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The Liquidity Premium for Illiquid Annuities.

ABSTRACT

Academics and practitioners alike have developed numerous techniques for bench-

marking investment returns to properly account for excessive levels of risk. The

same, however, can not be said for liquidity, or the lack thereof. This paper devel-

ops a model for analyzing the ex ante liquidity premium demanded by the holder

of an illiquid annuity. In the U.S., an annuity is an insurance product that is

akin to a pension savings account with both an accumulation and decumulation

phase.

We compute the yield (spread) needed to compensate for the utility welfare loss,

which is induced by the inability to rebalance and maintain an optimal portfolio

when holding an annuity.

Our analysis goes beyond the current literature, by focusing on the interaction

between time horizon (both deterministic and stochastic), risk aversion and pre-

existing portfolio holdings. More specifically, we derive a negative relationship

between a greater level of individual risk aversion and the demanded liquidity

premium. We also confirm that, ceteris paribus, the required liquidity premium

is an increasing function of the holding period restriction, the subjective return

from the market, and is quite sensitive to the individuals endowed (pre existing)

portfolio.
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“..If the insurance company has greater and longer surrender charges, then it

can pay more, on fixed annuities, knowing the funds aren’t going to leave, so the

liability structure will be more stable...Best’s Review, October 2001, pg. 43”

1 Introduction and Motivation

In the United States, the term annuity covers a wide spectrum of financial and insurance

products. A savings (pay-in) annuity is akin to a bank account or savings bond where money

is accumulated over a period of time at a variable or fixed rate of interest. In contrast, a

consumption (pay-out) annuity is similar to a pension that pays a periodic fixed or variable

amount, which might also contain longevity insurance. The former is usually used prior to

retirement, while the later is used during the retirement years. According to the above-

quoted A.M. Best survey, more than $1 (U.S.) Trillion is currently invested in various types

of annuity products in the U.S.

The common denominator of fixed (in contrast to variable) savings and consumption

annuities is that they are quite illiquid. Namely, in stark contrast to a money market fund

or savings bond that can be redeemed on a daily basis without any penalty, it is difficult or

very costly to surrender (or cash-in) a fixed annuity. While the reasons for this illiquidity

differ depending on whether the product is in the accumulation or decumulation phase, the

fact remains that continuous asset re-allocation is virtually impossible with these products.

Our paper therefore asks a simple question: What is the liquidity premium that a rational

investor will demand to compensate for the illiquidity?

Thus, for example, the holder of a fixed (savings) annuity might be told that he or she

cannot withdraw from (or cashout of) the product for the first seven years of the contract. Or,

in the event of a permissible early withdrawal during first seven years, one might be ‘hit’ with

an x% penalty, a.k.a. market value adjustment. In the payout phase the liquidity restrictions

can be even more severe. And, while in the decumulation phase, the illiquidity is often

accepted as the cost of obtaining longevity insurance, in the accumulation phase policyholders

are told that their return will exceed the yield of a comparably liquid instrument. Indeed, it is

quite common to see a monotonic relationship between the magnitude of the early surrender

charges on a fixed annuity — controlling for commissions — and the guaranteed yield if the

3



product is held to maturity. Implicitly, investors (or more precisely, policyholders) are being

promised compensation for the liquidity restrictions.

Recent academic literature has documented the empirical welfare gains from annuity

products and annuitization, as well as the value of longevity insurance. For example Mitchell

et. al. (1999) argued that consumers would be willing to ‘give up’ to 30% of their wealth to

obtain a fairly priced annuity. Likewise, Brown and Poterba (2000) explained the extremely

low levels of annuitization, by arguing that married couples function as a mini annuity mar-

ket. Blake and Burrows (2001) focused on the undesirable longevity risk taken by insurance

companies issuing payout annuities, and the need for governments to issue mortality-linked

bonds.

However, most of the literature discussing the costs and benefits of annuitization, has

ignored some of the problems created by having a portfolio that cannot be liquidated or

rebalanced for long periods of time. This is not just an issue in the (relatively unpopular)

payout phase of a life annuity, since the same types of restrictions apply in the accumulation

phase as well.

Indeed, most financial economists would agree that one should be compensated by the

insurance company for the illiquidity restrictions. In other words, all else being equal, a

fixed income instrument that cannot be sold — or, for that matter, subsequently repurchased

— over the life of the product, should provide investors with a higher yield.1

Note, of course, that from the insurance companies’ perspective, these restrictions are

absolutely necessary to manage the duration mismatch (or risks) that otherwise would arise

if incoming funds are invested in long-term projects, but yet instantaneously available to

policyholders. Therefore, to allow for even a limited amount of ‘casheability’, insurance

companies must protect themselves by imposing a disintermediation (or market value ad-

justment) surrender charge. Therefore, from the perspective of the vendor of such products,

our model should help determine the appropriate level of restrictions vis a vis the promised

1An alternative line of reasoning is that in equilibrium, investors should not be compensated for illiquidity,

because they can lengthen their trading horizon when faced with such securities. In other words, they can use

illiquid instruments to fund long-term liabilities, without demanding any compensation for this inconvenience.

