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AbstractÐExploiting cache locality of parallel programs at runtime is a complementary approach to a compiler optimization. This is

particularly important for those applications with dynamic memory access patterns. We propose a memory-layout oriented technique to

exploit cache locality of parallel loops at runtime on Symmetric Multiprocessor (SMP) systems. Guided by application-dependent and

targeted architecture-dependent hints, our system, called Cacheminer, reorganizes and partitions a parallel loop using the memory-

access space of its execution. Through effective runtime transformations, our system maximizes the data reuse in each partitioned

data region assigned in a cache, and minimizes the data sharing among the partitioned data regions assigned to all caches. The

executions of tasks in the partitions are scheduled in an adaptive and locality-preserved way to minimize the execution time of

programs by trading off load balance and locality. We have implemented the Cacheminer runtime library on two commercial SMP

servers and an SimOS simulated SMP. Our simulation and measurement results show that our runtime approach can achieve

comparable performance with the compiler optimizations for programs with regular computation and memory-access patterns, whose

load balance and cache locality can be well optimized by the tiling and other program transformations. However, our experimental

results show that our approach is able to significantly improve the memory performance for the applications with irregular computation

and dynamic memory access patterns. These types of programs are usually hard to optimize by static compiler optimizations.

Index TermsÐCache locality, nested loops, runtime systems, simulation, symmetric multiprocessors (SMP), and task scheduling.
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1 INTRODUCTION

THE recent developments in circuit design, fabrication
technology, and Instruction-Level Parallelism (ILP)

technology have increased microprocessor speed about
100 percent every year. However, memory-access speed
has only improved about 20 percent every year. In a
modern computer system, the widening gap between
processor performance and memory performance has
become a major bottleneck to improving overall computer
performance. Since the increase in memory-access speed
cannot match that of the processor speed, memory-access
contention is increased, which results in a longer memory-
access latency. This makes memory-access operations much
more expensive than computation operations. In multi-
processor systems, the effect of the widening processor-
memory speed gap on performance becomes more sig-
nificant due to the heavier access contention on the network
and the shared memory and to the cache coherence cost.
Recently, Symmetric Multi-Processor (SMP) systems have
emerged as a major class of parallel computing platforms,
such as HP/Convex Exemplar S-class [3], SGI Challenge [7],
Sun SMP servers [5], and DEC AlphaServer [19]. SMPs
dominate the server market for commercial applications
and are used as desktops for scientific computing. They are
also important building blocks for large-scale systems. The

improvement on the memory performance of applications
is critical to the successful use of SMP systems for
applications.

In order to narrow the processor-memory speed gap,

hardware caches have been widely used to build a memory

hierarchy in all kinds of computers, from supercomputers

to personal computers. The effectiveness of the memory

hierarchy for improving performance of programs comes

from the locality property of both instruction executions

and data accesses of programs. In a short period of time, the

execution of a program tends to stay in a set of instructions

close in time or close in the allocation space of a program,

called the instruction locality. Similarly, the set of instruc-

tions executed tends to access data that are also close in

time or in the allocation space, called the data locality. Using

a fast and small cache close to a CPU is expected to hold the

working set of a program so that memory accesses can be

avoided or reduced.
Unfortunately, the memory hierarchy is not a panacea

for eliminating the processor-memory performance gap.

Low-level memory accesses are still substantial for many

applications and are becoming more expensive as the

processor-memory performance gap continues to widen.

The reasons for possible slow memory accesses are:

. Applications may not be programmed with an
awareness of the memory hierarchy.

. Applications have a wide range of working sets
which cannot be held by a hardware cache, resulting
in capacity misses at cache levels of the memory
hierarchy.
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. The irregular data-access patterns of applications
result in excessive conflict misses at cache levels of
the memory hierarchy.

. In a time-sharing system, the dynamic interaction
among concurrent processes and the underlying
operating system causes a considerable amount of
memory accesses as processes are switched in
context. This effect cannot be handled by the
memory hierarchy on its own.

. In a cache coherent multiprocessor system, false data
sharing and true data sharing result in considerable
cache coherent misses.

. In a CC-NUMA system, processes may not be
perfectly co-located with their data, which results
in remote memory accesses to significantly degrade
overall performance.

Due to the increasing cost of memory accesses, techni-
ques for eliminating the effect of long memory latency have
been intensively investigated by researchers from applica-
tion designers to hardware architects. In general, the
proposed techniques fall into two categories: latency
avoidance and latency tolerance. The latency tolerance
techniques are aimed at hiding the effect of memory-access
latencies by overlapping computations with communica-
tions or by aggregating communications. The latency
avoidance techniques, also called locality optimization
techniques, are aimed at minimizing memory accesses by
using software and/or hardware techniques to maximize
the reusability of data or instructions at cache levels of
the memory hierarchy. In a SMP system, reducing the total
number of memory accesses is a substantial solution to
reduce cache coherence overhead, memory contention,
and network contention. So, the locality optimization
techniques, i.e., the latency avoidance techniques, are more
demanding than the latency tolerance techniques. In
addition, because instruction accesses are more regular
than data accesses, designing novel data-locality optimiza-
tion techniques is more challenging and more important for
performance improvement.

The objective of this work is to propose and implement
an efficient technique to optimize the data cache locality of
parallel programs on SMP systems. The contributions of
this work are: 1) We propose an effective cache locality
exploitation method on SMP multiprocessors based on
simple runtime information, which is complimentary to
compiler optimizations. To our knowledge based on the
existing literature, our design method and its implementa-
tions on SMPs are unique. 2) Abstracting the estimated
physical memory-access patterns of program loops into
internal data structures, we are able to partition and
schedule parallel tasks by optimizing cache locality of the
program. 3) We have built an application programming
interface (API) to collect simple program hints and
automatically generate memory-layout oriented parallel
programs for users.

1.1 The Problem

In a SMP system as shown in Fig. 1, each processor has a
hierarchy of local caches (such as the on-chip cache and the
off-chip cache in the figure) and all the processors share a

global memory. When a processor accesses its data, it first
looks up the cache hierarchy. If the data is not found in
caches, the processor reads the memory block that contains
the required data from the shared memory and brings a
copy of the memory block in an appropriate cache block in
the cache hierarchy. Data is copied into the cache hierarchy
so that the subsequent accesses to the data can be satisfied
from the cache and memory accesses can be avoided. The
cache locality optimization is aimed at optimizing the
cache-access pattern of an application so that memory
accesses can be satisfied in the cache as often as possible (or
in other words, cache data can be reused as much as
possible). To increase the chance of cache data to be reused,
we must reduce the interference that would replace or
invalidate the cache data. In a SMP system, there are two
types of interference that would affect the reuse of cache
data: the interference from the local processor which refills
a cache block with new data, and the interference from a
remote processor which invalidates stale data copies to
maintain data consistency. The two types of interference in
a parallel computation are determined by how the data is
accessed in the computation, called the data-access pattern,
and how the data is mapped into a cache, called the cache-
mapping pattern. Hence, it is essential for a cache locality
optimization technique to obtain and use the information
on the data-access pattern and the cache-mapping pattern
of a parallel program.

