
Trust Based Knowledge Outsourcing for Semantic Web Agents ∗

Li Ding
Department of CSEE

UMBC
Baltimore MD,USA
dingli1@umbc.edu

Lina Zhou
Department of Information Systems

UMBC
Baltimore MD, USA

zhoul@umbc.edu

Timothy Finin
Department of CSEE

UMBC
Baltimore, MD,USA

finin@umbc.edu

Abstract

The Semantic Web enables intelligent agents to
“outsource” knowledge, extending and enhancing their
limited knowledge bases. An open question is how
agents can efficiently and effectively access the vast
knowledge on the inherently open and dynamic Seman-
tic Web. The problem is not that of finding a source for
desired information, but deciding which among many
possibly inconsistent sources is most reliable. We pro-
pose an approach to agent knowledge outsourcing in-
spired by the use trust in human society. Trust is a
type of social knowledge and encodes evaluations about
which agents can be taken as reliable sources of infor-
mation or services. We focus on two important practi-
cal issues: learning trust and justifying trust. An agent
can learn trust relationships by reasoning about its di-
rect interactions with other agents and about public
or private reputation information, i.e., the aggregate
trust evaluations of other agents. We use the term
trust justification to describe the process in which an
agent integrates the beliefs of other agents, trust infor-
mation, and its own beliefs to update its trust model.
We describe the results of simulation experiments of
the use and evolution of trust in multi-agent systems.
Our experiments demonstrate that the use of explicit
trust knowledge can significantly improve knowledge
outsourcing performance. We also describe a collab-
orative trust justification technique that focuses on re-
ducing search complexity, handling inconsistent knowl-
edge, and avoiding error propagation.

1. Introduction

In a human society, a person learns part of his knowl-
edge from direct observations and experiences. Much

∗This research was supported in part by DARPA contract
F30602-97-1-0215.

more is acquired through interactions with other peo-
ple, in the form of volunteered assertions, indirect im-
plications, and answers to queries. Individuals often
decide to rely on other individuals as their source of a
particular class of facts, e.g., I use the channel 5 weath-
erman as a reliable source of basic facts about some
meteorological facts. A similar phenomenon occurs in
many multi-agent systems. An agent has direct access
to some information sources (e.g., databases or sensors)
and receives other information through communication
with other agents. Moreover, some agents are designed
to serve the role of providing certain classes of facts
to others. We refer to this situation – that one agent
commits to using another as its source of information
for a class of facts – as knowledge outsourcing.

The emerging Semantic Web, which integrates logi-
cal inference, knowledge representation, and intelligent
software agent technologies [3, 16], introduces the no-
tion of a Semantic Web agent that is intelligent and
capable of outsourcing knowledge resulting in a dis-
tributed agent society. Knowledge outsourcing in Se-
mantic Web agent society consists of three key steps:
understanding, search, and justification. Understand-
ing refers to how an agent interprets and understands
the knowledge obtained from other agents. Search per-
tains to how an agent discovers and selects candidate
knowledge sources. Justification concerns about how
an agent evaluates and justifies the truthfulness and
reliability of acquired knowledge.

Most current semantic web research has focused on
the first of these three steps. The use of explicit ontolo-
gies described in well defined knowledge-based markup
languages like OWL is an approach that directly sup-
ports understanding. The remaining steps, search and
justification, are challenging given the open and dy-
namic nature of the web and are the subject of current
research.

Trust is an important aspect of social interactions
in human society and and potentially in agent soci-

eties as well. Inspired by Marsh [21], we proposed a
approach that uses trust as social heuristic to handle
the complexity and uncertainty involved in knowledge
outsourcing in Semantic Web agent society.

This paper is organized as following: section two dis-
cusses trust in a knowledge outsourcing context; sec-
tion three presents practical trust learning methods
and a trust based justification algorithm; section four
analyzes experimental results; section five reviews re-
lated work; and section six concludes our work.

2. Trust in knowledge outsourcing

Trust has been extensively studied from multi-
ple disciplinary perspectives, including sociology, e-
commerce, multi-agent systems, and security [22, 13,
15, 6]. The Semantic Web brings new opportunities
and challenges to trust research. On one hand, the
machine-understandable knowledge resources freely
available on the Semantic Web provide unparalleled
infrastructure for building trust relationship. On the
other hand, the vast amount of information, including
inconsistent and contradictory information, demands
trust to address the many practical concerns.

We begin by outlining characteristic features of trust
drawing on work by Marsh [22], Grandison and Slo-
man [15] and continue by focusing on the Semantic
Web knowledge outsourcing problem. Significant trust
features include the following.