Although we do not subscribe to this view, we refer the interested reader to Vayanos and Vila (1999) for a

model that pursues this particular approach.
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yield.

This so-called liquidity premium cannot, of course, be determined in isolation; it’s value

will depend on the alternative investments available, and the investor’s willingness to make

use of them. Thus, we will work in a framework in which there is both a fixed and a variable

annuity, and we will impute the investor’s level of risk aversion from the allocation chosen

between the two annuities. More on this later.

Indeed, there is nascent body of research on the general topic of liquidity, marketability

and the bid-ask spread. Various empirical and theoretical studies, such as Silber (1991),

Amihud and Mendelson (1991) and more recently, Jacoby, Gottesman and Fowler (2000),

Garvey (2001), Brenner, Eldor and Hauser (2001), Dimson and Hanke (2001), Loderer and

Lukas (2001), have argued and documented that the yield to maturity, or investment re-

turns, on less liquid financial instruments should be higher compared to their identical liquid

counterparts.

However, it appears that limited research has been done on developing a subjective metric

for computing the demanded ex ante compensation for illiquidity. The exception is a series of

papers by Longstaff (1995, 2001). We will provide a more detailed comparison to Longstaff’s

model, later in our analysis.

The remainder of this paper is organized as follows. In Section 1.1 we demonstrate

the simple economic intuition that underlies our model using a basic numerical example.

Section 2 develops a formal utility-based model for the liquidity premium in the case of a

savings (pay-in) annuity, where the time horizon is deterministic and the product is akin to

a zero-coupon bond or a Certificate of Deposit. Section 3 solves the model using numerical

techniques, with comparative statics provided in Section 3.1 and a comparison to Longstaff’s

approach discussed in Section 3.2. Then, Section 4 provides a parallel analysis for a con-

sumption (pay-out) annuity, where payments are received by the annuitant with embedded

longevity insurance. Section 5 concludes the paper.

1.1 Numerical Example.

To understand the welfare loss from a lack of liquidity we offer the following example. Con-

sider a hypothetical investor (or policyholder) with $100,000 to invest. The investor decides

to allocate 50% to a fixed annuity (risk free asset) with liquidity restrictions and 50% to a
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risky equity (variable) annuity. Further, we make the critical assumption that the investor

has picked this allocation because it maximizes his or her expected utility of wealth.

In the language of Merton (1969), we let α∗t = 1/2, ∀t ≤ T , denote the optimal allocation
to the risky asset, and we let U∗T denote the maximal expected utility, at the terminal horizon

T . Merton (1969) demonstrated that an investor with constant relative risk aversion (CRRA)

preferences for uncertain wealth at the terminal time T , modeled by u(w) = w(1−γ)/(1− γ),

and faced with Geometric Brownian Motion asset dynamics, will select a time-invariant

(a.k.a. myopic) investment policy. This well-known Merton result has been generalized to

alternative asset processes and consumer preferences. See Kim and Omberg (1996) for more

details on the necessary and sufficient conditions for myopic investment policies.

We caution the reader that an α∗t = 1/2 allocation, also known as constant proportional

strategy, does not imply the portfolio is invested half in equities and half in cash, and

then held as is until maturity. That is a buy-and-hold strategy and is sub-optimal in a

classical Merton framework. Indeed, our 50/50 balance must be maintained by reacting to

market movements and rebalancing the portfolio. In other words, rational utility-maximizing

behavior requires frequent trading and rebalancing regardless of one’s investment horizon or

risk preferences. See Browne (1998) for more information on constant proportional strategies.

Suppose, for example, that the general stock market drops 30% within a short period of

time. And, as a result, the value of the equity account (a.k.a. variable annuity) drops from

$50,000 to $35,000 (= $50,000 x 70%). The investor now has only $85,000 in total, of which,

by construction, 41% (= $35,000 / $85,000) is in the equity account, and 59% (= $50,000 /

$85,000) is in the fixed annuity. The investor is holding a non-optimal portfolio, which, in

theory, should be rebalanced.

A rational investor will want to sell a portion of (or transfer from) the fixed annuity

into the equity account to re-establish the optimal 50/50 mix between fixed and variable

investments. Specifically, the investor will want to transfer $7,500 from the fixed annuity to

the variable account so that $42,500 is invested in fixed assets, and $42,500 is invested in

variable assets. Thus maintaining the delicate α∗t = 1/2 mix.

