degree of uncertainty regarding the role of the preceding action sets

in leading to the final reward. Perhaps more fundamentally, it allows XCS to take

account within selection between competing pathways of the distance to the

reward as well as the ultimate reward magnitude. The side-effect of the discount

within XCS, however, is that as the payoff decreases by a power of the discount

factor on each step (see equation 3) the payoffs received by action sets become

increasingly similar. The generalisation hypothesis claims that XCS will be able to

identify classifiers of the optimum generality to map the state × action × payoff

landscape of a problem. However, as the action chain length increases and the

payoff to early action sets decreases the generalisation capability of XCS may

simply generalise over the very similar predictions within these early action sets.

The effect of this is likely to be that XCS can no longer select the optimum route

to a reward. This reasoning leads to hypothesis 1:

Hypothesis 1

There will be a point in the lengthening of a single action chain to a

stable fixed point reward when the payoff to the action sets covering the

initial states will be sufficiently similar to cause incorrect
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generalisations, thereby preventing XCS identifying a correct state ×

action × payoff mapping over those states.

In addition to the potential problems with generalisation, there is no information

on the performance of XCS without the burden of generalisation in very long

action chains. It may be hypothesised that XCS will be able to identify all the

classifiers required to map the state × action × payoff landscape in the simple

though long corridor FSW. However, there is uncertainty about whether XCS will

be able to establish the very small payoff predictions in the early states accurately

enough to continue to select the optimal route given the relatively noisy update

generated by the feedback from competing action sets. Given that the distinction

between the stable prediction for action sets representing the optimum and the

nearest sub-optimal route will be very small, it can be hypothesised that XCS will

be unable to distinguish between the optimal and sub-optimal routes once

prediction values become small.

Hypothesis 4.2

As the payoff reduces to fractions of unity XCS without generalisation

will become unable to reliably select the optimal path within a simple

two-choice corridor FSW environment.

5. Choice of a Test Environment

The test environment chosen is a FSW representation of a so-called "corridor

environment". The environment is pictured in figure 1, and the message produced

from each state of this environment is the binary coding of the state number.

S10
1000

s0 s1 s2 s3 s4

s5 s6 s7 s8 s9

0 1 0 1 0

1 1 10,1 0,1 0,1 0,1 0,1

Figure 1 - A Corridor Finite State World

This environment has the following features:
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• It can be trivially extended by small or large increments as longer test action

chains are required.

• It includes a choice of route at each state so that the ability of XCS to decide

the optimal route as the action chain increases can be determined.

• The sub-optimal route does not prevent progress towards the reward state.

• The optimal route is always re-joined to limit the penalty of a sub-optimal

choice.

• The stable payoff received for a sub-optimal choice will always be equivalent

to the γ discount of the payoff received for the optimal choice.

• The alternation of actions prevents generalisation from prematurely producing

very general classifiers that cover much of the optimal path to reward.

• The small number of separate actions limits exploration complexity.

The problem of exploration complexity is removed, as far as possible, by the limit

to an optimal and sub-optimal choice in each state combined with the immediate

re-joining of the optimal route. The problem of exploration shape is controlled by

the use of a simple state chain. The problem of input encoding is controlled by

making the input from each state the binary code of the integer number of the state

for all experimental work apart from those experiments explicitly designed to

investigate changes in input encoding. The problem of parameterisation will be

solved by utilising the set of parameter values given in Table 1, derived from

those used by Wilson [1][2]. These parameter settings were chosen to allow

comparison with previous XCS work, although the mutation probability is higher

than Wilson used in the Woods-2 experiments but the same as that used within his

multiplexer work. The population size was selected to provide sufficient space for

each fully specific classifier to achieve a maximum numerosity of 20. It has been

noticed in the course of experimental work that XCS can increase the numerosity

of non-optimal classifiers to 6 or [more rarely] 8 copies. Therefore, to ensure

dominance the 'rule of thumb' of providing a minimum of 12 classifiers per

member of [O] was adopted throughout this work. Providing 20 spaces per

required classifier allows for the additional classifier space required for the normal

XCS exploration and the fact that generalisation may allow fewer classifiers to be

used to represent the state space. It is acknowledged that tuning of parameters may

succeed in producing different and possibly better results than those presented in
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the following sections. An exploration of the parameter space is a valid area of

investigation in itself, but beyond the scope of this investigation.

N (population size) 20 × (states - 1) × 2
Pi (initial population size) 0
γγγγ (discount rate) 0.71
ββββ (learning rate) 0.2
θθθθ (GA Experience) 25
εεεε0 (minimum error) 0.01
αααα (fall-off rate) 0.1
ΧΧΧΧ (crossover probability) 0.8
µµµµ (mutation probability) 0.04
pr (covering multiplier) 0.5
P(#) (generality proportion) 0.33
pi (initial prediction) 10.0
εεεεi (initial error) 0.0
fr (fitness reduction) Not Used
m (accuracy multiplier) 0.1
s (Subsumption threshold) 20
fi (initial fitness) 0.01
Exploration trials per run 5000
Maximum iterations per trial chain length × 10

Table 1 - Parameter settings for action chain length experiments

6. Experimental Method

The investigation of these hypotheses has been divided into three stages. All

stages will initially base their tests on the FSW within figure 1 expanded to

represent optimal action chain lengths of 5 (as pictured in figure 1), 10, 15, 20, 25,

and 30. The XCS implementation used within these experiments is XCSC [15], a

publicly available implementation that has been shown to be equivalent to the

performance of the XCS implementations used in [2] and [4]. It differs from the

more recent description of XCS [14] in using Wilson's type 1 deletion technique

[1] rather than Kovac's type 3 technique [4], which is unproven in multiple-step

environments, and in using action-set subsumption of the children of the GA

operation rather than over all members of the action set.