1. Trust is context dependent. Trust has different
meaning in different context, e.g. in medical con-
text, trust is about the trustworthiness of medical
knowledge.

2. Trust is subjective. Trust is the social knowledge
that is derived from personal observations and
serves for future personal decision-making.

3. Trust is an asymmetric, binary relation. A trust
relation has a trustor and a trustee. It is asym-
metric such that “A trust B” doesn’t necessarily
imply “B trust A”. Moreover, both trustor and
trustee could be one or many agents.

4. Trust has value. A trust relation is associated with
a value that represents it’s strength or degree of
truth. The form and meaning of the value varies,
depending on the approach and use. Common ex-
amples include boolean values, multi-valued logics,
fuzzy logic values, probabilities, discrete rankings,
etc.

5. Trust is conditionally transitive. Trust in security
sense is always intransitive, but in recommenda-
tion sense it is partially transitive.

6. Trust has a temporal dimension. Since trust is
learned from past observations, trust values evolve
with new observation and experience. Moreover,
to account for changes in a trustee’s behavior, re-
cent observations carry more weight in deriving
trust.

2.1 Trust ontology

A trust ontology starts from the taxonomy of an
agent’s knowledge. Consider a scenario in which a pa-
tient visits a doctor. The doctor can either directly
treat the patient drawing on his own expertise or rec-
ommend other specialists. In this case, the doctor uses
two types of knowledge: his medical expertise (do-
main knowledge) and his beliefs about the other spe-
cialists’ expertise (social knowledge). Domain knowl-
edge refers to expertise, and Social knowledge covers
an agent’s beliefs about both the other agents’ fea-
tures and the inter-agent relations such as friend-of,
member-of, know, friend, love, and trust. It is similar
to the idea of Searle’s social facts [26]. Trust is one kind
of context dependent social knowledge. In a knowledge
outsourcing context, trust is one agent’s beliefs about
other agents’ knowledge. This implies that most agents
are cooperative, fair and truthful. In other words, we
assume that most agents tell what they believe, they
believe what they say, and, in general, behave in a sim-
ilar way with all other agents.

We propose two types of trust in such context: do-
main trust, which refers to an agent’s beliefs about the
trustworthiness (or usefulness) of other agents’ knowl-
edge in a certain domain, and referral trust, which re-
lates to an agent’s beliefs about the trustworthiness (or
usefulness) of other agents’ referral knowledge. Fur-
thermore, we could refine the referral trust into two
sub-types: expert-ref trust, which is referral trust about
experts, and referrer-ref trust, which is referral trust
about referrers. The suggested knowledge hierarchy is
shown in figure 1.

Figure 1. Agent knowledge taxonomy

The trust concept in knowledge outsourcing has

some important properties or slots. (1) The trustor
slot indicates the agent (or a group of agents) who be-
lieves this trust. Normally, the trustor is the agent who
holds this piece of trust knowledge. (2) The trustee slot
indicates the agent or (agents) being trusted. (3) The
domain slot bounds which part of trustee’s knowledge
to be trusted. This slot helps trustor find the relevant
agents for a query. (4) The coverage slot shows how
much the trustee knows in that domain and allows the
trustor to rank agents by the probability of giving an
answer. (5) The accuracy slot measures the fidelity of
an agents answers. (6) The reliability slot shows the
confidence that the trustor can get a right answer from
the trustee. (7) The timestamp slot records the time
the trust relation is derived, so as to indicate the fresh-
ness of trust.

2.2 Trust value and ignorance

We use the term ignorance to refer to an agent being
uncertain of or uncommitted to its belief in a sentence.
Modeling ignorance is important in trust representa-
tion; when considering whether to query an agent, we
need to predict whether it will give us the right answer,
a wrong answer, or fail to give us any answer. Some
researchers [17, 30] suggest using the triplet (trust,
distrust, ignorance) to grade trust; however, their ap-
proaches require prior knowledge about ignorance (the
uncommitted belief). Grandison and Sloman [15] ob-
serve that it is hard for users to determine the propor-
tion of ignorance in a domain. We are ignorant of how
much we don’t know!

In knowledge outsourcing, in view of the initiator’s
social experience, an individual participant’s knowl-
edge in a domain consists of four parts: right, wrong,
unknown, and untouched. The first three are derived
from the past experience. Specifically, right and wrong
relate to the experiences where answers were supplied,
and unknown relates to the experiences where the par-
ticipant answered with “not known”. Untouched cov-
ers the rest of domain that are not solicited. It is hard
to attribute the unknown part to any elements in the
triplet (trust, distrust, ignorance) because it reveals
the trustee’s ignorance. Therefore, we need to expand
the triplet into a quadruplet (trust, distrust, unknown,
ignorance) when deriving trust value.