Our main point is that liquidity restrictions in the fixed annuity will impede the optimal

process of re-allocation. This is the forgone opportunity cost. Even the prudent buy-and-

hold investor will want to rebalance assets after a substantial market movement.
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We argue that the only way to make up for the inability to adapt to market movements is

to offer an enhanced yield on the fixed annuity. Stated differently, a rational investor will be

willing to waive his or her ability to instantaneously rebalance the portfolio in exchange for

an enhanced yield on the fixed annuity. Our definition of liquidity yield is meant to provide

the same level of economic utility for the constrained investors, as the un-enhanced risk-free

asset provides to the unconstrained investor.

TABLE #1 GOES HERE

Table #1 applies our model — which we will fully develop in the next section — to a

particular set of parameters and displays our main result. By static utility we mean the

maximal utility that can be obtained from picking an asset mix and holding it for the entire

horizon. By dynamic utility we mean the Merton (1969) values that arise from rebalancing

to maintain a 50/50 mix. As one can see from the table, ceteris paribus, a longer time

horizon, lower level of risk aversion and higher subjective growth rate from the market, all

imply a larger liquidity premium. The next section presents the formal model that was used

to generate Table #1.

2 The Utility Model

Our model draws heavily from the classical Merton (1969) framework, and we thus take the

liberty of omitting some stages in the derivation. The unrestricted investor can rebalance

and allocate assets in continuous time between two assets (a.k.a. sub accounts) under the

annuity umbrella. The first is the market (risky, equity) asset that obeys a diffusion process:

dVt = µVtdt+ σVtdBt V0 = 1, 0 ≤ t ≤ T, (1)

where Bt is a standard Brownian motion, µ is the subjective growth rate of the market, and

σ is the subjective volatility. This leads to:

VT = e
(µ−σ2/2)T+σBT . (2)

We stress the word subjective since the desire to rebalance, and the optimal allocation, will

depend critically on the individual’s assessment of future market returns and volatility.
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The second asset is the Fixed Annuity, or the classically labeled risk-free asset, which

obeys:

dAt = rAtdt, A0 = 1 ⇐⇒ AT = e
rT (3)

In our (simplistic) model, the fixed annuity (bond) pays a constant yield-to-maturity re-

gardless of the time horizon. In practice, of course, one might expect to see a non-flat yield

curve, and, as a result, the return on the Fixed Annuity would be a function of the maturity

of the product. However, our intention is to exclude, or control for, term-structure premium

effects and focus exclusively on liquidity (marketability) issues. As such, we have decided

to operate in a flat curve environment. Our main qualitative results are unaffected by the

introduction of a stochastic term structure model, which would then force us to keep track

of three assets, namely bonds, cash and the variable account.

The end-of-period utility function is of the form:

u(w) =
w(1−γ)

1− γ
, γ 6= 1, (4)

and u(w) = ln[w] when γ = 1. Furthermore, without any loss of generality, we assume the

investor starts with one ($1) unit of account (wealth).

Following Merton (1969), the optimal control problem results in a Partial Differential

Equation (PDE) which leads to the maximal level of (dynamic) expected utility:

EU∗(r|dynamic) = 1

1− γ
eξ(1−γ)T , (5)

where:

ξ = r +
(µ− r)2
2γσ2

(6)

In this framework,

α∗t =
µ− r
γσ2

, (7)

which we label the Merton Optimum.

In contrast to the dynamic case, a static allocation will induce a maturity-value of wealth

which is the linear sum of the monies allocated to the two accounts. The expected utility

from this static portfolio — with no liquidity enhancement — is defined as:

EU(r|static) := EU [(1− α)AT + αVT ] = EU [(1− α)erT + αe(µ−σ
2/2)T+σBT ]. (8)
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And, by definition of the optimal allocation:

EU∗(r|static) ≤ EU∗(r|dynamic), (9)

with equality occurring when α∗ = 1 or when α∗ = 0. We formally define the liquidity

premium λ as the enhancement to r that will induce the same level of expected utility. In

other words:

EU∗(r + λ|static) = EU∗(r|dynamic). (10)

In the static case, the maximal expected utility is obtained via:

EU∗(r + λ|static) = max
α
E

·
1

1− γ

³
(1− α)e(r+λ)T + αe(µ−σ

2/2)T+σBT
´1−γ¸

. (11)

Now, since BT is normally distributed with mean zero, and variance T , equation (11) can

be re-written as:

EU∗(r + λ|static) = max
α

Z ∞

−∞

1

1− γ

³
(1− α)e(r+λ)T + αe(µ−σ

2/2)T+σ
√
Tx
´1−γ 1√

2π
e−x

2/2dx.

