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Abstract

This paper discusses a new approach to contingent claim valuation in general in-
complete market models. We determine tieutral derivative pricevhich occurs if
investors maximize thelpcal utility and if derivative demand and supply are balanced.
We also introduce theensitivity procesef a contingent claim. This process quantifies
the reliability of the neutral derivative price and it can be used to construct price bounds.
Moreover, it allows to calibrate market models in order to be consistent with initially
observed derivative quotations.

Key words: option pricing, incomplete markets, local utility, neutral derivative
price, sensitivity process, local sensitivity

JEL classification numbers: G13, D52, D58

Mathematics Subject Classification (1991): 90A12, 90A43, 60G48

1 Introduction

Consider a frictionless securities market where underlyings and derivatives are traded. Sup-
pose that you have a good statistical model for the underlyings. This paper deals with the
following question: What are reasonable derivative prices, or more precisely, how can one
extend the model for the underlyings to a reasonable probabilistic model including both
underlyings and derivatives?

From a practical point of view, such a model extension serves at least three needs. Firstly,
it suggests a reasonable price to tb&uerof a not yet traded contingent claim. Secondly,
it provides therisk managemwith a probability distribution on which she can base the risk
assessment of a portfolio containing underlyiagslderivatives. Thirdly, some approaches
to contingent clainhedgingrely on a model for the whole market including derivatives (cf.
e.g. Kallsen (1999)).
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The literature addressing derivative pricing is far too extensive to be listed here. Very
roughly, one may distinguish arbitrage reasoning in complete models (e.g. Black and Sc-
holes (1973), Cox et al. (1979), Harrison and Pliska (1981), Kallsen and Taqqu (1998),
Hobson and Rogers (1998)), equilibrium-type approaches (e.g. Rubinstein (1976), Naik and
Lee (1990), Duan (1995), Aase (1997)¢- and similar projection methods (e.g. Félimer
and Schweizer (1991), Schweizer (1991,1996), Keller (1997), Grandits (1999a,b), Chan
(1999), Miyahara (1999), Frittelli (2000), Goll and Rischendorf (2001)), pricing by su-
perhedging arguments (e.g. El Karoui and Quenez (1995)), and approaches that are more
closely linked to specific models.

Our aim is to provide a theoretical framework that focuses on the demands of practition-
ers. More specifically, we want to compromise between three partly contradictory goals:
Firstly, the methodology shall be applicable to a large class of semimartingale models for
the underlyings. This rules out e.g. a purely arbitrage-based pricing which only works in the
narrow set of complete markets. Nevertheless, our reasoning has to be based on economi-
cally meaningful assumptions. But at the same time, we want the resulting formulas to be
simple enough for use in practice.

The approach in this paper is composed of two basic ingredients, ndocalyutility
maximizationand neutral derivative prices Local utility optimization can be interpreted
as expected utility maximization of the gains over infinitesimal time intervals (cf. Kallsen
(1999)). Itis remotely related to maximization of utility from consumption and to local risk
minimization in the sense of Follmer & Schweizer (1989, 1991), Schweizer (1991). We give
a formal definition in Section 2.

A derivative price will be calledheutralif the optimal portfolio contains no contingent
claim. Intuitively, neutral prices are stable in the sense that they do not lead to unmatched
supply of or demand for derivatives. To an economist, this valuation principle may sound
quite natural or even familiar. Moreover, it is not restricted to the use of local utility. Nev-
ertheless, we can produce almost no reference where such an approach has been taken.
Maybe the most explicit ones are He & Pearson (1991a,b) and Davis (1997) (cf. also Kallsen
(2001)). Section 3 contains an introduction to neutral derivative pricing in the context of lo-
cal utility optimization. Mathematically, this approach amounts to choosing one particular
equivalent martingale measure.

Neutral prices are based on stronger assumptions than purely arbitrage-based values.
Therefore it is important to assess their reliability. We express the robustness of neutral
derivative prices in terms ofgensitivity processThe idea is quite simple. Neutral prices are
based on the assumption that the net demand for derivatives is 0. We measure the sensitivity
of contingent claim prices to violation of this assumption by computing how much the price
reacts to small demand perturbations (i.e. small positive or negative demand). Attainable
claims are characterized by the fact that their prices do not depend on supply and demand.
The sensitivity process also allows to calibrate the neutral pricing model to initially observed
market quotations. These topics are addressed in Section 4. Finally, Section 5 contains some
examples illustrating the new methodology.



Throughout, we use the notation of Jacod and Shiryaev (1987) (henceforth JS) and Jacod
(1979,1980). In particular, we write stochastic and Stieltjes integrajé AsdS; = H - S;.
The transposed of a vector or matrixs denoted byt " and its components by superscripts.
Increasing processes are identified with their corresponding Lebesgue-Stieltjes measure. All
proofs are relegated to the end of the respective section.

2 Local utility maximization

Our general mathematical framework for a frictionless market model with a finite number
of traded securities is as follows: Fix a terminal timlec R,. We work with a filtered
probability spac€s2, I, (F;)cio,r), P) in the sense of JS, 1.1.Becurities, . . ., d are mod-

elled by their respective price process#s. .., S?% Security 0 is assumed to be positive
and plays a special role. Asraimeraireby which all other assets are discounted it can be
interpreted as the benchmark for risklessness. From now on we consider otilyabented
price processS := (&S, .., &5%). We assume tha is aR%-valued special semimartin-
gale with characteristic&B, C,v) (cf. JS, 11.2.6). By JS, 11.2.9 and 11.2.29, one can write
(B,C,v) inthe form

t t
B+ (x — h(x)) x v = / b,dA,, C; = / csdAy, v=AQ®F, (2.1)
0 0

whereA € .o/, is a predictable processjs a predictabléR?-valued process; is a pre-
dictableR?*?-valued process whose values are non-negative, symmetric matrices,iand
a transition kernel fronfQ2 x R, , ) into (R?, B¢). Note thatB + (z — h(x)) * v is the pre-
dictable part of finite variation (i.e. tharift) in the canonical decomposition of the special
semimartingaIeS‘A (cf. JS, 11.2.29). Typical choices fod are A; := ¢ (e.g. for Lévy pro-
cesses, diffusions, Itd processes etc.) dpd= ) _, I (0}(s) (discrete-time processes).
Especially forA; = ¢, one can interpréet; as a drift rzitec]t as a diffusion coefficient, an#;
as a local jump measure.

Trading strategiesare modelled byR¢-valued, predictable stochastic procesges-
(o1, ..., 0%, wherey! denotes the number of shares of securityyour portfolio at timet.
If the (vector) stochastic integral exists (in the sense of Jacod (1980)), we can define the real-
valueddiscounted gain process(y) by G(p) = fot @jdg”s. In orger for gain processes
and other expressions to exist, we will restrict our attentioritd(S), which denotes the

set of all trading strategies satisfying

T
/ <|90tht| + SOtTCtSOt + /((SOth)z A |90th|)Ft(d13)>dAt € Ll(Qa J,P). (2.2)
0

As an investor, you may want to choose your trading strategy in some optimal way. Our
notion of optimality is based on maximization of expected local utility.

Definition 2.1 1. We call a function: : R — R utility functionif



(a) u is two times continuously differentiable.

(b) The derivatives/’, v are bounded aniim,, ., v'(x) = 0.
(€) u(0) =0,4'(0) =1

(d) «/(z) > 0foranyz € R.

(e) u"(z) < 0foranyz € R.

