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Abstract
We present a brief, nonexhaustive overview of research efforts in designing and developing time-
oriented systems in medicine. The growing volume of research on time-oriented systems in
medicine can be viewed from either an application point of view, focusing on different generic
tasks (e.g., diagnosis) and clinical areas (e.g., cardiology), or from a methodological point of
view, distinguishing among different theoretical approaches.

In this overview, we focus on highlighting methodological and theoretical choices, and conclude
with suggestions for new research directions. Two main research directions can be noted:
Temporal reasoning, which supports various temporal inference tasks (e.g., temporal abstraction,
time-oriented decision support, forecasting, data validation), and temporal data maintenance, which
deals with storage and retrieval of data that have heterogeneous temporal dimensions. Efforts
common to both research areas include the modeling of time, of temporal entities, and of temporal
queries. We suggest that tasks such as abstraction of time-oriented data and the handling of
different temporal-granularity levels should provide common ground for collaboration between the
two research directions and fruitful areas for future research.

Keywords: temporal reasoning, temporal maintenance, temporal databases, temporal abstraction,
clinical data, medical informatics.

1. Introduction
Time is an important and pervasive concept of the real world and needs to be managed in several
different ways: events occur at some time points, certain facts hold during a time period, and
temporal relationships exist between facts and/or events [1]. Time has to be considered when
representing information within computer-based systems [2], when querying information about
temporal features of the represented real world [3], and when reasoning about time-oriented data
[4].

Researchers in the medical-informatics field investigated temporal data modeling, temporal
maintenance and temporal reasoning, to support both electronic medical records and medical expert
systems [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. One indication of the significance of research on time-
oriented systems in medicine is that the level and the amount of scientific works in this area
motivated two different special issues of the journal Artificial Intelligence in Medicine [15, 16].
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Another indication is that research focusing on time in clinical applications received attention also
from the general computer science field [17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

It is interesting to consider the wide variety of applications that need to deal with temporal aspects
of clinical data, such as:

¥ management of time-oriented data stored in medical records of ambulatory or hospitalized
patients [27, 28, 29, 11, 12, 30, 31, 32, 33, 34, 35, 36]

¥ prediction of future values of clinical data, given past trends [37, 38, 39]

¥ abstraction of time-oriented clinical data [8, 40, 41, 13, 42]

¥ time-oriented knowledge-based decision-support systems, such as systems supporting
diagnosis, monitoring, or therapy planning [43, 26, 6, 44, 45, 46, 47, 14, 40, 48].

Studies of time-oriented applications have been performed in multiple clinical areas: cardiology
[49, 50, 11, 30, 51, 47, 52, 53], oncology [45, 44, 8, 41, 35], psychiatry [26], internal medicine
[54, 43, 34, 13, 46], intensive care [55, 45, 37, 56, 57], cardiac surgery [10], orthopedics [6],
urology [34], infectious diseases [35], anesthesiology [38, 58, 56], pediatrics [52], endocrinology
[59]. Various clinical tasks are supported by the systems proposed in literature: diagnosis [6, 60,
26], therapy administration and monitoring [40, 36, 53], protocol- and guideline-based therapy
[44, 35, 13, 48], and patient management [27, 61, 62, 34, 29, 30].

In the paper, without being exhaustive in any way, we try to describe the main features (from a
methodological point of view) that we can observe in the medical-informatics literature that deals
with time-oriented systems. In order to clarify the theoretical basis for certain views we sometimes
cite work from the general computer science area that is strictly related to the described topic.
Several aspects related to the modeling of time-oriented clinical concepts are common to most of
the approaches. We distinguish the set of temporal-reasoning subtasks from the set of temporal-
maintenance tasks. We note that temporal-reasoning tasks, and in particular temporal abstraction,
typically characterize medical decision-support systems, while management of temporal databases
and handling of temporal granularity often characterize temporal data maintenance systems.

The rest of the paper is structured as follows: Section 2 provides a brief description of the main
choices and problems related to modeling of time-oriented clinical concepts; Section 3 provides a
brief overview of the research in temporal reasoning in medicine; In Section 4 we discuss temporal
maintenance and databases for clinical information systems. Section 5 then presents in somewhat
more depth the tasks of temporal abstraction and management of variable temporal granularity.
These tasks form a potential bridge between the research community working on temporal data-
maintenance systems and the one interested mainly in temporal-reasoning systems, in particular in
time-oriented decision-support systems. Section 6 reflects on several open problems and suggests
future research directions and challenges by merging the different research areas and
methodologies. The summary in section 7, finally, concludes the paper.

2. Modeling temporal concepts
Both in temporal reasoning, in temporal abstraction of clinical data, and in modeling and managing
clinical data, a common focus of effort is the definition or the adoption of a set of basic concepts
that enable a description of the time-oriented clinical world in a sound and unambiguous way.
Several suggestions have emerged from generic fields of computer science, such as artificial
intelligence, or the knowledge and data management areas [63, 64, 65, 66, 3, 1]. Within medical
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informatics, this effort has progressed from an ad-hoc definition of concepts supporting a
particular application to the adoption and the proposal of more generic definitions, supporting
different clinical applications [45, 6, 8, 9, 10, 35, 30, 13, 14]. For example, the emphasis in the
pioneering work of Fagan on the interpretation of real-time quantitative data in the intensive-care
domain is on the application-dependent problems related to the support of a module that suggests
the optimal ventilator therapy at a given time [45], while the work described in [14] uses a generic
temporal ontology and a general, comprehensive, model of diagnostic reasoning.