(12)

In sum, the (maturity dependent) parameter λ is the required yield to compensate for illiq-

uidity. It is an implicit function of the time horizon T, the coefficient of relative risk aversion

(CRRA) γ, and the return generating process parameters r, µ,σ. Our objective is to solve

for λ.

Of course, any model that attempts to combine risk preferences, γ, and equity market

parameters µ,σ, comes face-to-face with the so-called equity risk premium anomaly. A large

part of the economics literature is reasonably convinced that γ < 2. See Feldstein and

Ranguelova (2001), or Friend and Blume (1975), for example, for estimates in that range.

Likewise, recent work by Mitchell, Poterba, Warshawsky and Brown (1999) in the economic

annuities literature, has employed values ranging from γ = 1 to γ = 3. Dramatically different

evidence is provided by Mankiw and Zeldes (1991) where γ = 35 and Blake (1996) where

γ = 25. While our methodology is equally applicable in either case — and we provide values

for a number of different γ values — we prefer to focus our energies and examples on the γ in

the (1, 3) region, which is consistent with recent papers in the annuity literature. Moreover,

a value of γ = 1, corresponds with log utility, which has intuitively appealing growth optimal

properties.
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Another thorny issue is that if we use recent (Ibbotson Associates) capital market ex-

perience of µ − r = 6%, and σ = 20%, then equation (7) leads to an equity allocation of

α∗t = 246% for a log-utility investor, and α∗t = 123% for a (more risk averse) γ = 2 investor.

Clearly, these allocations are much higher than what is observed in practice. See Campbell

(1996), for an in-depth discussion of how to reconcile historical returns and risk preferences.

Thus, to avoid this problem — while at the same time conditioning on a well-balanced

portfolio — we decided to invert equation (7) and locate market parameters that ‘fit’ the

Merton model. Specifically, we assume a pre-existing asset allocation α, CRRA γ, and risk

premium µ−r, and solve for the (implied) subjective volatility assessment σ =p(m− r)/γα
that is consistent with Merton’s optimum. The implied (subjective) volatility, which is higher

than historical values, is motivated by a similar approach in the options market, and attempts

to capture the possible model (jump) risks that are not reflected in the classical diffusion

approach.

3 Solving for the required λ.

Due to the complexity of equation (11), we are forced to use numerical methods to extract λ.

We start by fixing a value for the risk free rate r. Then, for any exogenously imposed value

of the CRRA γ and subjective rate of return µ, we impute the investor’s subjective volatility

σ from equation (7). For simplicity, consider the case γ 6= 1 (the case of logarithmic utility
γ = 1 can be treated similarly). Then we are seeking a value of λ such that the maximum of

F (α,λ) =

Z ∞

−∞

1

1− γ

³
(1− α)e(r+λ)T + αe(µ−σ

2/2)T+σ
√
Tx
´1−γ 1√

2π
e−x

2/2 dx (13)

equals U∗(r|dynamic). In other words, we are seeking a solution to the pair of equations

F (α,λ) = U∗(r|dynamic), ∂F

∂α
(α,λ) = 0. (14)

This may be found numerically using Newton’s method, where we alternate Newton steps

in the λ and α variables. Basically we solve two equations in two unknowns. We start with

an initial approximation to the solution (α0,λ0). Then, we do a Newton step as a function

of the first variable (holding the second variable fixed). This gives a better approximation,

denoted by (α1,λ0). Then we hold the first variable fixed and look at it as a function of
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the second variable, and do a Newton step again. This gives an even better approximation

(α1,λ1). Then we go back to the first variable and get a better approximation (α2,λ1), etc.

To carry this out we require expressions for the functions

F,
∂F

∂α
,

∂2F

∂α2
,

∂F

∂λ
. (15)

But in fact, each of these are easily computed as integrals of simple functions against the

standard normal density function. So to carry this out efficiently, all that is required is a

method of rapid repeated calculation of such integrals. The method of choice is the Gauss-

Hermite integration (see, Press et. al. 1997, Chapter 4), in which a single computation of

nodes xi and weights wi allows one to write

1√
2π

Z ∞

−∞
e−x

2/2f(x) dx ≈
NX
i=1

wif(xi) (16)

for any regular function f . The approximation is exact for polynomials of degree less than

2N − 1. Once again, Table #1 provides values for λ for various (subjective) levels of µ and
time horizons T.

3.1 Comparative Statics.

In Table #2, we display the required liquidity premium, λ, as a function of the underlying

interest rate earned by the risk-free rate. As one can see, the greater the interest rate, the

lower is the optimal liquidity premium. Although it might appear from Table #2 that the

interest rate, per se, is what determines the required yield, it is the actual spread between

the expected return from the market, µ, and the interest rate that drives this result. Indeed,

with a µ = 12.5%, the higher the level of interest rates, the lower is the spread, and thus the

lower is the opportunity cost of not being able to rebalance.