2. Foranyy € R%, t ¢ R, the random variable

AL C)NA / (w(T2) — ¢ T)Fi(de)

(@) = b +

is termedocal utility of ¥ in ¢.
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3. We call a strategy € .~"!(S) u-optimalif
T

E(/OT’Yt(%)dAt) > E(/o %(@)dAt>

forany@ € 1(5).

For motivation ofu-optimality we refer the reader to Kallsen (1999). Intuitivelyy-a
optimal strategy maximizes the expected utility of the gains over infinitesimal time intervals,
or put differently, the expected utility of aggregate consumption among all strategies whose
financial gains are immediately consumed.

Remarks.

1. A strategyy € ~’1(5) is u-optimal if and only if, for anyg € ~1(S), we have
Ye(pr) > (@) (P ® A)-almost everywhere oft x [0, 7).

2. Atypical example for a utility functionis,. : R — R, x — %(1 + kr — V1 + K22?),
where the parameter = —u”(0) € (0, 00) can be interpreted as the investaisk
aversion Since the mappings, are of a simple analytic form, we call thestandard

utility functions

3. In Kallsen (1999) it is assumed that the procéss .27, is deterministic. A careful
inspection of the proofs reveals that all statements in that paper remain true in this
slightly more general setting. Note that the local utility depends on the chosen process
A. However, the definition ofi-optimality and the statements in Kallsen (1999) and

in this paper do not depend on the particular choicd of

-~

Theorem 2.2 A trading strategyy € .~"1(S) is u-optimal if and only if
bi+u"(0)c) or + /wl(u'(gojx) —1)Fy(dz) =0 (2.3)

(P ® A)-almost everywhere far=1, ..., d.
The proof to Theorem 2.2 can be found in Kallsen (1999), Corollary 3.6.
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3 Neutral derivative pricing

In this section we turn to derivative pricing. More exactly, we propose a way to extend
a market model for the underlyings to a model for both underlyings and derivatives. In a
sense, the approach mimics the reasoning in complete models, but under stronger preference
assumptions.

In complete models there exist unique arbitrage-free derivative values. The assertion
that real market prices have to coincide with these values can be easily justified. It suffices
to assume the existence of traders (from now on calexd/ative speculatojsvho exploit
favourable market conditions once they detect them. The existence of derivative speculators
explains why the market price cannot deviate too strongly from the right value: If it did, the
huge demand for (resp. supply of) the mispriced security would push its price immediately
closer to the rational value. The only assumption on the preferences of the speculators is that
they do not reject riskless profits — which most people may agree on. The elegance of this
approach comes at a price. It only works in complete models, or more exactly, for attainable
claims.

We want to extend this reasoning to incomplete markets by imposing stronger assump-
tions on the preferences of derivative speculators. We suppose that they trade by maximizing
a certain kind of utility. The role of the unique arbitrage-free price will now be played by the
neutralderivative value. This is the unique price such that the speculators’ optimal portfolio
contains no contingent claim. Similarly as in the complete case we argue that the specula-
tors’ presence should prevent the market price from deviating too strongly from the neutral
value.

The neutral pricing approach can be applied to various types of expected utility maxi-
mization (cf. Kallsen (2001)). In fact, the first to suggest this kind of valuation seems to
be Davis (1997) (cf. also Karatzas and Kou (1996)), who considered expected utility of ter-
minal wealth. Davis’ suggestion for a reasonable derivative price is such that among all
strategies that buy an infinitesimal number of contingent claims and hold it till maturity,

a portfolio containing no derivative is optimal. Although he does not claim that this re-
mains true if we compare among all portfolios tradarbitrarily with the contingent claim,

this follows in an Ité-process setting from duality results by He and Pearson (1991b) and
Karatzas et al. (1991). The first to notice the duality between portfolio optimization and
least favourable market completigeem to be He and Pearson (1991a,b). They extended
related earlier work by Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989) and
even Bismut (1975) on complete models, where, of course, selecting a pricing measure
is not an issue. Recently, many papers addressed and applied the duality between portfo-
lio optimization and the choice of martingale measures (e.g. Ctitamil Karatzas (1992),
Kramkov and Schachermayer (1999), Schachermayer (2001), Gwitieadi (2001), Frittelli
(2000), Bellini and Frittelli (2000), Kallsen (2000, 2001), Goll and Kallsen (2000), Goll and
Ruschendorf (2001), Xia and Yan (2000), Delbaen et al. (2000)).

Here, we assume that derivative speculators maximize their local utility in the sense of
the previous section. In contrast to more common forms of utility, this leads to relatively



explicit results for diverse models (cf. Section 5). From a theoretical point of view one may
critisize that neutral derivative values depend on the utility function. However, the numerical
differences are often small in practice. In models with continuous paths, the neutral prices
do not depend on the utility function at all.

The general setting is as in the previous section. Fix a utility funatioWe distinguish
two kinds of securitiesunderlyingsl, . . ., m andderivativesn + 1, ..., m+n. The under-
lyings are given in terms of their discounted price proc@ss (§1, cee §m). At this stage,
the only information on the derivatives is their discounted terminal paygffs', . .., R
at timeT’, which are supposed to ¥g--measurable random variables. As explained above,
our goal is to determineeutralprice processes in the sense of the following

Definition 3.1 Special semimartingaleg™+!, ..., S™*" are callecheutral derivative price
processe#

1. Syt = Rm+i p-almost surely foi = 1,...,n,

2. there exists a-optimal portfoliog in the extended markgs!, ..., S™+") with 3 =

Ofori=m+1,....,m+n.
For the following, we need some

Assumptions 3.2 1. There exists a-optimal strategyy € .~*(S) for the marketS =

(S,...,8m).
2. The local martingale” (N) is a martingale, where
Craae, W) -1 g
N = (0) [ las+ e )

andV; := [(v(¢/x) — 1)v({t} x dx) for ¢ € [0,T]. We define the probability
measureP* ~ P by &7 = %(N)y.

dP
3. TheP*-local martingalesgl, o ,§m are P*-martingales.
4. We assume tha®™"!, ..., R™™ can besuperhedgedby simple trading strategies,

l.e.fori =1,...,nthere existM € R and simple strategies y such that
T T
—M+/ ¢ dS, < R™ < M+/ x; dS;.
0 0

By simple strategyve refer to a predictablR™-valued process of the forrEf:1 (8
Lr,_,m) Wherek € N, 0 < T, < ... < T, < T are stopping times, ang; is a
bounded¥, ,-measurableR™-valued random variable far=1,. .. k.

Remark. The density process @* can also be written as
g/(N> = exp(X - KX)7

whereX :=u"(0) |, ol dS, + Ztg(log(u’(gptTAbA‘t)) —u"(0)p, AS,) and K~ denotes the
modified Laplace cumulant procdastroduced in Kallsen and Shiryaev (2000). In that paper
one can also find sufficient conditions ensuring thatV) is actually a martingale.

6



Definition 3.3 We call the above probability measufé neutral pricing measure

The following theorem treats existence and uniqueness of neutral derivative prices. More-
over, it shows that these prices are obtained via conditional expectation relative to some
equivalent martingale measure. This implies that the corresponding securities market al-
lows no arbitrage opportunity.

Theorem 3.4 Suppose that Assumptions 3.2 hold. Then the semimartin&ﬁ‘léé ce
Sm+n defined by
Sthri — E*(Reri’gjt)

fort € [0,T],7 = 1,...,n are neutral derivative price processes, whéte denotes (con-
ditional) expectation relative t@*. These are up to indistinguishability the only neutral
derivative price processes that dotlead to simple arbitrage opportunities (cf. Remark 1
below).

Remarks.