The data-access pattern of a program is determined by
program characteristics. Because the compilation time of an
application is not a part of its execution time, a compiler can
use sophisticated techniques to analyze the data-access
pattern of a program. However, there is a large class of real
world applications whose data-access patterns cannot be
analyzed at compile-time. The data-access patterns of many
of these functions are dependent on runtime data. In
addition, many real-world applications have indirect data
accesses [22], which are difficult for a compiler to analyze.
For example, pointers may point to different objects during
the execution of a program, and the subscripts of an array
variable may be given by another array variable. The
existence of these complicated applications recommands
runtime techniques for analyzing data-access patterns.

In Fig. 2, we present a sparse matrix multiplication
algorithm where two sparse source matrices have dense
representations. In the innermost loop, the two elements to
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be multiplied, A[k] and B[r], are indirectly determined by
the data in indexing arrays Arow, Acol, Bcol, and Brow.
The data-access pattern of this program can only be
determined at runtime when input data is available.

1.2 Comparisons with Related Work

Because the cache locality of an application is affected by
program characteristics, by parallel compilation methods,
by the interference of the underlying operating system, and
by the architectural features of the cache, many locality
exploitation methods have been proposed to improve the
memory performance of applications at different system
levels (see, e.g., [2], [4], [6], [8], [10], [11], [12], [13], [14], [15],
[16], [20], [25]).

At compilation phase, the main idea of locality optimiza-
tion techniques is to conduct two types of transformations:
program transformations and data layout transformations.
Some program transformation-based techniques use a data-
reuse prediction model to determine a sequence of program
transformations in order to maximize the cache locality of
applications (see, e.g., [11], [14]). These techniques are
control-centric where transformations are mainly con-
ducted based on control flow analysis. The other type of
transformations reorganize program structures based on
data layout (see, e.g., [6], [9]). These techniques are data-
centric in the logic space of a program, and have only been
used on sequential programs so far. Data transformation
based techniques aim at restructuring data layout so that
data locality is optimized (see, e.g., [8], [20]). More recently,
some techniques are proposed to take into consideration
both program transformations and data transformations
(see, e.g., [1], [2]). The success of compiler based transfor-
mations in improving memory performance of applications
depends on static analysis at compiler-time on control flow
and data flow. For applications with irregular and/or
dynamic data access patterns, it is difficult for compiler
based techniques to conduct control flow analysis and data
flow analysis. In this case, runtime analysis is necessary and
important.

Exploiting cache locality at runtime has been done in
loop scheduling. References [12], [13], [25] present dynamic
scheduling algorithms that take into consideration the
affinity of loop iterations to processors. The main idea is
to let each iteration stay on the same processor while it is
repeatedly executed. Although significant performance
improvement can be acquired for some applications, the
type of affinity exploited by this approach is not very
popular because it does not take into consideration the
relationship between memory references of different itera-
tions. Reference [12] does give some consideration to the
data distribution of a loop by allocating iterations close to
their data. In a SMP shared-memory system, all shared data
reside in a unique shared memory where the proposed
method in [12] is not applicable. The proposed technique in
this paper not only takes into consideration the affinity of
parallel tasks to processors, it also uses information on the
underlying cache architecture and memory reference
patterns of tasks to minimize cache misses and false
sharing.

In the design of the COOL language [4], the locality
exploitation issue is addressed using language mechanisms
and a runtime system. Both task affinity and data affinity
are specified by users and then are implemented by the
runtime system. A major limit with this approach is that the
quality of locality optimizations heavily depends on a
programmer. Our proposed technique uses a simple
programming interface for a user or compiler to specify
simple information about data, not about complicated
affinity relations. The affinity relations will be recognized
at runtime.

Regarding the runtime locality optimization of sequen-
tial programs, reference [16] proposes a memory-layout
oriented method. It reorganizes the computation of a loop
based on some simple hints about the memory reference
patterns of loops and cache architectural information.
Compared with a uniprocessor system, a cache coherent
shared memory system has more complicated factors that
should be considered for locality exploitation, such as data
sharing and load balancing. Our proposed memory-layout
oriented method is aimed at attacking the following two
distinct tasks: 1) It uses a more precise multidimensional
hash structure to reorganize tasks so that the task can be
partitioned easily into groups to maximize data reuse in a
group and minimize data sharing among groups. 2) It
dynamically trades off cache locality with parallelism, load
imbalance, and runtime scheduling overhead.

1.3 Models and Notations

The program structures addressed in this paper are nested
loops in applications as shown in Fig. 3 (all the programs
presented in this paper are in C-language format consistent
with the C-language implementation of our runtime
system). In Fig. 3, lj and uj are the lower bound and upper
bound of loop index variable ij for j � 1; 2; � � � ; k�k � 1�,
which are usually functions of the outer loop index
variables, i1; i2; � � � ; ijÿ1, and are determined at runtime.
The loop body B is a set of statements where the statements
can also be loops. An execution instance of the loop body B
can be considered as a fine-grained task, which can be
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Fig. 2. A Sparse Matrix Multiplication (SMM) which has a dynamic data-
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expressed as B(t1; t2; � � � ; tk), where tj is the value of index
variable ij for j � 1; 2; � � � ; k.

The condition that the above nested loop must satisfy is
defined as follows: All the execution instances of the loop
body B are data-independent, i.e., for any two instances,
B(t11; t

1
2; � � � ; t1k) and B(t21; t

2
2; � � � ; t2k), the following condition is

valid:

out�B�t11; t12; � � � ; t1k�� \ out�B�t21; t22; � � � ; t2k�� � ; ^
out�B�t11; t12; � � � ; t1k�� \ in�B�t21; t22; � � � ; t2k�� � ; ^
in�B�t11; t12; � � � ; t1k�� \ out�B�t21; t22; � � � ; t2k�� � ;;

�1�

where notations out and in represent, respectively,
the output variable set and input variable set of an
instance [22].

The rest of the paper is organized as follows: The next
section describes our runtime optimization technique in
detail. Section 3 presents our performance evaluation
method. The performance results are given in Section 4.
Finally, we conclude our work in Section 5.

2 RUNTIME CACHE LOCALITY EXPLOITATION

METHOD

A runtime system should be highly effective in order to
prevent the benefit of cache locality optimizations from
being nullified by the associated runtime overhead. Thus, a
simple and heuristic runtime approach is the only realistic
choice.

The basic idea of our method is to group and partition
tasks through shrinking and partitioning the memory access
space of parallel tasks. Shrinking the memory access space
is to group tasks that have shared data accessing regions.
These tasks are expected to reuse data in a cache when they
execute as a group. Partitioning the memory access space is
to divide tasks into several partitions so that tasks
belonging to different partitions have minimal data sharing
among their memory access regions. Finally, task partitions
are adaptively scheduled to execute on the multiprocessor
system for possible load balance, subject to minimize the
execution time of the tasks. This runtime approach is
primarily memory-layout oriented.