Several related concepts involving time appear in the medical-informatics literature. We distinguish
two related issues: modeling the concept of time and modeling entities having a temporal dimension
[4, 1].

2.1. Modeling time

In modeling time for management of or reasoning about time-oriented clinical data several basic
choices have to be done, depending on the needs of the domain.

2.1.1 Instants and intervals

Usually both the concepts of time point (or instant) and time interval have been used in the medical
informatics literature to represent time [10, 13, 30, 14, 3]. These concepts are usually related to
instantaneous events (e.g. myocardial infarction), or to situations lasting for a span of time (e.g.
drug therapy). Care needs to taken in associating these concepts to clinical entities, such as
symptoms, therapies, and pathologies: a myocardial infarction, for example, could be considered
an instantaneous event, within the overall clinical history of the patient, or an interval-based
concept, if observed during an ICU staying. A further distinction exists between the basic time
primitives, usually instants (time points), and the time entities that can be associated with clinical
concepts [35, 13, 30]. In defining basic time entities, time points (i.e., instants) are often adopted.
Intervals are then represented by their upper and lower temporal bounds (start and end time
points). In practice, most systems employed in medical informatics applications have used a time
point based approach, similar to McDermottÕs points [67], rather than use time intervals as the
basic time primitives, as proposed by Allen [64]. Several variations exist. Thus, Shahar [25]
defines a set of time primitives, called time stamps; predicates, however, such as values of clinical
parameters, can only be interpreted over time intervals, which are defined as ordered pairs of time
stamps (including instants, which are zero-length intervals). This approach has been previously
formalized in the artificial-intelligence literature by Shoham [68]. Time points usually are
characterized by (possibly extended) properties of discrete numbers.

Thus, we observe two main approaches in associating time with clinical entities: the first deals both
with instant-related entities and with interval-related entities [10]; the second associates clinical
entities only with a certain type of time concept, usually an interval, dealing in a homogeneous way
also with intervals degenerating to be a single instant [35, 30, 13].

2.1.2. Linear, branching and circular times

Different properties can associated with a time axis composed by instants: usually, both in general
and clinically-oriented databases, time is linear: the set of time points is completely ordered [35,
30, 14]. However, for the tasks of diagnosis, projection, or forecasting (such as prediction of a
clinical evolution over time), a branching time might be necessary. Such a representation has been
found to be useful for pharmacoeconomics, and has been implemented using an object-oriented
temporal model, as demonstrated in this issue [69]. Circular time is needed when we have to
describe recurrent events, such as "administration of regular insulin every morning".
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2.1.3. Relative and absolute times

The position on the time axis of an interval or of an instant can be given as an absolute position,
such as the calendaric time when mapped to the time axis used [27, 8, 54, 70, 35, 13] (e.g.:
"Tachycardia on November, 3 1996"). This is a common approach adopted by data models
underlying temporal clinical databases. However, it also is common in medicine to reason with
relative time references: "angina after a long walk" or "several episodes of headache during
puberty". Incorporation of purely relative time-oriented, interval-based information (especially
disjunctions, such as Òthe patient had vomited before or during the diarrhea episodeÓ) within a
standard temporal database is still a difficult task. More is said about that task when we discuss the
issues of temporal granularity and uncertainty in Section 5).

Relevant to the topic of relative times are several proposals that employ implicit [6, 14, 52] or
explicit [24] temporal contexts, which support the representation of relative or context-sensitive
temporal clinical information or knowledge.

2.1.4. Modeling temporal relationships

In modeling temporal relationships, Allen's interval algebra [64] has been widely used in medical
informatics [10, 35, 24, 25]. Extensions to AllenÕs basic thirteen interval relationships have also
been proposed [30]. Temporal relationships include two main types: qualitative (angina before
headache) and quantitative (angina two hours before headache). Several general formalisms and
approaches [64, 71, 72, 4] have been effectively adopted for satisfying the various needs
encountered while modeling temporal relationships in clinical data.

2.2. Modeling temporal entities

A question that has been investigated in some depth in the medical informatics literature is: What
are the basic medical concepts that have temporal dimension? How should time-oriented clinical
data be modeled?

In general, we distinguish two different approaches in modeling temporal entities in medical
applications: Addition of a temporal dimension to existing objects and creation of task-specific,
time-oriented entities.