TABLE #2 GOES HERE

Once again, we caution the reader that underlying our result is an equity risk premium

which also affects the opportunity loss. Thus, for example, when unrestricted cash earns

r = 5%, equity is expected to earn µ = 12.5%, the investor has a CRRA γ = 2, and a pre-

existing portfolio of 50% cash and 50% equity, the implied subjective volatility assumption

is σ = 31.62%.
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Finally, in Table #3, we display the required liquidity premium as a function of the pre-

existing asset allocation. Thus, for example, a γ = 3 individual with a desired 20% allocation

to risky equity, and an 80% allocation to unrestricted cash, will demand a liquidity premium

of 35.86 basis points per annum as compensation for being unable to trade during a 10-year

investment horizon.

TABLE #3 GOES HERE

As one can see from Table #3, the relationship between desired (or pre-existing) equity

holdings, and the demanded liquidity premium resembles an inverted parabola, and is zero

at both ends. The intuition is as follows. A rational individual with a desired (or pre-existing)

allocation of either, 0% or 100% unrestricted cash, will not be engage in any trading during

the length of the investment horizon (with probability one) since there will never be a need

to rebalance. However, as the portfolio moves towards a more balanced composition, the

probability and magnitude of rebalancing increases, thus magnifying the required liquidity

premium for not being able to trade.

The same inverted-parabolic relationship exists for higher levels of risk aversion, but in a

decreasing manner since the opportunity cost of not being able to trade is lower. For example,

despite much economic evidence to the contrary, one sometimes finds relatively high values of

the risk aversion parameter γ in use. For example, Blake (1996) has estimated CRRA values

as high as γ = 25 in the UK. Thus, if we were to take γ = 25, for example, then the only

way a dynamic allocation of α = 50% could be rational would be if the individual’s estimate

of future volatility was particularly low, in which case there is less difference between the

risky asset and the risk-free one, so the liquidity premium should also be low. This is indeed

the case. To get a sense of the magnitudes, if µ = 20% and T = 10, we compute α = 49.74%

and λ = 7.53 b.p., but at the same time find that σ = 10.95%

3.2 Comparison to Longstaff ’s Model.

While we took a similar approach to computing the welfare loss for liquidity restrictions, our

paper differs from Longstaff’s 2001 work in a number of substantial ways. First, our model

assumed a general constant relative risk aversion (CRRA) utility specification, in contrast

to Longstaff’s logarithmic utility model. This allowed us to explore the critical impact of
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risk aversion on the value of liquidity, as well as the effect of holding period restrictions.

Indeed, as Tables 1-3 indicated, risk aversion played an important role in determining the

required liquidity premium. Ceteris paribus, the greater the aversion to risk, the lower is the

required liquidity premium. Also, while Longstaffmodeled illiquidity in a stochastic volatility

environment, and used trading strategies that were of bounded variation, we operated in a

much simpler Merton (1969) environment, which allowed for closed-form solutions to the

optimal portfolio holdings. (We traded-off stochastic volatility for general utility.) Our

liquidity premium — which was formulated as a yield, as opposed to Longstaff’s discount —

was obtained by solving a one dimensional integral equation.

However, the most important distinction with Longstaff (2001), was that we focused on

the individual’s pre-existing portfolio and asset allocation as a determinant of the liquidity

premium. As one can see from Table #3, an individual with a very low, or very high, level

of holdings in the illiquid bond (annuity) would not require as much compensation as the

individual with a relatively well-balanced portfolio. The liquidity premium is directly related

to the probability (and magnitude) of having to trade and rebalance during the life of the

restriction. If the pre-existing optimal portfolio is well-balanced — i.e. close to equal amounts

of equity and cash — there is a higher chance of the portfolio falling out of balance, and thus

requiring trading to move back to the optimum.

As such, our conclusions complement Longstaff (2001), in that we concur that “discounts

for illiquidity can be substantial”, but we also demonstrate that the magnitude depends on

the individual’s risk aversion and pre-existing portfolio.

4 Application to Payout Annuities and Longevity In-

surance

Within the universe of annuities, the most natural context for the foregoing section is the

accumulation phase, during which contributions are held and invested prior to retirement.

We turn now to the payout phase of the life annuity. For simplicity we assume that this

involves the purchase of an immediate life annuity at time t = 0, entitling the holder to a

continuous stream of payments, terminating upon death, which is now a random time t = T.
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The annuity can be some combination of a fixed immediate annuity (FIA), which provides

a fixed payment per unit time, and a variable immediate annuity (VIA) which provides a

payment per unit time that varies depending on the value of some market asset Vt. If w

dollars of the FIA are purchased, the consumer is entitled to continuous payment stream of

CFt = w/ax(r) dollars per unit time, where the unit price of the FIA is:

ax(r) =

Z ∞

0

e−rt(tpx)dt. (17)

Here r denotes the risk-free interest rate, and (tpx) is the probability that the individual will

survive to time t, conditional on being alive at the annuity purchase age x. The normalization

is that each unit of the FIA pays $1 per unit time.