The first stage will seek to provide base-line results to demonstrate that XCS is

capable of learning the stable payoff for each of the actions in each state of the
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environment. In this stage a population of classifiers with no generalisation

sufficient to cover all the state × action pairs in the environment will be

introduced. Without activating the induction mechanisms, XCS will be run to seek

to identify the stable predictions. Wilson’s error measure [1] is insufficient to

track the error over the chain of actions, since it ignores the magnitude of error

relative to the actual payoff received. Instead, a measure termed System Relative

Error is used [9][15]. The Relative Error of an action set is the absolute difference

between the payoff and the current action set prediction as a proportion of the

larger of these two values (i.e. the relative magnitude of the rate of convergence).

The System Relative Error is the average of the Relative Error measures

calculated from the action sets that lead to an external reward, measured only

during exploitation episodes. To help identify the extent of the Relative Error

contributing to this average, the minimum and maximum Relative Error measures

in an episode are also recorded. For each test XCS will be run ten times and the

results presented will be the averages of these runs unless otherwise stated. To

capture the degree of coverage of the problem environment a reporting technique

is introduced from the field of Data Mining, previously applied to XCS in [19].

The second stage increases the difficulty of the experimental task. Each

environment is presented without an initial population. With generality turned off,

the induction mechanisms must establish a population of specific classifiers with

payoff predictions to map the state × action × payoff space. These experiments

will be used to assess the validity of hypothesis 2. The final stage requires XCS to

identify and establish optimally general accurate classifiers to map the state ×

action × payoff space. Each environment is presented to XCS to identify whether

hypothesis 1 is supported.

7. Baseline Results

Each of the test environments was presented to an XCS implementation [15] in

turn, capturing the output of 10 runs in each environment. After the runs for each

test environment were completed the performance was captured in a chart

representing the number of iterations to the reward state, the system relative error

alongside the minimum and maximum relative error in the action chain, and the

population size. The final measure is irrelevant in this stage since the population is
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pre-installed and fixed. The coverage tables for each run were also captured and

averaged. The resulting coverage table for the environment was pictured using a

line graph with a line for the predictions for the optimal action in each state and a

line for the sub-optimal action in each state. A line graph was adopted to

emphasise the payoff relationship between the data points. For the 25 and 30

length environments the line graphs were also re-plotted using a logarithmic

prediction scale to reveal the differences in the predictions of the classifiers

covering the early states of the environment.
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Figure 2 - The reduction of System Relative Error within action chain length 30 in a corridor FSW

environment with one non-optimal action per state, a pre-loaded population and no induction.
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Figure 3 - The convergence of payoff prediction over the optimal and sub-optimal action chains

within a length 30 corridor FSW environment with one optimal and one sub-optimal action per

state, a pre-loaded population and no induction (N=2000, Iterations per Episode=300, Condition

Size=8)

In all cases the system relative error rapidly drops to zero within 150 exploitation

episodes indicating rapid convergence even within long action chains. Figure 2

illustrates the learning performance for the length 30 environment (60 states) and

figure 3 shows the prediction and logarithmic prediction graphs for this

environment by way of illustration. As would be expected in a pre-loaded

population without induction, there was no error evident in the final prediction

even for the earliest states despite the fact that the optimal payoff at this state

would be 0.034 and the sub-optimal 0.024.

8. Providing induction in long action chain learning

The next series of experiments removed the population initialisation, starting XCS

off with no initial classifiers. All the classifier induction capabilities of XCS were

enabled, but the generalisation probability was set to 0.0 so that only fully specific

classifiers would be generated. These experiments were specifically designed to

investigate hypothesis 2, although they also provide interesting time-to-

convergence comparative results with the previous experiments. The results for

the length 30 run are given within Figure 4. Other runs are not shown due to space

constraints.
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Figure 4 - The convergence of payoff prediction in the presence of classifier induction within

action chain length 30 in a corridor FSW environment with one non-optimal action per state.

The results demonstrate that the time to system relative error reduction to zero is

very similar to that for the situation where the initial population is already

provided. Similarly, the time taken for XCS to be able to accurately select the

optimal route is almost unchanged. As the action chain length grows to 25 and 30

steps the time taken for the system relative error to reduce to zero increases

compared to the non-induction test. It is likely that this is due to the additional

time taken to discover all the required classifiers, marginally lengthening the

amount of feedback required to focus upon the very small predictions in early

states.

The payoff prediction plots within figure 4 indicate that XCS was able to

accurately predict the payoff for all classifiers right up to 30 states, and was able

to select the optimal route by 150 exploitation episodes. This finding was counter

to hypothesis 2, which suggested that XCS would be unable to select over the very

small payoff predictions in these early states. It was initially thought that the

averaging contained within the standard XCS report of iterations (it is the moving

average of the previous 50 episodes) may be hiding occasional sub-optimal

selections. The 30-action chain test was thus repeated with this averaging

removed. Each of the 10 test results were then individually checked, since further

test averaging could also hide some results. A typical run is shown in figure 5.
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Figure 5 - A single test using a 30 length action chain FSW with induction, no generality, and

iteration averaging removed.

It is clear from figure 5 that the average, in this case, does present a true picture.

Clearly XCS was able to identify the optimal pathway, even through the very

small payoff prediction states. In an attempt to test the hypothesis on a more

extreme case, a 40 action chain environment was constructed by extending the

FSW environment in the same way that the other environment were created from

the five state environment pictured in figure 1. The result of a typical run from this

test is shown in figure 6.
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Figure 6 - A single test using a 40 length action chain FSW with induction, no generality, and

iteration averaging removed.