Our runtime technique has been implemented as a set of
library functions. Fig. 4 presents a framework of the system.
A given sequential application program is first transformed
by a compiler or rewritten by a user to insert runtime
functions. The generated executable file is encoded with
application-dependent hints. At runtime, the encoded
functions are executed to fulfill the following functional-
ities: estimating the memory-access pattern of a program,

reorganizing tasks into cache affinity groups where the
tasks in a group are expected to heavily reuse their data in
the cache, partitioning task-affinity groups onto multiple
processors so that data sharing among multiple processors
is minimized, and then adaptively scheduling the execution
of tasks.

In order to minimize runtime overhead, a multidimen-
sional hash table is internally built to manage a set of task-
affinity groups. Meanwhile, a set of hash functions are
given to map into an appropriate task-affinity group in the
hash table. Locality oriented task reorganization and
partitioning are integratedly done in the task mapping.
This section describes our information estimation method,
internal data structures for task reorganization and parti-
tioning, and our task scheduling algorithm.

2.1 Memory-Access Pattern Estimation

In a loop structure, data is usually declared and stored as
arrays. Let A1; A2; � � � ; An be the n arrays accessed in the

loop body of a nested data-independent loop. Each array is
usually laid out in a contiguous memory region, indepen-
dent of the other arrays. Many operating systems attempt to
map contiguous virtual pages to cache blocks contiguously,
so that our virtual-address-based study is practically
meaningful and effective. In rare cases, an array may be
laid out across several uncontiguous memory pages.
Although our runtime system may not handle these rare
cases efficiently, the system works well for most memory
layout cases in practice.

The memory regions of the n independent arrays can be

represented by an n-dimensional memory-access space,
expressed as �A1; A2; � � � ; An�, where arrays are arranged in
any selected order by a user. This n-dimensional memory-
access space practically contains all the memory addresses
that are accessed by a loop.
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In order for the runtime system to capture the memory
space information, the following three hints are provided
by the interface.

Hint 1. n, the number of arrays accessed by tasks.

Hint 2. The size in bytes of each array. Based on this, the
runtime system maintains a Memory-access Space Size
vector �s1; s2; � � � ; sn�, denoted as the MSS vector, where
si is the size of ith array �i � 1; 2; � � � ; n�.

Hint 3. The starting memory address of each array. From this,
the underlying runtime system constructs a starting
address vector �b1; b2; � � � ; bn�, denoted the SA vector,
where bi�i � 1; 2; � � � ; n� is the starting memory address
of ith array.
Hint 1 is static and can be collected at the user or

compiler level. Hint 2, the array size, may be static and is
known at compiler-time, or dynamic and is determined at
runtime. Hint 3, the starting addresses, are dynamic
because memory addresses can only be determined at
runtime.

After determining the global memory-access space of a
loop, we need to determine how each parallel iteration
accesses the global memory-access space so that we can
reorganize them to improve memory performance. Here,
we abstract each instance of a loop body of a parallel loop as
a parallel task. The accessing region of a task in an array is
simply represented by the starting address of the region. So,
the following hint is provided by the runtime system.

Hint 4. A memory-access vector of task tj:

�aj1; aj2; � � � ; ajn�;
where aji is the starting address of the referenced region on
ith array by task tj �i � 1; 2; � � � ; n�. In some loop structures,
a parallel iteration may not contiguously access an array so
that the access region may not be precisely abstracted by the
starting address. In this case, the loop iteration should be
further split into smaller iterations so that each iteration
accesses a contiguous region on each array. In addition, the
following hint is also provided to assist task partitioning.

Hint 5. p, the number of processors.
Based on the above hints, the memory-access space of the

loop is abstracted as an n-dimensional memory-access
space:

�b1 : b1 � s1 ÿ 1; b2 : b2 � s2 ÿ 1; � � � ; bn : bn � sn ÿ 1�:
Task tj is abstracted as point �aj1; aj2; � � � ; ajn� in the

memory-access space based on the runtime estimation on
its memory-access pattern. Fig. 5 presents an example of the
abstract representation of the memory accesses based on the
physical memory layout of arrays A and B in the SMM given
in Fig. 2. Fig. 5a gives the hints on the memory-access space.
Fig. 5b illustrates the memory layout of two arrays where B
and A are laid out at starting address 100 and 1,000,
respectively. Each array element has size of 8 bytes. Then,
the memory-access space is represented by a 2D space as
shown in Fig. 5c where each point gives a pair of possible
starting memory-access addresses on A and B, respectively,
by a task. For example, t(1,000, 100) means task t will
access array A at starting memory address 1,000, and access
array B at starting physical address 100.

2.2 Task Reorganization

In the memory-access space, same or nearby task points
access the same or nearby memory addresses. So, grouping
nearby tasks in the memory-access space for execution take
advantage of temporal locality and spatial locality of
programs. This is achieved by shrinking the memory-access
space based on the underlying cache capacity (size).

Let fti�ai1; ai2; � � � ; ain�ji � 1; 2; � � � ;mg be a set of m data
independent tasks of a parallel loop, and �b1 : b1 � s1 ÿ
1; b2 : b2 � s2 ÿ 1; � � � ; bn : bn � sn ÿ 1� be the memory-access
space of the parallel loop. Conceptually, task ti (i=1, � � � , n)
is mapped onto point �ai1; ai2; � � � ; ain� in the memory-access
space based on the starting memory addresses of their
memory-access regions. In addition, let p be the number of
processors and C be the capacity of the underlying
secondary cache in bytes.

Task reorganization consists of two steps. In the first
step, the memory-access space �b1 : b1 � s1 ÿ 1; b2 : b2 � s2 ÿ
1; � � � ; bn : bn � sn ÿ 1� is shifted to origin point (0; � � � ; 0) by
subtracting �b1; b2; � � � ; bn� from the coordinates of all task
points. In the second step, we use the equal-shrinking
method to shrink each dimension of the shifted memory
by fC=n. The n-dimensional space resulted from shrinking
is called a n-dimensional bin space. Here, f is a weight
constant in �0; 1�. When f � 1, the cache is fully utilized,
otherwise the cache is partially used for the tasks. This gives
an alternative to tune program performance. In the bin
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Fig. 5. Memory-access space representations of the SMM program.
(a) Hints on memory layouts of two accessed arrays. (b) Physical
memory layout. (c) A 2D memory-accessing space.



space, each point is associated with a task bin which holds

all the tasks that are mapped into it.
In Fig. 6, the shrinking procedure of the memory-access

space is exemplified by the 2D memory-access space given

in Fig. 5. Before shrinking, the original memory-access

space is shifted to origin point �0; 0� (see Fig. 6b). The

shifting function is shown in Fig. 6b. Then each dimension

of the shifted memory-access space is shrunk by C/2 into a

new 2D bin space in Fig. 6c. The tasks in the shadow square

in Fig. 6b would not access larger space than the cache size,

and are mapped onto one point in the bin space. All the

tasks in a bin can be grouped together to execute.

