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Abstract

This paper discusses a new approach to contingent claim valuation in general in-
complete market models. We determine theneutral derivative pricewhich occurs if
investors maximize theirlocal utility and if derivative demand and supply are balanced.
We also introduce thesensitivity processof a contingent claim. This process quantifies
the reliability of the neutral derivative price and it can be used to construct price bounds.
Moreover, it allows to calibrate market models in order to be consistent with initially
observed derivative quotations.
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1 Introduction

Consider a frictionless securities market where underlyings and derivatives are traded. Sup-
pose that you have a good statistical model for the underlyings. This paper deals with the
following question: What are reasonable derivative prices, or more precisely, how can one
extend the model for the underlyings to a reasonable probabilistic model including both
underlyings and derivatives?

From a practical point of view, such a model extension serves at least three needs. Firstly,
it suggests a reasonable price to theissuerof a not yet traded contingent claim. Secondly,
it provides therisk managerwith a probability distribution on which she can base the risk
assessment of a portfolio containing underlyingsandderivatives. Thirdly, some approaches
to contingent claimhedgingrely on a model for the whole market including derivatives (cf.
e.g. Kallsen (1999)).
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The literature addressing derivative pricing is far too extensive to be listed here. Very
roughly, one may distinguish arbitrage reasoning in complete models (e.g. Black and Sc-
holes (1973), Cox et al. (1979), Harrison and Pliska (1981), Kallsen and Taqqu (1998),
Hobson and Rogers (1998)), equilibrium-type approaches (e.g. Rubinstein (1976), Naik and
Lee (1990), Duan (1995), Aase (1997)),L2- and similar projection methods (e.g. Föllmer
and Schweizer (1991), Schweizer (1991,1996), Keller (1997), Grandits (1999a,b), Chan
(1999), Miyahara (1999), Frittelli (2000), Goll and Rüschendorf (2001)), pricing by su-
perhedging arguments (e.g. El Karoui and Quenez (1995)), and approaches that are more
closely linked to specific models.

Our aim is to provide a theoretical framework that focuses on the demands of practition-
ers. More specifically, we want to compromise between three partly contradictory goals:
Firstly, the methodology shall be applicable to a large class of semimartingale models for
the underlyings. This rules out e.g. a purely arbitrage-based pricing which only works in the
narrow set of complete markets. Nevertheless, our reasoning has to be based on economi-
cally meaningful assumptions. But at the same time, we want the resulting formulas to be
simple enough for use in practice.

The approach in this paper is composed of two basic ingredients, namelylocal utility
maximizationandneutral derivative prices. Local utility optimization can be interpreted
as expected utility maximization of the gains over infinitesimal time intervals (cf. Kallsen
(1999)). It is remotely related to maximization of utility from consumption and to local risk
minimization in the sense of Föllmer & Schweizer (1989, 1991), Schweizer (1991). We give
a formal definition in Section 2.

A derivative price will be calledneutral if the optimal portfolio contains no contingent
claim. Intuitively, neutral prices are stable in the sense that they do not lead to unmatched
supply of or demand for derivatives. To an economist, this valuation principle may sound
quite natural or even familiar. Moreover, it is not restricted to the use of local utility. Nev-
ertheless, we can produce almost no reference where such an approach has been taken.
Maybe the most explicit ones are He & Pearson (1991a,b) and Davis (1997) (cf. also Kallsen
(2001)). Section 3 contains an introduction to neutral derivative pricing in the context of lo-
cal utility optimization. Mathematically, this approach amounts to choosing one particular
equivalent martingale measure.

Neutral prices are based on stronger assumptions than purely arbitrage-based values.
Therefore it is important to assess their reliability. We express the robustness of neutral
derivative prices in terms of asensitivity process. The idea is quite simple. Neutral prices are
based on the assumption that the net demand for derivatives is 0. We measure the sensitivity
of contingent claim prices to violation of this assumption by computing how much the price
reacts to small demand perturbations (i.e. small positive or negative demand). Attainable
claims are characterized by the fact that their prices do not depend on supply and demand.
The sensitivity process also allows to calibrate the neutral pricing model to initially observed
market quotations. These topics are addressed in Section 4. Finally, Section 5 contains some
examples illustrating the new methodology.
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Throughout, we use the notation of Jacod and Shiryaev (1987) (henceforth JS) and Jacod
(1979,1980). In particular, we write stochastic and Stieltjes integrals as

∫ t
0
HsdSs = H · St.

The transposed of a vector or matrixx is denoted byx> and its components by superscripts.
Increasing processes are identified with their corresponding Lebesgue-Stieltjes measure. All
proofs are relegated to the end of the respective section.

2 Local utility maximization

Our general mathematical framework for a frictionless market model with a finite number
of traded securities is as follows: Fix a terminal timeT ∈ R+. We work with a filtered
probability space(Ω,F, (Ft)t∈[0,T ], P ) in the sense of JS, I.1.2.Securities0, . . . , d are mod-
elled by their respective price processesS0, . . . , Sd. Security 0 is assumed to be positive
and plays a special role. As anumeraireby which all other assets are discounted it can be
interpreted as the benchmark for risklessness. From now on we consider only thediscounted
price procesŝS := ( 1

S0S
1, . . . , 1

S0S
d). We assume that̂S is aRd-valued special semimartin-

gale with characteristics(B,C, ν) (cf. JS, II.2.6). By JS, II.2.9 and II.2.29, one can write
(B,C, ν) in the form

Bt + (x− h(x)) ∗ νt =

∫ t

0

bsdAs, Ct =

∫ t

0

csdAs, ν = A⊗ F, (2.1)

whereA ∈ A +
loc is a predictable process,b is a predictableRd-valued process,c is a pre-

dictableRd×d-valued process whose values are non-negative, symmetric matrices, andF is
a transition kernel from(Ω×R+,P) into (Rd,Bd). Note thatB + (x− h(x)) ∗ ν is the pre-
dictable part of finite variation (i.e. thedrift) in the canonical decomposition of the special
semimartingalêS (cf. JS, II.2.29). Typical choices forA areAt := t (e.g. for Lévy pro-
cesses, diffusions, Itô processes etc.) andAt :=

∑
s≤t 1N\{0}(s) (discrete-time processes).