2.3 Transitivity of trust

Research communities differ on whether trust should
be considered a transitive or intransitive relation.
Christianson and Harbison [7] narrowed trust as a
highly subjective binary security primitive and argued

that trust is intransitive. One of their proofs is unin-
tentional transitivity: if an entity A trust B but does
not trust C and entity B trust C, B may add derived
trust assertions to A’s trust base without A’s explicit
consent. The notion of intransitive trust is generally
accepted by the security community since transitive
trust is not always reliable [15].

But we do observe some transitive trust when we
loosen the definition of trust, especially in cases that
do not require full reliability. Referral trust [1, 8, 31]
is partially transitive in a knowledge outsourcing con-
text. The reasons are: (1) referral trust is recursively
defined, i.e. referral trust is the trust about the other
agents’ referral trust; (2) the initiator has full control
over consensus query and can thus avoid unintentional
transitivity; and (3) the effect of “false” trust can be
mitigated through trust refinement and evolution.

2.4 Personal trust and public trust

There are two classes of trust commonly used in
agent society: personal trust and public trust. Per-
sonal trust is derived from an agent’s own social ex-
periences (i.e., first hand experiences). It is usually
subjective and serves as the basis for the agent’s future
decisions. Public trust is based on the reported social
experiences (i.e., second hand experiences) throughout
agent society, and it reflects the general opinion about
individuals. Normally, public trust, such as reputation
system [20, 25, 32], is used as initial trust about un-
familiar agents. Therefore close loop control could be
used to keep the agent society productive.

The major difference between personal trust and
public trust comes from the social experiences on which
they are based. Social experience in knowledge out-
sourcing has some unique features: initiator, partici-
pant, query, answer, and reward (the initiator’s judg-
ment about the answer). The answer is derived from
the tuple of (initiator, participant, query), and the re-
ward is affected by the tuple of (initiator, participant,
answer). For personal trust, all related social experi-
ences have similar patterns: same initiator, same par-
ticipant, and same domain of query. For public trust,
it may involve various uncertain factors: initiators may
have their own reward mechanisms; a participant may
treat initiators differently; and not all social experi-
ences are reported. Though these factors bring difficul-
ties, public trust could still be reliably derived and used
because: (1) public trust is statistically reliable when
its value is extreme (trust or distrust) and enough ex-
periences have been observed; (2) people tend to report
extreme values (“distrust” or “trust”) to public; (3) ab-
normal social experiences can be recorded as valuable

reference for high risk decisions; and (4) public trust
can be used to guide the adjustment of personal trust.

2.5 Co-evolution of trust

Trust has an important temporal dimension. Trust
management uses relatively static trust: extensive
identity authentication needs to be achieved in the
first-time experience, and this can be reduced to ver-
ifying whether one is dealing with the same party in
subsequent transactions. In other words, when the en-
vironment and the specific circumstances are safe and
reliable, less trust is necessary for reliance. However,
the constant diversification and merging of domains
and advancement of domain knowledge may invalidate
past relationships to some extent. In terms of knowl-
edge outsourcing, trust has a decidedly dynamic char-
acteristic.

After initial trust formation, the trust relationship
evolves as additional evidence becomes available. It
is more so in the ubiquitous computing environment.
Accumulation of evidence with experience of new in-
teractions must modify the level of trust to be placed
in an entity, incrementing the summary information to
maintain accuracy [11]. In particular, trust updating is
a co-evolving process in the trust network. For exam-
ple, suppose agent A creates initial trust with entity C
through entity B. The degree of trust may be adjusted
up or down depending on A’s interactive experience
with C. The adjusted trust may be propagated back to
the original trust relationship between B and C.

2.6 Distributed vs. centralized

Traditionally, trust is managed with a centralized
approach. One typical example is security technology
featuring a trusted third party (TTP) or trusted au-
thority. As the number of resources such as agents and
services is rapidly increasing on the Internet, it is inef-
fective for every agent to go through a centralized in-
termediary to form trust relationships. In addition, the
degree of trust on a trusted authority may drop as the
number of trustees increases. Thus, distributed trust
can be used to complete current security practices and
manage trust more effectively. The above two views
are complementary rather than contradictory. In the
light that agents are highly dispersed on the Seman-
tic Web, it is natural to adopt the distributed model
of trust for Semantic Web agents. However, as trust
evolves, well-agreed trustees may emerge, which form
local centroid of agent communities. Agents have their
options of going for locally centralized trust models.