2.3 Task Partitioning

After shrinking the n-dimensional memory-access space,

tasks have been grouped based on locality affinity

information in an n-dimensional bin space. Task partition-

ing is aimed at partitioning the n-dimensional bin space

into p partitions (p is the number of processors and each

partition is an n-dimensional polyhedron) by achieving:

1. Optimally partitioning tasks into p parties:
P1; P2; :::; Pp so thatX

�1�i;j�p�^�i6�j�
jsharing�Pi; Pj�j

is minimized, where sharing�Pi; Pj� is called sharing

degree measured by the boundary space among the

partitions. This optimization is aimed at minimizing

cache coherence overhead.
2. Balancing the task volumes among p partitions.

The major function of partitioning an n-dimensional bin

space Bn�0 : L1; 0 : L2; � � � ; 0 : Ln� is to find a partitioning

vector ~k�k1; k2; � � � ; kn� so that the above two conditions are

satisfied. Because finding an optimal partitioning vector is

an NP-complete problem, we propose a heuristic algorithm

based on the following partitioning rules. Detailed proofs

can be found in [24].

Theorem 1. Ordering Rule. For a given partitioning vector
~k�k1; k2; � � � ; kn� not in decreasing order, by sorting ~k in
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Fig. 6. Equally shrinking a memory-access space. (a) Abstract 2D memory-access space. (b) Shifting memory-access space by function
f1 : f1�x; y� � �xÿ 1; 000; yÿ 100�; (c) Shrinking memory-access space by function f2 : f2�x; y� � �x=1; 000; y=100� on a cache of 200 bytes.



decreasing order, the sharing degree of the resulting vector is at
least as low as that of ~k.

Theorem 2. Increment Rule 1. For an n-dimensional bin space
Bn, and parti t ioning vectors ~k�k1; k2; � � � ; ki; ki�1 �
q; 1; � � � ; 1� and ~k0�k1; k2; � � � ; ki � q; ki�1; 1; 1; � � � ; 1�; where
q > 1, ~k has smaller shared data regions than that of ~k0 if and
only if

ki � Li�1 > ki�1 � Li:

Corollary 1. Increment Rule 2. For an n-dimensional bin space
Bn, and partitioning vectors ~k�k1; k2; � � � ; ki; ki�1; 1; � � � ; 1�
and ~k0�k1; k2; � � � ; ki � ki�1; 1; 1; � � � ; 1�, where ki�1 > 1, ~k has
smaller shared data regions than that of ~k0 if and only if

ki � Li�1 > �Li:

Based on the above three rules, we design an efficient
heuristic algorithm as follows:

1. Factoring p, the number of processors, we generate

all the prime factors of p in decreasing order.

Assume that there are q prime factors :

r1 � r2 � � � � � rq. Initially, the n-dimensional parti-

tioning vector ~k, stored in k�1 : n�, is (1; 1; � � � ; 1) for

the bin space Bn�0 : L1; 0 : L2; � � � ; 0 : Ln�.
2. Let index last be a chosen position in k�1 : n� where

k�i� > 1 for i < last and k�i� � 1 for i � last. Initially,

last � 1. For each prime factor rj where j increases

from 1 to q, do the following:

a. When (last � n), use the increment rule 2 to
determine whether rj should be put in k�last�.
Based on the ordering rule, the best place to put
rj must be in k�1 : last�. So, we use increment
rules to find a better place in k�1 : last�. If so, last
is increased by 1 and go back; otherwise, use the
increment rule 1 to put rj together with k�lastÿ
1� or k�lastÿ 2�, then reorder k�1 : lastÿ 1� in
decreasing order and go back.

b. Otherwise, use the increment rule 1 to put rj
together with k�lastÿ 1� or k�lastÿ 2�, then
reorder k�1 : lastÿ 1� in decreasing order and
go back.

The above algorithm has a computational complexity
O�n� ���

p
p �. After the determination of a partitioning vector,

the bin space is partitioned into multiple independent
spaces that are further reconstructed in an �n� 1�-dimen-
sional space. An example of this procedure is shown in
Fig. 7, where the bin space produced in Fig. 6 is partitioned
by vector (2; 2). The partitions in Fig. 7a are first
transformed into four independent spaces in Fig. 7b, which
are further transformed into a 3D space shown in Fig. 7c.
The 3D space in Fig. 7c is implemented as a 3D hash table
where task bins in each partition are chained together to be
pointed by a record in a Task Control Linked (TCL) list. The
hashing of tasks into the hash table is performed by the
space transformation functions. For detailed information of
these functions, the interested readers may refer to [24].

2.4 Locality-Preserved Adaptive Scheduler

The dynamic scheduler in the runtime system is aimed at
minimizing the parallel computing time of a set of data-

independent tasks created in the task reorganization step.
The task groups generated in the task reorganization step
are locality oriented. This may not guarantee that all the
partitions in the second step have the same execution time,
due to the following possible reasons:

1. Irregular data access patterns of programs will
generate different amount of tasks in each partition;

2. irregular computation patterns will directly result in
different execution times among the partitions;

3. possible interference of a paging system in the
operating system will also generate different amount
of tasks in each partition; and

4. different data locality exploited in different parti-
tions may speed up their executions at different
rates.

The scheduling problem of parallel loops in shared
memory systems has been studied in a wide range (e.g, [13],

[17], [25]). In [25], we proposed an adaptive algorithm to
balance workload among multiple processors while ex-
ploiting the affinity of parallel tasks to processors, which
was shown to outperform many existing algorithms for a
wide range of applications. The task scheduling problem

here is different from the traditional loop scheduling
problem, because the tasks are locality dependent. To
schedule a set of locality dependent tasks, the scheduler
must take advantage of the locality exploited in the task
reorganization phase as much as possible, while balancing

workload to minimize the parallel computing time. Here,
we extend our linearly adaptive algorithm proposed in [25]
to address this issue in the runtime system. The extended
algorithm is called the Locality-preserved Adaptive Sche-
duling algorithm, denoted as LAS. Because the number of

processors in the targeted SMP system is in the range of
small scale to medium scale, the linearly adaptive algorithm
is aggressive enough to reduce synchronization overhead.

Initially, the ith task group chain in the TCL list is
considered as the local task chain for processor i, for i �
1; 2; � � � ; p (p is the total number of processors). This initial

allocation maintains the minimized data sharing among
processors. The remaining number of tasks in the local
chain of processor i is tracked by the corresponding TCL
counter variable, denoted as Counti, which is used in the
LAS algorithm to estimate load imbalance, just like what the

processor speed variables do in [25]. However, the TCL
counter variables are different from the processor speed
variables. A processor speed variable records the number of
tasks that have been finished in the corresponding
processor, which can precisely estimate how many tasks

remain in the processor because the tasks are evenly
partitioned among processors initially. It does not work in
the runtime system, because the task chains in the TCL list
may contain imbalanced numbers of tasks. In addition, each
processor has a chunking control variable of initial value of

p, denoted Ki for processor i, to determine how many tasks
to be executed at each scheduling step.
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The LAS algorithm still works in two phases: the local

scheduling phase and the global scheduling phase. How-

ever, it considers a task group as a minimal schedulable

unit, never breaking up the tasks in a group. The LAS

algorithm can take good advantage of locality-oriented task

assignments while achieving a good load balance because

the tasks are usually fine-grained. All the processors start at

the local scheduling phase. The algorithm is described for

processor i�i � 1; 2; � � � ; p� as follows.