The first approach, originating from research into databases, uses simple, "atomic" temporal
entities [35, 30]. This approach is similar to the one underlying the temporal extensions proposed
for relational and object-oriented data models: A temporal dimension is added at the tuple/object
level or at the attribute/method level [35, 73]. Combi et al. in [30] introduced the concept of
temporal assertion to model in a homogeneous way both instant- and interval-based information.
Das and Musen in [35] added the temporal dimension at the level of a database tuple, in a temporal
extension of the relational model to support clinical databases used for decision-support
application. In DasÕs approach, the focus is on modeling time-oriented clinical data, to allow the
DBMS to store and manage this type of data. In such approaches, complex temporal features of
clinical data can be queried by suitable query languages [35, 73, 58].

One of the first applications of databases to clinical domains, explicitly addressing the time
representation problem, is the Time Oriented Database (TOD) model [27], originally developed at
Stanford university during the 1970s. This model has been adopted, for example, by the American
Rheumatism Association Medical Information System (ARAMIS), to manage data related to the
long-term clinical course of patients suffering from arthritis or, more generally, from rheumatic
pathologies [74]. TOD uses a "cubic" vision of clinical data: values of data related to a particular



5

patient visit are indexed by patient identification number, time (visit date), and clinical- parameter
type. Specialized time-oriented queries enable researchers to extract, for particular patients, data
values that follow certain simple temporal patterns (e.g., increase at some rate). Assignment of a
temporal dimension at the tuple level is a method common to many applications of clinical
databases [75, 31, 11].

The second approach, originating mostly from the area of artificial intelligence in medicine, focuses
on modeling different temporal features of complex, task-specific entities. The temporal entities are
defined by the needs of the relevant temporal-abstraction and, in general, temporal-reasoning tasks
(see Section 3). Based on temporal entities that are stored at the database level, several types of
compound (abstract) entities are introduced. For example, in the HyperLipid system [43], patient
visits were modeled as instant-based objects called events, while administration of drugs was
modeled as therapy objects whose attributes included a time interval. Phases of therapy (inspired
by the clinical algorithm modeled by the system) were then introduced to model groups of
heterogeneous data that is related to both visits and therapies. Events, therapies and phases were
connected through a network.

Kahn and colleagues in [8] introduced formally the concept of a Temporal Network (TNET) and
later extended it by the Extended TNET, or ETNET model [9]. In both models, a T-node (or an
ET-node) models task-specific temporal data, such as a chemotherapy cycle, at different levels of
abstraction. Each T-node is associated with a time interval during which the information
represented by the T-nodeÕs data is true for a given patient.

In the M-HTP system for monitoring heart-transplant patients [10], clinical facts related to a patient
are structured in a temporal network (TN) inspired by KahnÕs TNET model [9]. Through this
network, a physician can obtain different temporal views of the patientÕs clinical history. Each
node of the TN represents an event (a visit) or a significant episode in the patientÕs clinical record.
An event is time-point based; its temporal location can be specified by an absolute date or by the
temporal distance relative to the transplantation event. A episode holds during an interval, during
which a predefined property (evaluated by reasoning about several events) holds.

Keravnou and Washbrook introduce findings, features, and events to distinguish various types of
instantaneous and interval-based information (patient-specific or general) [6].

3. Temporal Reasoning
Temporal reasoning has been used in medical domains as part of a wide variety of generic tasks
[76], such as diagnosis (or, in general, abstraction and interpretation), monitoring, projection,
forecasting, and planning. These tasks are often interdependent. Projection is the task of
computing the likely consequences of a set of conditions or actions, usually given as a set of
causeÐeffect relations. Projection is particularly relevant to the planning task (e.g., when we need
to decide how the patientÕs state will be after we administer to the patient a certain drug with known
side effects). Forecasting involves predicting particular future values for various parameters
given a vector of time-stamped past and present measured values, such as anticipating changes in
future hemoglobin-level values, given the values up to and including the present. Planning
consists of producing a sequence of actions for a care provider, given an initial state of the patient
and a goal state, or set of states, such that that sequence achieves one of the goal patient states.
Possible actions are usually operators with predefined certain or probabilistic effects on the
environment. The actions might require a set of enabling preconditions to be possible or effective.
Achieving the goal state, as well as achieving some of the preconditions, might depend on correct
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projection of the actions up to a point, to determine whether preconditions hold when required.
Interpretation involves abstraction of a set of time-oriented patient data, either to an intermediate
level of meaningful temporal patterns, as is common in the temporal-abstraction task or in the
monitoring task, or to the level of a definite diagnosis or set of diagnoses that explain a set of
findings and symptoms, as is common in the diagnosis task. Interpretation, unlike forecasting
and projection, involves reasoning about only past and present data and not about the future.

From the methodological point of view, one general criterion that can be used when classifying
temporal-reasoning research that had been applied to clinical data is whether it uses a deterministic
or a probabilistic approach [16].

Within the deterministic approach, different frameworks have been used. Some of them are based
on well-known formalisms from the artificial-intelligence field [55, 26]; others are based on ad-hoc
rules and/or ontologies [22].