1. By simple arbitragdn the previous theorem, we refer t@®&'*"-valued simple strat-
egy¢ = Zle Yilyr,_, ) With stopping time$) < 77 < ... < T, < T and bounded
Fr,_,-measurable random variablessuch thatG'r(§) = fOT grd(st, ..., Smtmy, >
0 a.s. and> 0 with positive probability.

It may seem counterintuitive that simple arbitrages are not automatically excluded if
derivatives are neutrally priced. On the mathematical side, this phenomenon corre-
sponds to the fact that local martingales are not necessarily martingales. Put differ-
ently, some games as e.g. the doubling or the suicide strategy are locally fair but turn
out to be unfair on a global level.

2. Note thatP* is an equivalent martingale measure (EMM) for the extended market
(St,..., 8™, In particular, neutral derivative prices coincide with the unique
arbitrage-based prices in complete models.

3. The choice ofl’ does not affect neutral derivative prices because the density process
# (N) of P* does not depend df. Of course,T" has to be chosen so large that the
terminal payoffsR™*!, ..., R™*" areF-measurable.

A simple calculation shows tha&f and hence neutral derivative prices do not depend
on the risk aversion parameterif standard utility functions in the sense of Remark
2 following Definition 2.1 are chosen. For contiuous processesHi2.0), P* does

not depend on the utility function at all.

For explicit calculations it is often helpful to know the dynamics of the securities price
processS under the pricing measure, as stated in the following



Lemma 3.5 The P*-characteristics oS = (3!, ..., 5™) are of the form (2.1) wittb*, c*
F*) instead of(b, ¢, F'), whereb; = 0, ¢; = ¢;, and
()

i u'(p
Fe)= /G T (o @) — Dol{e) < &)
fort € [0,7] andG € B(R™).

F,(dx)

In discrete-time markets, the above results can be formulated in a simpler fashion. By
discrete-time markete refer to the case thdtis an integer and that = (S*,...,5™) and
(F)epo,r) are constant on the open intervals between neighbouring integers.

Lemma 3.6 Suppose that the markgt= (§1, Cees §m) is discrete in time and that the first

of Assumptions 3.2 holds. Then the second of Assumptions 3.2 holds as well. If, moreover,
the price processe§1, ce Sm are non-negative, then the third assumption also holds, i.e.

P~* is an equivalent martingale measure. Its density is of the form

dpP* H u’(gotTAgt)
ap t=1,..,T E(u,((p;rASt)|9:t—l)’

whereyp; solves
fort=1,...,T.

Proofs

PROOF OF THE STATEMENTS INASSUMPTIONS3.2. In the first two steps we prove that
# (N) is a well-defined local martingale and that it can be written as in the remark following
Assumptions 3.2.

Step 1: In the proof of Kallsen (1999), Theorem 3.1 it is shown thate L(§),
which implies thatu”(0)¢" - S is a well-defined semimartingale. Note thag(u/(x)) —
u”(0)r < Mz?* for z € [—1,1] and someM € R that is independent of. Since
Yo (AXy)*1gax, <1y € 7 for any semimartingalé, it follows that X := u”(0)p" -
S+ 3, (log(w/ (¢l AS,)) — u”(0)p] AS,) is a well-defined semimartingale as well. The
fact thate®X is bounded by some constant implies th&tis a special semimartingale (cf.
Kallsen and Shiryaev (2000), Lemma 2.13).

Step 2:Let W, := [(e* — 1)vX({t} x dz) for t € [0,T]. From Kallsen and Shiryaev
(2000), Theorem 2.19 it follows that the local martingate(X — K*X) equals # (N ) with
N = X+2 11 *(M —vX). Itremains to be shown that can be written as in Assumptions

3.2. Obwously we havé(® = " (0)p " - Se (cf. e.g. Goll and Kallsen (2000), Proposition
A.2). MoreoverAX = log(u/(¢TAS)) implies thatV;, = [(v/(¢] z)—1)v({t} xdz) =V,

and <=L« (¥ — %) = el ()8 — ),



Step 3iLetZ := Z(N). FromAN = ‘L(‘P%‘f) L= @ 1 it follows that

Z =7_(1+AN) = 2Z_%©'29 Defines := u”(0)p andY : Q x [0,T] x R™ — R, by

1+
Yt z) = Llet) 12 Sincer = AS,(w) for Mfg-almost all(w, t,z) € Q x [0,T] x R™, we

1+W

haveUZ = UZ_%/Vés) =UZY Mf@-almost everywhere for ar@-measurable func-

tion U. Moreover,Z¢ = Z_ - (u"(0)¢" - 5°) = (Z_B)T - §¢ implies that(z¢, 5'<) =
(Z_c"B) - Afori = 1,...,m. From Girsanov’s theorem for semimartingales (cf. JS,
111.3.24), it follows that the P*-characteristic{ B*, C*, v*) of S are given byC* = C,

v =Y -v,andB* = B' + (u"(0)c"¢) - A+ hi(x)(Y — 1) xvfori=1,...,m.

Step 4:Fixi € {1,...,m}. Note that Condition (2.3) implidg+ [ (h'(z)—2") F}(dz) =
—u"(0)¢} r— [ (z'u ( ) —h'(x))Fy(dz). Onthe se{W, = 0} this equals-u"(0)ci ¢, —
J(@Y (t,x) — hl( ))E(das) on{W, # 0} we haveAAt #0,¢ =0, and [ h'(z)F(dx)
AA, = fhl {t} x dx) = AB; = (b + [(hi(z) — = )Ft(dx))AAt, which implies
b + [(hi(x) — 2")Fy(dx) = [ hi(z)Fy( dm Thereforefx o] ©)Fy(dz) = 0 and hence
fxiY(t,x)Ft(dx) = 0. This in turn implies thab} + [ (h'(z) — z") Fy(dx) = —u"(0)c} pr —
[ (%Y (t, z) — hi(z)) F,(dz) holds on the sefiV, + 0} as well. SinceBi = (bi + [(h'(z) —
1) Fy(dz)) - A, it follows from the previous step th&#*! = — (2! — h'(z)) x v*. By JS,
11.2.29 this means thaf' is a P*-local martingale. O

Proposition 3.7 Let U, V' be special semimartingales. ¥ is a semimartingale witl/ <
X <V,thenX is a special semimartingale as well.

PROOF. SinceX = (X — U) + U, it suffices to consider the cagé = 0. Let B :=
e AX;lgax,>1y andX := X — B. By JS, 1.4.24X is a special semimartingale. More-
over, B has pathwise only finitely many jumps on any finite interval. Sikicis a special
semimartingale, we havep,. |V, —Vy| € .., (cf. JS, 1.4.23). LetT}),.ev be a sequence
of stopping times withl}, T oo P-almost surely such thaft < T,, : |AX;| > 1}| < n and
E(supycp, |Vi — Vo|) < ccandVy < non{T, > 0}. From|AX| <V + V_ we can now
concludeVar(B)r, = >, [AXi|[1{ax,>1y < 2nsup,<q, V; for the variation process of
B, which implies thatE(\far(B)Tn) < oo foranyn € N. Therefore,B € .2/}, and hence

it is a special semimartingale (cf. JS, 1.4.23). O

PROOF OFTHEOREM3.4. Step 1:From JS, |.1.47, it follows that' - Sis aP*-martingale
for any simple strategy. This implies—M + ¢7 - S < S™F < M+ y- S if M, &,y
correspond td?™* as in the fourth part of Assumptions 3.2. In view of Jacod (1979), (2.51)
and Proposition 3.7, we conclude thig+ is a P-special semimartingale for=1, ..., n.
Step 2:W.l.o.g. the characteristics ¢f := (§1, cee §m+") are given in the form (2.1),
but with (b, ¢, F) instead of(b, c, F). Let us repeat the steps leading to the meagtire
with the R™*"-valued processes and := (,0,...,0) € Z}(S) instead ofS and .
Obviously, the definition ofV and P* is not affected by this alternative choice. In Step
4 of the next to last proof, we obtained ti#&- Iocal martingale property ob’ for i =
1,...,m from the equation; + u”(0)ci p; + [ (v (¢ ) — 1) Fy(dz) = 0 or equivalently
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b, + u"(0)é ¢, + [2'(u' (7 x) — 1)Fy(dx) = 0. By reversing the argumentation in that
step, we obtain the corresponding equationifer m + 1,...,m + n from the P*-local
martingale property o™+, ..., S™+" In view of Theorem 2.25 is au-optimal strategy
for S, which implies tha@m“, ce Sm+n are neutral derivative price processes.