Condition Action Prediction Error Accuracy Fitness Num AS Exp
00000000 0 0.001582 0.0000 1.0000 1.0000 24 24 7333
00000000 1 0.001123 0.0000 1.0000 1.0000 24 24 2667
00000001 0 0.001582 0.0000 1.0000 1.0000 33 33 2643
00000001 1 0.002227 0.0000 1.0000 1.0000 23 23 7357
00000010 0 0.003137 0.0000 1.0000 1.0000 25 25 7353
00000010 1 0.002227 0.0000 1.0000 1.0000 32 32 2647
00000011 0 0.003137 0.0000 1.0000 1.0000 24 24 2609
00000011 1 0.004419 0.0000 1.0000 1.0000 20 20 7391
00000100 0 0.006224 0.0000 1.0000 1.0000 21 21 7359
00000100 1 0.004419 0.0000 1.0000 1.0000 25 25 2641
00000101 0 0.006224 0.0000 1.0000 1.0000 27 27 2618
00000101 1 0.008766 0.0000 1.0000 1.0000 30 30 7382
00000110 0 0.012346 0.0000 1.0000 1.0000 20 20 7411
00000110 1 0.008766 0.0000 1.0000 1.0000 29 29 2589
00000111 0 0.012346 0.0000 1.0000 1.0000 26 26 2598
00000111 1 0.017389 0.0000 1.0000 1.0000 20 20 7402
00001000 0 0.024491 0.0000 1.0000 1.0000 23 23 7430
00001000 1 0.017389 0.0000 1.0000 1.0000 27 27 2570
00001001 0 0.024491 0.0000 1.0000 1.0000 26 26 2633
00001001 1 0.034495 0.0000 1.0000 1.0000 21 21 7367

Table 2 - Classifiers covering the states s0 to s9 of a 40 action chain length FSW.

Even though the optimal prediction payoff in state s0 is now 0.00158 and the sub-

optimal prediction in the same state is 0.001123, it is clear from figure that XCS is

able to identify these predictions sufficiently accurately to select correctly
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between them in a close to optimal number of learning cycles. The classifiers

covering the first ten states of this environment from the same run are given in

table 2, illustrating that all prediction values are accurately represented. Clearly

this trend could not be infinitely extended, but combined with the ability to

modify γ it is clear that a non-generalising XCS can rapidly learn optimal routes in

this kind of environment for long action chains. The hypothesised disruption of

the payoff prediction caused by continued learning with XCS was not

demonstrated, although it may be seen within environments with noisy feedback -

an area for further investigation. Hypothesis 2 is therefore not upheld.

9. Learning with Generalisation

This series of investigations re-used the action chain FSW environment used in

the previous tests. Parameterisation was kept the same as that within section 7

apart from the setting of the generality parameters to 0.33.

9.1 The Length 5 FSW

The initial experiment was carried out with the length five FSW pictured in figure

1. The results of this test are pictured in figure 7. These results show that under the

action of generalisation XCS is able to identify the optimal action route for action

chains of length five within this FSW environment by 350 exploitation episodes.

This is just under six times the time required for the fully-specific induction test;

the search space has undergone a 7.5 times increase. The rise and then decline of

the population curve demonstrates that XCS is able to identify the correct

generalisations. An analysis of the population revealed that [O] was present.

Unfortunately an analysis of the numerosity of the members of [O] revealed that

other classifiers within the accurate sub-population were not as dominated by the

members of [O] as would normally be expected.
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Figure 7 - The convergence of payoff prediction in the presence of generality pressure and

classifier induction within a length 5 corridor FSW.

An analysis of the accurate sub-population revealed that there were over-specific

classifiers within the accurate sub-population that were maintaining a higher than

expected numerosity. These classifiers would normally be subsumed on creation

within the G.A., but classifiers whose actions are mutated will not be subsumed

because they no longer belong to the parent action set. Although these classifiers

should be removed by normal deletion dynamics, they appear to remain within

this environment, though less dominant nearer the reward state. This remained the

case in an expanded run of the test that ran for 30000 exploitation episodes.

To test this hypothesis the mutation rate was lowered from 0.04 to 0.01, as used in

Wilson’s Woods-2 experiments [1][2]. Over ten runs for both the 0.04 mutation

rate and the 0.01 mutation rate the dominance of the optimally general classifiers

was captured as a percentage of the action-set size for each action set. An F-Test
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of the action set dominance for the optimal route between the 0.01 mutation rate

and the original 0.04 mutation rate revealed that the variance for each set was not

equal (F=0.4262, F-crit=0.3146). A one-tailed Wilcoxen test was therefore applied

to test the hypothesis that the introduction of the 0.01 mutation rate would

improve the focus of the action sets as measured in the dominance statistic. This

test revealed a significant difference (T=3, T-crit=3 at 0.005) between the original

and new dominance rates. Given that the average dominance with mutation rate

0.04 was 60.29 and the average dominance with mutation rate 0.01 was 69.17, it

was concluded that the lower mutation rate improves domination of the action set

for the optimal route. The same tests were applied to the sub-optimal route,

revealing that the variances are not equal (F=0.7211, F-crit=0.3146 at the 0.05

level) and there is a significant difference between the two sets of results (one-

tailed Wilcoxon test: T=0, T-crit=3 at the 0.005 level). The average dominance

with mutation rate 0.04 was 60.91 and the average dominance with mutation rate

0.01 was 70.44. Therefore it was concluded that the lower mutation rate also

improves domination of the action set for the sub-optimal route.

9.2 The Length 10 FSW

Having confirmed that XCS is capable of identifying [O] within the simplest of

the test environments, the problem complexity was expanded to the length 10

environment. Initially the 0.01 mutation rate was applied to this environment,

having produced better results in the previous test. The performance of XCS

within this environment and the coverage graph achieved is pictured in figure 8.
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Figure 8 - The average performance of ten runs of XCS within a length 10 corridor FSW with

system relative error reducing to zero over 15000 episodes.
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A statistical comparison of the dominance rates for ten runs using 0.01 and 0.04

mutation rates revealed that there was no significant difference for the optimal

route (t=1.35, tcrit=1.729 at 0.05 level), although for the sub-optimal route the 0.01

mutation rate continued to provide improved results (t=6.478, tcrit=1.729 at 0.05

level). However, the 0.04 mutation rate runs were able to reduce the maximum

relative error curve much earlier (3000 exploitation iterations compared to 11000

exploitation iterations).