Likewise, if w dollars of the VIA are purchased, the consumer receives payments based

on w/ax(h) units of the market asset per unit time, where h is the assumed interest rate

(AIR). In other words, at time t, payments accumulate at the rate of CVt = we
−htVt/ax(h)

dollars per unit time, where we have normalized the market asset so that V0 = 1.

As before, we will compare liquid and illiquid annuities. In the liquid case, the consumer

is free to exchange FIA units for an economically equivalent number of VIA units at any

time, and vice versa. In the illiquid case, the number of FIA and VIA units is fixed at the

time of purchase. Other things being equal, the liquid annuity would provide greater utility

to the consumer, so to compensate for this the illiquid annuity must provide an enhanced

rate of return. As in the preceding section, we assume that it is the FIA that is so enhanced.

In this context, we take this to mean that an investment of w dollars in the FIA produces

a payment stream of CFt = w/ax(r + λ) dollars per unit time, where λ is the demanded

liquidity premium.

We will assume that the AIR is chosen to be the risk-free rate, so that h = r. Such

a restriction is not uncommon in annuity products available for sale, and is in fact typical

of the liquid ones. Illiquid annuities more commonly allow their purchasers to choose a

value of the AIR, but all such choices are deemed to be economically equivalent. Since our

principal interest is in the liquidity premium, we will require h = r for both liquid and

illiquid annuities, so that the effect of liquidity is not confounded with that of a flexible AIR.

In the preceding section the consumer’s utility involved only end-of-period wealth, since

there were no funds available for consumption prior to that time horizon. In the present
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case, it is exactly the utility of consumption that is of interest, discounted to take account

of the time-value of money. Thus, if Ct denotes the payment stream generated by the life

annuity, and if the function u(.) denotes the consumer’s personal utility of consumption,

then the mix between the fixed and variable annuities will be selected so as to maximize:

E

·Z T

0

e−rtu(Ct)dt
¸
=

Z ∞

0

e−rt(tpx)E[u(Ct)]dt. (18)

Of course we assume independence of asset returns and mortality.

As before, we will assume an optimal 50/50 mix between the fixed and variable annuities

in the liquid case, and then impute model parameters. We continue to assume geometric

Brownian dynamics for the risky asset Vt, so

dVt = µVtdt+ σVtdBt, V0 = 1 (19)

In the previous section, we postulated several values for the risk aversion (CRRA) pa-

rameter γ and then imputed the individual’s forecast of the future volatility σ that would

be consistent with a balanced portfolio allocation. To illustrate the flexibility of our ap-

proach, in this section we will start at the opposite end. Instead, we use a volatility based

on historical capital market data, namely σ = 20%, and we then impute a corresponding

level of risk aversion, assuming a balanced portfolio allocation. We also take historical levels

of µ = 11% and r = 5%. These numbers are consistent with the widely quoted Ibbotson

Associate numbers used by practitioners.

Charupat and Milevsky (2002) consider the asset allocation problem in the setting of

liquid annuities. Assuming h = r, and an exponential or Gompertz mortality function, they

show that the Merton optimum

α∗ =
µ− r
γσ2

(20)

remains optimal in this new setting. In fact this can be proved more generally — and is

actually alluded to in Chapter 18 of Merton (1994) — and does not depend on the parametric

form of the survival probabilities (tpx). Denote by φt and ψt the number of units of the

FIA and VIA held at time t, and assume that h = r. Then the payment stream is Ct =

φt + ψe−rtVt, and it can be shown that the optimal choice of φt and ψt obeys:

α∗ =
ψte

−rtVt
φt + ψte−rtVt

= 1− φt
φt + ψte−rtVt

(21)
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for α∗as above. In particular, from the assumption that α∗ = 50%, and the given (Ib-

botson Associates) values for µ, r and σ, we may impute a CRRA value of γ = 3, regardless

of the form of the conditional probability of survival (tpx). In other words, if the individual

has a coefficient of relative risk aversion of γ = 3, and is faced with a market in which the

expected return from the risky asset is µ = 11%, with a volatility of σ = 20%, when the

risk free rate is r = 5%, then he/she will allocate exactly α = 50% to each of the two asset

classes.

It can further be shown that with this choice of allocation,

E[u(Ct)] =
1

1− γ
eβt
µ

w

ax(r)

¶1−γ
, (22)

where

β =
(1− γ)(µ− r)2

2γσ2
(23)

Thus:

U∗ =
Z ∞

0

e−rt(tpx)E[u(Ct)]dt =
w(1−γ)

1− γ

ax(r − β)

ax(r)(1−γ)
, (24)

in the dynamic liquid case.

