
Statically typed traits

Kathleen Fisher
AT&T Labs — Research

kfisher@research.att.com

John Reppy
University of Chicago

jhr@cs.uchicago.edu

December 7, 2003

Abstract

Traits are mechanism, recently proposed by Scharli et al, for factoring Smalltalk class hi-
erarchies. By separating the issue of code reuse from the inheritance hierarchy, traits allow
one to avoid problems with methods defined too high in the inheritance hierarchy while shar-
ing common implementation. Early experience with traits in Smalltalk shows that traits are an
effective way to improve code sharing in class hierarchies. This positive experience with traits
in the untyped Smalltalk world suggests that traits may be useful in statically typed languages
too. In this paper, we present a statically typed calculus of traits, classes, and objects, which
can serve as the foundation for extending statically-typed class-based languages, such as JAVA ,
with traits.

1 Introduction

Scḧarli et al. recently proposed a mechanism calledtraits as a way to foster code reuse in object-
oriented programs [SDNB03]. They have prototyped the mechanism in the context of the Squeak
implementation of Smalltalk. Using traits, they refactored the Smalltalk collection classes achiev-
ing a 25% reduction in the number of method implementations and a 10% reduction in source code
size [BSD03]. This early experience suggests that traits are a promising mechanism for factoring
class hierarchies and supporting code reuse and may be useful for statically typed languages too.
The main contribution of this paper is to present a typed calculus of traits that can serve as the foun-
dation for integrating traits into a statically-typed object-oriented language such as JAVA [AG98] or
Moby [FR99, FR03].

A trait is collection of named methods. In Smalltalk traits, these methods cannot directly refer-
ence instance variables; instead, they must be “pure behavior.” The methods defined in a trait are
called theprovided methods, while any methods that are referenced, but not provided, are calledre-
quired methods. An important property of traits is that while they help structure the implementation
of classes, they do not affect the inheritance hierarchy. Traits are formed by definition (i.e., listing a
collection of method definitions) or by using one of several trait operations:

Symmetric summerges two disjoint traits to create a new trait.1

1The most recent description of Smalltalk traits ([BSD03]) allows name conflicts, but replaces the conflicting methods
with a special method bodyconflict that triggers a run-time error if evaluated.

Override forms a new trait by layering additional methods over an existing trait. This operation is
an asymmetric sum. When one of the new methods has the same name as a method in the
original trait, the override operation replaces the original method.

Alias creates a new trait by adding a new name for an existing method.

Exclusion forms a new trait by removing a method from an existing trait. Combining the alias and
exclusion operations yields a renaming operation, although the renaming is shallow.

The other important operation on traits isinheritance, the mechanism whereby traits are integrated
with classes. This operation merges a classC, a trait, and additional fields and methods to form
a new subclass ofC. Often, the additional methods provide access to the newly added fields. The
additional methods, plus the methods inherited fromC, provide the required methods of the trait.
An important aspect of traits is that the methods of a trait are only loosely coupled; they can be
removed and replaced by other implementations. In this way traits are a lighter-weight mechanism
than either multiple inheritance or mixins.

The remainder of the paper is organized as follows. In the next section, we briefly review the
motivation given by Scḧarli et al. for traits as a language feature and give an informal example
illustrating the utility of traits. We then present the syntax and semantics of our typed trait calculus
in Section 3. In Section 4, we prove type soundness for our system using the standard technique of
subject reduction and progress theorems. We conclude with a discussion of related work and future
directions.

2 Background

While the purpose of this paper is not to argue the merits of traitsper se(see [SDNB03, BSD03]
for such arguments), it is helpful to understand the motivation for traits. In languages with single
inheritance, such as Smalltalk, it is often the case that inheritance does not provide sufficient flexi-
bility for structuring a class hierarchy. Consider the case of two classes in different subtrees of the
inheritance hierarchy and assume that they both implement some common protocol. If this protocol
is not implemented by a common superclass, then each class must provide its own implementation,
which results in code duplication. On the other hand, if we lift the implementation of the protocol
up to the common superclass, we pollute the interface of the superclass, which affects all of its
subclasses. Furthermore, if the protocol is defined by building on methods defined in intermediate
classes, we will have to add these methods to the common superclass as well. This problem results
from the dual nature of classes. Classes serve as both object generators and as superclasses. In the
former case, the implementation of a class must be complete, whereas in the latter case the class
implementation may haveabstractmethods that are implemented by a subclass. Traits provide a
mechanism to separate these two aspects of classes and allow code to be reused across the class
hierarchy. Multiple inheritance [Str94] and mixins [BC90, FKF98] represent two other attempts
to solve this problem, but they both introduce semantic complexities and ambiguities (e.g., multi-
ple copies of instance variables in the case of multiple inheritance, and problems with the order of
method definition in the case of mixins) [SDNB03].

To illustrate these issues, consider the class hierarchy given in Figure 1. The root of this hier-
archy is theCDevice class that implements I/O on some file descriptor. It has two subclasses for
reading and writing integers on the device (respectively). Defining a class that supports both read-
ing and writing (CIntRW) requires reimplementing one or the other of the methods (denoted by the

2

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 override Rd

class CSIntWr
 field lock
 field desc
 override Wr

class CSIntRW
 field lock
 field desc
 override Rd
 override Wr

inheritance

missed
inheritance

Figure 1: The readers and writers example

dashed arrow in the figure). While we could lift theRd andWr methods to theCDevice class,
doing so would pollute the interface of other subclasses (e.g., a class for reading booleans). This
class hierarchy is further extended with support forsynchronizedreading and writing by adding a
lock. Single inheritance again forces us to reimplement methods.

Traits, however, allow us to reuse code without having to define methods too high. Figure 2
illustrates the trait version of this hierarchy. In this version of the code, we have four traits that are
used to generate six classes.

3 A typed trait calculus

In this section, we present the syntax and semantics of our typed trait calculus.

3.1 Syntax

We give the collected syntax of our calculus in Figure 3. Before describing this syntax, we introduce
some notation. LetFU andMU be disjoint, countable sets of field and method names, respectively.
Collectively, we refer to method and field names as labels. We define the following sets and naming

3

class CIntRd
 field desc
 method Rd

class CIntWr
 field desc
 method Wr

class CDevice
 field desc

class CIntRW
 field desc
 method Rd
 method Wr

class CSIntRd
 field lock
 field desc
 method Rd

class CSIntWr
 field lock
 field desc
 method Wr

class CSIntRW
 field lock
 field desc
 method Rd
 method Wr

trait TIntWr
required
 field desc
provided
 method Wr

trait TIntRd
required
 field desc
provided
 method Rd

trait TSRd
required
 field lock
provided
 override Rd

trait TSWr
required
 field lock
provided
 override Wr

Figure 2: The readers and writers example using traits

conventions:

f ∈ FU field names

F
fin
⊂ FU finite sets of field names

m ∈ MU method names

M
fin
⊂ MU finite sets of method names

S
fin
⊂ MU finite sets of super-method names

LU = FU ∪MU universe of labels
l ∈ LU labels (field or method names)

L
fin
⊂ LU finite sets of labels

R
fin
⊂ LU finite sets of required field and method names

In addition, we assume disjoint, countable sets of trait names TNAMES, class names CNAMES,
expression names/variables VARIABLES, and type variables TYVARIABLES.

In our calculus, a program is a sequence of declarations followed by an expression. Each decla-
ration binds a trait, class, or expression to a name. To enhance the reuseability of traits, we permit
them to be implicitly parameterized by type variables. The declaration form for traits makes this
dependence explicit by abstracting the free type variables.