Step 3:By JS, 1.1.47G(¢) is a P*-martingale for any simple strategy in the market
Hence there exists no simple arbitrage in this extended market.

Step 4: For the uniqueness part assume that, ..., S™+ are neutral derivative
prices corresponding to someoptimal portfoliog = (@',...,%™,0,...,0) in the ex-
tended marke¢§1, o §m, SmAl §m+”). Sinceyp does not contain any derivative, we
have that(@', ..., ™) is an optimal strategy for the markstwith the same local utility.
Similarly, the local utility ofp in the marketS and ofp = (¢,0,...,0) in the market
(S%,...,8m, §m+l . Smin)tally. Sinceyp is u-optimal in the markes, it follows thatp
is optimal for(S',..., 5™, Sm+1 .. §™) Hence we may w.l.0.g. assunie= .

Step 5:Similar as above we repeat the steps leading to the me&suséth the R™*"-
valued processe(s?l, e ,§m, §m“, ceey §m+”) andy instead ofS andy. As before, the
resulting measur@* remains the same. As in Step 4 of the next to last proof, we conclude
thatS?,...,Sm, Sm+l . Smtn gre P*-local martingales.

Step 6:Fixi € {1,...,n} and letM, &, y be chosen for derivative: + i as in the fourth
part of Assumptions 3.2. The absence of simple arbitrage impliesthat+ ¢ - S <
Smti < M 4T -S. From JS, 1.1.47 it follows that T - S is a P*-martingale for any simple
strategyi. Therefore,S™+ is bounded from below and above By -martingales, which
implies that it is of class (D) relative t8* (cf. JS, 1.1.47). Henc&™" is a P*-martingale
with the same terminal valuB™+i asS™+i, which yields the unigueness. 0

PROOF OFLEMMA 3.5. The assertion far- and F* has been shown in Step 3 of the first
proof in this section. Sinc# is a P*-martingale, its predictable part of finite variation A
vanishes. Hence the statementriollows as well. O

PROOF OFLEMMA 3.6. Step 1:For discrete-time processes the canonical choicedfor
in representation (2.1) of the characteristicslis= ), 1w} (t). Moreover, we have
F(G) = P(AS, € G\ {0}|F,_1), b, = E(AS,|F,_;), and¢, = 0 fort € [0,T], G € B™
(cf. JS 11.3.14). Equation (2.3) then readslas E(AS! + A@i(u’(gij@) —D|F) =
E(u/(p] AS)AS;|F,1). The equation forl> follows from A¥ @ D=L 4 (45 — ), =

1+V
u' (o] AS))—1—EW/ (o] AS)—1|F1) o' (o] ASy) _ _
B (0T AR 1T 1) = Bl A F D) 1 and from the explicit formula for the

stochastic exponential (cf. JS, 1.4.63).

Step 2: Any non-negative local martingale is a supermartingale and in particular in-
tegrable (cf. Jacod (1979), (5.17)). Since any integrable discrete-time local martingale is
a martingale (cf. JS, 1.1.64 and the following remark), it follows that any non-negative
discrete-time local martingale is actually a martingale. Hence we obtain the second of As-
sumptions 3.2. 15, ... , Sm are non-negative, the same argument yields that these pro-
cesses ar@*-martingales. O
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4 Sensitivity processes

In complete models there is no uncertainty about derivative prices as long as one believes in
the model for the underlyings and in absence of arbitrage. In incomplete models derivative
prices are subject to supply and demand. Contingent claim valuation approaches can only
produce a suggestion based on more or less reasonable assumptions. Therefore itis desirable
to quantify how much the price actually depends on supply and demand. Very intuitively, the
situation may be compared to parameter estimation: One does not only produce an estimate
but one also assesses its accuracy e.g. in terms of its variance or by confidence regions.

Below, we express the robustness of neutral prices in termsasfsitivity processhich
can be interpreted as a kind of derivative (in the mathematical sense) of the contingent claim
price with respect to demand for the claim. By multiplying this process with some fixed
number one obtains price bounds which serve as a counterpart to confidence intervals in
statistics. Our approach is relateddmnsistent derivative pricingn Kallsen (1998, 2000),
but it allows to obtain more explicit results. An alternative concept is proposed in Cochrane
and Saa-Requejo (ZOOCf;,erny and Hodges (1999) under the nameegood-deal pricing
(cf. the end of this section).

If all participants in a derivative market are speculators in the sense of the preceding
section, then derivative prices must coincide with neutral values: If they did not tally, then
all derivative speculators would trade in the same direction (either buy or sell) and nobody
would be there to take the counterposition. Let us now consider the more realistic situation
that some traders (from now on callether investorsdo not purely speculate (in the above
sense) but trade for different reasons (e.g. insurance purposes). How are market prices
affected if the aggregate demand for derivatives by these other investors does not sum up to
07? Since the speculators have to take the counterposition, market prices must be such that
the number of derivatives in the speculators’ aggregate portfolio exactly offsets the demand
from the other traders. Intuitively, a positive demand by the other investors should lead to
market prices which are higher then the neutral value in order to prompt speculators to sell
contingent claims. Below we compute how robust prices are against small supply or demand
from the other investors.

In the following definition,y stands for a kind of derivative (in the mathematical sense)
of the optimal portfolio relative to some price perturbation If the price process differs
from a given model by a small amount D, then one should adjust the optimal portfolio
for S by £4.

Definition 4.1 Let S = (5, ..., 5%) be a securities market as in Section 2 and corre-
spondingu-optimal portfolio. Moreover, leD = (D!, ..., D) denote aR?-valued special
semimartingale andlaR“-valued process. We call the family of stratediest-<6 : € € R)
asymptoticallyu-optimal for the family of markets(§ +eD : e € R) if, outside some
(P @ A)-null set, we have for any € R*:

75+€D(90t +ed) > ”YtSJraD(SOt + Eg) + 0(52)>

11



o(e?)

where252 — 0 fore — 0. (Here,yf*ED denotes the local utility of the securities price
processS + eD. Itis w.l.o.g. assumed that the characteristics of sbnd D are absolutly
continuous with respect to the sarec .7 '.) We call§ a derivative of the optimal

loc

strategy relative ta in S and we write§ = g—f)(ﬁ).

From now on, leS = (§1, ce §m) be a securities price process as in Section 3 (includ-
ing Assumptions 3.2). Moreover, I8t*+!, ... S™*" denote neutral derivative prices of con-
tingent claims with discounted payoffg"*!, ... R™™ andletp = (p',...,©™,0,...,0)
be au-optimal strategy in the extended market= (§17 ey §m+”). The previous defini-
tion considers how the optimal portfolio is affected by changing the price process. But our
principal question is rather the opposite: If the optimal portfolio of the speculators contains
a small non-zero numbes(? of derivatives (caused by supply or demand from the other
investors), what does this mean for the derivative price process?