In the static (illiquid) case, an initial allocation of α to the risky asset will result in

holding φt = (1− α)w/ax(r + λ) FIA units, and ψt = αw/ax(r) VIA units, and in a utility:

F (α,λ) =

Z ∞

0

e−rt(tpx)E[u(Ct)]dt

=

Z ∞

0

e−rt(tpx)
Z ∞

−∞

w1−γ

1− γ

Ã
1− α

ax(r + λ)
+

αe(µ−r−σ
2/2)t+σ

√
tz

ax(r)

!1−γ
× 1√

2π
e−z

2/2dzdt (25)

Our goal is, as before, to find the liquidity premium λ such that maximizing F (α,λ)

over α reproduces the dynamic utility U∗(r|dynamic). We will do so assuming Gompertz
mortality, corresponding to an exponentially increasing hazard rate (force of mortality) of

the form:

hx+t =
1

b
e(x+t−m)/b, (26)

(m, b) are the Gompertz parameters and x is the individual’s age at the time of purchase.

In this case the survival probability takes the form:

(tpx) = exp
¡
bhx(1− et/b)

¢
. (27)
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As before, we use Newton’s method to carry out the maximization and root finding, and we

use Gauss-Hermite quadrature to rapidly evaluate the Gaussian integral in the expression

for F (α,λ). We carry out the time integral using a related method, namely Gauss-Laguerre

quadrature.

The Gauss Laguerre nodes and weights are optimized for computing integrals of the formZ ∞

0

e−attcf(t)dt (28)

where f is well approximated by a polynomial function. We use c = 0 and must be careful

to choose a in a narrow range of values for which the method is stable when applied to our

integrands. But having done so, this gives a rapid and accurate algorithm.

Recall that our market parameters were µ = 11%, r = 5% and σ = 20%, and from

the dynamic allocation of 50/50 to the FIA and VIA we imputed γ = 3. We consider two

cases, both corresponding to an age of 62 years at the time of annuitization. The first uses

Gompertz parameters fit to the U.S. Society of Actuaries female (IAM1996) mortality data

(namely b = 8.78 and m = 92.63) and yields an optimal allocation of α = 48.40% and

a liquidity premium of λ = 13.07 basis points. In the second case we use male mortality

parameters b = 10.5 and m = 88.18, and compute α = 48.50 and λ = 12.52 b.p.

To understand the factors influencing these results, one can calculate the conditional

life expectancy, resulting in figures of e62 = 26.62 years (female) and e62 = 22.78 years

(male). Using those time-horizons in the fixed maturity problem of the previous section gives

α = 47.68%, λ = 24.22 b.p., and α = 47.93%, λ = 21.87 b.p. respectively. These premiums

are substantially higher than the Gompertz figures just computed, and a moment’s reflection

will spot the reason why. We saw that the liquidity premium increases rapidly with the time

horizon, and in the annuity context most of the payments occur significantly earlier than the

lifetime itself. Thus the effect of spreading payments out over the residual lifetime should

be to reduce the liquidity premium. Indeed, even if the residual lifetime were to take on a

deterministic value T , the mean time a payment is received is

1

T

Z T

0

tdt =
T

2
. (29)

Thus to appreciate the sensitivity of the results to the randomness of the life horizon T , we

should not compare with the results of the preceding section, but rather with other lifetime
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distributions having the same means. As an extreme case, we compare the Gompertz results

with deterministic lifetime distributions, that is, with survival functions

(tpx) =

 1, t < t0

0, t ≥ t0
(30)

where t is set to the mean residual Gompertz lifetimes. Because of the discontinuity in (tpx)

we use yet another quadrature method (Gauss-Legendre this time) for the t integral. This

gives optimal allocations of α = 48.48% (female) and α = 48.63% (male), and liquidity

premiums of λ = 13.02 b.p (female) and λ = 12.20. These premiums are extremely close to

those obtained under Gompertz mortality, which suggests that the premiums are not highly

sensitive to the precise form of the hazard rate. Note however that both Gompertz figures are

slightly higher, and it is tempting to describe the difference as a small additional premium

for mortality risk.

5 Conclusion.

This paper has argued that the value of liquidity in an annuity product, or the lack thereof,

can be assessed by returning to first principles. We did this by locating the required enhance-

ment to the risk-free rate which compensated for the inability to rebalance an investment

portfolio. Our main mathematical problem was to locate the yield, which we denoted by

λ, that equated maximal utility in a static portfolio to the (greater) utility from a portfolio

that could be dynamically rebalanced in a Merton framework.