The probabilistic approach typically is associated with the tasks of interpretation or forecasting of
time-stamped clinical data whose values are affected by different sources of uncertainty [46, 47].
Dagum and his colleagues [37, 38] have developed the Dynamic Network Models (DNMs)
methodology, a synthesis of belief-network models and classical time-series models, and have
applied them with encouraging results to domains such as predicting outcomes of critically-ill
intensive-care patients [37] and forecasting episodes of apnea in sleep-apnea patients [38]. Causal
Probabilistic Networks (CPNs) is a graphical formalism, widely used in probabilistic systems
applied to clinical problems [46]. Several studies examine the extension of CPN and other
formalisms by also considering time for clinical problems [39, 37, 46]. Aliferis et al. [77] use for
their analysis of temporal abstraction a framework they have defined previously, Modifiable
Temporal Belief Networks (MTBNs), while Ngo et al. [78] propose a language for representing
context-sensitive temporal probabilistic knowledge, based on a standard formalism for representing
belief networks.

Several solutions have been proposed to the commonly occurring temporal-abstraction task,
namely, the interpretation task of reasoning about high-level concepts (e.g., a pattern of bone-
marrow toxicity specific to a particular chemotherapy-related context) that can be abstracted from
time-oriented clinical data (e.g., a time-stamped series of chemotherapy-administration events and
various hematological laboratory tests) [6, 8, 9, 10, 41, 13] (see also the discussion in Section 5).
For example, in M-HTP [10] the white blood-cell (WBC) count, measured during a visit, is an
instantaneous event in the knowledge base, indexed by the visit date; WBC-count decrease is an
episode, spanning several days, detected by the values of WBC count. Similarly, in TNET [8] T-
nodes are able to describe at different levels of abstraction data related to a patient undergoing
different chemotherapy treatments. In both cases, a temporal knowledge-based reasoner that uses
IF-THEN rules is applied to the systemÕs temporal model of the patient [9, 10]. These systems are
able to deal with complex temporal conditions. A typical rule is, for example, [42]:

I F DURING last 10 days ARE PRESENT

low CMV antigenemia OF TIME SPAN at least 7 days

AND

leukopenia OF TIME SPAN at least 5 days

AND

DURING last 15 days IS NOT PRESENT
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CMV infection OF TIME SPAN at least 1 day

THEN CMV infection is highly suspected

An example of a diagnostic-support system is the Skeletal Dysplasia Diagnosis (SDD) expert
system and its temporal reasoning framework, which have described by Keravnou and Washbrook
[6]. The SDD system is designed to provide a diagnostic aid in diagnosing skeletal dysplasias and
syndromes. The temporal reasoner module in the SDD system has a layered architecture and is able
to deal with findings and features in order to provide the user with higher-level representations of
findings and dysplasia expectations for the given patient. Even if the temporal framework of the
SDD system has a somewhat practical orientation, the influence of the event calculus theory [79]
should be emphasized [6].

An interesting task that involves some amount of abstraction as well as a certain amount of
forecasting, and which typically requires both deterministic and probabilistic techniques, is the
validation of time-oriented data, possibly also including the suggestion of specific repairs. An
example of applying several such techniques in a knowledge-based system is presented by Horn et
al. [57] in this issue. Horn and his colleagues propose several time-oriented methods for validating
and repairing high-frequency clinical data; they have applied these methods to the neonatal
intensive-care (in particular, to the artificial-ventilation) domain.

A different methodological approach to temporal reasoning is Case Based Reasoning (CBR). CBR
is a research field in which problems related to the acquisition of domain knowledge are partially
avoided by using previous known and solved cases when addressing a new case [26]. The
considered patient case at hand is compared to similar previous cases, on the basis of general and
temporal features.

In recent years, a number of research efforts were aimed at the extension and generalization of
several results and properties of temporal reasoning systems in clinical domains. We distinguish
two different approaches: several researchers try to define a general framework, catering for
different needs that stem from different clinical applications [22, 25, 24, 52]; others try, instead, to
apply general theories from the temporal reasoning field in the artificial intelligence area, such as
the event calculus, case-based reasoning, temporal constraint networks, and belief networks, to
solve clinical problems [80, 60, 81, 55, 26, 56].

4. Maintenance of Time-Oriented Data: Temporal Databases
Moving on to the task of management of time-oriented clinical data, we observe that the literature
has progressed from the early systems, which were mostly application dependent, to more general
approaches, that, even when applied to the solution of real problems in management of time-
oriented clinical data, have a more generalizable value and inherent soundness [27, 82, 8, 83, 11,
84, 35, 62, 30, 73]. Initially, systems that were designed to manage temporal clinical data were
based on the flat relational model [27, 82]. These systems, such as WiederholdÕs TOD and BlumÕs
Rx, were based on time stamping the database tuples: the date of the visit was added to the specific
attribute values. Kahn et al. [8, 9] proposed a specific query language, TQuery, for data that is
structured by the TNET model. Even though TQuery was patient oriented and was not based on a
generic data model, it was one of the first proposals for an extension of query languages so as to
enable the system to retrieve complex temporal properties of stored data. Most query languages and
data models used for clinical data management were application-dependent; thus, developers had to
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provide ad-hoc facilities for querying and manipulating specific temporal aspects of data [9].

