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1 Motivation and History

One of the most useful properties of Rn is invariance under a linear transformation.
That is, if a ∈ Rn and f is any Lebesgue–integrable function, then∫

Rn

f(x) dx =

∫
Rn

f(y + a) dy.

Similarly, if we consider the multiplicative group of positive real numbers, R×
+, and

let k be a positive real number and f a Lebesgue–integrable function, then∫
R×

+

f(x)
dx

x
=

∫
R×

+

f(ky)
dy

y
.

The notion of Haar measure is a generalization of the above two examples. It turns
out that in any locally compact group G, there exists a measure µ such that∫

G

f(x) dµ(x) =

∫
G

f(gx) dµ(x)

for any integrable function f and any g ∈ G.

At some time in the early twentieth century, people started to wonder if there was an
invariant measure on all topological groups. The first two people to make significant
progress on this problem were Alfréd Haar and John von Neumann in 1933. Haar in
1933 proved that there exists an invariant measure on any separable compact group.
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Using Haar’s result, von Neumann proved the special case of David Hilbert’s Fifth
Problem for compact locally Euclidean groups. The following year, von Neumann
proved the uniqueness of invariant measures.

Ultimately, neither Haar nor von Neumann proved the existence of invariant measures
on all locally compact groups. The first one to come up with a full proof was André
Weil. This proof, however, was criticized for using the Axiom of Choice in the form of
Tychonoff’s Theorem. Later, Henri Cartan proved the existence of invariant measures
on locally compact groups without the Axiom of Choice. Since then, several other
people have also proved this theorem.

2 Definitions

Definition 1 A topological group G is a group as well as a topological space
with the property that the mapping (g1, g2) 7→ g−1

1 g2 is continuous for all g1, g2 ∈ G.
The multiplicative group of positive reals, for example, is a topological group since
(g1, g2) 7→ g2

g1
is continuous due to continuity of multiplication and nonzero division

of real numbers.

Definition 2 A topological space X is said to be locally compact if for all x ∈ X,
there is a compact set containing a neighborhood of x.

Definition 3 Let X be a topological space, and let A ⊂ X. Then A is σ–bounded
if it is possible to find a sequence of compact sets {Kn}∞n=1 with the property that
A ⊂

⋃∞
n=1 Kn.

Definition 4 A left Haar measure µ on a topological group G is a Radon measure
which is invariant under left translation, i.e. µ(gB) = µ(B) for all g ∈ G. A right
Haar measure µ on a topological group G is a Radon measure which is invariant
under right translation, i.e. µ(Bg) = µ(B) for all g ∈ G.

Definition 5 A content λ is a set function that acts on the set of compact sets
C that is finite, nonnegative, additive, subadditive, and monotone. A content in-
duces an inner content and an outer measure. The inner content λ∗ is defined by
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λ∗(A) = sup{λ(K) | K ∈ C, K ⊂ A}. Let O denote the set of open sets. The outer
measure µe is defined by µe(A) = inf{λ∗(O) | O ∈ O, A ⊂ O}.

Definition 6 If µe is an outer measure, then a set A is said to be µe–measurable
if for all sets B,

µe(B) = µe(A ∩B) + µe(A
c ∩B).

3 Existence and Uniqueness

Theorem 1 On any locally compact group G, there exists a nonzero left Haar mea-
sure µ, and this Haar measure is unique up to a positive multiplicative constant of
proportionality.

Proof The proof of this theorem relies on four lemmas.

Lemma 1 Let λ be a content, and let λ∗ and µe be the inner content and outer mea-
sure, respectively, induced by λ. Then for all O ∈ O and for all K ∈ C, λ∗(O) = µe(O)
and µe(int(K)) ≤ λ(K) ≤ µe(K).

Proof For any O ∈ O, it is clear that µe(O) ≤ λ∗(O) since we can pick O as an
open superset of O in the definition of µe. Now if O′ ∈ O with O ⊂ O′, then
λ∗(O) ≤ λ∗(O

′). Hence
λ∗(O) ≤ inf

O′
λ∗(O

′) = µe(O).

Therefore λ∗(O) = µe(O).

Now if K ∈ C and O ∈ O with K ⊂ O, λ(K) ≤ λ∗(O). Thus

λ(K) ≤ inf
O

λ∗(O) = µe(K).

If K ′ ∈ C with K ′ ⊂ int(K), then λ(K ′) ≤ λ(K), so

µe(int(K)) = λ∗(int(K)) = sup
K′

λ(K ′) ≤ λ(K). �
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Lemma 2 Let λ be a content, and let µe be the outer measure induced by λ. Then
a σ–bounded set A is measurable with respect to µe if and only if for all O ∈ O,
µe(A ∩O) + µe(A

c ∩O) ≤ µe(O).