3. Trust based knowledge outsourcing

Trust based knowledge outsourcing involves several
practical design issues: (1) how to dynamically learn
trust; (2) how to use trust in search and justification;
and (3) how public trust affects knowledge outsourcing.

3.1 Learning Trust

When outsourcing knowledge, it is important to es-
timate the trustworthiness of the participants before
the initiator uses their answers. The trust estimation
is indeed a social learning problem. Conte [9] suggested
two types of social learning: social facilitation and imi-
tation. Social facilitation occurs when an agent derives
trust by reasoning about its own knowledge and past
social experiences. Imitation occurs when an agent de-
rives trust by mimicking other “good” agents, e.g. A
trusts B because many other agents trust B.

Trust relations can be learned from prior social
knowledge. Based on prior social knowledge and per-
sonalized decision rules, an agent could directly derive
trust relations. For example, if an agent A believes that
(1) agent B is a doctor and (2) that all doctors’ medical
advice can be trusted, then it can derive B’s medical
advice can be trusted even A has never met B. Prior so-
cial knowledge can be obtained from either the human
user (e.g. a written profile about friendship relation
expressed in the “friend of a friend”(FOAF) ontology)
or the machine learning results from the Web (e.g. Re-
ferralWeb extracted Know relation from co-occurrence
of names on WWW pages [19]). In fact, this method
is the essence of trust management.

One can also learn trust relations from past social ex-
perience. By labeling the past experience with “right”,
“wrong”, or “unknown”, an agent can dynamically
learn first-hand trust by using machine learning meth-
ods, e.g. reinforcement learning [18, 27]. There are
two commonly used methods: histogram and feedback-
function. Histogram counts experience and derives
trust from success rate. However, it doesn’t “forget”
history, i.e., it can’t capture the change of agent be-
havior. Feedback-function derive trust from recent ex-
perience. We defined a “inflation function” , which
increases or decreases trust values as each knowledge
outsourcing event occurs. In the following formula,
R(A,B,t) refers to the reliability derived by A about
B at logical time t (each knowledge outsourcing event
increases logic time by 1).

R(A, B, t) =

{
default trust if t = 0
1− R(A, B, t− 1) ∗ (1− INC) elseif Right(B)
R(A, B, t− 1) ∗DEC1 elseif Wrong(B)
R(A, B, t− 1) ∗DEC2 elseif Unknown(B)

Trust relations can be also derived from the other
agents’ consensus. While the above two methods be-
long to social facilitation, this method is an imita-
tion. This method uses the consensus of selected
“trusted” agents to derive trust about an unfamiliar
agent. By assuming most agents are “trustable”, an
agent can use the weighted consensus of randomly se-
lected agents to derive both domain trust and refer-
ral trust. The formula below shows that an agent A
derives the reliability of domain trust about agent B
Rdomain(A,B, domain) from the weighted consensus of
a set of other agents NA. It is notable that reputation
authorities are always good referrers.

Rdomain(A, B, domain)

=

∑
N∈NA

[Rdomain ref (A,N,domain)∗Rdomain(N,B,domain)]

|NA|

3.2 Trust-based consensus query

Aiming at knowledge outsourcing, we propose a
friend consensus (FC) approach. FC is expected to
address the open issues in the search and justification
steps of knowledge outsourcing. In the search step,
only the initiator can initiate inquiries. Therefore we
could avoid unintentional trust caused by delegation
and have better control over search. In the justifica-
tion step, the answer results from the consensus that
emerges from a group of relevant friends. The con-
sensus is more reliable and unbiased than simply fully
trusting a single agent. Yu et al., [31] suggested a sim-
ilar method, but didn’t consider inconsistent answers
and trust was not taken into account.

The FC algorithm helps an agent S to find the
“right” binary truth value for a query Query. S al-
ways asks a set of relevant and reliable domain experts
for answers. If the experts cannot reach consensus (i.e.
either due to insufficient expert population (more than
T) or lack of consensus among the existing experts), it
asks reliable referrers to modify the expert set (i.e. find
new experts or change trust value of existing experts).
The algorithm could fail when the agent can’t modify
the expert set and the experts can’t reach consensus.