Recent works on temporal clinical databases present a more general approach. Extensions of
common data models, and in particular of relational models, are based also on the general database-
field literature, in which temporal databases enjoyed special attention in the past few years [66, 85,
3, 1]. In the temporal-database field, beside the previously cited problems in modeling time and
entities to which a temporal dimension is added, there is also the problem of what kinds of
temporal dimensions need to be supported by the temporal database. Snodgrass [65, 86] had
previously identified three different temporal dimensions:(1) the transaction time, that is, the time at
which data are stored in the database (e.g., the time in which the assertion ÒWBC count is 7600Ó
was entered into the patientÕs medical record); (2) the valid time, that is, the time at which the data
are true for the modeled real world entity (e.g., the time in which the WBC-count was, in fact,
7600), and (3) the user-defined time, whose meaning is related to the application and thus is
defined by the user (e.g., the time in which the WBC count was determined in the laboratory). In
the Snodgrass taxonomy, four kinds of databases can be defined: (a) snapshot databases, based on
flat, timeless data models; (b) rollback databases, which represent explicitly only the transaction
time, (c) historical databases, which represent explicitly only the valid time [65, 66], and (d) what
is now called bitemporal databases, which represent explicitly both transaction time and valid time
and thus are both historical and rollback.

Another distinction useful for the characterization of much of the research in maintenance of
temporal data is whether the main topic is definition of temporal data models [8, 29, 30, 23] or
definition and design of temporally-oriented query languages [35, 36, 73, 58]. Both topics are
discussed in the medical informatics literature, although we note a more focused interest in data
modeling.

In medical informatics, attention had been paid mostly to historical databases (which emphasize
valid time), extending relational or object-oriented models [83, 35, 73, 58]. Thus Das and Musen
[35], for example, define four different types of relational tuples: event, start, body, stop, to
define, respectively, instantaneous facts and three aspects of uncertainty about interval-based facts
(i.e., uncertainty regarding the start time of the fact, uncertainty regarding the end time of the fact,
and a certain period of time in which the fact held). Das proposes an extension of the relational
algebra to manage temporal information and temporal relational operations, and an extension of
SQL, based on the proposed algebra, called Time Line SQL (TLSQL). One of the goals of DasÕs
representation is to facilitate the handling of temporal uncertainty and in particular the management
of data represented at variable levels of temporal granularity, a task that we discuss in Section 5.
Combi et al. [73] extended an object-oriented data model and the related query language to deal
with temporal clinical data: Granular Clinical History - Object SQL (GCH-OSQL) was proposed as
a query language for temporal clinical databases, taking into account different and mixed temporal
granularities. Goralwalla and colleagues adapted an existent object database model to the
management of time-oriented data, and have applied it to the modeling of pharmacoeconomic
clinical trials [69]. The broad set of types supported by the adopted object data model enables, for
example, a modeling of branching timelines, corresponding, for instance, to the evaluation of
different pharmacological treatments.

5. Temporal Abstraction and Management of Temporal Granularity
Two commonly recurring and closely related tasks in both the temporal-reasoning and the
temporal-maintenance research areas are (1) the temporal-abstraction task mentioned in Section 3,
and (2) the handling of variable temporal granularity mentioned in Section 4. Since these tasks are
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highly relevant to both research communities, they might be viewed as one of the potential bridges
between them (besides fundamental issues mentioned in Section 2, such as the time model). The
two tasks have been investigated both in the medical informatics field and in the general computer-
science area [4].

Temporal abstraction provides a more powerful, concise, and integrated description of a collection
of time-stamped raw data. (The term Òtemporal abstractionÓ is somewhat misleading, it is the time-
oriented data, and not the time itself, which are being abstracted.) In the medical-informatics field,
temporal abstraction plays a central role in supplying care providers with data at a level suitable for
support of decision making. Temporal abstraction in general, and in medicine in particular, has
been investigated in some depth in recent years [10, 42, 17, 18, Haimovitz96, 41, 24, 13, 25, 8,
40]. An interesting examination of the utility of temporal abstraction is provided in this issue by
Aliferis and colleagues [77], in a study that addresses the problem of providing and evaluating
appropriate levels of temporal abstraction using a common formalism for medical decision-support
systems.

Management of variable temporal granularity deals, in fact, with an abstraction of the time
primitives themselves; it concerns the level of abstraction (e.g., time unit, such as a day or a
month) at which the time element (instant, interval, and so on) associated with the relevant data is
represented [4]. Using this definition, we note that the tasks of temporal abstraction and of
handling variable temporal granularities are interconnected. When reasoning about various
temporal-granularity levels, emphasis is placed on the abstraction of the representation of the time
component of a time-oriented assertion; when performing a temporal-abstraction task, the emphasis
is placed on the abstraction of the time-oriented entity itself.

We adopt here the a framework proposed in [30], that facilitates comparisons between systems and
frameworks that handle different time granularities. Three main types of temporal granularity were
identified:

¥ abstraction granularity: This granularity-management aspect is not related directly to the time
axis. Abstraction granularity refers to the ability to express complex and composite temporal
concepts, for example "A parameter value that is increasing during a period of three months".