Proof Let λ∗ be the inner content induced by λ, let B be a σ–bounded set, and let
O ∈ O satisfying B ⊂ O. Since

λ∗(O) = µe(O) ≥ µ(A ∩O) + µe(A
c ∩O) ≥ µe(A ∩B) + µe(A

c ∩B),

µe(B) = inf
O

λ∗(O) ≥ µe(A ∩B) + µe(A
c ∩B).

The other direction and the converse follow from the definition of subadditivity and
µe–measurability. �

Lemma 3 Let µe be the outer measure induced by a content λ. Then the measure µ
that satisfies µ(A) = µe(A) for all Borel sets A is a regular Borel measure. µ is called
the induced measure of λ.

Proof It suffices to show that each K ∈ C is µe–measurable. By Lemma 2, this would
follow from showing that µe(O) ≥ µe(O∩K)+µe(O∩Kc) for all O ∈ O. Let K ′ ∈ C
be a subset of O ∩Kc, and let K̃ ∈ C be a subset of O ∩K ′c. Clearly O ∩Kc ∈ O
and O ∩K ′c ∈ O. Because K ′ ∩ K̃ = ∅ and K ′ ∪ K̃ ⊂ O,

µe(O) = λ∗(O) ≥ λ(K ′ ∪ K̃) = λ(K ′) + λ(K̃).

Thus
µe(O) ≥ λ(K ′) + sup

K̃

λ(K̃) = λ(K ′) + λ∗(O ∩K ′c)

= λ(K ′) + µe(O ∩K ′c) ≥ λ(K ′) + µe(O ∩K).

Therefore,

µe(O) ≥ µe(O ∩K) + sup
K′

λ(K ′) = µe(O ∩K) + λ∗(O ∩Kc)

= λ(K ′) = µe(O ∩K) + µe(O ∩Kc).

Now it is necessary to show that µ(K) is finite. To do so, take L ∈ C with K ⊂ int(L).
Then

µ(K) = µe(K) ≤ µe(int(L)) ≤ λ(L) < ∞.
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Finally, regularity follows from

µ(K) = µe(K) = inf
O
{λ∗(O) | K ⊂ O, O ∈ O} = inf

O
{µe(O) | K ⊂ O, O ∈ O}

= inf
O
{µ(O) | K ⊂ O,O ∈ O}. �

Lemma 4 Let Ω be a measurable space and let h : Ω → Ω be a homeomorphism. Let
λ and κ be contents on Ω such that for all K ∈ C, λ(h(K)) = κ(K). Suppose that µ
and ν are the induced measures of λ and κ, respectively. Then µ(h(A)) = ν(A) for
any Borel measurable set A ∈ Ω.

Proof Let λ∗ and κ∗ be the inner contents induced by λ and κ, respectively, and let
µe and νe be their respective outer measures. If O ∈ O, then

{κ(K) | K ⊂ O, K ∈ C} = {λ(h(K)) | K ⊂ O, K ∈ C}

= {λ(A) | A = h(K), K ⊂ O, K ∈ C}

= {λ(A) | h−1(A) ⊂ O, h−1(A) ∈ C}

= {λ(A) | A ⊂ h(O), A ∈ C}.

Thus κ∗(O) = λ∗(h(O)). Let B a σ–bounded set. Then

{κ∗(O) | B ⊂ O,O ∈ O} = {λ∗(h(O)) | B ⊂ O, O ∈ O}

= {λ∗(C) | C = h(O), B ⊂ O,O ∈ O}

= {λ∗(C) | h−1(C) | h−1(C) ⊂ B, h−1(C) ∈ O}

= {λ∗(C) | C ⊂ h(B), C ∈ O}.

Thus νe(B) = µe(h(B)). By the result of Lemma 3, if A is any Borel set, then
µ(h(A)) = ν(A). �

Because of Lemma 4, one must simply find a content λ on G which is invariant under
left translation to demonstrate existence. By Lemma 1, the induced measure of λ
will be nonzero.
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Let A ⊂ G be a bounded set, and let B ⊂ G be a set with nonempty interior. Then
let A : B denote the lowest positive integer n such that there exists a set {gj}n

j=1 ⊂ G
with the property that A ⊂

⋃n
j=1 gjB. Now let A ∈ C be a set with nonempty interior.

Let N denote the set of all neighborhoods of the identity element of G. Fix O ∈ N .
Now define

λO(K) =
K : O

A : O

for K ∈ C. Clearly λO(K) satisfies 0 ≤ λO(K) ≤ K : A. λO(K) clearly satisfies all
the properties of a content other than additivity.

For each K ∈ C, consider the interval IK = [0, K : A], and let Ξ =
∏

IK . By Ty-
chonoff’s Theorem, Ξ is compact. Ξ consists of points that are the direct products of
functions φ acting on C with the property that 0 ≤ φ(K) ≤ K : A. λO ∈ Ξ for all
O ∈ N .