Although difficult to spot, the 'iterations' plot in figure 8 indicates occasional non-

optimal path choice. If investigating the hypothesis on the location of disruption

lying within the early states is correct (hypothesis 1), then any sub-optimal route

choice should take place within these early states. To further investigate this

hypothesis the frequency of non-optimal route choice within the 0.04 mutation

rate run was recorded and a typical run from the 10 runs chosen. The incorrect

action choices within last 2000 exploitation episodes were extracted (the System

Relative Error had reduced by 3000 exploitation episodes). The frequency of sub-

optimal action choice per state was plotted in a histogram, shown in figure 9. This

indicates that all of the incorrect decisions were made from state s0 (moving to

state s10), state s1 (moving to state s11), state s2 (moving to state s12) and state s3

(moving to state s13), with generally decreasing frequency as process is made from

the early states. Since the dominance results and the coverage graph demonstrate

that the payoff prediction of these early states has been discovered and is being

maintained by the action sets, the results in figure 9 lend strong support to the

hypothesis that the early states are much more influenced by the additional

classifiers added for exploration of the problem space. If this finding is correct,

the problem should become much worse as the action chain is lengthened,

threatening the ability of XCS to produce and maintain [O] over long action

chains, as hypothesis 1 predicts.
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Figure 9 - The rate of choice of non-optimal route within the last 2000 exploitation episodes of a

typical run of XCS within a length 10 corridor FSW with the mutation rate set at 0.04.

9.3 The Length 15 FSW

The experiments within the length 15 test environment indicate that this analysis

is indeed correct. Figure 10 pictures the performance results for the 0.04 mutation

rate run and the averaged coverage graph.
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Figure 10 - The averaged performance of ten runs of XCS in the length 15 FSW, at
mutation rate 0.04 and the coverage graph with logarithmic prediction scale
(y axis) for the action sets. The average iteration count in the last 2000 steps
was 17.15 rather than the optimal 15.
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In these runs, all ten populations found and were able to establish all members of

[O] apart from those covering states s0 to s3. These four states were represented by

a single classifier for each action. As was predicted and figure 10 illustrates, the

additional classifiers in the population within the early action sets disrupt the

payoff prediction so that the payoff differences within the first four states cannot

be differentiated by XCS. If XCS cannot differentiate the payoffs, it will

generalise over these states. Thus, hypothesis 1 is shown to hold, and it is possible

to tentatively suggest that an action chain length of 11 steps appears to represent

the limits of reliable generalisation over the action chain for this environment and

parameterisation. However, it was noticeable that the generalisation occurred over

bits 0 and 1 and therefore it may be that the convenience of the input encoding

encouraged this limit point.

It had been expected from previous results that XCS with a lower mutation rate

would produce better results. In figure 10 the population curve remains high,

indicating the presence of additional accurate but more specific classifiers within

the population. If a lower mutation rate was able to focus this population further,

as was the case previously, then the lower amount of competition within the action

sets may allow XCS to distinguish between more of the early states. When the

experiment was repeated with a mutation rate of 0.01 the maximum relative error

curve did not reduce below the 0.8 level at any time in the run. From an

examination of the populations produced it was found that within the 0.01

mutation rate experiment only three of the ten runs produced the expected

coverage results. Indeed, the coverage tables exhibited action sets with seemingly

impossibly high numerosity, and predictions lay between 30 and 50 for most

action sets. These values are depicted within figure 11, averaged from the seven

poorly performing runs.
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Figure 11 - The coverage graph and the histogram of average numerosity for the action sets within

the seven non-optimal runs of XCS at mutation rate 0.01 within the length 15 FSW.

The reason for this difference can be readily located through an examination of

the coverage tables and the populations of the runs. An inspection of the poorly

performing populations revealed that a fully general classifier in each of the two

action classes had established themselves and gathered a very large numerosity.

Since these classifiers appeared in every action set, they increased the numerosity

of the action set producing the abnormally high numerosity results pictured in the

histogram in figure 11. Intriguingly, these classifiers, where present, were all

apparently of low accuracy and numerosity within the 0.04 mutation rate XCS.

9.4 The Dominance of Fully General Classifiers

A detailed inspection of the populations revealed that in each population case one

of the two fully general classifiers continued to be considered of high accuracy

even though they cannot accurately reflect the payoff for their recommended

action in all environmental states. The key to explaining the phenomena therefore

lies in an explanation of how these fully general classifiers can be considered to be

accurate. It was hypothesised that the continued preference for the fully general

classifiers would arise from the discovery of the fully general classifiers whilst the

population is in its initial stages without a good convergence on accurate

classifiers. Since all action sets apart from the one leading to the reward state

receive payoff as the discounted maximum system prediction of the next match

set, in the early states the predictions will be low and even when discounted will
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remain similar. If the action chain is long enough it is possible that the generalists

have sufficient time to become accurate over a large proportion of the action chain

and therefore gain a larger relative accuracy (fitness) than other competing

classifiers. Once this is the case, the general classifiers could utilise the fact that

they will obtain many more G.A. opportunities to accumulate numerosity. Once a

sufficiently high numerosity is established the fully general classifier would exert

a large influence over the action set, keeping the prediction within each action set

close to that of the fully general classifier. The inaccurate prediction would

become the payoff to earlier classifiers, allowing them to accurately reflect an

incorrect payoff and promoting the false accuracy of the over-general. This would

in turn enhance the ability of the fully general classifier to proliferate. If the

reward input is infrequent in relation to the internal payoff, and if the initial states

cannot be disambiguated due to their distance from the reward state, a breeding

ground for the fully general classifier would exist. Once fully general classifiers

are established, true members of [O] would be considered inaccurate at their true

prediction and would be unable to compete to drive out the fully general

classifiers. This is a vital hypothesis that identifies a genuine limiting factor on the

ability of XCS to find and establish [O] within a long action chain environment,

and will be more formally expressed as the Domination Hypothesis:

Fully general classifiers covering each action set will be considered

inaccurate in all environments where the path to a stable environmental

reward is greater than length 1 except when each of the following holds: 1)

the classifiers acquire a high relative accuracy before stable environmental

feedback can be passed through all the states to establish the true stable

payoff for each action in each state; 2) the classifiers participate frequently

in the Genetic Algorithm so that their numerosity becomes high relative to

that of other competing classifiers; 3) the time [in iterations] between stable

environmental reward is more than the time required to remove the

influence of that reward from the recency-weighted prediction calculation of

the fully-general classifiers. In these circumstances the fully-general

classifiers will dominate the prediction calculation of the action-set, provide

payoff to their participation in other action sets that is close to their own

prediction, and so increase their relative accuracy and thus their
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participation frequency  within the Genetic Algorithm. In this state the true

optimal sub-population is considered inaccurate and cannot be established

by XCS.

Before this hypothesis is investigated further the question of why this

phenomenon occurred within the 0.01 mutation rate environment and not within

the 0.04 environment must be considered. A possible explanation lies in the

mutation rates themselves. A higher mutation rate, even though only marginally

higher, had a profound effect on the operation of XCS in the length 5 and length

10 FSW environments. It is therefore hypothesised that the difference in mutation

rate allows sufficient early exploration within the 0.04 rate runs to prevent the

early establishment of the fully general classifiers. In contrast, within the 0.01 rate

runs the lower exploration rate that previously encouraged population focus now

limits competition with the fully general classifier too much. If this hypothesis is

correct, it would suggest that a profitable area of further work would be to

examine the introduction of a dynamic control of the mutation rate within XCS.

To investigate the Domination Hypothesis further the 0.04 mutation rate

experiment was re-run. The version of XCS used in these experiments used a

simplified form of action-set subsumption, discussed in [15], to that identified in

[14]. This form does not regularly compact the action set down to its minimal

most general form, and so leaves the removal of over-specific classifiers to the

G.A. This modification allows the ability of the G.A. to establish the dominant

classifiers to be examined. It was hypothesised that if the fully general classifiers

were obtaining full accuracy as suggested then the introduction of any higher

subsumption pressure should serve to further establish these classifiers and

increase the likelihood of fully general classifier domination of the population. A

population-wide subsumption mechanism was thus introduced which, if a new

classifier produced by the G.A. is not subsumed by its parents or any member of

the G.A., looks for a subsuming classifier in the population as a whole. This is not

as severe a subsumption mechanism as the action-set subsumption in [14] but does

increase the subsumption pressure.
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The results of this experiment are shown in figure 12. It was noticeable when

comparing figures 10 and 12 that the XCS performance has decreased even

though the population subsumption should have encouraged the formation of [O]

through decreased competition in the population. An examination of the

populations revealed that three of the ten runs did now contain dominant fully

general classifiers that had prevented the formation of [O] and that these were the

cause of the drop in performance. Thus the introduction of population

subsumption appears to have aided the dominance of the fully general classifiers.
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Figure 12 - The average performance of ten runs of XCS in the length 15 FSW with mutation rate

0.04 and population-wide subsumption in the G.A.

Further experiments using the population subsumption version of XCS were

performed that reduced the population size limit from 1200 micro-classifiers to

800 and then 600 micro-classifiers. It was thought that by limiting the population

size pressure would be exerted on the fully-general classifiers that would limit

their formation. In fact, this was an incorrect assumption - the reduction in

population size only served to reduce the space for exploration and therefore

increase the likelihood that fully general classifiers would dominate the

populations.

A further test of the hypothesis involves extending the action chain once more. If

the hypothesis on dominant classifier formation is correct, the increased length of
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the action chain will make environmental reward less frequent and allow the fully

general classifiers to establish themselves more easily. These tests will also allow

further verification of the tentative hypothesis on the limits of action chain length

before the inability to accurately identify payoff prediction is seen. The length 20

FSW environment was therefore re-introduced to XCS and, following the results

of the length 15 experiments, the mutation rate was set at 0.04. Ten runs within

the environment were conducted, and the performance was captured and averaged.

The average performance of XCS in this environment is shown in figure 13.
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Figure 13 - The average performance of ten runs of XCS in the length 20 FSW.

In figure 13 the system relative error remains high and does not appear to be able

to be further reduced. The number of iterations required to reach the reward state

is much higher than the optimal. An analysis of the coverage table for each

population revealed that only five of the ten runs produced adequate coverage.

Examining the populations of those runs that did not produce the expected

coverage revealed that each contained dominant full-generality classifiers of high

numerosity. These results confirm the hypothesis that the longer the action chain

to a regular environmental reward, the more likely a dominant full generalist is to

appear.

In order to investigate the formation of the dominant fully general classifiers

further the length 15 FSW with 0.01 mutation was re-run with additional reports
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added to capture the fitness, accuracy, prediction, and numerosity of the fully

general classifiers in the population averaged over each episode whilst they exist.

These details from twenty runs were output to a file and the results corresponding

to typical good performance and poor performance populations were extracted and

plotted. Figure 14 identifies the performance of these classifiers.

a) Two fully general classifiers dominating the population
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b) Two high numerosity fully general classifiers removed from the population
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c) Two fully general classifiers rapidly removed from the population
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Figure 14 - The prediction, accuracy, fitness and numerosity traces of three typical life histories of

the two fully general classifiers that may appear within the Length 15 FSW. Each measure

averaged over the preceding 50 exploitation episodes.