Definition 4.2 A R™*"-valued locally square-integrable special semimartinﬁwith
0St = 0 is calledsensitivity process the following holds:

1. Under the neutral pricing measuR¥, we have thatS is a special semimartingale
whose local martingale part is a square-integrable martingale.

2. For any§® € R" there exists som&™-valued process") such that(6™), §?))
is a derivative of the optimal strategy relative(to...,0,05"5®, ... 05" 5?) in
S = (St,...9mtn),

Remarks.

1. The first property is a moderate integrability condition. We include it in the above
definition to avoid pathological cases.

2. The real numbe&?@ijé indicates how the price of claim + i at timet is affected by
a small constant demande R for derivativermn + j. Let us paraphrase the previous
definition for one contingent claim (i.e.= 1): In a market where the derivative price
process equal§™+! + 955@, it is approximately optimal to hold® contingent
claims.

The sensitivity process will later be expressed in termwcédl sensitivityin the sense
of

Definition 4.3 Suppose thaf = (§1, - ,§m+”) meets the integrability condition

1

T
= 27 2 *
/0 (|ct|+—1+w/|x| Fy(dz))dA, € Q. 5, P*), (4.1)

whereb, z, F are chosen as in (2.1) fdf instead ofS. Define theR(m+m)x(m+n)_yalyed
stochastic process by

g g 1 o
1Y = (' O0F ~ / o' (@] 2)a's F(dw))

12



fori,j = 1,...,m +nandt € [0,7]. We denote some sub-matricesdfby ) =

15\J=1,....m ud) .__ 15\J=m~+1,...m+n w) . i5\J=1,....m _ u
(HJ)"Z':'I,.‘..,m’ H( 4 T (H ])gzl,.tm " ’ H(d ) T (H j)g:m—&-l ..... m+n (H( d))T’ H(dd)
= (H9)yIZtmie We call theR™*"-valued process

E = H) _ gdupluw))=-plud

local sensitivity where(H(“*))~ denotes the Moore-Penrose pseudo inverse of the matrix
H® (cf. Albert (1972)).

Proposition 4.4 The values off and of the local sensitivity are non-negative, symmetric
matrices.

The following theorem characterizes sensitivity processes in terms of local sensitivity.

Theorem 4.5 Suppose that Condition (4.1) holds and ti@ﬁl*(foT EdAg|F))cpor is @
locally square-integrable special semimartingale, whErfedenotes expectation relative to
P*. Then there exists an up to indistinguishability unique sensitivity process. It is given by

)

for t € [0,7), where [, EdA, := [, E,dA; — [} E,dA,.

R T
83, = E( _ / E.dA,
t

+

Remark. The (infinitesimal) numbeFE“d A, indicates how the price of claim + i is af-
fected by a small demand shock for derivatize- ; which lasts for an (infinitesimal) period
ds.

Roughly speaking, a contingent claim can be replicated if and only if its price process is
insensitive to small supply and demand:

Theorem 4.6 Suppose that the assumptions in the previous theorem hold and deritfte by
the sensitivity process. Lék {1,...,n}. Then we have equivalence between:

1. 951 =0
2. 957 =0forj=1,...,n
3. There exists somee L(S) such thats™+ = 57+ 4 [ 9TdS,.

Remark. Statement 3 in the previous theorem essentially means that the derivative price
processesSAm*" and in particular its terminal payof®™** can be replicated by using the
trading strategy). The restrictionessentiallyrefers to the fact that generally belongs to

the setL(§) of all §-integrable processes and not necessarily to some particular smaller
class of admissible trading strategies.

Sensitivity processes can be used to construct price bounds as a valuation counterpart to
confidence regions in statistics. Suppose for simplicity that only one derivative is given (i.e.

13



n = 1) and consider timeé = 0. Fix a demand/supply parameté?) € R, e.g.6? = 1. The
interval [SJ"+! +85,6, 571 —5,0)] can be interpreted as the set of initial prices which
correspond to at most moderate external demand resp. supply of contingent claims. In the
general case (i.e. for arbitraryandt), one obtains time-varyingrice regions The previous
theorem shows that these price regions reduce to a single point for attainable claims.

Let us relate this approach to the concephofgood-deal pricingn the sense of€erny
and Hodges (1999). Among all model extensions, neutral price processes correspond to the
lowest expected utility for the derivative speculators: They cannot increase their utility by
investing in contingent claims at all. Instead of focusing on demand for derivatives, the con-
cept of no-good-deal pricing considers the rise of expected utility if derivative prices deviate
from neutral values. If one assumes that utility does not exceed its lower bound by some
given number (i.e. there are no attractive derivative investmgotsi dealyin the market),
then one obtains price regions similarly as abowe§good-deal bounds

For risk management purposes one does not need a contingent claim valuation approach
to determine derivative prices because current quotations are observable at the market. In
this case, the concept of neutral valuation is used to obtain a reasahatvibution of
future price changeswhich in turn is needed to determine the risk involved in a portfolio of
underlyings and derivatives. If the neutral values deviate from observed market quotations,
one can use the sensitivity process to calibrate the model. The idea is to determine the
demand vectof® € R" in such a way that the calibrated model pric¥s + 957 5@ for
¢ =1,...,n coincide with the observed quotations. The distributioh@t §m Smtiy
8§1'5<2 Sm+” +08m 52 )) serves as an improved model for risk management purposes.
This approach may be compared to the usergdlicit volatilities to make theoretical and
observed derivative prices tally. But in contrast to the latter, the calibratiommpécit
demands® does not affect the model for the underlyings. Moreover, the véttocan be
interpreted economically in the sense that a large véllé indicates a strong demand for
derivativem + j.

Proofs

PROOF OFPROPOSITION4. 4 The symmetry off andFE is obvious.c is hon-negative def-
inite by JS, 11.2.9. SeM := (— [ (@, 2)x'a/F,(dx))= i € Rimtmx(m+n) For) ¢

..... m+n
R™+" we haveh” MA = — [ (ZZ@*’”{ Nz Nad V' (5] ) Fy(dx). Sinced "™ NaiNai =
(ATx)? > 0, it follows that M is non-negative definite. Together, we have that the sum
H = —u"(0)e+ (14 V)~'M is non-negative definite. By Albert (1972), Theorem 9.E6,

IS non-negative definite as well. O

PROOF OFTHEOREM 4.5. Step 1:In this proof, superscripts at the local utilityor at

the characteristick ¢, F' in the sense of (2.1) refer to the process under consideration. Let
D = (D',..., D™") be aR™*"-valued locally square-integrable special semimartingale
with D! = ... = D™ = 0. Suppose that, relative t&*, the processD is a special

14



semimartingale whose local martingale part is square-integrable) hetaR™"-valued
process and € (0,00). By definition, we have that the local utility &f + <D in @ + 56
equaI8y§+5D(¢+55) (¢+55)Tbs+w+ u"(0) (@ +26) T o(S+eD,5+eD) )(@+¢e0) + [ (u(

£0)Tx) — (@ 4 £6)Tx) F5<P(dzx). We will conS|der the three terms on the right- hand side
seperately. Note that the first part can be writterf@sg- £6) 652 = G765 + £(6 b5 +
?'bP) +£25ThP. Moreover, the second term without the fac@@ equals

(7 +20) TP G+ e6) =BT Fp + ¢ (25 595 4 25" S D)<p>
12 <5TC(§,§)5 + 25TC(D,§)¢ + 25TC(§,D)¢ . @TC(D’D)@>
+o(e?),

where 22 ) — 0 for e — 0. For the third term, we need the second order representation
u(z) = u(a:o) + o/ (zo) (x — ) + lu”(:vo)(x —x0)% + fo "(zo+t(z —xq)) —u"(20))(1 —
t)dt(x — )2 for z, € R. Note thatp, AD, = 0 and hencep, y = 0 for F;>"”-almost all
(z,y) € R*™+)_ Moreover, the local square-integrability 6f and Condition (4.1) imply
that [ |(z, y)|2FSP)(d(z,y)) < oo (cf. IS, 11.2.29). Therefore, we have

[l +29)70) - 7+ =)0 F P (o) = [ (") - 7T 0) P ()
. / 5T (7 x) — 1)F5(dx)
w2 [o @) - DS ) + 5 [T F )
+ o(?).