Now define
Λ(O) = {λO′ | O′ ⊂ O,O′ ∈ N}

given O ∈ N . If {Oj}n
j=1 ⊂ N , then

Λ

(
n⋂

j=1

Oj

)
⊂

n⋂
j=1

Λ(Oj).

Clearly Λ
(⋂n

j=1 Oj

)
is nonempty. Since Ξ is compact, there is some point in the

intersection of the closures of all the Λs

λ ∈
⋂
O

{Λ(O) | O ∈ N}.

It is now necessary to prove that λ is in fact a content. For any K ∈ C, λ(K) is
finite and nonnegative since 0 ≤ λ(K) ≤ K : A < ∞. To prove monotonicity and
subadditivity, let ξK(φ) = φ(K). Then ξK is a continuous function. Thus if K1 and
K2 are compact sets, then

Θ = {φ | φ(K1) ≤ φ(K2)} ⊂ Ξ

is closed. Then let K1 ⊂ K2 and O ∈ N . Then λO ∈ Θ, and hence Λ(O) ⊂ Θ. Since
Θ is closed, λ ∈ Λ(O) ⊂ Θ, which implies that λ is monotone and subadditive.
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To prove additivity, first note the restricted additivity of λO. Let gO be a left trans-
lation of O, and fix K1, K2 ∈ C so that K1O

−1 ∩K2O
−1 = 0. If K1 ∩ gO 6= 0, then

g ∈ K1O
−1, and if K2 ∩ gO 6= ∅, then g ∈ K2O

−1. Thus there are no left transla-
tions of O that do not intersect either K1 or K2, and so λO has additivity given that
K1O

−1 ∩K2O
−1 = ∅. Let K1, K2 ∈ C with K1 ∩K2 = ∅. Then there is some O ∈ N

satisfying K1O
−1 ∩K2O

−1 = ∅. If O′ ∈ N and O′ ⊂ O, then K1O
′−1 ∩K2O

′−1 = ∅
as well. Thus λO′(K1 ∪K2) = λO′(K1) + λO′(K2). Then if O′ ⊂ O,

λO′ ∈ Θ′ = {φ | φ(K1 ∪K2) = φ(K1) + φ(K2)}.

Thus λ is additive. This establishes the existence of a Haar measure on any locally
compact group.

To establish uniqueness, let µ be a left Haar measures, and consider a nonnegative
continuous function f on a locally compact group G that is not identically zero. Since∫

G
f dµ > 0, we may assume that

∫
G

f dµ = 1. Let us write

Ψ(g) =

∫
G

f(xg−1) dµ(x),

where g ∈ G. Then Ψ : G → R+ is a continuous function and also a homomorphism.
Now select a continuous function h on G and consider the convolution

(f ∗ h)(g) =

∫
G

f(x)h(x−1g) dµ(x) =

∫
G

f(gx)h(x−1) dµ(x).

By the definition of Ψ and
∫

G
f dµ = 1,∫

G

h(x) dµ(x) =

∫
G

h(x−1)Ψ(x−1) dµ(x).

A right translation of h gives∫
G

h(xg−1) dµ(x) =

∫
G

h(x−1g−1)Ψ(x−1) dµ(x)

= Ψ(g)

∫
G

h((gx)−1)Ψ((gx)−1) dµ(x)

= Ψ(g)

∫
G

h(x−1)Ψ(x−1) dµ(x).

7



Thus

Ψ(g) =

∫
G

h(xg−1) dµ(x)∫
G

h(x) dµ(x)
.

Now let υ and φ be two continuous functions on G, and let Ψ be defined as above.
Also, let ν be another left Haar measure. Then∫

G

υ(x) dµ(x)

∫
G

φ(y) dν(y) =

∫
G

∫
G

υ(x) dµ(x)φ(y) dν(y)

=

∫
G

∫
G

υ(xy) dµ(x)Ψ(y)φ(y) dν(y)

=

∫
G

∫
G

υ(xy)φ(y)Ψ(y) dν(y) dµ(x)

=

∫
G

∫
G

υ(y)φ(x−1y)Ψ(x−1y) dν(y) dµ(x)

=

∫
G

∫
G

φ((y−1x)−1)Ψ((y−1x)−1) dµ(x)υ(y) dν(y)

=

∫
G

∫
G

φ(x−1)Ψ(x−1) dµ(x)υ(y) dν(y)

=

∫
G

φ(x) dµ(x)

∫
G

υ(y) dν(y).

Thus
∫

G
υ dµ

∫
G

φ dν =
∫

G
φ dµ

∫
G

υ dν. Now letting υ be a positive continuous
function and setting

c =

∫
G

υ dν∫
G

υ dµ

gives
∫

G
φ dν = c

∫
G

φ dµ. �
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