Local scheduling. Processor i first calculates its load status

relative to the other processors as follows:

heavy if Counti >
Xp
j�1

Countj=p� � �2�

light if Counti <
Xp
j�1

Countj=pÿ � �3�

normal otherwise: �4�
Here, � is dPp

j�1 Countj=p�=�2p�e, which decreases with

execution to control the load distribution more closely.
During the above computation, if the number of

remaining tasks in one processor's local chain is found to

be 0, i.e., 9j2�1;p��Countj � 0�, processor i sets its chunking

control variable, Ki, to p, then goes to the global scheduling

phase. Otherwise, processor i linearly adjusts its chunking

control variable according to its load status as follows:

Ki �
maxfp=2; Ki ÿ 1g if its load is light

minf2p;Ki � 1g if its load is heavy

Ki otherwise:

8><>: �1�
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space of each partition. (c) 3D internal representation of the memory access space.



The varying range �p=2; 2p� for the chunking control
variables has been shown to be safe for balancing the load
[13], [17], [25]. Then processor i gets the following number
of task groups from its local chain:

dCounti=�Ki � gs�e;
where gs is the size of a task group. Having finished the
allocated tasks, processor i goes back to repeat the local
scheduling.

Global scheduling. First, processor i always gets
Counti=�Ki � gs� groups of tasks from its local task
chain to execute until its local task chain is empty. Then,
processor i gets 1=�Ki � gs� groups of the remaining
tasks in the local task chain of the most heavily loaded
processor until all the processors empty their local task
chains.
In the local scheduling phase of the LAS algorithm, tasks

are executed in a bin-by-bin order. Only when a processor is
trying to help some processors in the global phase are tasks
in a bin allocated by groups to execute remotely. In the
global scheduling phase, emphasis is put on load balancing.

2.5 The Application Programming Interface (API)

The interface functions are mainly used to provide applica-
tion-dependent hints for the run-time system. The current
system is implemented in C language. The API of the
system is simple, and consists of the following three
functions:

1. void cacheminer_init(int csize, float f,
int p, int n, long s1, void � b1, � � � , long sn, void
� bn). This function provides the following types of
hints:

. Cache size csize gives the size in Kbytes of the
secondary cache on each processor.

. Task control parameter f is a floating point
number in �0; 1�, giving the usage percentage of
a cache to cluster tasks.

. p is the number of processors.

. n is the total number of arrays, on which hints
are provided.

. Hints on arrays are given in pairs. Each pair of sj
and bj (j � 1; 2; � � � ; n�, give respectively the size
and the starting physical addresses of a refer-
enced array by tasks. All the arrays are arranged
in a user-defined order. (There is no specific
requirement on the array order.)

Based on the information provided by this
function, the runtime system builds a �n� 1�-
dimensional hash structure.

2. task_create(void (� fun), int m, int t1, � � � ,
int tm, void �a1, � � � , void �am). This function
creates a task with its computing function, denoted
as void fun (t1, t2; . . . ; tm), and carries hints
a1; a2; :::; am on the access pattern of the task into
the runtime system. Here ai (i � 1, � � � , m) is the
starting access address of the task on the ith array.

If the number of hints, m, is larger than the
number of hinted data arrays, n, only the first n hints
are used. This flexibility would allow a task function

to have a larger number of parameters than that of
the accessed data arrays. However, m cannot be
smaller than n, which is easily achieved in program-
ming by using dummy parameters in a task
function. The order of hints here must be the same
as that of those hints presented in cacheminer_-

init, i.e., aj, sj, and bj are hints on the same array
for j � 1; 2; � � � ; n.

3. void task_run(int repeat)This function starts
the runtime system to execute the tasks in the hash
structure in parallel. If the tasks are going to execute
at second time, the variable repeat is set to 1 so that
the runtime system can keep the hash structure in
order to eliminate the overhead of rebuilding it. In
this situation, the runtime system exploits cache
locality by using existing partitions of tasks. Other-
wise, the variable repeat is set to 0.

2.6 Classifications of Application Programs

In order to reflect all types of applications while not getting
into exhaustive investigation which is not necessary, we

classify applications based on three factors: computation
pattern, memory-access pattern, and data-dependence
pattern. Computation patterns can be classified as two
types: regular, where the computation tasks of an applica-

tion are naturally balanced, and irregular, where the
computation tasks of an application are not naturally
balanced. Furthermore, memory-access patterns and data-
dependence patterns can be respectively classified into

static patterns that can be determined at compile-time, and
dynamic patterns which can not be determined at compile-
time. Intuitively, based on these patterns, applications can
be classified into eight possible types. However, the
computation pattern, the memory-access pattern, and the

data-dependence pattern interact one another. Usually,
when an application has a dynamic memory-access pattern
or a dynamic data-dependence pattern, it has an irregular
computation pattern. In addition, the memory-access

pattern of an application is affected by its data-dependence
pattern. When the data-dependence pattern can not be
determined at compile-time, its memory-access pattern
must not be determined, either. Considering these effects,

applications finally fall into the following four types, listed
in increasing difficulty degree for locality optimization.

. Type 1. Applications with regular computation
patterns, static memory-access patterns, and static
data dependence.

. Type 2. Applications with irregular computation
patterns, static memory-access patterns, and static
data dependence.

. Type 3. Applications with irregular computation
patterns, dynamic memory-access patterns, and
static data dependence.

. Type 4. Applications with irregular computation
patterns, dynamic memory-access patterns, and
dynamic data dependence.

Based on the above classification, we choose each

benchmark from the first three application types that fit
into our programming model. For the most difficult
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applications in Type 4, our technique can also be used to

improve memory performance by combining some data-

dependence detection techniques. Next, we will show how

to use the Cacheminer to rewrite ordinary C programs to

exploit different types of cache localities in a SMP system.

These applications are used to evaluate the runtime system.