Sincep "bP = 0, ¢5-P)p = 0 andcPP)g = 0, we obtain
VPG4 ed) = 5(@)+e” (b5 +u(0)c g+ / 2(u/(77w) — 1) F(dr) )
e’ (f (bD +u"(0)c P95 + / y(/ (@ x) = )PP (d(x, y)))
1 T(. " (S,S) "—=T TS
+ 5(5 (u 0)c™> + [ W@ z)xx' F (dx)>5
+ o(e?). (4.2)

Note thath® + u”(0)cS9% + [x(u' (7 z) — 1)F5(dz) = 0 because of Equation (2.3).
Similarly as in Step 3 of the first proof in Section 3, it follows that

_ AT _
bD’* — bD —|—u”(0)C(D’S)@—|— /y(u (90 {E) . 1) F(S’D)<d(l’,y))

= 7 +1 v (bD +u"(0)c P95 + / y(W/(@'e) - DFEP d(x.y)) )

is the P*-drift of D, in the sense that the predictable part of finite variation in the canonical
decomposition of thé>*-special martingal® equalsh”* - A. The second equality follows
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from the fact thath 4, # 0, ¢!” = 0 andb? = [yFED)(d(x,y)) on the se{V # 0}
(cf. JS, 11.2.9 and 11.2.29). Hence, Equation (4.2) can be rewritten as

_ - 1
,YS-‘FED(@_’_ 55) — 73(@> + 82(1 + V) <5TbD’* — §5TH5> + O(EQ).

Consequentlyy is a derivative of the optimal strategy relative o if and only if 5
5ToP* — 15T H§ attains its maximum id. SinceH is non-negative, differentiation yields
that this is the case if and only(f = b”* — H§. In view of D! = ... = D™ = (0, we can
rewrite this condition as

0 = HE§W 4 glds® (4.3)
b(Dm+1 ,,,,, DY — H(du)d(l) + H(dd)5(2), (44)

where we use the notatioh = (6, 5?)) with R™-valueds") and R"-valueds®. The
first equation implies thak/ (¥ §(1) 4 @52 = frdw)( pyluny= ) s) 4 prldd) §2) —
(—H @ (H @)= fd) 4 fdd) 52 = B§2) (cf. Albert (1972), Theorem 9.1.6). Therefore,
Equations (4.3) and (4.4) are equivalent to

0 = H"§W 4 gds?) (4.5)
b(Dm+1 77777 D’rrl+n)7* _ E5(2) . (46)

Step 2:DefinedS, = E*(—E - Ar|F,) + E - A, fort € [0,T]. Note that0 < E <
H) by Albert (1972), Theorem 9.1.6. By Huppert (1990), A 11.7.7 this impljég| <
| H@D|| if we set||E| := sup{|Ex| : |#| < 1} and likewise forH (44, Since all norms on
finite-dimensional spaces are equivalent, it follows @t < «|H % | for somea € R,.
Therefore|E - Ar| < |E| - Ay < olHY9D| . Ar € L*(Q,F, P*) by Condition 4.1. In
particular,6§ is well-defined. Moreover, it is &@*-special semimartingale with drift part
pS*. A=FE-Aand square-integrable martingale par{— £ - A7|F.) (cf. JS, 1.1.42). For
5@ e R" chooses) = —(H )~ H)5@) and letD := (0,036?). Since Equations
(4.5) and (4.6) are satisfied, we have thatis a sensitivity process.

Step 3:Conversely, letS be any sensitivity process. FoF) ¢ R” let theR™-valued
processs!) be as in Definition 4.2. Sinc@"), §?) is a derivative of the optimal strategy

(75— E)§®. Since this holds for an§®, we have thadS— E- A is aP*-local martingale.
From Condition 1 in Definition 4.2 it follows thatS — E - A is a square-integrable*-
martingale. ThereforedS, — E - A, = E*(8Sr — E - Ap|F,) = —E*(E - Ap|F,) for
t € [0, T, which yields the uniqueness.

Observe that in the uniqueness part, we have not usedtittidt - Ar|F.) is a locally
square-integrable special semimartingale. Since this follows automatically from the last
equation, we conclude that this assumption is in fact a necessary condition for the existence
of a sensitivity process. O
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Proposition 4.7 Let X be aR¢-valued locally square-integrable martingale arfichn R¢-
valued predictable process. Suppose thet, X7) = a” - Afori,j =1,...,d whereA e
.o7/," anda is a predictable process whose values are symmetric, non-negative matrices.

loc

Then the following statements are equivalent:
1. 9eL(X)andy' - X =0
2. (WTav)- A=

PROOF. 1=-2: By Jacod (1980) Proposmon 2 we have titat L (X) and hence) =
WX, 97 X] =W av)- A, WhereA € 77" and the adapteR?*?-valued procesg are
chosen such thdfX?, X’] = @ - Afori,j = 1,...,d. But this impliesy € L*(X) and
henced = (9" - X, 97 - X) = (¥7ad) - A by Jacod (1979), (4.59), (4.37).

2=1: From Jacod (1979), (4.33), (4.37), (4.61) it follows that L?(X) C L(X) and
WX, 9" X) = (9"av)- A=0. Thisimpliesy" - X = 0 (cf. JS, 1.4.13). O

PROOF OF OFTHEOREM 4.6. Step 1:The equivalence&-2 follows from Albert (1972),
Theorem 9.1.6. Sincd5* does not depend o™+ for j # 4, it suffices to consider the
casen = 1 for the rest of the proof.

Step 2: Define theR(™ ) *(m+1)_valued proces#l by H = &/ + (1 + V)~ [a'a?

W (@) x)Fy(dx) fori,j = 1,....m + 1 andt € [0,7]. Moreover, definef(:s) Ff(ud),
H@) Hd)  E similarly as in Definition 4.3. As in the proof of Proposition 4.4 one shows
that the values of/ andE are non-negative, symmetric matrices. het R™+!. It follows
from the proof of Proposition 4.4 that' H\ = 0 holds if and only ifA\Te\ = 0 and
Az = 0 for F;-almost allz € R™*!. Since the same is true féf instead ofH, we have
thatAT H = 0 holds if and only ifAT H\ = 0.

Step 3:Lety € R™. Astraightforward calculation yields th&t”)" 1 (7’) = 9T H“y
—29T Hwd) 4 [dd) — () — (Fw))y= gud)T ) (g — ()= gd) 4 B SinceH )
andE are non-negative, we ha\(éf)TH(‘lﬂ) = 0 for somed € R™ ifand only if £ = 0 if
and only if ((¥)"H () = 0 for ¢ := (H(W)~ gD, N

Step 4: Suppose that Statement 3 holds. Observe ¢BatS7)* = Hii - A for i, j =
1,...,m+1, where(., - )* " refers to the predictable covariation relative to the measur(ef.
JS, 112, 29). Fron{~,”)"-S = 0 and Proposition 4.7 we conclude thiat (") H(7"))- A.
Using Step 2, this |mpI|e$ \TH(7”) =0 (P ® A)-almost everywhere and henée= 0
by Step 3.