The syntax of our trait forms is inspired by the formal model of Smalltalk traits developed
by Scḧarli et al. [SDN+02]. A trait expression can be the name of a previously defined trait, in-
stantiated with appropriate type arguments; the formation of a base trait from a method suite and
auxiliary typing information; the symmetric (or disjoint) concatenation of two traits; the exclusion

4

P ::= D;P | e program

D ::= t = (~α)T trait declaration
| c = C class declaration
| x = e expression declaration

T ::= t(~τ) polymorphic trait name: t∈ TNAMES

| 〈|M ; 〈θ〉 |〉 trait formation
| T1 + T2 symmetric concatenation
| T \m method exclusion
| T [m′ 7→ m] method alias: bind newm′ to oldm

M ::= 〈µm
m∈M〉M method suite

µ ::= m (x : τ1) : τ2{e} method definition

C ::= c class name: c∈ CNAMES

| nil empty class
| I in T extends C inheritance (subclass formation)

I ::= λ(x : τ).(super e1)⊕ e2 constructor

e ::= x expression name/variable: x∈ VARIABLES

| λ(x : τ).e function abstraction
| e1e2 function application
| new c e object instantiation
| self host object
| super.m super-method dispatch
| e.m method dispatch
| e.f field selection
| e1.f := e2 field update
| 〈f = ef

f∈F 〉F field record definition
| e1 ⊕ e2 field record concatentation
| () unit value

θ ::= l : τl
l∈L row

τ ::= α type variable:α ∈ TYVARIABLES

| Λ(~α).τ polymorphic type
| 〈| 〈θ〉; S; R|〉 trait type
| {| θ |} class body type
| 〈θ〉 object and method suite type
| 〈f : τf

f∈F 〉F field record type
| τ1 → τ2 function type
| Unit unit type

Figure 3: Trait calculus syntax

5

of a method from a trait; or the addition of a method alias to a trait.

We have a simple model of class definition that supports single inheritance, object initialization,
and method definition via traits. Our classes do not support abstract methods (traits provide that
capability), nor do they permit private, protected, or static members. A class definition may be
the name of an existing class, the empty class, or a new subclass formed by extending an existing
class with additional fields and a trait. Each subclass defines a constructor function, responsible for
initializing all the fields of the class. To obtain initialized inherited fields, the constructor applies
the superclass constructor function to a specified expression. It then concatenates the resulting
fields with those defined directly in the subclass. Note that in our minimal calculus, the definition
of methods is left to traits; the class forms are concerned only with the inheritance hierarchy and
object initialization.

At the core of our calculus is a simple object-oriented language with objects and first-class
functions. The language includes variables, function abstraction and application, object creation,
self reference, super-method dispatch, method dispatch, field selection, field update, and unit. In
addition, it includes operations for defining a collection of fields and concatenating two disjoint
records of fields, which we use to model object initialization.

3.2 Type syntax

Our type system, the syntax of which appears in Figure 3, has four different expression types: object
types, field record types, function types, and the Unit type. The type system also has types for traits
and class bodies, although the corresponding terms are not first-class. To accomodate polymorphic
traits, we add type variables and polymorphic types. Syntactic restrictions limit polymorphic types
to trait names. The types for objects, classes, and traits are written in terms ofrows(θ), which assign
types to a collection of labels.

Trait types document the types of provided methods and specify the types of required methods
and super-class methods.2 Syntactically, trait types have the form〈| 〈θ〉; S; R|〉, where rowθ
describes the types of all required, super-class, and provided methods and the types of all required
fields. The setS contains the names of the super-methods that must be available from any class that
can incorporate the trait, while the setR names the required methods and fields. All of the names
in S ∪R must be given types inθ.

We give trait declarations polymorphic types of the formΛ(~α).τ , where~τ is a shorthand for a
possibly non-empty, comma separated list of types. This form binds the type variables~α in the trait
typeτ . When a trait or class refers to a named trait, it must supply appropriate type arguments to
instantiate the polymorphic trait.

The type we give to a class is a function type, whose domain is the type of the class’s constructor
argument and whose range is a class body type, written{| θ |}. In this type, rowθ assigns types to
the collection of fields and methods defined in the associated class.

2Note that the set of required methods and the set of super-class methods are independent, in that neither is necessarily
a subset of the other. For example, a trait may define a methodmbut require any incorporating class to have previously
defined a method of the same name, makingma super-class method but not required.

6

3.3 Example: Synchronized readers and writers

To illustrate our calculus, we show how to code the synchronized readers and writers example
from the previous section. To improve the readability of the code, we introduce some standard
syntactic sugar and some abbreviations. In particular, we use ‘;’ for sequencing expressions and
‘e1 before e2 ’ for first executinge1 , then executinge2 , and then returning the result ofe1 .
We also use the following abbreviations:

DescTy = 〈ReadInt : Unit → Int , WriteInt : Int → Unit , . . .〉

LockTy = 〈Acquire : Unit → Unit , Release : Unit → Unit , . . .〉

Intuitively, an object with typeDescTy models an I/O device that supports reading and writing
for various primitive types; objects with typeLockTy are semaphores. Finally, we assume that
we have previously coded a classCLock that generates objects of typeLockTy when instantiated
with the unit value.

CDevice = λ(x : Unit).(super ())⊕ 〈desc = . . .〉F in . . . extends . . .

TIntRd = ()〈| 〈Rd(x : Unit) : Int {self .desc .ReadInt ()}〉M; 〈desc : DescTy 〉 |〉

TIntWr = ()〈| 〈Wr(x : Int) : Unit {self .desc .WriteInt x }〉M; 〈desc : DescTy 〉 |〉

CIntRd = λ(x : Unit).(super ())⊕ 〈〉F in TIntRd extends CDevice

CIntRW = λ(x : Unit).(super ())⊕ 〈〉F in TIntRd + TIntWr extends CDevice

CIntWr = λ(x : Unit).(super ())⊕ 〈〉F in TIntWr extends CDevice

TSRd = (α) 〈| 〈Rd(x : Unit) : α { self .lock .Acquire ();
super.Rd () before

self .lock .Release () }〉M;
〈desc : DescTy , lock : LockTy 〉 |〉

TSWr = (α) 〈| 〈Wr(x : α) : Unit { self .lock .Acquire ();
super.Wr x;
self .lock .Release () }〉M;

〈desc : DescTy , lock : LockTy 〉 |〉

CSIntRd = λ(x : Unit).(super ())⊕ 〈lock = new CLock ()〉F in
TSRd(Int) extends CIntRd

CSIntRW = λ(x : Unit).(super ())⊕ 〈lock = new CLock ()〉F in
TSRd(Int) + TSWr(Int) extends CIntRW

CSIntWr = λ(x : Unit).(super ())⊕ 〈lock = new CLock ()〉F in
TSWr(Int) extends CIntWr

Figure 4: Synchronous reader/writer example written in formal calculus.

With these assumptions, Figure 4 shows how to express the synchronized readers and writers
from the previous section. The calculus is expressive enough to capture the full extent of reuse

7

in the example: the structure of this code is isomorphic to the picture in Figure 1. Note that the
TSReader andTSWriter traits are polymorphic. Consequently, they can be reused to define
synchronous versions of reader and writers for types other thanInt . Figure 5 illustrates using
TSReader to create a synchronized boolean reader.

TBoolRd = ()〈| 〈Rd(x : Unit) : Bool {self .desc .ReadBool ()}〉M; 〈desc : DescTy 〉 |〉

CBoolRd = λ(x : Unit).(super ())⊕ 〈〉F in TBoolRd extends CDevice

CSBoolRd = λ(x : Unit).(super ())⊕ 〈lock = new CLock ()〉F in
TSRd(Bool) extends CBoolRd

Figure 5: Boolean synchronous reader in formal calculus.

3.4 Dynamic semantics

We have developed a big-step operational semantics for our calculus. We write the evaluation
rules in terms of environmentsE, which map identifers (trait names, class names, and expression
variables) to values, and storesS, which map addresses to object values. Values include trait values,
class values, and expression values: addresses, closures, records of field values, and the unit value.
The run-time representation of an object is its address, created by executing thenew expression.
We find the object’s associated method suite and fields by looking up the object’s address in the
store. We adopted a store-based semantics so that we could model imperative field update. In the
remainder of this section, we describe the evaluation rules related to traits and classes, leaving the
remaining, standard rules to Appendix B.