2.6.1 Programming Examples

The first program is dense matrix multiplication (DMM)

with a regular memory access pattern, which belongs to
program Type 1. The sequential program and its paralle-

lized version on the runtime system are presented in Fig. 8.
The array B is assumed to have been transposed so that the

cache locality of the sequential program is optimized. In the
parallelized version, the innermost loop is treated as a task

function with two parameters, i and j. The two outer loops
are data independent, which create N2 tasks with the same

computation load. Each task reads, respectively, a row of A

and B.
The second application is adjoint convolution (AC),

which belongs to program Type 2. The sequential program

is given on the left in Fig. 9. The outer loop is data

independent and the inner loop is data dependent. So, we

parallelize the outer loop by creating N �N tasks, each task

executes the inner loop. The parallelized version on the

Cacheminer system is shown on the right in Fig. 9. Each

task accesses respectively a contiguous partion of arrays B

and C. Different tasks have different sizes of work sets so

that the tasks have imbalanced load. Hence, cache locality

must be traded off with load balance to minimize parallel

execution time. This application is more difficult than the

DMM for a compiler to exploit its cache locality.
The third application is Sparse Matrix-Matrix (SMM)

multiplication with dense representation, which belongs to
program Type 3. The elements of two source matrices are
input at runtime. To simplify the presentation, we assume
that two source M �M sparse matrices have been stored in
one-dimensional arrays, A and B, respectively. The elements
in A are stored by rows and the elements in B are stored by
columns. Array Arow gives the position in A of the first
nonzero element of each row for the first source matrix.
Array Acol gives the column number of each nonzero
element in A. Similarly, array Bcol gives the position in B of
the first nonzero element of each column for the second
source matrix. Array Brow gives the row number of each
element in B. The sequential sparse matrix multiplication is
described on the left side of Fig. 10. The two outer loops are
data independent and are parallelized on the runtime
system as described by the program presented on the right
side of Fig. 10. The created tasks have irregular memory
access patterns so that tasks have an imbalanced workload,
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Fig. 8. Dense matrix multiplication: the sequential program is given on the left and the parallelized version on the runtime system is given on the right.

Fig. 9. Adjoint convolution (AC): the sequential program is given on the left and the parallelized version on the Cacheminer system is given on the

right.



which is closely related to the input matrices. The elements

of arrays A and B accessed by each task are determined at

runtime. This application is hard for a compiler to exploit

cache locality. In our experiments, two sparse matrices, A

and B, are set to have 30 percent nonzero elements, which

are randomly generated from a uniform distribution.

3 PERFORMANCE EVALUATION METHOD AND

ENVIRONMENTS

This section introduces our performance evaluation method

and evaluation environments. The runtime system was first

implemented and tested on an event-driven simulator built

on MINT [21]. The preliminary results were reported in

[26]. We have recently implemented the system on an

SimOS simulated SMP, a much more reliable environment

for performance evaluation. We have also measured the

performance of the system on two commercial SMP multi-

processors.

3.1 Evaluation Method and Metrics

The performance evaluation of the runtime system was

conducted using simulation and measurement. Simulation

was used to study the effectiveness of the runtime system in

exploiting the cache locality of applications with respect to

the changes of the cache miss rate, bus traffics, execution

time, and cache interference. Measurements were used to

further verify the effectiveness of the runtime technique on

given commercial SMP systems. Miss rate, load coefficiency

(i.e., the ratio of deviation to mean), and execution time are

three metrics used in the performance evaluation. Cache

misses are classified as the following three types:

Compulsory misses. Misses caused by reads or writes on

data that have never been brought into the cache before.

Replacement misses. Misses caused by reads or writes on

data that were brought into the cache but replaced by

other block data at the most recent time.

Coherence misses. Misses caused by reads or writes on

data that were brought into the cache but invalidated by

other processors at the most recent time.
The total number of the first two types of misses is a

good measure of the data reuse in caches. The last type of

misses evaluate the data sharing degree among processors.
The selected benchmark programs are the DMM, the AC,

and the SMM, which are described in Section 2.6.1. Their

optimized versions, which exploit locality on the runtime

system, are denoted as DMM_LO, AC_LO, and SMM_LO,

respectively. We parallelized the three programs by using

well-known compiler optimizations or runtime techniques

as follows:

1. For the dense matrix-matrix multiplication program,
we used the sequential block algorithm proposed by
Wolf and Lam [23]. This algorithm has been shown
to effectively exploit cache locality. The locality of
the block algorithm is further improved by transpos-
ing one matrix so that the innermost loop accesses
contiguous memory regions on the two arrays.
Based on this transposed block algorithm, a paralle-
lized algorithm, denoted as DMM_WL presented in
Fig. 11, is given by uniformly partitioning computa-
tions on multiple processors, so that good load
balance is achieved.

2. For the adjoint convolution program, each iteration
of the outermost loop accesses a contiguous segment
of arrays A and C, respectively. In order to
investigate the effect of locality optimization, we
assume that arrays A and C are too large to fill in a
cache. Two iterations of the outer loop that have
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closer values of index i have larger overlap between
their data sets. From the standpoint of optimizing
cache locality, the AC program should be paralle-
lized by using the blocking technique to chunk the
outermost loop. By this, each processor will be
allocated with a set of adjacent outermost iterations.
Because the iterations of the outermost loop have
decreasing workload as index i decreases, a vary-
ing-sized blocking technique should be used to
optimize both locality and load balance. For any
given N and the number of processors, it is difficult
or impossible to choose a set of different block sizes
to balance load among processors. Here, we have
integrated several compiler optimizations to solve
this problem. At first, we equally split the outermost
loop into two loops and reversed the computations
of the second loop, as shown in Fig. 12b. Then, the
second loop was aligned and fused with the first
loop to make a new loop with balanced iterations,
which is illustrated by Fig. 12c and Fig. 12d. The new
loop can be equally blocked onto multiple proces-
sors to maintain both load balance and cache

locality. By comparing with this parallel program,
denoted AC_BF, we evaluated the quality of our
runtime technique which optimizes load balance
and exploits cache locality.

3. The SMM program has an irregular memory access
pattern that is determined by runtime input data.
This type of application is very hard for compiler-
based techniques to effectively conduct partition and
cache locality optimization. Here we use the linearly
adaptive scheduling technique, proposed in [25], to
schedule the executions of parallel iterations in the
SMM where parallel iterations are initially created as
parallel tasks in multiple task queues. The adaptive
runtime scheduling technique has been shown to
outperform previous runtime scheduling techniques
for imbalanced parallel loops [25]. Hereafter, We
denote this parallelized version as SMM_A.
Although the SMM_A has a similar execution
procedure to the SMM_LO, three significant differ-
ences are: 1) Initially, the SMM_LO groups and
partitions tasks with the objective of minimizing
data sharing between partitions and maximizing
data reuse in a partition. The SMM_A just cyclically
puts tasks in local queues of processors. The
SMM_LO has higher runtime scheduling overhead
than the SMM_A. 2) Although both the SMM_LO
and the SMM_A use the linearly adaptive schedul-
ing algorithm, the scheduling in the SMM_LO is
locality-oriented, which has a better chance to
reduce its number of memory accesses. Compared
with the SMM_A, the SMM_LO is expected to
further reduce execution time by optimizing mem-
ory performance on modern computers.

The last issue is how to select the problem sizes of the

tested programs. Because our goal is to evaluate the

effectiveness of the runtime system in exploiting cache

locality, we select the problem sizes based on the under-

lying cache size so that the data set of a program is too large
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Fig. 11. A well-tuned parallel version of the DMM program published in

[23]. Here, pid is a thread id of value from 0 to p-1. p is the number of

threads.

Fig. 12. A well-tuned parallel version of the AC application. (a) Original AC. (b) Splited AC with reversed execution order in the second loop. (c) Align

the second loop with the first loop. (d) Fused AC.



enough for the cache to hold. In order to shorten simulation
time without losing the confidence of simulation results, we
selected relatively small problem sizes for the programs. We
scaled down the cache size accordingly for these programs.
These selections can prevent the advantage of the runtime
system from being shadowed by hardware caches, because
on a given commercial system, cache capacity is fixed but
the problem size of an application varies.