Friend-Consensus (S, Query, T)
1. E = SelectRelevantExperts(S, Query)
2. R= SelectRelevantReferrers(S, Query)
3. Searched= {S}, depth =0
4. while (not Consensus(S, E, T))
5. if (not canProceed(R, depth)) then return fail;
6. NewR = {}
7. for each r in R
8. RefE = SelectRelevantExperts(r, Query)
9. RefR = SelectRelevantReferrers(r, Query)
10. Experts = Merge(Experts, RefE, r.w)
11. NewR = Merge(NewR, RefR, r.w)
12. end for
13. Searched = Searched U R
14. R = NewR− Searched

15. FilterReliable(R, S)
16. depth++
17. end while
18. return success

Consensus (S, Expert, T, Searched)
1. RelExperts = FilterReliable(Expert, S)
2. if (|RelExperts| < T) then return false;
3. Inquire RelExperts who haven’t been inquired.
4. if more than half agents have same answer
5. then return true
6. else return false

The search complexity is controlled by following
heuristics: (1) Relevant heuristic. Only relevant agents
(e.g., those believed to have domain knowledge rele-
vant to the Query) are asked. This heuristic reduces
search branches forked from the hub-like agents (e.g.
reputation authorities). (2) Reliable heuristic. Every
agent has a threshold that determines which agents
it trusts. Agents do not ask unreliable agents, i.e.,
agents falling below this threshold. (3) Short refer-
ral distance heuristic. The referral distance between
two agents is the length of shortest trust path – a se-
quence of referral trust. The agents with shorter refer-
ral distance are always more reliable. (4) Small world
heuristic. The small world phenomenon [23, 28] shows
that the shortest trust path between any two agents is
nearly constant, i.e. six degree. This heuristic bounds
search depth while preserving search completeness. (5)
No delegation heuristic. This method guarantees that
the inquiry agent has full control over outsourcing and
could avoid unintentional trust.

This FC algorithm depends on the trust knowl-
edge learned from past experiences and existing social
knowledge, and can fail in absence of trust knowledge.
Therefore we use some alternative algorithms that can
obtain results and accumulate trust knowledge when
trust knowledge is rare.

3.3 Public trust and Productive Agent society

As the size of an agent society becomes large, agents
will more frequently interact with unfamiliar agents.
To avoid being mislead or deceived by “bad agents”,
the agent needs a “correct” opinion about an unknown
agent from external sources. A productive agent so-
ciety should have well-known reputation authorities
which can always suggest “right” public trust and avoid
“wrong” ones. A reputation authority learns public
trust from the second-hand social experiences reported
by all agents in the society. The collaborative rating
approach is simple and widely adopted by commercial
web sites such as eBay [25], and Amazon. The formula
below shows how the public trust about agent A as ex-
pert in domain D is derived from a group of agents,
which is denoted by S. However, this measurement is

only reliable when |S| is large enough, i.e., lots of social
experience has accumulated.

Reputationexpert(A,D) =
∑

P∈S R(P, A,D)
|S|

4 Experiments

We conducted a series of controlled experiments to
simulate the evolution of trust and to study how trust
affects knowledge outsourcing. This section describes
some of the results.

4.1 Experimental Settings

The knowledge outsourcing simulation is conducted
in an agent community which consists of 50 individual
agents. Each agent has a domain knowledge base con-
sisting of truth values (true, false, or unknown) for a
set of propositions and a social knowledge base record-
ing trust knowledge. In each knowledge outsourcing
activity, an agent is randomly picked as the initiator.
One test round has 500 activities, and normally the
output of experiment became stable after 50 rounds
have passed.

An agent’s domain knowledge is controlled by two
properties: Real-Coverage, the fraction of propositions
in the domain for which the agent has a committed be-
lief, and Real-Accuracy, the fraction of committed be-
liefs that are correct. For Real-Coverage, we tried two
types of distributions: Normal Distribution and Zipf
distribution (see Figure 2). They are chosen because
we believe they are similar to real world knowledge
distribution in increasing order. For Real-Accuracy,
we tried two cases: Uniform accuracy, which make all
agents have same accuracy, and Rich-get-richer accu-
racy, which make an agent’s Real-Accuracy propor-
tional to its knowledge coverage, i.e., larger knowl-
edge coverage cause higher accuracy. In the follow-
ing context, we use the tuple of (Real-Coverage, Real-
Accuracy) to generate four test cases which are de-
noted by initials, e.g. (Uniform, RGR) denotes the
test case which use “Uniform knowledge distribution”
and “rich-get-richer accuracy”. Moreover, we also as-
sume each agent has a static domain knowledge base,
i.e. it does not update its domain knowledge during
knowledge outsourcing.