The judgment formE, S ` P −→ ev • E′ • S′ says that evaluating a programP in an
environmentE and storeS yields an expression valueev, an extended environmentE′, and a
modified storeS′. Similarly, the judgment formE, S ` D −→ E′ • S′ indicates that evaluating a
declaration D will yield an extended environment and a possibly updated store. The instance of this
judgment for trait declaration evaluation is as follows:3

E, S ` T −→ tv • S t 6∈ dom(E)
E, S ` t = (~α)T −→ E ± {t 7→ (~α)tv} • S

(6)

This rule says that if we can reduce a traitT to a trait valuetv, then we may augment the environment
with a binding from the fresh trait namet to the abstracted trait value(~α)tv. Note that this rule does
not change the store.4

3.4.1 Trait evaluation

Trait evaluation reduces trait expressions to trait values, which have the form〈|Mv; 〈θ〉 |〉, where
Mv is a method suite value andθ lists the names and types of all the required and provided methods
and fields. The judgmentE, S ` T −→ tv • S indicates that traitT evaluates to trait valuetv in
environmentE and storeS. For syntactic consistency, this judgment form returns the store, although
trait evaluation cannot modify it. We define this judgment form using the rules given below.

3The rule number refers to the occurrence of the rule in the appendices.
4The store can only be modified during expression evaluation.

8

A named trait applied to type arguments is evaluated by looking up the trait name in the envi-
ronment and substituting the type arguments for the bound type variables in the associated value:

E(t) = (~α)tv
E, S ` t(~τ) −→ tv[~τ/~α] • S

(9)

We use the syntaxX[~τ/~α] to denote the simultaneous substitution of~τ for ~α in X, whereX is
either a typeτ or a trait valuetv.

To convert a trait formation expression into a value, we need only evaluate the method suite.
Method suite evaluation uses the environmentE to create closures for each of the method bodies.

E, S ` M −→ Mv • S

E, S ` 〈|M ; 〈θ〉 |〉 −→ 〈|Mv; 〈θ〉 |〉 • S
(10)

The rule for symmetric concatenation of two traits (T1 + T2) merges the disjoint method suites
from the two traits. Since some of the methods required byT1 may be provided byT2 andvice
versa, the set of required methods of the new trait is defined to be the union ofT1 andT2’s required
methods after removing any overlap with the provided methods. The required super methods are
the union of the super methods required byT1 andT2.

E, S ` T1 −→ 〈| 〈µvm
m∈M1〉M; 〈l : τl

l∈R1〉 |〉 • S

E, S ` T2 −→ 〈| 〈µvm
m∈M2〉M; 〈l : τl

l∈R2〉 |〉 • S
M1 t M2 M3 = M1 ∪M2 R3 = (R1 ∪R2) \M3

E, S ` T1 + T2 −→ 〈| 〈µvm
m∈M3〉M; 〈l : τl

l∈R3〉 |〉 • S
(9)

We use the notationM1 t M2 to denote that the setsM1 andM2 are disjoint.

Excluding a method from a trait causes its definition to be removed from the trait’s methods, but
it also causes the excluded method to be added to the list of required methods, which is necessary
because the method may be mentioned in one of the trait’s remaining methods.

E, S ` T −→ 〈| 〈µvm
m∈M〉M; 〈l : τl

l∈R〉 |〉 • S
m ∈M µvm = (m : τm = λv)

E, S ` T \m −→ 〈| 〈µvm
m∈M\{m}〉M; 〈l : τl

l∈R∪{m}〉 |〉 • S
(12)

We believe that a more refined (but more verbose!) type system could track such dependencies and
remove the method entirely if no further references exist, but we have not pursued this avenue.

Lastly, the rule for method aliasing looks up the aliased method’s definition, binds the definition
to the new namem′ and removesm′ from the collection of required names.

E, S ` T −→ 〈| 〈µvm
m∈M〉M; 〈l : τl

l∈R〉 |〉 • S
m ∈M m′ 6∈ M µvm = (m : τm = λv)

E, S ` T [m′ 7→ m] −→ 〈| 〈µvm
m∈M, (m′ : τm = λv)〉M; 〈l : τl

l∈R\{m′}〉 |〉 • S
(13)

3.4.2 Class evaluation

Class evaluation reduces class expressions to class values, which are of the form{|λv; Mv |}, where
λv is a closure representing the constructor function for the class andMv is its method suite. The
class evaluation judgment has the formE, S ` C −→ cv • S, indicating that classC evaluates to

9

class valuecv in environmentE and storeS. Like the trait evaluation judgment form, this judgment
form returns the store, although class evaluation cannot modify it.

To evaluate class names, we lookup the corresponding class value in the environment.

c ∈ dom(E)
E, S ` c −→ E(c) • S

(16)

The root classnil evaluates to the “empty” class value.

E, S ` nil −→ {| [ε; λx.〈〉F]; 〈〉M|} • S
(17)

Forming a new subclass from the combination of a syntactic constructor function, a trait expression,
and a superclass is the heart of our system. Although method suites in traits may contain references
to super, we compile such references away during class construction to simplify the representation
of class values. This simplification is possible because invocations throughsuper can be uniquely
resolved at the point of class definition. The judgment formMv ` Mv1 =⇒ Mv2 specifies that
the method suiteMv1 can be rewritten with respect to the super-class method suiteMv to produce
thesuper-free method suiteMv2. The rules defining this judgment form appear in Appendix B.
The following rule defines the inheritance form for classes:

E, S ` T −→ 〈| 〈µv′m
m∈MT 〉M; 〈l : τl

l∈RT 〉 |〉 • S

E, S ` C −→ {| evsuper; 〈µvm
m∈MC 〉M|} • S

〈µvm
m∈Mc〉M` 〈µv′m

m∈MT 〉M =⇒ 〈µv′′m
m∈MT 〉M

evcon = [E ± {super 7→ evsuper}; λx.(super eargs)⊕ eF] super 6∈ dom(E)
E, S ` λ(x : τ).(super eargs)⊕ eF in T extends C −→

{| evcon; 〈µvm
m∈MC\MT , µv′′m

m∈MT 〉M|} • S

(18)

The first two lines specify the evaluation of the nested trait and class expressions. The third line
rewrites the trait’s methods to remove references tosuper by inlining methods fromC. The fourth
line constructs the appropriate closure to represent the constructor function for the new class. The
environment for this closure binds the fresh variablesuper to the constructor function for classC;
its body merges the fields obtained fromC with those defined directly in the new class. We added
the field concatenation operation to our expression calculus to support this usage.

3.5 Static semantics

In this section, we give an overview of the type system for our calculus, again focusing on the typing
rules for traits and classes as the other parts of our calculus are routine. For reference, Appendix C
contains the complete type system.

3.5.1 Contexts

All our typing judgments are written in terms of an ordered contextΓ, which lists free type variables
and maps trait names, class names, and variables to associated types. We use the following typing

10

judgments to formulate our type system:

Γ ` ok well-formed context
Γ ` τ well-formed type
Γ ` τ1 <: τ2 subtyping
Γ ` T : τ trait T has typeτ
Γ ` τsuper; τself M : τ method suiteM has typeτ assumingsuper : τsuper andself : τself
Γ ` µ : τ method bodyµ has typeτ
Γ ` C : τ classC has typeτ
Γ ` e : τ expressione has typeτ
Γ ` t = (~α)T ⇒ Γ′ well-formed trait declaration
Γ ` c = C ⇒ Γ′ well-formed class declaration, yielding new environmentΓ′

Γ ` x = e ⇒ Γ′ well-formed expression declaration, yielding new environmentΓ′

Γ `P P : τ well-typed program, yielding new environmentΓ′

3.5.2 Trait typing

In this section, we describe the rules for typing trait expressions. The first rule types trait names
applied to type arguments by instantiating the context’s type for the trait with the supplied type
arguments, assuming those types are well-formed:

Γ(t) = Λ(~α).τ
Γ ` ~τ |~τ | = |~α|
Γ ` t(~τ) : τ [~τ/~α]

(60)

The second rule types trait formation:

τsuper = 〈l : τl
l∈S〉 τself = 〈l : τl

l∈M∪R〉
Γ ` τsuper; τself M : 〈m : τm

m∈M〉 M t R
Γ ` 〈|M ; 〈l : τl

l∈R〉 |〉 : 〈| 〈l : τl
l∈M∪R〉; S; R|〉

(61)

It assigns a type toM , the method suite for the trait, under assumptions about the types ofsuper and
self . The type ofself , τself , contains each of the methods of the methd suite with the type inferred
for that method. It also contains all of the required methods of the trait with their programmer-
supplied types. The type ofsuper is a restriction ofτself to methods that must come from the
superclass. The method-suite typing judgment ensures thatτself is a subtype ofτsuper, a conse-
quence of which is that both types are well-formed, as are the programmer-supplied types. The
conditionM t R guarantees that no method provided by the trait is marked as required. The re-
sulting type for the trait is a triple of the types of all of the trait’s fields and methods (both provided
and required), the set of methods that must be provided by any host superclass (S), and the set of
required methods (R).