3.2 The SimOS Simulation Environment

The SimOS [18] is used to simulate a bus-based cache
coherent SMP system. SimOS is a machine simulation
environment developed by Stanford University. SimOS
simulates the complete hardware of a computer system
booting a commercial operating system and running a
realistic workload, such as our application programs
supported by the Cacheminer runtime system, on top of
it. The simulator contains software simulation of all the
hardware components of a computer system: processors,
memory management units, caches, memory systems, as
well as I/O devices such as SCSI disks, Ethernets, hardware
clocks, and consoles. The current version of SimOS
simulates the hardware of MIPS-based multiprocessors to
run Silicon Graphics' IRIX operating system. The cache
coherence protocol of the simulated SMP is write-
invalidate.

The simulated SMP is very similar to popular commer-
cial SMPs. The simulated SMP consists of a number of 200
MHz R10000 processors, each of which has 8 KB instruction
cache, 8 KB data cache, and a unified 64 KB L2 cache. The
size of the memory is set to 64 MB. The access times to L1,
L2 caches and the shared-memory are 2, 7, and 100 cycles,
respectively. As the memory size is scaled down eight
times, so is the workload. This has significantly reduced the
simulation time.

3.3 HP/Convex S-class and Sun Hyper-SPARC
Station-20

The HP/Convex S-class [3] is a crossbar-based cache
coherent SMP system with 16 processors, while the Sun
Hyper-SPRACstation-20 is a bus-based cache coherent SMP
system with four processors. The architectural differences
of these two SMP systems provide the runtime system with
different opportunities/challenges to improve the perfor-
mance of applications.

The HP/Convex S-class has 16 PA8000 processors of 720
peak MFLOPS. A PA8000 is a four-way super-scalar RISC
processor, supporting 64-bit virtual address space, which
operates at 180MHz. A PA8000 processor has a single level
primary cache with separate instruction cache and data
cache of size 1 Mbytes each. The cache is direct-mapped
using a write back policy, which has cache line size of 32
bytes and cache hit time of three cycles (about 16.7
nanoseconds). Cache coherence is maintained by a dis-
tributed directory-based hardware cache coherent protocol.
The S-class has a pipelined, 32-way interleaved shared
memory of eight memory boards, which is interconnected
with processors by a 8� 8 nonblocking crossbar. The data
path from the crossbar to the memory controller is 64-bits
wide and operates at 120 MHz. The access latency of a
32-byte cache line from the shared memory to a cache is

509 nanoseconds. The ratio of cache miss time to cache hit
time is about 30.

Our Sun Hyper-SPARCstation-20 has four hyperSPARC
processors operating at 100MHz. Each processor has a two-
level cache hierarchy: a 64 Kbyte on-chip cache and a
256 Kbyte virtual secondary cache where the cache line size
is 64 bytes. Compared with the S-class, the larger cache line
of the Hyper-SPARCstation-20 exploits better spatial lo-
cality for applications. The cache hit time is about 300
nanoseconds. A cache miss time is about 13,360 nanose-
conds. The ratio of cache miss time to cache hit time is about
36. Cache coherence is maintained by the well known bus-
based snooping protocol.

Compared with HP/Convex S-class with respect to
instructions issuing rate and memory access latency, the
Sun Hyper-SPARCstation-20 is much slower. In measure-
ment, we focused on the comparisons of relative perfor-
mance results.

4 PERFORMANCE EVALUATION

4.1 Simulation Results

The architectural parameters of the simulation are shown in
Table 1. The selected array sizes of programs DMM, AC,
and SMM are 256 � 256, 16,384, and 512 � 512, respectively,
which correspond to working set sizes 1,536 Kbytes,
384 Kbytes, and about 1,350 Kbytes, respectively. The cache
block size is 32 bytes.

4.1.1 Cache Performance

Table 2 comparatively presents the cache performance of
the parallel programs optimized by different techniques.
Regarding regular program DMM, the locality optimized
parallel version (DMM_LO) using the runtime technique is
10 percent higher than the well-tuned version (DMM_WL)
in the number of cache misses. Both versions had similar
performance with respect to their compulsory misses and
invalidations. As the number of processors increases, the
numbers of compulsory misses and invalidations in both
optimized versions increase, but cache replacement perfor-
mance is also improved. The former is due to the increase in
sharing degree between caches. The latter is due to the use
of more caches. This is consistent with previous research
work. The measured speedup for SMM_A is 1.81, 3.04, and
4.67 on two, four, and eight processors, respectively,
compared with the sequential time of DMM_WL.
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The memory access pattern of the AC program is not as

regular as that of the DMM program. The AC_LO, a locality

optimized version using the runtime technique, is shown to

achieve moderately better cache performance than the

AC_BF, a well-tuned version. The numbers of replacement

misses were improved by the runtime technique. The cache

performance of both parallel versions do not show a

significant change when the number of processors is

increased. This is different from the execution of the

DMM program. The measured speedup of AC_LO is 1.99,

3.94, and 7.73 on two, four, and eight processors,

respectively.
Regarding program SMM, the runtime locality technique

is shown to be highly effective in reducing cache misses.

This reduction is mainly contributed by a significant

reduction in replacement cache misses. Both parallel

versions present similar invalidation performance. These

results show the great potential of optimizing the cache

locality using runtime techniques for applications with

dynamic memory access patterns. The measured speedup

of SMM_LO is 1.88, 3.33, and 5.00 on two, four, and eight

processors, respectively.

4.1.2 Execution Performance and Bus Traffic

In Table 3, the execution performance of different parallel

versions are presented. The overall performance of a

program was measured by its execution time. The perfor-

mance differences between different parallel versions can

be clarified by the differences in bus traffic and load balance

quality.
Regarding program DMM, the DMM_WL slightly out-

performed the DMM_LO. This is mainly because the

DMM_LO had worse load balance and longer data transfer

time. Although the parallel iterations were perfectly

partitioned among multiple processors in the DMM_WL,

slight load imbalance was also observed. Regarding pro-

gram AC, the AC_LO outperformed the AC_BF from

5 percent to 7 percent in terms of execution time. This

improvement was also mainly contributed by certain

reductions in load traffic. The AC_LO had worse load

balance than that of the AC_BF because the AC_LO was

trying to balance load based on pre-grouped tasks.

However, this imbalance does not impact the overall

performance significantly. This also shows that locality

optimization is more important in this case. Regarding

program SMM, the SMM_LO performed much better than

the SMM_A by reducing 8 to 16 percent execution time

using the runtime technique.