Step 5: Conversely, assume thai’ = 0 and henceE = 0 (P @ A)-almost every-
where. By Steps 3 and 2 this impli¢s”)" 7 (7”) = 0 and hence(.")" H(7") = 0
for v = (H™))~H®), The predictability ofy can be shown using the definition of
the Moore-Penrose pseudoinverse in Albert (1972), Theorem 3.4. From Proposition 4.7
it follows that (") € L(S) and (') - S = 0. This in turn impliesy e L(S) and
0= () -5=-0-5+5m. O
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5 Examples

In this section, we illustrate neutral derivative pricing and sensitivity processes by consider-

ing particular cases. Since we do not want to confuse the reader with technicalities, we omit
the conditions for existence of the neutral pricing measure etc. In all examples we suppose
that there is only one underlying with price procé@sbesides the numeraire.

5.1 Markets with continuous paths

We assume that the price processhas characteristics of the form (2.1) with= 0 (no
jumps). In this case the density processf the neutral pricing measure* is given by

Pby 1 (" /b\2 . &

7 :eXp<—/ 25 gghe —/ (—) d(Sl’C,Sl’C>S>, (5.1)

0 2 0 Cs
whereSc = S — [ b,dA, denotes thé>-local martingale part of'. Observe thaZ does
not depend on the utility function. Moreover, P* coincides with theminimal martingale
measurdn the sense of Folimer and Schweizer (1991), Theorem 3.5. The latter is used to
determine hedging strategies that are optimal in a locally quadratic sense. But note that this
equality holds only for continuous processes.

Now let us introduce a contigent claifi? into the market whose discounted price
process§2 is neutral and continuous. If we write the predictable covariation in the form
(Sie, Siey = cii . Afori,j = 1,2, whereA is some predictable increasing process aisd
a predictableR?*2-valued process, then the local sensitivity of the derivative equals

12)2

E, = —u"(0) <c§2 — (ccttll ) (5.2)

on the sef{c!! = 0}. We will illustrate this equation in the context of bivariate diffusion
models in the next subsection.

5.2 Bivariate diffusion models

A closer look at stock return data reveals that periods of violent price changes alternate with
relatively calm intervals. This behaviour led to the introduction of ARCH and GARCH
models on the one hand and bivariate diffusion settings on the other (cf. Frey (1997) for a
survey in view of derivative pricing). For the latter, the volatility is modelled by a stochastic
process following its own dynamic. More specifically, the price proc%sis assumed to
satisfy the stochastic differential equations (SDE’s)

d§t1 = u(at)@ldt%—atgtlth
doy = aloy)dt+ B(or)dWV,, (5.3)

wherey, o : R — Randg : R — R, are given continuous functions amtd, W denote
standard Wiener processes with correlation [—1, 1] (i.e. (W, W), = ot for anyt € R.).
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The second SDE describes the dynamic of the stochastic volatilithe characteristics of
S are of the form (2.1) with! = 1u(0,)S?, ¢!t = (6,5})2, F, = 0, andA, = t for ¢ € [0, 7).
By Equation (5.1) the density proceg<f the neutral pricing measui* equals

7, — exp ( _ /Ot ”(J‘:S)dws _ %/Ot (%)2&9).

Girsanov's theorem (cf. e.g. JS, 11.3.11, 11.4.4) yields thit = W + [, “)ds and
W =W + 0 fo G‘:S ds are P*-Wiener processes with correlation Therefore, theP*-
dynamlcs ofS! ando can be better seen from the equations

dS!' = o, Sldwy (5.4)
do, = (a(at)—g%)dt—t—ﬁ(at)dfﬂz*. (5.5)

t
Now suppose that we want to price a contingent claim= g(§1) for some measurable
mappingg : R — R. We setCps(2,%) = [glzexp(VIy — £))d(y)dy for 2 € R,
Y € R,, where¢ denotes the density of the standard normal distribution. Let us assume
that the filtration(J; ).c (0,17 is generated bylV, W). Moreover, suppose that the SDE (5.5)
has a unique strong solution and define the fundfign: (0, co) x (0, 00) x [0,7] — R by

N S Tt
Cha(x,s,t) == E(CBS <x exp (g/ ESdWs—?/ Eids), V1-— QQ/ E?ds)),
0 0 0

where(W, 7) denotes a solution to SDE (5.5) startingrin= < at time 0. Below it is shown
that
S2 = E*(g(S)|F,) = Coa(S}, 04, 1) (5.6)

holds for the neutral price proce§% from Theorem 3.4.
If the mappingCy, is of classC?, 1té’s formula and theP*-martingale property ob>
yield
dS? = D1Cyy(S), 04, 1)00SHAW; + DoCoa(S), 04, t) B(00)dW.

Therefore the joint characteristitB, C, 7) of (S*, 52) are of the form (2.1) with drift vector
bl = (oS},
2 a1 a1 a1 (o)
by = DiCu(S;, 01, t)u(0:)S; + 0D2Cra(Sy, 04, 1)B(0) )

Ot
diffusion matrix
= (S
2 = &' = DyCa(S}, 00, 8)(0,5)? + 0D2Cha(SY, 01, 1) B(01) S},

= (D1Cy(SL, 00,0082 + (DsCha(SL, 00, 8) B(07))?
+ 29D1de(5t1, Ot, t)D2Obd(Stla O, t)ﬁ(at)atstl7
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jump measurd; = 0, andA; = t. This allows to compute theptimal hedging strategfor
S?in the sense of Kallsen (1999). If we have sold one contingent claim, the optimal number
of shares of the underlying in the hedge portfolio is given by

oo O L b
t c%l —u”(O) c}l
~ B(o) al L o)
= DyCyu(S}, 0t = D2Cba(5;, 01, t Si1,2
1 bd( t5 0ty )+Qat5t1 2 bd( ty0¢t )+ —U”(O) Stlatz

The third term represents the optimal investment in the underlying when no derivative is
present. It can be neglected for large values ofrible aversionparameter—«”(0). The
dominating part consists of two terms. The first one corresponds to the clatdiealf the
option (i.e. its partial derivative with respect to the underlying) and it provides essentially the
optimal hedge fop = 0. If, however, the price movements of the underlying are correlated
with volatility, one should take care of this dependence by adjusting the hedge portfolio with
the second term.

Finally, let us compute the local sensitivity of the option. From Equation (5.2) we obtain

By = —u"(0)(1 — 0*)(B(0t) DaCra(SL, 0, 1))?. (5.7)

As one may expect, the sensitivity depends on the diffusion coefficient of the volatility
process and on the partial derivative of the option price with respect to volatility. The latter
is calledvegaof the option in the financial literature (cf. Hull (1997), 14.9). Equation (5.7)
explains why risk managers try to construega-neutraportfolios, where this derivative is
close to 0.

Note that fora = § = 0 the volatility is deterministic and constant. Therefore, we re-
cover the Black-Scholes model. As we know already from Theorem 4.6, the local sensitivity
vanishes in this case.

Proofs

The following simple result is shown e.g. in Kallsen (1998), Proposition 4.21.