The rule for type checking symmetric concatenation of two traits is

Γ ` T1 : 〈| 〈l : τl
l∈L1〉; S1; R1 |〉

Γ ` T2 : 〈| 〈l : τl
l∈L2〉; S2; R2 |〉

M1 = L1 \ R1 M2 = L2 \ R2 M1 t M2

R′
1 = R1 \M2 R′

2 = R2 \M1

Γ ` T1 + T2 : 〈| 〈l : τl
l∈L1∪L2〉; S1 ∪ S2; R′

1 ∪R′
2 |〉

(62)

11

This rule requires that the methods provided by the two traits are disjoint (M1 t M2). The new
collection of required methods is the union of the methods required byT1 but not implemented in
T2 (i.e.,R′

1) and those required byT2 but not implemented inT1 (i.e.,R′
2). Shared abstract methods

are required to have the same type.

To type check method exclusion, we ensure that the method being removed was provided by the
trait (i.e., m ∈ L \ R).

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉 m ∈ L \ R

Γ ` T \m : 〈| 〈l : τl
l∈L〉; S; R∪ {m} |〉

(63)

Finally, the typing rule for method aliasing checks that the new namem′ does not already have
a binding (m′ 6∈ L \ R), while ensuring that the old namem does have one (m ∈ L \ R).

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉

m ∈ L \ R m′ 6∈ L \ R τm′ = τm

Γ ` T [m′ 7→ m] : 〈| 〈l : τl
l∈L, m′ : τm′〉; S; R \ {m′} |〉

(64)

The requirement thatτm′ = τm is subtle: ifm′ is a required method inT , (i.e. m′ ∈ R), then the
condition ensures that the type assumed form′ in T matches the type of methodm. If m′ is not
required, (i.e., m′ 6∈ R), then the condition definesτm′ to beτm. Since we have added a binding for
m′, we removem′ from the set of required methods in the resulting trait.

3.5.3 Class typing

The key typing rule for classes is the rule for subclass formation:

Γ, x : τ ` esuper : τsuper Γ, x : τ ` eF : 〈f : τf
f∈F 〉F

Γ ` T : 〈| 〈l : τl
l∈LT 〉; ST ; RT |〉 Γ ` C : τsuper → {| l : τl

l∈Lc |}
ST ⊆ Lc RT ⊆ (Lc ∪ F) F t Lc L = F ∪ LT ∪ Lc

Γ ` λ(x : τ).(super esuper)⊕ eF in T extends C : τ → {| l : τl
l∈L |}

(69)

This rule infers types for the argument to the superclass constructor function, the record of fields
defined in this class, the traitT to be incorporated, and the superclassC. It ensures that the type
of the superclass argument matches the domain of the superclass constructor function. To verify
that C satisfies all of the trait’s superclass requirements, we check thatST ⊆ LC . Condition
RT ⊆ (LC ∪ F) ensures that eitherC or F provides all the methods and fields required byT . To
guarantee that new fields do not conflict with existing fields, we check thatF t LC . The label set
L collects together the names of all the fields and methods of the new class. The formation of the
class type ensures that if the trait requires a given field or methodl with typeτl, then the supplier of
l (eitherF or C) must give the syntactically identical type tol.

3.6 Trait override

Although override is one of the primitive operations of Smalltalk traits, we did not include it as a
primitive in our calculus because it is derivable as a combination of method removal and symmetric
concatenation operations. Using the syntaxT1 . T2 to denote overriding the traitT2 with T1, we
define the operation as follows:

T1 . T2 = T1 + ((T2 \m1) . . . \mn)

12

wherem1, . . . ,mn = {mi |mi ∈ Methods(T1)} andMethods(T) denotes the set of method
names with definitions in traitT .

The derived evaluation rule for override is:

E, S ` T1 −→ 〈| 〈µvm
m∈M1〉M; 〈l : τl

l∈R1〉 |〉 • S

E, S ` T2 −→ 〈| 〈µv′m
m∈M2〉M; 〈l : τl

l∈R2〉 |〉 • S
M3 = M1 ∪M2 R3 = (R1 ∪R2) \M3

E, S ` T1 . T2 −→ 〈|µvm
m∈M1 , µv′m

m∈M2\M1 ; 〈l : τl
l∈R3〉 |〉 • S

(1)

Note that unlike the rule for trait sum, this rule does not require that the method suites for the two
traits be disjoint.

The derived typing rule for override is:

Γ ` T1 : 〈| 〈l : τl
l∈L1〉; S1; R1 |〉

Γ ` T2 : 〈| 〈l : τl
l∈L2〉; S2; R2 |〉

M1 = L1 \ R1 M2 = L2 \ (R2 ∪M1)
R′

1 = R1 \M2 R′
2 = R2 \M1

Γ ` T1 . T2 : 〈| 〈l : τl
l∈L1∪L2〉; S1 ∪ S2; R′

1 ∪R′
2 |〉

(2)

4 Type Soundness

To show that the operational semantics is consistent with the type system, we must give types to
values, including object addresses. We cannot infer types for addresses by recursively examining
their subcomponents because stores may contain cycles. To solve this problem, we introduce the
notion of a store typingΣ, which maps object addresses to object types. This technique allows us
to type values independently of a particular store. This approach is reasonable because type-safe
computations always store results of different types in different locations. Judgments for typing
run-time values are written in terms of store typings:

Σ ` ok well-formed store type
Σ ` E : Γ environment E “has type”Γ
` S : Σ store S “has type”Σ
Σ `(~α) tv : τ well-typed trait value with free type variables~α
Σ `(~α);τsuper;τself Mv : τ ′ well-typed method suite value
Σ `(~α);τsuper;τself µv : τ ′ well-typed method value
Σ ` cv : τ well-typed class value
Σ ` ev : τ well-typed expression value
Σ ` ov : τ well-typed object value

Intuitively, all object addresses are typechecked “globally,” with respect to the whole store:

Σ ` ok dom(Σ) = dom(S)
∀a ∈ dom(S) Σ ` S(a) : Σ(a)

` S : Σ
(3)

The other rules related to typing run-time forms are largely straightforward. For completeness, they
appear in Appendix D.

We show soundness by first proving a subject reduction theorem, as is standard. To state subject
reduction, we must define some auxiliary terms first.

13

Definition 4.1 (Context extension)ContextΓ′ extendsΓ, which we writeΓ′ � Γ, if Γ′ ` ok and
for all id ∈ dom(Γ), Γ′ ` Γ′(id) <: Γ(id) and for allα ∈ dom(Γ), α ∈ dom(Γ′).

Definition 4.2 (Store typing extension)Store typingΣ′ extendsΣ, which we writeΣ′ � Σ, if
Σ′ ` ok and for alla ∈ dom(Σ), Σ′(a) = Σ(a).

Theorem 4.1 (Subject reduction) If Γ `P P : τ andE, S ` P −→ ev • E′ • S′ andΣ ` E : Γ
and` S : Σ, then there exist contextΓ′ � Γ and store typingΣ′ � Σ such thatΣ′ ` E′ : Γ′ and
` S′ : Σ′ andΣ′ ` ev : τ ′ andΓ′ ` τ ′ <: τ .