4.1.3 Runtime Overhead

Runtime overhead is another important factor which affects

the effectiveness of a runtime technique. In our proposed

runtime technique, runtime overhead is mainly caused by

task organization and task runtime scheduling. The task

organization overhead is affected by the number of tasks

created at runtime and the number of arrays accessed. The

runtime scheduling overhead is affected by the imbalance

in the initial task partition and in the runtime executions of

multiple processors. Table 4 gives the percentage of the

runtime overhead in the total execution time. For both the

DMM_LO and the SMM_LO, the runtime overhead had a

bigger influence on execution performance than the

AC_LO. This difference is mainly due to the difference in

the computation granularities of tasks. The tasks in the
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AC_LO had the largest computation granularity and the
tasks in the SMM_LO had the smallest computation
granularity.

4.2 Measurements

4.2.1 Measurements on HP/CONVEX S-class

Measurement results of the different parallel versions on

HP/CONVEX S-class are presented in Table 5. Regarding

program DMM, the DMM_WL consistently performed a

little bit better than the DMM_LO. The better load balance

in the DMM_WL is a reason for this. For program AC, the

AC_LO performed significantly better than the AC_BF on

two processors. When more processors were applied, the

execution times were close. But, the AC_BF always

balanced loads better due to its perfect initial partition.

But, the load imbalance that occurred in the AL_LO was not

larger than 1 percent. For the SMM, the SMM_LO had

achieved a significant performance improvement over the

SMM_A. This further confirms the effectiveness of the

runtime technique in improving the performance of

applications with dynamic memory access patterns. How-

ever, the SMM_A still achieved better load balance than the

SMM_LO. One reason for this is that the SMM_LO used a

locality preserved scheduling algorithm, which tried to

keep the tasks in a group to execute together on a processor.

This can increase data reuse in a cache. But, it also tended to

cause more imbalance.

Table 5 also gives the runtime overhead of the task

reorganization. Among all the applications, the SMM_LO

had the largest runtime overhead in term of the percentage

in the total execution time, and the AC_LO had the lowest.

This is consistent with the simulation results. As mentioned

before, this is mainly affected by the task granularity.

Regarding the effect of different values of f on perfor-

mance, Table 6 presents the measurement results. For the

DMM_LO, the execution time decreased as f decreased,

resulting in groups with a smaller number of tasks. The

AC_LO is not sensitive to the change of f , which is

consistent with our simulation results. The SMM_LO had

longer execution time when a smaller f was used.

4.2.2 Measurements on HyperSPARC Station-20

Table 7 gives the execution times of the parallel versions on

HyperSPARC station-20, a much slower multiprocessor

workstation than the S-class. The DMM_LO still achieved a

close performance to the DMM_WL, not worse than

9 percent in execution time. The runtime overhead in the

DMM_LO was about 10 percent of its execution time. For

program AC, the AC_LO outperformed the AC_A for

8.5 percent in execution time reduction, although it had

worse load balance. Compared with the SMM_A, the

SMM_LO reduced execution time up to 40 percent. These

measurements are consistent with that on the S-class,

although the absolute performance results are different.

The effects of different values of f are presented in

Table 8. The DMM_LO, the AC_LO, and the SMM_LO

achieved the best performance, respectively, at f = 0.25,

f = 0.5, and f = 1.

5 CONCLUSION

The locality of a program is affected by a wide range of

performance factors. The design of efficient locality-

optimization techniques relies on an insightful
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TABLE 3
Execution Performance and Bus Traffic

All the timing results are given in simulation second; M � 106. Load balance was measured by the division of time derivation by mean time. The
locality optimized programs using our runtime approach use shrinking factor f � 1.

TABLE 4
Runtime Overhead in Percentage of Total Execution Time



understanding of these performance factors. This paper

presents a runtime approach to exploit cache locality on

SMP multiprocessors. We have built a runtime library

including the following three functionalities:

1. Information acquisition, which collects information on
the cache-access pattern of a program. The informa-
tion on the data-access sequence of a program is
essential for locality optimization. Higher precision
in information acquisition is achieved at the cost of
higher runtime overhead.

2. Optimization, which reorganizes the data layout and
execution sequences of a program to maximize data
reuse in caches and to minimize data sharing among
caches.

3. Integration, which trades off locality with other
performance factors to improve overall performance
when the tasks are scheduled on an SMP.

Our locality optimization technique targets applications

with dynamic memory-access patterns. We have shown that

the multidimensional internal structure is effective to

integrate both static and dynamic hints. We have shown

that the runtime overhead is acceptable, which, in most of

our test cases, is not larger than 10 percent of the total

execution time of a program.
We have also shown that there is a good potential for the

runtime locality optimization technique to improve the

performance of application programs with irregular com-

putation and dynamic memory access patterns. The

runtime technique reduces the number of memory accesses

to alleviate increasing demand on memory-bus bandwidth.

In comparison with a regular application which was well-

optimized by compiler-based techniques, we have shown

that the runtime optimizations could perform competitively

as well. Our run-time system was implemented as a set of

simple and portable library functions. It can be conveniently

used by users on commercial SMPs. The run-time system is

not aimed at replacing compiler-based techniques, but at

372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 4, APRIL 2000

TABLE 5
Execution Time (in Seconds) Based Comparison on HP/Convex

S-class

Columns time and overhead, respectively, give total execution time
and task organization overhead in second. Balance presents load
balance measurements in term of the rate of the time deviation to the
mean time. (f = 1).

TABLE 6
The Effect of Different Values of f on Execution Time (in

Seconds) for the DMM_LO and the AC_LO on Four Processors
of HP/Convex S-Class

TABLE 7
Execution Time (in Seconds) Based Comparison on HP/Convex

S-Class

Columns time and overhead, respectively, give total execution time
and task organization overhead in second. Balance presents load
balance measurements in term of the rate of the time deviation to the
mean time. (f=1).

TABLE 8
The Effect of Different Values of f on Execution Time (in

Seconds) for the DMM_LO and the AC_LO on Four Processors
of HyperSPARC Station-20



complementing a compiler to optimize those applications

that are beyond of its optimization capability.
Our runtime technique has the following limits:

. We assume that the array data elements are
contiguously allocated. Many operating systems
attempt to do so. Our experiments using SimOS
with SGI's IRIX operating system also show con-
sistent results. However, if this assumption is not
true in rare cases, a task may access an array in
different memory regions, and the estimation of our
method would not be accurate.

. When the task memory-access space is reduced to
the bin-space by the cache capacity, a uniform scalar
is used in each dimension for the reduction.
However, a task may access different arrays in
different sizes. The reduction by such a uniform
scalar is the cheapest way to predict, but may not
fully use the cache capacity in some cases.

. In some loop structures, a parallel iteration may not
contiguously access an array. In order to fully utilize
the cache, the loop iteration may be split further into
smaller iterations so that each iteration accesses a
contiguous region in each array.

The runtime technique only takes into consideration the

nested loops without data-dependence. In the program

behavior classifications given in Section 2.6, Type 4 has

irregular computational patterns, dynamic memory pat-

terns, and dynamic data-dependence patterns. This type of

program is the most difficult for the locality optimization,

because both the data-dependence and the locality optimi-

zation must be resolved at runtime. We are developing new

methods to address this problem by combining our runtime

technique with some existing methods on data dependence

recognization.
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