Using our model with recent capital market parameters, we argue that a log-utility

(γ = 1) investor, with a pre-existing 50/50 asset mix between fixed and variable savings

annuities, would demand a liquidity premium of between 45 - 145 basis points per annum as

compensation for the inability to rebalance during a 10-year period.

However, for investors that are more risk averse (γ > 1), and/or who are faced with

shorter liquidity restrictions, the compensating premium is lower. Indeed, for a 1-year period,

and coefficient of relative risk aversion (γ = 3) the premium ranges from only 2 - 8 basis

points per annum above the risk-free yield. Likewise, as Table #3 indicated, the pre-existing

asset allocation has a dramatic impact on the liquidity premium as well. For the above

mentioned log-utility investor, the premium ranged from 0 to 85 basis points, depending on
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current portfolio holdings. As such, we are careful to conclude that the question of liquidity

is personal in nature, since it depends on attitudes towards financial risk and subjective

expectations about future investment returns. Thus, there is no universal compensation for

trading restrictions.

However, regardless of the magnitude of this effect, our paper supports the argument that

impeding the consumers ability to continuously rebalance his or her investment portfolio is

detrimental to economic utility and financial wealth. This is regardless of their pre-existing

asset allocation, investment time horizon or subjective market expectations.

Finally, research currently underway by the authors will go towards developing a model

in which only one-sided trading restrictions are imposed so that additional assets can be

purchased, but not sold. We anticipate that the liquidity premium will be lower in this case,

but the amount by which it is reduced remains an open question.
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Table #1: Required Liquidity Premium Spread, in basis points, per annum.
Assuming a desired 50/50 allocation to (risky) equities and (safe) cash earning 5% p.a.

Coefficient of Relative Risk Aversion Coefficient of Relative Risk Aversion

γ = 1 γ = 2 γ = 3 γ = 1 γ = 2 γ = 3
    T = 15 Years     T = 5 Years

µ  = 12.5% 62.29 34.59 23.92 µ  = 12.5% 28.10 14.80 10.05
µ  = 15.0% 98.66 55.73 38.76 µ  = 15.0% 47.04 25.07 17.09
µ  = 17.5% 139.34 79.80 55.75 µ  = 17.5% 69.54 37.44 25.62

 µ  = 20.0% 183.36 106.24 74.48 µ  = 20.0% 95.12 51.68 35.47
 

γ = 1 γ = 2 γ = 3 γ = 1 γ = 2 γ = 3
    T = 10 Years     T = 1 Year

µ  = 12.5% 47.56 25.84 17.74 µ  = 12.5% 6.67 3.38 2.27
µ  = 15.0% 77.04 42.50 29.33 µ  = 15.0% 11.67 5.94 3.98
µ  = 17.5% 110.78 61.90 42.90 µ  = 17.5% 17.95 9.17 6.16
µ  = 20.0% 147.98 83.59 58.14 µ  = 20.0% 25.45 13.05 8.78

Notes: For example, an investor with a 50/50 allocation to equities and cash, with CRRA = 1 (a.k.a. log utility) preferences,

would require a yield enhancement (lambda) of 77 basis points on the cash account (I.e. 5.77%) to compensate for the inability

to rebalance for 10 years; this is assuming they expected the equity account to earn 15% p.a. during this period.

In contrast, if the investor expects to earn 17.5% from the equity account, they would require a 111 basis point liquidity spread.

Likewise, for a fixed 50/50 allocation and the same (subjective) equity return, a higher CRRA (I.e. a more risk averse investor),

requires less compensation for the inability to rebalance

)1/()( )1( γγ −= −wwU



Table #2
Liquidity premium as a function of the risk-free interest rate,
conditional on a 50/50 allocation to Equities vs. Cash,
and assuming an equity return expectation of 12.5%,
over a 10-year investment horizon.

Interest CRRA = 1 CRRA = 2 CRRA = 3
4% 58.77 32.14 22.11
5% 47.56 25.84 17.73
6% 37.21 20.07 13.74
7% 27.81 14.89 10.16

See Notes to Table #1



Table #3
Liquidity premium as a function of asset allocation,
Equities (risky asset) vs. Cash (safe asset).
Assuming an equity return expectation of 15%,
cash earning 5%, and a 10-year investment horizon.

Equity % CRRA = 1 CRRA = 2 CRRA = 3
0 0.00 0.00 0.00

10 47.92 39.00 31.44
20 74.12 48.74 35.86
30 82.38 49.45 35.18
40 82.11 46.87 32.74
50 77.04 42.50 29.33
60 68.60 36.83 25.16
70 57.29 29.97 20.28
80 42.96 21.84 14.63
90 24.79 12.11 8.00

100 0.00 0.00 0.00

See Notes to Table #1