We tested four consensus query algorithms: (1) K-
Random(KR) simply randomly selects k agents and
uses the uniform weighted consensus of their opin-
ions; (2) K-Random-Learner1 (KRL1) further weights
agents’ opinions with learned domain trust; (3) K-
Random-Learner2(KRL2) further uses the k agents’ re-
ferral trust to refine the initiator’s domain trust; (4)

Figure 2. Two knowledge distributions

Friend Consensus(FC) uses the algorithm described in
section 3.2. All these algorithms could stop running be-
fore reaching a consensus, and some algorithms require
prior learned trust knowledge, so we did an additional
“backup” consensus when the first consensus output
“unknown”. In particular, KR, KRL1, and KRL2 were
backed up by themselves, and FC by KRL2.

4.2 Consensus Query

In our experiment, the consensus query algorithms
are evaluated with three quantitative metrics: (1) suc-
cess rate is the fraction of queries that have correct
consensus. (2) error rate is the fraction of queries that
have wrong consensus. (3) search complexity is the av-
erage number of nodes searched per query. In addition,
we will discuss these metrics for both the first pass and
the backup pass of consensus.

Figure 3. Success rate comparison

Success rate is measured under different knowledge
distribution settings. In figure 3, the x axis shows the
number of the test round, and y shows corresponding
success rate. The results show that the backup con-
sensus always has positive effect on the success rate. It
also shows that trust based algorithms always yield bet-
ter performance than the KR. Having observed enough
samples, KRL2 and FC performs well because they

Figure 4. Error rate comparison

tend to visit best domain experts by using learned re-
ferral trust from the other agents.

Error occurs when algorithm’s assumptions fail.
The random consensus algorithm uses the assumption
that “agents seldom lie”, and it fails in RGR knowl-
edge distribution. The trust based algorithms have the
assumption that “experts know a lot and seldom lie”,
and it is close to our real life experience. However, even
the best expert will sometimes produce wrong answers
and it is risky to propagate one voice to the whole
agent society. So we use K (> 1) experts consensus in
FC to reduce the error rate independent of the knowl-
edge distribution. Figure 4 shows that the error rate
of FC is lower than that of KRL2. KR has zero error
rate because it inquires large enough number of agents
without considering communication cost.

Search complexity is dominated by two factors:
search branching factor and first pass consensus failure
rate. The search branching factor is ten for KR, KRL1,
and KRL2, and three for FC. We found that K is al-
ways larger than T. That is because enough samples are
needed to guarantee low error rates if we choose rec-
ommenders randomly. However, the FC algorithm can
consult with a limited number (perhaps a constant) of
experts to get correct answers. In addition, the backup
consensus introduces more search nodes proportional
to the failure rate of the first pass. Figure 5 compares
the search complexity in (Zipf, RGR) knowledge dis-
tribution where most agents are ignorant. The KR
algorithm has the highest search complexity because
of high failure rate caused by the overwhelming igno-
rance. The FC algorithm has lowest search complexity
because it only inquires a few experts and its fail rate
of the first pass consensus decreases after enough trust
knowledge has been learned. The KRL2 algorithm has
low search complexity because it has low failure rate.

4.3 Trust evolution within agent community

Our experiment shows that FC algorithm can im-
prove the success rate and reduce search complexity.
But we want to learn how trust knowledge evolves in
the agent society. In agent community with (Normal,

Figure 5. Search complexity for (Zipf, RGR)

Uniform) knowledge distribution, we map the agent so-
ciety to a direct graph, where each arc maps to trust re-
lation between agents and each node maps to an agent.
Then we found that the best domain experts always
have a large number of in-links, i.e. they are pointed
by many other agents.

Figure 6. In-link distribution

Table 1. Top 3 experts’ knowledge distribution

Rank Coverage Accuracy Agent ID
1 0.92 0.967391 Agent19@foo.com
2 0.91 0.956044 Agent1@foo.com
3 0.9 0.955556 Agent11@foo.com

Figure 6 shows the change of in-link distribution
during trust evolution. Table 1 shows the top three
domain experts’ real knowledge distribution. The re-
sult shows that (1) an agent’s in-link measure is highly
related to its rank, and (2) the top three agents always
occupy the most in-links. Does Zipf’s law distribution
exist in the number of an agent’s in-link and its ex-
pertise ranking? We are not yet in a position to draw
such a conclusion due to the small amount of experi-
ment data we have. Nonetheless, we believe that when
trust is learned and propagated in knowledge outsourc-
ing, the agent will be able to very quickly and easily
detect the authority with FC and KRL2 algorithms.