The proof is by induction on the structure ofP . It follows from a subsidiary lemma that expression
evaluation preserves types. �

To prove type soundness, we need a way to characterize whether a program terminates in our se-
mantics. In small-step semantics, non-termination corresponds to an infinite sequence of reduction
steps. In a big-step semantics, however, non-termination corresponds to a derivation tree of infinite
height.

Definition 4.3 (Program evaluation height) We define the evaluation height of a program expres-
sionP in environmentE and storeS to behP

E, S(e), wherehP
E, S(e) is defined in Appendix E.

Theorem 4.2 (Soundness of program evaluation)If Γ `P P : τ andΣ ` E : Γ and` S : Σ
and there exists ann such thathP

E, S(P) = n, then there exist a store typingΣ′ � Σ, a storeS′, a
contextΓ′ � Γ, an environmentE′, a typeτ ′, and an expression valueev such thatΣ′ ` E′ : Γ′

and` S′ : Σ′ andE, S ` P −→ ev • E′ • S′ andΣ′ ` ev : τ ′ andε ` τ ′ <: τ .

The proof is by inductionn. �

Definition 4.4 (Divergence)We say a programP divergesif there is non such thathP
ε, ε(P) = n.

Corollary 4.1 (Type soundness)If ε `P P : τ then eitherP diverges or there exist a store
typingΣ, a storeS, a contextΓ, an environmentE, a typeτ ′, and an expression valueev such that
Σ ` E : Γ and` S : Σ andε, ε ` P −→ ev • E • S andΣ ` ev : τ ′ andε ` τ ′ <: τ .

In English, if closed programP has typeτ , then eitherP diverges or evaluates to an expression
value whose type improves upon the statically determined typeτ .

5 Related work

Our first attempt formalize traits in a typed setting is reported in a workshop paper [FR04]. This
paper builds on this previous work in several significant ways. Most importantly, the caclulus in
described in this paper supports polymorphic traits, which are crucial to support examples such as
the synchronized readers given in Section 2. The calculus in this paper also has a more realistic
object model, with stateful objects and object initialization. We have also fixed a number of minor
warts in the previous design.

14

The starting point for our calculus was the formal model of Smalltalk traits described by Schärli
et al. [SDN+02], but our work differs in many significant ways. The two semantics have a very
different style and scope: we have taken an operational approach to specifying the semantics of a
minimal, but complete, calculus of traits, whereas they use a series of abstract mathematical objects
(e.g., finite maps) to define the semantics of method dispatch, but do not address the semantics of a
complete language. Most importantly, we address the issue of incorporating traits into a statically-
typed class-based language. The other differences are mainly syntactic. To keep our calculus small
and regular, we localized method definitions to traits, which in turn required allowing methods in
traits to refer to fields, and we defined override as a derived form. Although minimal, our calculus
subsumes the Smalltalk trait model (i.e., any term in their model can be translated to a term in our
model if one ignores the issue of typing).

There is similarity between our calculus of traits and the use of premethod collections to encode
classes [AC96, RR96], but previous work on premethods focused on building a complete suite
of methods and not on independent combinable traits. We have explored using the combination
of modules, object types, and premethods to encode traits in Moby [FR03], but the encoding is
cumbersome.

While the purpose of this paper is developing the foundations of typed traits, we briefly survey
other work related to the design of traits as a language feature.

There are strong similarities between traits andmixins[BC90, FKF98, OAC+03], which are an-
other mechanism designed to give many of the benefits of multiple inheritance in single-inheritance
languages without the complications. The main difference between mixins and traits is that mixins
force a linear order in their composition (it is this order that avoids the complexities of the diamond
property). This linear order introduces fragility problems and may make code maintenance more
difficult [SDNB03]. Personalities are another trait-like mechanism designed for JAVA , although they
are much more limited in their expressiveness [Bla98] and they do not have a formal model.

Bracha’s Jigsaw framework is often cited as the first formal account of mixins [Bra92]. While
his framework shares with traits the goal of replacing a monolithic class mechanism with simplier
operators, it is a more powerful and complicated system with operators for global renaming of
methods, static binding (or freezing), and visibility control. Traits can be viewed as a restricted
subset of Jigsaw. While Bracha gave a dynamic semantics for Jigsaw and a type system, he did not
prove type soundness.

The term traits has been used indelegation-based (orprototype-based) languages, such as
Self [US87], to describe objects that serve as repositories of methods. In Self, new objects are
generated by cloning prototype objects, which, in turn, may delegate behavior to methods defined
in trait objects. Like Smalltalk, Self is a dynamically typed language, so it does not address the
issue of statically typing trait objects.

6 Conclusion

Traits are a promising new mechanism for constructing class hierarchies from reusable compo-
nents [SDNB03]. While this mechanism has been designed for Smalltalk, we believe it could be
useful for statically-typed object-oriented programming languages as well. This paper is the first
step in developing statically-typed traits as a programming language mechanism. In it, we have
described a statically-typed core calculus of traits, demonstrated its expressiveness via an example,
and shown a type soundness result. A number of interesting questions about typed traits remain.

15

We briefly outline some of these questions in the remainder of this section.

In the interests of simplicity, we purposefully omitted a number of common features from our
calculus, including depth subtyping and privacy controls. We do not believe that the introduction
of depth subtyping will cause significant problems for type soundness. In previous work unrelated
to traits, we supported privacy using signature ascription at the module level [FR99]. In principal,
this technique should apply to our trait calculus, but we have not worked out the details of trait
signatures.

Our type system maintains information about required labels at the trait level. Although the type
system would be more verbose, we could also track per-method information about required labels
using techniques similar to those developed in work typing extensible objects [BL95]. This more
precise information would allow us to drop non-referenced labels from the required set in typing
method exclusion, achieving more flexibility.5

Another, more speculative direction, is make traits and classes first-class. We have not yet
explored this possibility in detail.

References

[AC96] Abadi, M. and L. Cardelli.A Theory of Objects. Springer-Verlag, New York, NY, 1996.

[AG98] Arnold, K. and J. Gosling.The Java Programming Language. Addison-Wesley, Reading, MA,
2nd edition, 1998.

[BC90] Bracha, G. and W. Cook. Mixin-based inheritance. InECOOP’90, New York, NY, October
1990. ACM, pp. 303–311.

[BL95] Bono, V. and L. Liquori. A subtyping for the Fisher-Honsell-Mitchell lambda calculus of objects.
In CSL’94, vol. 933 ofLNCS, New York, NY, 1995. Springer-Verlag, pp. 16–30.

[Bla98] Blando, L. Designing and programming with personalities. Master’s dissertation, Northeastern
University, Boston, MA, December 1998. Available as Technical Report NU-CCS-98-12.

[Bra92] Bracha, G.The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance.
Ph.D. dissertation, University of Utah, March 1992.

[BSD03] Black, A. P., N. Scḧarli, and S. Ducasse. Applying traits to the Smalltalk collection classes. In
OOPSLA’03, New York, NY, October 2003. ACM. (to appear).

[FKF98] Flatt, M., S. Krishnamurthi, and M. Felleisen. Classes and mixins. InPOPL’98, New York, NY,
January 1998. ACM, pp. 171–183.

[FR99] Fisher, K. and J. Reppy. The design of a class mechanism for Moby. InPLDI’99, New York,
NY, May 1999. ACM, pp. 37–49.

[FR03] Fisher, K. and J. Reppy. Object-oriented aspects of Moby.Technical Report TR-2003-10, Dept.
of Computer Science, U. of Chicago, Chicago, IL, September 2003.

[FR04] Fisher, K. and J. Reppy. A typed calculus of traits. InFOOL11, January 2004. to appear.

[OAC+03] Odersky, M., P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman,
and M. Zenger.The Scala Language Specification (Draft). Switzerland, October 2003. Available
from lamp.epfl.ch/scala .

5Of course, a programming style in which all traits have a single method achieves the same result.

16

[RR96] Reppy, J. H. and J. G. Riecke. Classes in Object ML via modules. InFOOL3, July 1996.

[SDN+02] Scḧarli, N., S. Ducasse, O. Nierstrasz, R. Wuyts, and A. Black. Traits: The formal model.
Technical Report CSE 02-013, OGI School of Science & Engineering, November 2002. (revised
February 2003).