¥ absolute-time granularity: This is the ability to express the temporal dimension of the data by
mixing and using different absolute time references, for example "The interval began within the
period from January 21, 15:23, to January 21, 16:34." Absolute-time granularity refers to the
uncertainty in specifying a temporal dimension or to the use of different time-units.

¥ calendar-date granularity: This is the capacity for expressing the temporal dimension through the
use of multiple time units, e.g. years, months, days.

5.1. Abstraction granularity

Medical decision-support systems often do not associate the granularity of time with the calendar
time. Rather, the temporal granularity level is affected by the abstraction needed by the relevant
clinical problem [9, 6, 87, 10].

Many representations of temporal data at high abstraction levels in medical expert systems were
inspired by AllenÕs interval-based logic [63, 64, 43, 10]. KahnÕs TNET and ETNET models (see
Section 2.2) aimed at extending the TOD model (see Section 2.2), by defining suitable persistent
objects [9]. TNET is composed of T-nodes: each T-node represents a time interval during which a
clinical event happened. The starting and ending time instants identify the time interval. Clinical
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events are organized within a hierarchical structure that corresponds to a model of significant
clinical contexts. ETNET adopts the same temporal structure of TNET [9, 87]; in addition, ETNET
associates with each ET-node certain computational methods (rules) that lead to the conclusion of
new information about the relevant events.

Shahar and Musen [41, 13, 25] proposed a general framework for abstraction of time-stamped
data, and in particular of clinical data, called the Knowledge-Based Temporal-Abstraction (KBTA)
Method. The KBTA framework includes a theoretical model for time and for propositions that hold
over time, a general inference method, and five specific computational temporal-abstraction
mechanisms that solve the five subtasks into which the KBTA method decomposes the temporal-
abstraction task. The five mechanisms are context formation, contemporaneous abstraction,
temporal inference, temporal interpolation, and temporal pattern matching [13, 25]. The output of
these mechanisms includes abstractions of type state, gradient, rate, and pattern (e.g., LOW,
DECREASING, and FAST abstractions for the hemoglobin-value clinical parameter, and the
QUIESCENT-ONSET-CGVHD pattern abstraction in the domain of chronic graft-versus-host
disease (CGVHD)). The five mechanisms require four well-defined domain-independent types of
domain-specific knowledge: Structural, classification (functional), temporal-semantic (logical), and
temporal-dynamic (probabilistic) knowledge [25]. The KBTA method had been implemented by
the R�SUM� system [41] and has been evaluated within several clinical domains, such as
oncology, therapy of patients who have AIDS, monitoring of childrenÕs growth, and management
of insulin-dependent diabetes [13]. The R�SUM� system uses as temporal primitives time stamps
at various predefined levels of granularity, typically offset from a clinically relevant time stamp,
such as the time of bone-marrow transplantation, the beginning of chemotherapy, or the date of
birth of the patient (e.g., for monitoring childrenÕs growth). Input data or output abstractions can
hold, however, only during time intervals, defined as ordered pairs of time stamps. Highly
complex patterns can be described and computed, but the set of granularity levels (and therefore
also the implied temporal uncertainty) is limited to a predefined one that includes minutes, hours,
etc.

5.2. Absolute-time granularity

The necessity to sometimes provide absolute-time granularity, that is, the capability to refer to the
time-axis in multiple ways, not only through different time units, has been addressed by several
recent works in medical informatics [60, 35, 30, 62, 22]. Two different issues have to be
addressed when providing absolute-time granularity. The first is the representation of vagueness,
uncertainty, or indeterminacy (the terminology varies among different scientific communities)
regarding the location on the time axis of relevant time points or time intervals [3, 30, 22]. The
second is the use of time units or references that include not only those associated with the
Gregorian calendar, but also domain-specific ones (e.g., weeks-from-conception, fetal-period,
infancy [14]) [30, 35].

Das and colleagues [35] proposed an extension to the relational model and to the query language
SQL; they introduced the concept of Interval Of Uncertainty (IOU) to model the uncertain time
intervals that include the starting and ending instants of the interval of validity of a tuple. Thus,
representing a relational-database entity that is valid during an interval with indeterminate start and
stop instants involves representing explicitly the uncertain start, the certain body, and the uncertain
end interval [35] (see Section 4). Combi and colleagues [30, 73] have described a data model using
two different formalisms, both based on an object-oriented approach, that is able to represent
intervals and time points given at different and mixed absolute time-granularity, such as the interval
referred to in the sentence "an atrial fibrillation episode occurred on December 14th, 1995 and
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lasted for three minutes".

Uncertainty in clinical domains has to be handled when relationships are computed between
intervals (or time points) that have different absolute-time granularities. Several researchers have
proposed an extension of the classic two-valued logic to a model that enables also a representation
of possibly true (or possibly false) values to temporal relationships [30, 60].

5.3. Calendar-date granularity

Medical applications require in a natural manner systems that are able to represent and manage
different time units [35, 58]. This type of temporal granularity is a common one and has been
widely studied in the temporal database community [3, 88].

6. Future Directions: Merging Different Areas and Approaches
Temporal reasoning systems and temporal data-maintenance systems are often independent efforts,
even though they usually contribute towards the same goal. For example, time-oriented decision-
support systems often do not adopt any kind of a formal temporal data model or a temporal query
language to manage stored time-oriented clinical data.