It was immediately noticeable that some populations did contain fully general

classifiers that accumulated large numerosity values and yet were able to remove

these classifiers to establish more accurate classifiers (see figure 14b). Other good

populations were able to remove the fully general classifiers without allowing

them to achieve significant numerosity (figure 14c). The poor performing

populations retained their high numerosity classifiers (figure 14a). Although

figure 14 provides plots of typical runs, it should be noted that when each of the

populations in the run was plotted in this manner, those falling into any one of

these three categories of life history produced similar plots of prediction,

accuracy, and fitness. This would suggest that there is a factor underlying the

phenomena that generates these typical trends.

An analysis of the graphs in figure 14 suggests that the early appearance of the

fully general classifiers is an important factor, since in all cases the fully general

classifiers did appear very early in the exploration (in exploration episode 28, 37,

and 23 respectively) and within similar population sizes (95, 88, and 86

respectively). However it is also clear that this is not in itself a sufficient

condition, as the hypothesis identifies. The key aspect of the graphs that is worthy

of further investigation is the fact that all the while that the accuracy of the

classifiers is kept higher than zero the numerosity of the classifier increases. The

actual level of accuracy appears to be fairly irrelevant - it would appear from an
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analysis of the populations that the accuracy of these classifiers was higher than

its competitors, and thus it is the relative accuracy that is the important feature. (It

should also be noted that since the accuracy level never reaches 1.0 the increase in

numerosity of the fully general classifiers must be through the action of the G.A.

rather than the subsumption mechanism). It is the sudden reduction of the

accuracy of classifier 2 in figure 14b that signals the start of the demise of that

classifier. A comparison of classifier 1 in 14a and classifier 1 in 14b is instructive.

Whilst they both display a low accuracy, classifier 1 in 14a is able to continuously

regain sufficient accuracy to give it the fitness necessary to compete within the

G.A. and replicate itself. Classifier 1 in 14b is unable to sustain its accuracy and

on each period of zero accuracy it loses numerosity. Once numerosity is lost the

ability of an inaccurate classifier to dominate the action sets is reduced. This in

turn causes the action sets to start to gain their true payoff prediction, giving the

fully general classifier a lower relative accuracy. As the accuracy continues to

reduce, so its ability to compete in the G.A. is reduced, causing the classifier to be

gradually driven out of the population. The flatter prediction curve of classifier 1

in 14a when compared with classifier 1 in 14b indicates that it has been able to

exert sufficient influence to push down the payoff predictions in the action sets so

that it can maintain a high relative accuracy. Interestingly, classifier 2,

representing the sub-optimal pathway, is more able to control the range of the

prediction. This is actually an artefact of the action classifier 2 represents. This

action never leads directly to an environment reward state and therefore all system

predictions in the action sets the classifier occurs within are fed from other action

sets. The control of prediction is thus a simpler task, giving higher accuracy and

fitness. Although further investigation clearly needs to be carried out to further

explore the Domination Hypothesis, these results do lend considerable support to

the Hypothesis.

9.5 The Length 20 FSW

Although the performance in the Length 20 FSW experiment pictured in figure 13

demonstrated a high System Relative Error, there is a large element of this

averaged result that is attributable to the five populations that developed dominant

fully general classifiers and thus were unable to develop a useful state × action ×

payoff map. Once the performance of XCS with these poor populations is
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removed the true performance of XCS in this length 20 environment can be seen

(figure 15). Interestingly the results illustrate that XCS is able to learn the payoff

predictions within the last 11 states but produces general classifiers to cover the

earlier states. This finding is in agreement with the earlier tentative hypothesis that

with the particular parameterisation used and within this form of environment

XCS is able to represent accurately with optimal generalisation up to 11 actions in

the action chain. However this result can to some extent once again be explained

by message coding convenience. The classifiers representing states s0-s7 and state

s8 are shown in table 3. Two classifiers cover states s0 to s7, which can each be

conveniently represented by generalising the first three condition positions. State

s8 is much more difficult to generalise alongside the other states and would be

unlikely to appear within any other generalisation. Thus, even if the environment

were extended to length 21 it may be that the representation of s8 and s9 would

remain more accurate than that of states s0 to s7 purely because of the difficulty of

including s8 and s9 in a generalisation over the earlier states. Clearly this aspect

warrants further investigation.
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Figure 15 - The average system prediction in each action set of the five good performance runs of

XCS in the length 20 FSW environment.

Classifier Pred. Error Acc. Fitness N AS Exp.
#000###→0 5.795 0.0007 0.9208 1.0000 43 54.8 28581
#000###→1 8.520 0.0030 0.8875 1.0000 37 46.8 42037
###10#0→1 13.092 0.0082 0.6207 1.0000 13 57.1 7395
###100#→0 14.474 0.0055 0.2645 1.0000 6 51. 5 3619

Table 3 - The accurate classifiers covering states s0 to s8 within the length 20 FSW.
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Considering the increasingly poor performance of XCS within the length 15 and

20 FSW environments, further experiments with length 25 or 30 FSW

environments were considered unnecessary and the experimental investigation

was terminated at this point.

10. Summary of Results

Baseline investigations using a preloaded population of classifiers within the

chosen progressive two-action corridor FSW environment of increasing length

demonstrated that XCS was able to rapidly identify the payoff predictions for

classifiers in chains of up to length 30. The length 30 limit was chosen as a

hypothesised maximum size for use within later experimental work, and does not

reflect a true maximum length for XCS without induction mechanisms.

In testing the validity of Hypothesis 2 within the same test environments, XCS

was run without generalisation but with an initially empty population and

induction mechanisms enabled. Contrary to expectations, XCS was able to

establish and proliferate the optimal population and identify the correct payoff

predictions in all of the test environments. The results indicated that XCS was able

to complete this task within approximately the same time as that required to

establish the payoff predictions when supplied with an initial population. This

may, however, be an artefact of this environment, which introduces very little

exploration complexity. A further experiment extended the environmental length

to a minimum of 40 actions to reward. In this test XCS continued to correctly

identify all payoff predictions and utilise them to select the optimal route even

though the payoffs for the two actions from the first state were very small. Thus,

the hypothesis that the act of establishing the correct payoff predictions could

itself cause a breakdown in the ability of XCS to differentiate between very small

differences in the payoff predictions for early states in a long chain environment

was not substantiated.