[SDNB03] Scḧarli, N., S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior. In
ECOOP’03, LNCS, New York, NY, July 2003. Springer-Verlag. (to appear).

[Str94] Stroustrup, B.The Design and Evolution of C++. Addison-Wesley, Reading, MA, 1994.

[US87] Ungar, D. and R. B. Smith. Self: The power of simplicity. InOOPSLA’87, October 1987, pp.
227–242.

A Shorthands

We use a collection of shorthand notations for sequences:~τ is a possibly non-empty, comma sepa-
rated list of types;X[~τ/~α] denotes the simultaneous substitution of~τ for ~α in X, whereX is either
a typeτ or a trait valuetv; |~τ | denotes the length of the sequence~τ ; andΓ ` ~τ denotes the sequence
of judgementsΓ ` τ1, . . . ,Γ ` τn, where~τ = τ1, . . . , τn.

We use the notation〈f = evf
f∈F 〉F(f ′) = evf ′ to denote selecting thef ′ field from the record

of fields 〈f = evf
f∈F 〉F. Similarly, we treat method suites as finite maps from their index set to

their method bodies,i.e., 〈(m : τm = λvm)m∈M〉M(m′) = λvm′ as long asm′ ∈ M. Finally, we
use the functionTy((m : τm = λvm),m′) = τm′ as long asm′ ∈M to extract the type associated
with a method in a method suite.

B Evaluation

For purposes of evaluation, we treatself as an expression variable,i.e., self ∈ VARIABLES.

B.1 Additional syntax to support evaluation

E ::= ∅ | E ± {t 7→ (~α)tv} | E ± {c 7→ cv} | E ± {x 7→ ev} environment
S ::= ∅ | S ± {a 7→ ov} store

tv ::= 〈|Mv; 〈θ〉 |〉 trait value
Mv ::= 〈µvm

m∈M〉M method suite value
µv ::= (m : τ = λv) method definition value
cv ::= {|λv; Mv |} class value
ev ::= a object address

| λv function value
| fv fields record value
| () unit value

λv ::= [E; λx.e] function value
fv ::= 〈f = evf

f∈F 〉F field record value
ov ::= 〈fv; Mv〉 object value

17

B.2 Evaluation judgement forms

E, S ` P −→ ev • E′ • S′ program evaluation
E, S ` D −→ E′ • S′ declaration evaluation
E, S ` T −→ tv • S trait evaluation
E, S ` M −→ Mv • S method suite “compilation”
E, S ` µ −→ µv • S method “compilation”
E, S ` C −→ cv • S class evaluation
E, S ` e −→ ev • S′ expression evaluation

Mv ` Mv1 =⇒ Mv2 Method suite:super-inliing
Mv ` µv1 =⇒ µv2 Method body:super-inling
Mv, E ` e1 =⇒ e2 • E′ Expression:super-inlining

B.3 Evaluation rules

E, S ` D −→ E′ • S′

E′, S′ ` P −→ ev • E′′ • S′′

E, S ` D;P −→ ev • E′′ • S′′
(4) E, S ` e −→ ev • S′

E, S ` e −→ ev • E • S′
(5)

E, S ` T −→ tv • S t 6∈ dom(E)
E, S ` t = (~α)T −→ E ± {t 7→ (~α)tv} • S

(6)

E, S ` C −→ cv • S c 6∈ dom(E)
E, S ` c = C −→ E ± {c 7→ cv} • S

(7)
E, S ` e −→ ev • S′ x 6∈ dom(E)
E, S ` x = e −→ E ± {x 7→ ev} • S′

(8)

E(t) = (~α)tv
E, S ` t(~τ) −→ tv[~τ/~α] • S

(9)
E, S ` M −→ Mv • S

E, S ` 〈|M ; 〈θ〉 |〉 −→ 〈|Mv; 〈θ〉 |〉 • S
(10)

E, S ` T1 −→ 〈| 〈µvm
m∈M1〉M; 〈l : τl

l∈R1〉 |〉 • S

E, S ` T2 −→ 〈| 〈µvm
m∈M2〉M; 〈l : τl

l∈R2〉 |〉 • S
M1 t M2 M3 = M1 ∪M2 R3 = (R1 ∪R2) \M3

E, S ` T1 + T2 −→ 〈| 〈µvm
m∈M3〉M; 〈l : τl

l∈R3〉 |〉 • S
(11)

E, S ` T −→ 〈| 〈µvm
m∈M〉M; 〈l : τl

l∈R〉 |〉 • S
m ∈M µvm = (m : τm = λv)

E, S ` T \m −→ 〈| 〈µvm
m∈M\{m}〉M; 〈l : τl

l∈R∪{m}〉 |〉 • S
(12)

E, S ` T −→ 〈| 〈µvm
m∈M〉M; 〈l : τl

l∈R〉 |〉 • S
m ∈M m′ 6∈ M µvm = (m : τm = λv)

E, S ` T [m′ 7→ m] −→ 〈| 〈µvm
m∈M, (m′ : τm = λv)〉M; 〈l : τl

l∈R\{m′}〉 |〉 • S
(13)

E, S ` m (x : τ1) : τ2{e} −→ (m : τ1 → τ2 = [E; λ(x : τ1).e]) • S
(14)

E, S ` µm −→ µvm • S forall m ∈M
E, S ` 〈µm

m∈M〉M−→ 〈µvm
m∈M〉M• S

(15)

c ∈ dom(E)
E, S ` c −→ E(c) • S

(16) E, S ` nil −→ {| [ε; λx.〈〉F]; 〈〉M|} • S
(17)

18

E, S ` T −→ 〈| 〈µv′m
m∈MT 〉M; 〈l : τl

l∈RT 〉 |〉 • S

E, S ` C −→ {| evsuper; 〈µvm
m∈MC 〉M|} • S

〈µvm
m∈Mc〉M` 〈µv′m

m∈MT 〉M =⇒ 〈µv′′m
m∈MT 〉M

evcon = [E ± {super 7→ evsuper}; λx.(super eargs)⊕ eF] super 6∈ dom(E)
E, S ` λ(x : τ).(super eargs)⊕ eF in T extends C −→

{| evcon; 〈µvm
m∈MC\MT , µv′′m

m∈MT 〉M|} • S

(18)

E, S ` x −→ E(x) • S
(19) E, S ` λ(x : τ).e −→ [E; λx.e] • S

(20)

E, S ` e1 −→ [E1; λx.e] • S1

E, S1 ` e2 −→ ev2 • S2

E1 ± {x 7→ ev2}, S2 ` e −→ ev • S3

E, S ` e1 e2 −→ ev • S3
(21)

E, S ` c −→ {| [EF ; λx.eF]; Mv |} • S
E, S ` e −→ ev • S1

EF ± {x 7→ ev}, S1 ` eF −→ fv • S2

a 6∈ dom(S2)
E, S ` new c e −→ a • S2 ± {a 7→ 〈fv; Mv〉}

(22)

E, S ` self −→ E(self) • S
(23)

E, S ` e −→ a • S1 S1(a) = 〈fv; Mv〉 Mv(m) = [Em; λx.em]
E, S ` e.m −→ [Em ± {self 7→ a}; λx.em] • S1

(24)

E, S ` e −→ a • S1 S1(a) = 〈fv; Mv〉 fv(f) = evf

E, S ` e.f −→ evf • S1
(25)

E, S ` e1 −→ a • S1 E, S1 ` e2 −→ ev2 • S2 S2(a) = 〈〈f = evf
f∈F 〉F; Mv〉

E, S ` e1.f ′ := e2 −→ () • S2 ± {a 7→ 〈〈f = evf
f∈F\{f ′}, f ′ = ev2〉F; Mv〉}

(26)

E, S ` 〈〉F −→ 〈〉F • S
(27)

E, S ` e1 −→ ev1 • S1 · · · E, Sn−1 ` en −→ evn • Sn

E, S ` 〈f1 = e1, . . . , fn = en〉F −→ 〈f1 = ev1, . . . , fn = evn〉F • Sn
(28)

E, S ` e1 −→ 〈f = evf
f∈F1〉F • S1 E, S1 ` e2 −→ 〈f = evf

f∈F2〉F • S2

E, S ` e1 ⊕ e2 −→ 〈f = evf
f∈F1∪F2〉F • S2

(29)

E, S ` () −→ () • S
(30)

B.4 Super in-lining

In this section, we present the details a method suite rewriting, which is used to resolve super-
method dispatch statically. To eliminate references tosuper, we rewrite method bodies before
they are installed in classes, essentially inlining the superclass’s method bodies. We rewrite method
bodies with respect to a superclass method suite. The rewriting works by replacing each super class
referencesuper.m with a fresh variablexm and augmenting the containing method’s closure with
a mapping fromxm to the closure associated with the super class method.