We suggest that currently, after several years of research on the topics described in Sections 2 to 5,
new and more powerful solutions could be derived from a merging of different approaches.

The temporal-abstraction task and the management of temporal granularity seem to be a meeting
point between research efforts originating in the artificial-intelligence and in the database
communities, at least as these efforts have been applied to medical domains. Furthermore, as
pointed out in Section 2, the issue of the appropriate time model is always a pertinent one. Thus,
several research themes, most of which are relevant to the community of general computer
scientists, will be important, in our opinion, for next-generation time-oriented systems in medicine.

¥ Adoption of advanced data models. The adoption of advanced data models, such as the
object-oriented data model and the EER data model, will improve the capability of describing
real world clinical entities at high abstraction levels [89, 90, 91, 92]. Thus, the focus may shift
to more domain-specific inference actions.

¥ Maintenance of clinical raw data and abstractions. Several recent systems allow not
only the modeling of complex clinical concepts at the database level, but also the maintenance
of certain inference operations at that level. For example, active databases can store and query
also derived data; these data are obtained by the execution of rules that are triggered by external
events, such as the insertion of patient related data [93]. Furthermore, integrity constraints
based on temporal reasoning [57] could be evaluated at the database level, for example to
validate data during their acquisition.

¥ Management of different temporal dimensions of clinical data. In both the
artificial-intelligence and the database research areas, as these were applied to time-oriented
systems in medicine, typically only the concept of valid time (i.e., a historical database) has
been considered. Storing and reasoning about also the transaction time might imply certain
benefits, such as being able to restore the state of the database that was true when the physician
or a decision-support system decided on a particular therapeutic action, an ability that has
significance both for explanation and legal purposes. Another temporal dimension of
information considered recently is the decision-time [1]: the decision time of a therapy, for
example, could be different from both the valid time during which the therapy is administered
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and from the transaction time, at which the data related to the therapy are inserted into the
database. All these temporal dimensions of clinical data have theoretical and practical interest.

¥ Merging the functions of temporal reasoning and temporal maintenance. By
combining these two functions within one architecture, sometimes called a temporal mediator, a
transparent interface is created to a database, a knowledge base, or both. An example of
ongoing research is the Tzolkin temporal-mediation module [94], which is being developed
within the EON guideline-basedÐtherapy system [48]. The Tzolkin module merges ShaharÕs
temporal-abstraction system, R�SUM� [41], with DasÕs temporal-maintenance system,
Chronus [35], into a unified temporal-mediator server. The Tzolkin server answers complex
temporal queries using both the time-oriented patient database and the domain-specific
temporal-abstraction knowledge base, but hides the internal division of computational tasks
from the user (or the from the calling process). Many questions will still have to be answered,
such as how does a temporal mediator decide which computational module to use for what
temporal queries, and will provide interesting issues for future research.

¥ Handling deterministic versus probabilistic data, and absolute versus relative
time references. As pointed out in Section 2.1.3, clinical data often are most naturally
expressed in pure relative temporal terms, although most implemented systems use an instance-
based, absolute-time framework. In addition, as mentioned in Section 3, clinical data often
involve inherent uncertainty, although they include many discrete, deterministic aspects. Ngo
and colleagues [78] present one interesting hybrid system, which integrates discrete contexts
with probabilistic belief networks to make reasoning more efficient. Additional models need to
be created to combine the advantages of all of these various aspects of clinical data.

¥ Provision of standardized, user-friendly temporal-query and temporal-
visualization interfaces. Physicians and other care providers are not database experts and
should not be expected to be familiar with the internal workings of either a temporal-reasoning
or a temporal-maintenance system or with its theoretical underpinnings. Thus, one challenge is
to provide them with easy to use, perhaps even graphic, temporal-query interfaces that enable
them to take advantage of the sophisticated architectures that are being built on top of the
clinical, time-oriented electronic patient records [12]. Furthermore, many queries might be
unnecessary if useful visualization interfaces exist. The semantics of these interfaces (e.g.,
deciding automatically which abstraction level of the same set of parameters to show and at
what temporal granularity) might draw upon the domain-specific knowledge base. An early
example was Cousins and KahnÕs framework [54] for visualization of time-oriented clinical
data. Cousins and Kahn defined a small but powerful set of domain-independent graphic
operators with well defined semantics, and a domain-specific representation of reasonable
temporal-granularities for a presentation of various entities in the specific clinical domain. More
sophisticated interfaces might be built by taking advantage, for instance, of domain-specific
temporal-reasoning knowledge [13].