Proposition 5.1 Let W be a real-valued standard Wiener process(OnJ, (F;)¢cjo,r1, P),
and letC be a subs-field of that is independent 6¥". Moreover, denote by a continuous
adapted process that &measurable. Then we have

T
plo Yedwile _ N(O,/ det) P-almost surely.
0
PROOF OF EQUATION (5.6). Suppose thetp| # 1. (The statement t fofo| = 1 follows

similarly.) Define theP* Brownian motioniV" := (1 — o ) 2 (W* — QW*) and lety’! :=
5‘1 “ (o, otdW = £ (V1—-0% [, atdW . ThenS! = Y'Y2. Define a system of
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SDE'’s

XHp(x}
dx; = <oz(Xt1)—g—'u( t;fl( t>>dt+ BX})dW,}! (5.8)
t
dX? = oX]X}dW, (5.9)
dX? = /1— 02X} X}dW?, (5.10)

where (W' 1W?) denotes a standard Wiener proces®in If the first SDE has a unique
strong solution for any starting valug€! > 0, then the system (5.8) — (5.10) has a unique
strong solution for any X}, X2, X3) € (0,00) x R? because the last two equations are
uniquely solved byX? = X¢ & (o [, X/dW}) and X? = X§ & (/1 — 0? [, XdW?).
Note that, relative td>*, the pair((W*!, W2), (X!, X2, X3)) = (W*, W), (0, Y, Y?)) is

a solution to Equations (5.8) — (5.10) startingin, Y, Y7). If we denote byP,,:1 ,2 ,s) the
solution measure to the above system correspondifig o X?, X3) = (2!, 2%, 2*) and if

(Bt)iecr, denotes the filtration generated by the Wiener pro¢Ess W?), then we have

St = E'(g(¥rY7)|F)
= E(O’Q,Yol,y(?)(g(X%X%)|Bt)

by Theorem 3.4. From the Markov property of Itd diffusions (cf. e.g. @ksendal (1998),
Theorem 7.1.2), we conclude that

St = By (9(XF_,X7,))
Eo v v2) (Bl vt vy (9(X7_ X3 ) lo(WH)). (5.11)

By Proposition 5. 1 the conditional law g1 — ¢2 [, X'dW? relative too (W) equals

N(0,+/1— f 1)2ds). Therefore the conditional expectation in (5.11) equas (
X% txg,ﬂ fT t 12ds). Since X3_, X3 = X3X3 (o[ ' X dW}), this in
turn implies thats? —de(St,at, t). O

5.3 Exponential Lévy processes

In the last couple of yeargxponential Lévy processhave become popular for securities
models, since they are mathematically tractable and provide a good fit to real data (cf. Eber-
lein and Keller (1995), Eberlein et al. (1998), Madan and Senata (1990), Barndorff-Nielsen
(1998)). By this notion we refer to the case that the discounted price pr§éés$)ositive
and of the form

St =3 #(L), (5.12)
whereL is some Lévy process with characteristic tripletc, F') relative to the truncation
functionh : = — x (i.e. L is a PIIS in the sense of JS, 11.4.1 and 11.4.19). By Goll and
Kallsen (2000), Lemma A.8 these processes coincide with those of thesformS’? exp(f)
for real-valued Lévy processé[% In the cas€b,c, F) = (u — r,0%,0) we recover the
standard Osborne-Samuelson model with geometric Brownian motion.
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How does the underlying price procegé behave under the neutral pricing measure
P*? Note that the characteristics 8f are of the form (2.1) witth; = S} b, ¢; = (SL )¢,
F,(G) = F(g%G), andA; =tfort € [0,T], G € B. From Equation (2.3) we obtain that

in Assumptions (3.2) is of the form, = g% where the real number solves

b+u"(0)cy) + /m(u’(wx) —1)F(dx) =0.

Lemma 3.5 yields that th&*-characteristics of’ are as above, but wittb*, ¢*, F*) given
by b* =0, ¢* = ¢, and

F*(GQ) = /Gu'(z/)x)F(dx) forGe B

instead of(b, ¢, F). Put differently, theP-Lévy processL in Equation (5.12) remains a
process with independent, stationary increments ufRdebut with P*-characteristic triplet
(b*, c*, F™).

5.4 Discrete-time markets

In this final example we consider the case thiats a discrete-time process of the form
S =St (1+Y)),

whereY;, Ys, ..., Yy are identically distributed random variables (with some distribution
@ on (R, B)) such thatY; is independent off; _; for t = 1,2,...,7. In this case the
characteristics ofs! are of the form (2.1) withd, = > __, lioy(s), by = [ xF,(dx),

e =0, F(G) = Q(z-(G\{0}) fort =1,....T,G € B (cf. JS, 11.3.14). By Equation

(2.3) we have thaf in Assumptions 3.2 is of the formp;, = §1L where solves the
t—1
equation

/ 2t (V) Q(dz) = 0.

Lemma 3.5 yields that th&*-dynamics ofS, are of the same form as above, but wigh
instead of() where% (x) = %. In other words, the random variablgs . . ., Yr
are independent and identically distributed un@éras well. Note that this corresponds to
the similar statement oh in the previous subsection.

As a concrete example let us consider a discretized version of the Osborne-Samuelson
setting underlying the Black-Scholes model: If Q is a lognormal distribution with parameters
—p+r+Z, 1, —1(i.e. the law oflog(1 + ;) is normal with meam — r — "; and variance
?), then the joint law ofS!, 51, ..., Sk is the same as for the geometric Brownian motion
underlying the Black-Scholes formula, which satisfié$ = (1 — r)S!dt + ¢ S!dW,. The
chosen parameters are= 1.05/250, u = 1.09/250, 0 = 0.25/4/250. Note that this
discrete-time model is incomplete and hence does not allow derivative pricing solely based

on the absence of arbitrage.
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Figure 2: Time value 10 and 60 trading days to maturity

One may wonder how strongly the discretization of the Black-Scholes model affects
option prices. Consider a European call option with strike pRce- 100 expiring in 1, 10,
60 trading days, respectively. We define time valueof the option as the difference of its
current priceSZ and the payoff.S; — K)* if it were to expire immediately. Note that the
time value of a European call option is non-negative becatise Ke="7)* > (S} — K)*
is a lower arbitrage bound. The solid line in the left diagram of Figure 1 shows the time
value of our European call one day before expiration as a function of the current stock price
S;. The dotted horizontal line represents the lower arbitrage bound. In fact, the solid line in
the left diagram consists of two curves, firstly the time value in the discrete-time setting and
secondly in the continuous-time Black-Scholes model. We use standard utility functions in
the sense of Remark 2 following Definition 2.1. The tiny difference between the two curves
is plotted on the right, i.e. the Black-Scholes value is slightly greater than the price in the
discrete model. In Figure 2 we repeat the calculations for an option ten and sixty days before
expiration.

Having seen that the effect of discretization to neutral call prices in negligible, let us
now turn to price bounds based on the sensitivity process. For numerical computations it is
useful to note that the coefficients of the matkixin Definition 4.3 are of the form

E(—u"(pASHASIAS!|F, 1) E(—u"($Y)ASIAS]|F, 1)

s T BwmasE,)  Bw@m)
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fort =1,...,T andi,j = 1,2. The dashed lines in the left diagram of Figure 1 and in Fig-
ure 2 indicate the price interval in the sense of Section 4 relativ€te= 41 and standard
utility functions withx = 1. As one may expect, the sensitivity of an option in absolute
numbers is highest at the money and its gets slightly larger with increasing time to matu-
rity. However, compared to the time value of the option, we observe an entirely different
behaviour. Since the value of an option increases rapidly with time to expiration, the price
of long-lived options is relatively more robust against supply and demand (cf. the narrow
bounds in the right diagram of Figure 2). Conversely, the price interval is comparatively
large e.g. for options that are far out of the money.
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