19

Mv ` µvm =⇒ µv′m forall m ∈M
Mv ` 〈µvm

m∈M〉M =⇒ 〈µv′m
m∈M〉M

(31)

Mv, E ` e =⇒ e′ • E′

Mv ` (m : τ = [E; λx.e]) =⇒ (m : τ = [E′; λx.e′])
(32)

Mv, E ` x =⇒ x • E
(33)

Mv, E ` e =⇒ e′ • E′

Mv, E ` λ(x : τ).e =⇒ λ(x : τ).e′ • E′

(34)
Mv, E ` e1 =⇒ e′1 • E′ Mv, E′ ` e2 =⇒ e′2 • E′′

Mv, E ` e1e2 =⇒ e′1e
′
2 • E′′ (35)

Mv, E ` e =⇒ e′ • E′

Mv, E ` new c e =⇒ new c e′ • E′ (36)
Mv, E ` self =⇒ self • E

(37)

xm 6∈ dom(E) Ty(Mv,m) = τ ′m → τ ′′m Mv(m) = [Em; λx.em]
Mv, E ` super.m =⇒ xm self • E ± {xm 7→ [Em; λself .λ(x : τ ′m).em]}

(38)

Mv, E ` e =⇒ e′ • E′

Mv, E ` e.m =⇒ e′.m • E′ (39)
M, E ` e =⇒ e′ • E′

Mv, E ` e.f =⇒ e′.f • E′ (40)

Mv, E ` e1 =⇒ e′1 • E′ Mv, E′ ` e2 =⇒ e′2 • E′′

Mv, E ` e1.f := e2 =⇒ e′1.f := e′2 • E′′ (41)

Mv, E ` 〈〉F =⇒ 〈〉F • E
(42)

Mv, E ` e1 =⇒ e′1 • E1 · · · Mv, En−1 ` en =⇒ e′n • En

Mv, E ` 〈f1 = e1, . . . , fn = en〉F =⇒ 〈f1 = e′1, . . . , fn = e′n〉F • En
(43)

Mv, E ` e1 =⇒ e′1 • E′ Mv, E′ ` e2 =⇒ e′2 • E′′

Mv, E ` e1 ⊕ e2 =⇒ e′1 ⊕ e′2 • E′′ (44)

Mv, E ` () =⇒ () • E
(45)

C The type system

All of our typing judgments are written in terms of contexts, which map trait names, class names,
and variables to associated types. They also record free type variables.

id ∈ TNAMES ∪ CNAMES ∪ VARIABLES ∪ {self , super}
α ∈ TYVARIABLES

Γ ::= ε | Γ, id : τ | Γ, α

We assume that the sets TNAMES, CNAMES, VARIABLES, {self , super}, and TYVARIABLES

are mutually disjoint.

20

C.1 Context formation rules

ε ` ok
(46)

Γ ` τ id 6∈ dom(Γ)
Γ, id : τ ` ok

(47)

Γ ` ok α 6∈ Γ
Γ, α ` ok

(48)

C.2 Well-formed types

Γ ` ok α ∈ Γ
Γ ` α

(49)
Γ, ~α ` τ

Γ ` Λ(~α).τ
(50)

Γ ` 〈l : τl
l∈L〉

S ∪ R ⊆ L
Γ ` 〈| 〈l : τl

l∈L〉; S; R|〉
(51)

Γ ` 〈l : τl
l∈L〉

Γ ` {| l : τl
l∈L |}

(52)

Γ ` ok Γ ` τl forall l ∈ L
Γ ` 〈l : τl

l∈L〉
(53)

Γ ` ok Γ ` τf forall f ∈ F
Γ ` 〈f : τf

f∈F 〉F
(54)

Γ ` τ1 Γ ` τ2

Γ ` τ1 → τ2
(55)

Γ ` ok

Γ ` Unit
(56)

C.3 Subtyping

Γ ` τ

Γ ` τ <: τ
(57)

Γ ` 〈l : τl
l∈L1〉 L2 ⊆ L1

Γ ` 〈l : τl
l∈L1〉 <: 〈l : τl

l∈L2〉
(58)

Γ ` τ ′2 <: τ ′1 Γ ` τ ′′1 <: τ ′′2
Γ ` τ ′1 → τ ′′1 <: τ ′2 → τ ′′2

(59)

C.4 Trait typing

Γ(t) = Λ(~α).τ Γ ` ~τ |~τ | = |~α|
Γ ` t(~τ) : τ [~τ/~α]

(60)

τsuper = 〈l : τl
l∈S〉 τself = 〈l : τl

l∈M∪R〉
Γ ` τsuper; τself M : 〈m : τm

m∈M〉 M t R
Γ ` 〈|M ; 〈l : τl

l∈R〉 |〉 : 〈| 〈l : τl
l∈M∪R〉; S; R|〉

(61)

Γ ` T1 : 〈| 〈l : τl
l∈L1〉; S1; R1 |〉 Γ ` T2 : 〈| 〈l : τl

l∈L2〉; S2; R2 |〉
M1 = L1 \ R1 M2 = L2 \ R2 M1 t M2

R′
1 = R1 \M2 R′

2 = R2 \M1

Γ ` T1 + T2 : 〈| 〈l : τl
l∈L1∪L2〉; S1 ∪ S2; R′

1 ∪R′
2 |〉

(62)

21

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉 m ∈ L \ R

Γ ` T \m : 〈| 〈l : τl
l∈L〉; S; R∪ {m} |〉

(63)

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉

m ∈ L \ R m′ 6∈ L \ R τm′ = τm

Γ ` T [m′ 7→ m] : 〈| 〈l : τl
l∈L, m′ : τm′〉; S; R \ {m′} |〉

(64)

C.5 Method suite typing

Γ, super : τsuper, self : τself ` µm : τm forall m ∈M
Γ ` τself <: τsuper Γ ` τself <: 〈m : τm

m∈M〉
Γ ` τsuper; τself 〈µm

m∈M〉M : 〈m : τm
m∈M〉

(65)

C.6 Method body typing

Γ, x : τ1 ` e : τ2

Γ ` m (x : τ1) : τ2{e} : τ1 → τ2
(66)

C.7 Class typing

Γ ` ok

Γ ` c : Γ(c)
(67)

Γ ` ok

Γ ` nil : Unit → {| |}
(68)

Γ, x : τ ` eF : 〈f : τf
f∈F 〉F Γ, x : τ ` esuper : τsuper

Γ ` T : 〈| 〈l : τl
l∈LT 〉; ST ; RT |〉 Γ ` C : τsuper → {| l : τl

l∈Lc |}
ST ⊆ Lc RT ⊆ (Lc ∪ F) F t Lc L = F ∪ LT ∪ Lc

Γ ` λ(x : τ).(super esuper)⊕ eF in T extends C : τ → {| l : τl
l∈L |}

(69)

22

C.8 Well-typed expressions

Γ ` ok

Γ ` x : Γ(x)
(70)

Γ, x : τ1 ` e : τ2

Γ ` λ(x : τ1).e : τ1 → τ2
(71)

Γ ` e1 : τ2 → τ
Γ ` e2 : τ2

Γ ` e1 e2 : τ
(72)

Γ ` c : τ → {| l : τl
l∈L |}

Γ ` e : τ

Γ ` new c e : 〈l : τl
l∈L〉

(73)