5. Related Work

Collaborative filtering systems [5, 24] enable people
to make decisions based on recommendations under the
assumption that people who have similar interests will
generate similar ratings. In this approach, a user uses
weighted average of recommended ratings to predict
his ratings, and the weight comes from the correlations
between two user-interests. However, the user correla-
tion is not the only factor of weight. Yu et al., [31] pre-
sented a social network approach which used expertise
and sociability to derive the weight. While expertise is
used to compute user correlations in the sense of shared
interests, sociability concerns about the other agent’s
referral capability. By considering the referral social
network, their methods greatly improved the informa-
tion access performance. Though their work remained
at an empirical stage, the learning methods did pro-
duce the statistical premise for creating trust in agent
society.

Trust in Multi-agent system focuses on formal mod-
els that capture trust in agent society [22]. Most mod-
els are based on strong social foundation, which is diffi-
cult to automate. Some recent work [1, 32] puts trust in
the context of ecommerce or a virtual community, and
adapts trust models to practical implementation by al-
lowing some global information to be maintained at
each individual agent or relying on a centralized server.
But maintaining a global picture of the social network
is too expensive or impossible for a single agent, there-
fore, peer-to-peer trust [2, 29] has been proposed as a
mechanism for building trust in P2P electronic com-
munities. Nonetheless, they do not address the issue
of uniquely identifying peers over time and associating
their history with them.

Trust in the Semantic Web is being actively studied
recently. Starting from a distributed trust manage-
ment [4] model, Finin and Joshi [12] suggest a seman-
tic policy language to manage delegation on Seman-
tic Web. Viewing the web as a social network, Gol-
beck et al., [14] proposed trust network on the Seman-
tic Web and observe that the small-world phenomenon
can be used to reduce the search complexity. However,
their general network flow analysis approaches to trust
propagation do not scale well. To facilitate express-
ing and inferring social relation on Semantic Web, the
FOAF project suggested Resource Description Frame-
work (RDF) based language to describe friendship in-
formation [10]. The FOAF vocabulary contains “see
also” pointers to link to other FOAF files. This not
only supports finding documents, service, and data on
the Web based on their properties and relationships
but also provides a basis for learning about new people

based on their experience and interest.
Our approach may be particularly appropriate for

modeling knowledge of what John Searle [26] calls “so-
cial facts”. Searle is a “realist” in that he believes that
there is a unique real word and facts are objective as-
sertions about this world and can be, in principle, ver-
ified as being true or false. However, Searle identifies
two categories of objective facts – “brute facts” and
“social facts”. Brute facts exist independent of what
people believe about them, e.g., that hydrogen atoms
typically have one electron. Social facts are facts whose
existence depends on the mental states of humans, i.e.,
they are facts only when people believe them to be
facts. Examples of social facts include that a partic-
ular piece of paper is a thousand dollar bill and that
George W. Bush is the 43rd president of the United
States. Clearly the validity of a social fact depends
on its being part of a consensus model for the relevant
community of agents.

6. Conclusions and Future Work

This paper discusses trust in the context of knowl-
edge outsourcing on the Semantic Web. Instead of
using the commonly accepted triplet notation, it de-
scribes a quadruplet (trust, distrust, unknown, igno-
rance) to better capture the trust value. Transitivity
of trust is determined by the usage of trust knowledge.
We also incorporate reputation in the framework of
trust to complement the personal trust that is directly
derived from first-hand experience. The evolution of
trust illustrates how small world phenomenon occurs
in the so-called trust network.

Our trust-based knowledge outsourcing approach is
developed with the consideration of complexity reduc-
tion and optimization. We discuss several methods to
derive personal trust from social knowledge or experi-
ence. We also suggest in our friend consensus algorithm
that trust-based knowledge outsourcing should be dy-
namically derived from both the initiator’s and other
agents’ personal trust. Our consensus based justifica-
tion mainly relies on the consensus aspect of justifica-
tion. Other factors of justification such as logical rea-
soning based belief justification may also be considered
in future.

Some preliminary experiments were conducted to
validate the approach for knowledge outsourcing. The
results confirmed that agents can get better informa-
tion and get it more efficiently by using more trust
knowledge. We also found that the trust-based friend
consensus algorithm reduces the error rate despite the
potential for propagating of incorrect information. Fu-
ture experiments will be carried out to further explore

the role of trust in a large-scaled and multi-domain
multi-agent society, where we believe the reputation
authorities will emerge as a result of trust evolution.

References

[1] A. Abdul-Rahman and S. Hailes. Supporting trust in
virtual communities. In HICSS, 2000.