Investigation of Hypothesis 1 involved the application of generalisation in the

learning of the optimal sub-population [O]. In application to the length 5 FSW

XCS was able to establish and proliferate [O] in a slightly sub-linear time when

compared to the increase in coding complexity. However, the dominance of [O]
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was higher when using a mutation rate of 0.01 than when the mutation rate was

0.04. Investigation with the length 10 FSW showed that XCS was less able to

establish a high dominance of [O] using either mutation rate, although the 0.01

mutation rate still demonstrated a measure of superiority. Furthermore, XCS was

unable to consistently select the optimal route to the reward state. Further analysis

revealed that XCS was selecting the incorrect route in the earliest states. Once the

length 15 FSW was introduced this error became more pronounced, with an

average of two sub-optimal actions chosen in each episode. The coverage table

revealed that the predictions for alternative actions in the first four states were

confused and overlapping, making it impossible to select deterministically the

correct pathway. Comparison between mutation rates of 0.01 and 0.04 revealed

that the higher mutation rate was now preferable. Further experiments with the

length 20 FSW revealed that the early state payoff prediction confusion was

continued although it was noticed that XCS was consistently able to identify

correct payoff predictions for the last 11 states. It was recognised, however, that

the 11-state threshold could be an artefact of the encoding used and cannot be

used as a definitive limit for the parameterisation used.

Within both the length 15 and length 20 FSW environments it was noted that an

increasing number of runs where [O] was not fully identified or proliferated

occurred. This was identified as due to the emergence of strong full-generality

classifiers. Although such classifiers should by definition be inaccurate and

therefore be eliminated by XCS, they were able to establish a huge dominance of

all action-sets. The Domination Hypothesis was proposed to explain this

phenomena and a first verification of the hypothesis was presented by tracking the

life history of fully general classifiers in the circumstances where they were

established and where they were removed. It was noted that these classifiers need

to be established early in the XCS operation and that they dominate when they are

able to establish an early control of the system prediction so that they can continue

to hold a non-zero accuracy. Once any period of zero accuracy is established they

will rapidly lose fitness and thereafter numerosity. The dominance hypothesis

represents an important phenomenon within XCS that is worthy of further study.
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11. Discussion

Previous work within multiple-step environments with XCS have not investigated

the limits that may apply to the length of action chains that can be learnt by XCS.

Previous investigations with the CFS-C LCS implementation by Riolo [16,17,18]

demonstrated limits in the formation of long rule-chains by the LCS. Using a

single action corridor FSW of twelve states and a pre-set initial population of

classifiers that provided the appropriate rule chain, Riolo [16] demonstrated that

the rule-chaining mechanism proposed in [21] would allow the classifiers in the

chain to converge to the same prediction value. He further demonstrated, using an

environment with two length 10 single action chains and with a start-state having

two actions to enable choice between the two chains, that a seeded population

could learn to choose the optimal route. The work presented in this chapter used

seeded populations only for base-line results and demonstrated that even in

environments presenting a more complex choice XCS was able to select the

optimal path within 120 trials, somewhat faster than the 170 trials of the

traditional LCS within the simpler environment. In fact, with non-seeded

populations and no generalisation XCS was able to learn the correct pathway

within 140 trials. Clearly the lack of comparative parameterisation (and

implementation details, such as the explore/exploit regime) makes simple

performance comparisons impossible, and it would be naïve to claim from these

results that XCS provides a faster or more effective learning environment than a

traditional LCS.

Riolo [18] examined the ability of the LCS to establish rule chains under the

action of the induction mechanisms - and in particular, using the Triggered

Chaining Operator to establish rule-chains. This work was performed using the

GREF-1 FSW environment - a length 4, four action environment using 16 states to

provide four pathway with multiple links between the pathways. Whilst the

performance improved with the introduction of the TCO, it remained weak. Riolo

identified that although rule-chains were established, the LCS failed to maintain

the rule-chains. Not only did the lower strength of the earlier rules prevent their

duplication, thus keeping them safe from later deletion, but there were also

parasitic rules that caused payment to earlier classifiers to reduce and so threaten

their existence. Adding a "support" component to the bids of classifiers in the
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rule-chain, a niche deletion mechanism to limit competitors within each match set,

and a form of Create Effector Operator to introduce classifiers in poorly

performing match sets helped to reduce parasites and increase the speed of

formation and the maintenance of rule chains. These measures brought

performance up to 90% of the optimal performance in 12,000 trials. Riolo

concluded that the population needed to be treated more like an "ecology of rules,

with niches (states or situations) that support species (co-bidding rules)

competing for limited resources (classifier-list space, message-list space,

strength)". Whilst the checks-and-balances approach of CFS-C and other

traditional LCS approaches sought to achieve this balance, XCS is able to meet

these requirements fully. The test environments used in the earlier experiments

within this chapter do not match the GREF-1 environment for complexity, but the

results with XCS presented earlier suggest that XCS will be able to establish and

maintain action-chains for the GREF-1 environment with ease. To test this

hypothesis, the GREF-1 environment was re-created and figure 14 presents the

average of ten runs in this environment using a population limit of 800, no initial

population, and all induction operators turned on. The other parameterisation is

the same as that used for the experiments within section 9. The output was

generated with an additional Performance curve to allow some degree of

comparison with Riolo's results.
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Figure 16 - The average performance of XCS in the GREF-1 environment.
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It can be seen that XCS achieves optimal performance by 1000 exploitation trials

(2000 trials) whereas even the best run presented in [18] achieved just over 90%

performance by the equivalent of 10,000 trials. An examination of the coverage

tables identified that all runs established a high dominance optimal sub-population

identifying all action chains to the reward. In addition XCS had established the

optimal generalisations, something that Riolo's work did not seek to achieve.