Γ ` ok

Γ ` self : Γ(self)
(74)

Γ ` Γ(super) <: 〈m : τm〉
Γ ` super.m : τm

(75)

Γ ` e : τ
Γ ` τ <: 〈l : τl〉

Γ ` e.l : τl
(76)

Γ ` e1 : τ Γ ` τ <: 〈f : τf 〉
Γ ` e2 : τf

Γ ` e1.f := e2 : Unit
(77)

Γ ` ok Γ ` ef : τf forall f ∈ F
Γ ` 〈f = ef

f∈F 〉F : 〈f : τf
f∈F 〉F

(78)

Γ ` e1 : 〈f : τf
f∈F1〉F Γ ` e2 : 〈f : τf

f∈F2〉F F1 t F2

Γ ` e1 ⊕ e2 : 〈f : τf
f∈F1∪F2〉F

(79)

Γ ` ok

Γ ` () : Unit
(80) Γ ` e : τ Γ ` τ <: τ ′

Γ ` e : τ ′
(81)

C.9 Declaration typing

t 6∈ dom(Γ) Γ, ~α ` T : τ

Γ ` t = (~α)T ⇒ Γ, t : Λ(~α).τ
(82)

c 6∈ dom(Γ) Γ ` C : τ

Γ ` c = C ⇒ Γ, c : τ
(83)

x 6∈ dom(Γ) Γ ` e : τ

Γ ` x = e ⇒ Γ, x : τ
(84)

C.10 Program typing

Γ ` D ⇒ Γ′ Γ′ `P P : τ

Γ `P D;P : τ
(85)

Γ ` e : τ

Γ `P e : τ
(86)

D Run-time typing

We introduce the notion of a store type, denoted by the meta-variableΣ. Store types map addresses
to closed typesτ .

23

D.1 Well-formed store type

∀a ∈ dom(Σ), ε ` Σ(a)
Σ ` ok

(87)

D.2 Well-typed environment

Σ ` ok

Σ ` ε : ε
(88)

Σ ` E : Γ Σ `(~α) tv : τ t 6∈ dom(E)
Σ ` E ± {t 7→ (~α)tv} : (Γ, t : Λ(~α).τ)

(89)

Σ ` E : Γ Σ ` cv : τ c 6∈ dom(E)
Σ ` E ± {c 7→ cv} : (Γ, c : τ)

(90)

Σ ` E : Γ Σ ` ev : τ ′ ε ` τ ′ <: τ x 6∈ dom(E)
Σ ` E ± {x 7→ ev} : (Γ, x : τ)

(91)

D.3 Store typing

Σ ` ok dom(Σ) = dom(S) ∀a ∈ dom(S) Σ ` S(a) : Σ(a)
` S : Σ

(92)

D.4 Typing rules

R t M τself = 〈l : τl
l∈R∪M〉 τsuper = 〈l : τl

l∈S〉
Σ `(~α);τsuper;τself Mv : 〈m : τm

m∈M〉
Σ `(~α) 〈|Mv; 〈l : τl

l∈R〉 |〉 : 〈| 〈l : τl
l∈R∪M〉; S; R|〉

(93)

Σ ` ok
~α ` τself <: τsuper ~α ` τself <: 〈m : τm

m∈M〉
Σ `(~α);τsuper;τself µvm : τm forall m ∈M
Σ `(~α);τsuper;τself 〈µvm

m∈M〉M : 〈m : τm
m∈M〉

(94)

Σ ` E : Γ Γ, ~α, super : τsuper, self : τself , x : τ ′ ` e : τ ′′

Σ `(~α);τsuper;τself (m : τ ′ → τ ′′ = [E; λx.e]) : τ ′ → τ ′′
(95)

Σ ` λv : τ → 〈f : τf
f∈F 〉F Σ `();〈〉;〈l:τl

l∈F∪M〉 Mv : 〈m : τm
m∈M〉

Σ ` {|λv; Mv |} : τ → {| l : τl
l∈F∪M |}

(96)

Σ ` ok

Σ ` a : Σ(a)
(97)

Σ ` E : Γ Γ, x : τ ′ ` e : τ ′′

Σ ` [E; λx.e] : τ ′ → τ ′′
(98)

Σ ` ok Σ ` evf : τ ′f ε ` τ ′f <: τf forall f ∈ F
Σ ` 〈f = evf

f∈F 〉F : 〈f : τf
f∈F 〉F

(99)

24

Σ ` ok

Σ ` () : Unit
(100)

Σ ` fv : 〈f : τf
f∈F 〉F Σ `();〈〉;〈l:τl

l∈F∪M〉 Mv : 〈m : τm
m∈M〉

Σ ` 〈fv; Mv〉 : 〈l : τl
l∈F∪M〉

(101)

E Type Soundness: Auxiliary lemmas

Theorem E.1 (Subject reduction) If Γ `P P : τ andE, S ` P −→ ev •E′ • S′ andΣ ` E : Γ
and` S : Σ, then there exist contextΓ′ � Γ and store typingΣ′ � Σ such thatΣ′ ` E′ : Γ′ and
` S′ : Σ′ andΣ′ ` ev : τ ′ andΓ′ ` τ ′ <: τ .

Definition E.1 (Expression evaluation height)We define the evaluation height of an expressione
in environmentE and storeS to behE, S(e), wherehE, S(e) is defined in Figure 6.

Lemma E.1 (Soundness of expression evaluation)If Γ ` e : τ and Σ ` E : Γ and` S : Σ
and there exists ann such thathE, S(e) = n, then there exist a store typingΣ′ � Σ, a storeS′, an
expression valueev, and a typeτ ′ such thatE, S ` e −→ ev • S′ and` S′ : Σ′ andΣ′ ` ev : τ ′

andΓ′ ` τ ′ <: τ .

The proof is by inductionn. �

Definition E.2 (Program evaluation height) We define the evaluation height of a program expres-
sionP in environmentE and storeS to behP

E, S(e), wherehP
E, S(e) is defined as follows:

hE, S(t = (~α)T ;P) = 1 +
{

hP
E′, S(P) if E, S ` t = (~α)T −→ E′ • S

1 otherwise

hE, S(c = C;P) = 1 +
{

hP
E′, S(P) if E, S ` c = C −→ E′ • S

1 otherwise

hE, S(x = e;P) = 1 + hE, S(e) +
{

hP
E′, S′(P) if E, S ` x = e −→ E′ • S′

1 otherwise

hP
E, S(e) = hE, S(e)

25

hE, S(x) = 1
hE, S(λ(x : τ).e) = 1
hE, S(e1 e2) = 1

+ hE, S(e1)

+
{

hE, S1(e2) if E, S ` e1 −→ [E1; λx.e] • S1

1 otherwise

+

 hE1±{x7→ev2}, S2(e) if E, S ` e1 −→ [E1; λx.e] • S1

andE, S1 ` e2 −→ ev2 • S2

1 otherwise

hE, S(new c e) = 1
+ hE, S(e)

+

 hEF±{x7→ev}, S1(eF) if E, S ` c −→ {| [EF ; λx.eF]; Mv |} • S
andE, S ` e −→ ev • S1

1 otherwise

hE, S(self) = 1
hE, S(super.m) = 1
hE, S(e.m) = 1 + hE, S(e)
hE, S(e.f) = 1 + hE, S(e)
hE, S(e1.f

′ := e2) = 1
+ hE, S(e1)

+
{

hE, S1(e2) if E, S ` e1 −→ ev1 • S1

1 otherwise

hE, S(〈〉F) = 1
hE, S0(〈f1 = e1, . . . , fn = en〉F)

= 1
+ hE, S0(e1)
...

+


hE, Sn−1(en) if E, S0 ` e1 −→ ev1 • S1

...
andE, Sn−2 ` en−1 −→ evn−1 • Sn−1

1 otherwise

hE, S(e1 ⊕ e2) = 1
+ hE, S(e1)

+
{

hE, S1(e2) if E, S ` e1 −→ ev1 • S1

1 otherwise

hE, S(()) = 1

Figure 6: Definition of function for calculating the evaluation height of an expression.

26