[2] K. Aberer and Z. Despotovic. Managing trust in a
peer-2-peer information system. In CIKM, pages 310–
317, 2001.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The se-
mantic web. Scientific American, May 2001.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 164–173,
1996.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative fil-
tering. In Proceedings of the 14th Annual Conference
on Uncertainty in Artificial Intelligence, pages 43–52,
1998.

[6] C. Castelfranchi and Y.-H. Tan. Trust and Decep-
tion in Virtual Societies. Kluwer Academic Publishers,
2001.

[7] B. Christianson and W. S. Harbison. Why isn’t trust
transitive? In Proceedings of the Security Protocols
Workshop, pages 171–176, 1996.

[8] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick,
and M. Strauss. Referee: Trust management for web
applications. World Wide Web Journal, 2(3):127–139,
1997.

[9] R. Conte and M. Paolucci. Intelligent social learning.
Journal of Artificial Societies and Social Simulation,
4(1), 2001.

[10] E. Dumbill. Finding friends with xml and rdf, 2002.
[11] C. English, P. Nixon, S. Terzis, A. Mcgettrick, and

H.Lowe. Dynamic trust models for ubiquitous comput-
ing environments. In Workshop on Security in Ubiq-
uitous Computing, 2002.

[12] T. Finin and A. Joshi. Agents, trust, and information
access on the semantic web. ACM SIGMOD Record,
31(4):30–35, 2002.

[13] D. Gambetta. Trust: Making and Breaking Coopera-
tive Relations. Department of Sociology, University of
Oxford, 2000.

[14] J. Golbeck, B. Parsia, and J. Hendler. Trust networks
on the semantic web, 2003.

[15] T. Grandison and M. Sloman. A survey of trust in
internet application. IEEE Communications Surveys
& Tutorials (Fourth Quarter), 3(4), 2000.

[16] J. Hendler. Agents and the semantic web. IEEE In-
telligent Systems, 16(2), 2001.

[17] A. Josang. An algebra for assessing trust in certifi-
cation chains. In Proceedings of the Network and Dis-
tributed Systems Security (NDSS’99) Symposium, The
Internet Society, 1999.

[18] L. Kaelbling, M. Littmna, and A. Moore. Reinforce-
ment learning a survey. Journal of AI Research, 4:247–
285, 1996.

[19] H. A. Kautz, B. Selman, and M. A. Shah. The hidden
web. AI Magazine, 18(2):27–36, 1997.

[20] R. A. Malaga. Web-based reputation management sys-
tems: Problems and suggested solutions. Electronic
Commerce Research, 1(4):403–417, 2001.

[21] S. Marsh. Trust and reliance in multi-agent systems:
A preliminary report. In Proceedings of 4th Euro-
pean Workshop on Modelling Autonomous Agents in
a Multi-Agent World, pages 94–112, 1992.

[22] S. P. Marsh. Formalising trust as a computational
Concept. Ph.D. dissertation, University of Stirling,
1994.

[23] S. Milgram. The small world problem. Psychology
Today, 1(1):60–67, 1967.

[24] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for collabo-
rative filtering of netnews. In Proceedings of the 1994
ACM conference on Computer supported cooperative
work, pages 175–186. ACM Press, 1994.

[25] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Fried-
man. Reputation systems. Communications of the
ACM, 43(12):45–48, 2000.

[26] J. R. Searle. The Construction of Social Reality. Free
Press, 1995.

[27] T. Y. Tang, P. Winoto, and X. Niu. Who can i
trust? investigating trust between users and agents
in a multi-agent portfolio management system. In
Proceedings of the AAAI-02 Workshop on Autonomy,
Delegation, and Control: From Inter-agent to Groups,
2002.

[28] D. Watts. Small worlds : the dynamics of networks
between order and randomness. Princeton University
Press, Princeton, 1999.

[29] L. Xiong and L. Liu. Building trust in decentralized
peer-to-peer electronic communities. In Proceedings of
the Fifth International Conference on Electronic Com-
merce Research, 2002.

[30] B. Yu and M. P. Singh. Distributed reputation man-
agement for electronic commerce. Computational In-
telligence, 18(4):535–549, 2002.

[31] B. Yu, M. Venkatraman, and M. P. Singh. An adaptive
social network for information access: Theoretical and
experimental results. Journal of the Applied Artificial
Intelligence, 17(1):21–38, 2003.

[32] G. Zacharia, A. Moukas, and P. Maes. Collaborative
reputation mechanisms in electronic marketplaces. In
HICSS, 1999.