Unfortunately, although these results suggest the superiority of XCS, any direct

comparison is foolhardy given the differences in operation and parameterisation

between these LCS implementations. These findings must therefore be expressed

as indicating that XCS is able to learn a solution and achieve a better on-line

performance within the GREF1 environment than Riolo's CFS-C.

Lanzi [6] noted the problems XCS faced when seeking to solve the Woods-14 test

environment, and these were discussed in section 3. Whilst the Woods-14

environment requires an action chain of length 18 to reach the reward state, the

structure of the environment itself makes a direct application of the results of this

chapter to that environment problematic. Within the Woods-14 environment many

of the successive steps require a different action to be undertaken, preventing

generalisation over states and potentially encouraging the more accurate

representation of the payoff prediction over the early states. As Lanzi notes, the

increased number of actions available bring their own penalty, making it difficult

for XCS to explore the environment sufficiently to reach the reward state and

begin to feedback the predictions.

It is interesting to note the potential relevance of Lanzi's specify operator [5] to the

results in this chapter. Although specify was introduced to tackle the problem of

over-generalisation due to exploration inequality, it could be the case that a

carefully application of the specify operator could counter the development of full-

generality classifiers. Specify introduces new more specific classifiers in order to

tackle over-generalisation due to uneven exploration. The introduction of more

general classifiers within a long action chain would exert additional pressure on

the fully general classifiers and provide more opportunity for mixing within the

G.A. This would encourage the formulation of more optimal classifiers and may
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lead to a break in the strangle-hold of the fully general classifiers. Unfortunately,

specify would tackle the problem by tackling the symptoms rather than the cause.

This is a matter for further work beyond the scope of this research.

12. Conclusions and Further Work

This chapter has sought to identify some limits on the length of action chain

learning within XCS. Using a progressive two-action corridor FSW-based

environment with a single start state and single terminal state it has been shown

that whilst XCS can reliably and rapidly establish the optimal population and the

correct payoff prediction mapping for optimal action lengths of up to (and

possibly beyond) 40 actions in these environments where no generalisation is

used, the introduction of generalisation introduces inadequate payoff prediction in

the early states once the predictions are sufficiently close to generalise over

without reduction in accuracy. This can be as early as 11 action-steps from the

terminal states, although the precision of this limit may be dependent upon the

generalisation convenience of the encoding. Whilst it is recognised that the limits

identified are dependant upon the parameterisation used, the exploration

complexity of the test environment, and the exploration strategy adopted, it is

clear that XCS (at least in the version utilised here) faces clear and restrictive

limits upon its ability to establish the correct payoff prediction mapping over the

states of a test environment in the face of generalisation pressure.

Further investigation is required to establish the nature of these limits with

alternative parameterisation, particularly over the γ parameter to see if a higher

value, as used within other Temporal Difference learning work, could extend the

length of action chain over which accurate payoff-prediction maps can be

established. It is likely that some upper value of γ will be reached at which point

generalisation will combine early states due to their prediction similarity. Further

work is also required to establish limits in other forms of environment. Although

the environment used was designed to limit the complexities of exploration, an

environment that provides a reward of zero for non-optimal actions may provide a

clearer distinction between the predictions and thus allow XCS to identify longer

chains of optimal actions. Alternatively, an environment with a sub-optimal action
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that leads back to the same state may cause unequal exploration of the

environment, thus preventing progress towards the terminal state and further

hindering the establishment of action chains. Finally, the complexity of

exploration was deliberately controlled, and further work is required to establish

the limits of action chain length in the face of increasing numbers of alternative

routes, and the ability of XCS to choose between alternative reward magnitudes as

the number of alternative action routes increases.

Whilst the problem of over-generalisation over the early states has been revealed

by this work, no particular solution has been proposed. This was beyond the scope

of the work, but further work [15] has shown that new techniques can be

introduced to XCS that would allow XCS to be applied within longer rule chains.

Unfortunately all of these techniques introduce substantial new features to XCS

and seek to avoid or postpone rather than tackle the cause of the over-

generalisation. In order to tackle the cause, the true cause has to be identified.

XCS has been criticised for its dependence upon fixed rather than relative

measures of error [15]. As the payoff values become small towards the start of a

long action chain, so the more meaningless the error calculation and minimum

error cut-off parameters become to these early classifiers. Fluctuations in later

reward will be smoothed and not detectable in the earlier classifiers. At the same

time a large variation in payoff because of the introduction of a new classifier

through the G.A. could cause early classifiers to become inaccurate when the

same introduction later in the action chain would have negligible effect on the

existing classifiers at that point in the action chain. These problems cannot be

readily solved by a simple modification to a parameter. For example, reducing the

minimum error parameter may help the earlier action sets distinguish between

accurate and inaccurate classifiers but would also make it much more difficult for

the later action sets to find accurate classifiers. It would be better, instead, to re-

examine the calculation of error as a fixed proportion of the magnitude of the

reward and look for methods of calculating error as the difference between the

predicted and actual payoff as a proportion of the predicted payoff. This is a fertile

area for further study.
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The Domination Hypothesis was introduced to explain the appearance of fully

general classifiers dominating the population in the longer FSW under

generalisation pressure. Although a preliminary investigation of the hypothesis

was presented, there is much scope for further investigation of the causes of these

classifiers and potential solutions to the problem of dominant fully general

classifiers. A naive solution that prevents the use of fully general classifiers (since,

by definition, they can never be accurate) is not adequate. Fully general classifiers

can act as a form of advanced Covering operator, distributing actions to newly

discovered environmental niches. It may be that preventing the formation of fully

general classifiers whilst encouraging action sharing covering would enable XCS

to establish more accurate payoff predictions within multiple step environments

similar to the test environments used within this research work.
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