¥ Resolution of conflicts between temporal-reasoning and temporal-maintenance
systems within hybrid architectures. Currently, it is common to have temporal-
reasoning systems working purely within a short-term, random-access memory, while the
temporal-maintenance system stores and retrieves data and abstractions using a long-term
storage device such as an external database. As a result, multiple conflicts might arise,
especially when systems need to be accessed concurrently by multiple users. One problem is
the inherent nonmonotonicity of temporal abstractions, which might be retracted when
additional data arrives (whose valid time is either the present or the past). This problem is
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solved, for instance, in [41], by the use of a logical truth-maintenance system (TMS).
However, integrating a temporal-abstraction system with an external database (as might happen
in a temporal-mediator architecture such as mentioned in this section) might create
inconsistency problems: the temporal-abstraction system might update its old conclusions as
newly-available data arrive; but a standard database system, not having the benefit of the
dependency links and the TMS mechanism, will also keep the old, incorrect conclusions. In
addition, arrival of new data to the patient database should be reported to the temporal-
abstraction module. Thus, we need to investigate whether the short-term, random-access
temporal-reasoning fact base and the long-term external database should be tightly coupled
(each update is reflected immediately in the other database), loosely coupled (updates are sent
intermittently to the other database) or not coupled at all. Several protocols for connecting and
mutually updating the internal and external databases are theoretically possible. The choice
among these protocols might depend on the properties of the specific medical domain, and the
capabilities of the external database (e.g., object-oriented databases handle links among entities
better); adding a transaction time to the patientÕs electronic record, while keeping the valid time
(i.e., using a bitemporal database), would obviously be very helpful. In addition, the deductive
capabilities of active databases might provide several advantages, similar to a TMS. In any
case, the problem deserves further research.

¥ Providing efficient storage protocols for hybrid architectures. Finally, another
issue, closely related to the conflict-resolution problem, is whether some, all, or none of the
temporal-reasoning conclusions should be saved in the external, long-term database. Given that
many abstractions are only intermediate, and that other abstractions might be changed by data
arriving in the future (possibly even data with a past valid-time stamp, or data that exert some
influence on the interpretation of the past), it might be advisable not to save any abstractions,
due to their logically defeasible nature. However, it is obviously useful, from an efficiency
point of view, to cache key conclusions for future use, either to respond to a direct query or to
support another temporal-reasoning process. The caching is especially important for saving
high-level abstractions, such as Ònephrotic syndrome, Ó that have occurred in the past, are
unlikely to change, and are useful for interpreting the present. Such abstractions might be
available for querying by other users (including medical decision-support programs), who do
not necessarily have access to the temporal-abstraction module or to the domainÕs full temporal-
abstraction knowledge base. One option that might be worth investigating is an episodic use of
Òtemporal checkpointsÓ beyond which past abstractions are cached, available for querying but
not for modification.

Work on each of the new research areas we listed would contribute towards the important goal of
integrating temporal data-maintenance and temporal-reasoning systems in medical domains, and
thus lead to both a better understanding and to a better solution of important problems in
management and reasoning about time-oriented clinical data.

7. Summary
We presented a brief, nonexhaustive overview of research efforts in designing and developing
time-oriented systems in medicine. This overview is biased by two foci of emphasis: we focused
on methodological and theoretical aspects, and we considered in some detail the tasks of
abstraction of time-oriented data and the handling of different temporal-granularity levels.

We started by considering the modeling issues involved in the adoption of a set of basic concepts
that enable a description of the time-oriented clinical world in a sound and unambiguous way.
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Several suggestions have emerged from general computer-science areas, such as artificial
intelligence, or knowledge and data management. Within the medical informatics area, this research
effort has progressed from an ad-hoc definition of concepts supporting a particular application to
the adoption and the proposal of more generic definitions, supporting different clinical
applications.

We then presented research efforts specific to temporal reasoning in medical domains. Temporal
reasoning is a component of a wide variety of generic tasks, such as diagnosis (or, in general,
abstraction and interpretation), monitoring, projection, forecasting, and planning. These tasks are
often interdependent. From a methodological point of view, one general criterion that can be
adopted when classifying temporal-reasoning research as it was applied to clinical domains is
whether the appraoch taken was deterministic or probabilistic.

We then moved on to the task of management of time-oriented clinical data. We observed that the
literature has progressed from the early systems, which were mostly application dependent, to
more general approaches, that, even when applied to the solution of real problems in management
of time-oriented clinical data, have a more generalizable value and inherent soundness. An
important role in this direction is that of research efforts in the general field of temporal databases,
where, for example, different kinds of temporal dimensions in databases have been identified, i.e.
transaction time, valid time, and user-defined time.

Two commonly recurring and closely related tasks in both the temporal-reasoning and the
temporal-maintenance research areas are the temporal-abstraction task and the handling of variable
temporal granularity. We examined contributions in these areas according to a framework which
distinguishes abstraction granularity, absolute-time granularity, and calendar-date granularity.

Temporal reasoning systems and temporal data-maintenance systems are often independent efforts,
even though they usually contribute towards the same goal. For example, time-oriented decision-
support systems often do not adopt any kind of a formal temporal data model or a temporal query
language to manage stored time-oriented clinical data. The temporal-abstraction task and the
management of temporal granularity seem to be a meeting point between research efforts
originating in the artificial-intelligence and in the database communities, at least as these efforts
have been applied to medical domains. Thus, we concluded the paper by listing several important
themes for future research, most of which are relevant also to the community of general computer
scientists.
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