Especially forAt = t, one can interpretbt as a drift rate,ct as a diffusion coefficient, andFt
as a local jump measure.

Trading strategiesare modelled byRd-valued, predictable stochastic processesϕ =

(ϕ1, . . . , ϕd), whereϕit denotes the number of shares of securityi in your portfolio at timet.
If the (vector) stochastic integral exists (in the sense of Jacod (1980)), we can define the real-
valueddiscounted gain processG(ϕ) by Gt(ϕ) :=

∫ t
0
ϕ>s dŜs. In order for gain processes

and other expressions to exist, we will restrict our attention toL 1(Ŝ), which denotes the
set of all trading strategiesϕ satisfying∫ T

0

(
|ϕ>t bt|+ ϕ>t ctϕt +

∫
((ϕ>t x)2 ∧ |ϕ>t x|)Ft(dx)

)
dAt ∈ L1(Ω,F, P ). (2.2)

As an investor, you may want to choose your trading strategy in some optimal way. Our
notion of optimality is based on maximization of expected local utility.

Definition 2.1 1. We call a functionu : R→ R utility function if
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(a) u is two times continuously differentiable.

(b) The derivativesu′, u′′ are bounded andlimx→∞ u
′(x) = 0.

(c) u(0) = 0, u′(0) = 1

(d) u′(x) > 0 for anyx ∈ R.

(e) u′′(x) < 0 for anyx ∈ R.

2. For anyψ ∈ Rd, t ∈ R+ the random variable

γt(ψ) := ψ>bt +
u′′(0)

2
ψ>ctψ +

∫
(u(ψ>x)− ψ>x)Ft(dx)

is termedlocal utility of ψ in t.

3. We call a strategyϕ ∈ L 1(Ŝ) u-optimal if

E
(∫ T

0

γt(ϕt)dAt

)
≥ E

(∫ T

0

γt(ϕ̃t)dAt

)
for anyϕ̃ ∈ L 1(Ŝ).

For motivation ofu-optimality we refer the reader to Kallsen (1999). Intuitively, au-
optimal strategy maximizes the expected utility of the gains over infinitesimal time intervals,
or put differently, the expected utility of aggregate consumption among all strategies whose
financial gains are immediately consumed.

Remarks.

1. A strategyϕ ∈ L 1(Ŝ) is u-optimal if and only if, for anyϕ̃ ∈ L 1(Ŝ), we have
γt(ϕt) ≥ γt(ϕ̃t) (P ⊗ A)-almost everywhere onΩ× [0, T ].

2. A typical example for a utility function isuκ : R→ R, x 7→ 1
κ
(1 + κx−

√
1 + κ2x2),

where the parameterκ = −u′′(0) ∈ (0,∞) can be interpreted as the investor’srisk
aversion. Since the mappingsuκ are of a simple analytic form, we call themstandard
utility functions.

3. In Kallsen (1999) it is assumed that the processA ∈ A +
loc is deterministic. A careful

inspection of the proofs reveals that all statements in that paper remain true in this
slightly more general setting. Note that the local utility depends on the chosen process
A. However, the definition ofu-optimality and the statements in Kallsen (1999) and
in this paper do not depend on the particular choice ofA.

Theorem 2.2 A trading strategyϕ ∈ L 1(Ŝ) is u-optimal if and only if

bit + u′′(0)ci·t ϕt +

∫
xi(u′(ϕ>t x)− 1)Ft(dx) = 0 (2.3)

(P ⊗ A)-almost everywhere fori = 1, . . . , d.

The proof to Theorem 2.2 can be found in Kallsen (1999), Corollary 3.6.
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3 Neutral derivative pricing

In this section we turn to derivative pricing. More exactly, we propose a way to extend
a market model for the underlyings to a model for both underlyings and derivatives. In a
sense, the approach mimics the reasoning in complete models, but under stronger preference
assumptions.

In complete models there exist unique arbitrage-free derivative values. The assertion
that real market prices have to coincide with these values can be easily justified. It suffices
to assume the existence of traders (from now on calledderivative speculators) who exploit
favourable market conditions once they detect them. The existence of derivative speculators
explains why the market price cannot deviate too strongly from the right value: If it did, the
huge demand for (resp. supply of) the mispriced security would push its price immediately
closer to the rational value. The only assumption on the preferences of the speculators is that
they do not reject riskless profits – which most people may agree on. The elegance of this
approach comes at a price. It only works in complete models, or more exactly, for attainable
claims.

We want to extend this reasoning to incomplete markets by imposing stronger assump-
tions on the preferences of derivative speculators. We suppose that they trade by maximizing
a certain kind of utility. The role of the unique arbitrage-free price will now be played by the
neutralderivative value. This is the unique price such that the speculators’ optimal portfolio
contains no contingent claim. Similarly as in the complete case we argue that the specula-
tors’ presence should prevent the market price from deviating too strongly from the neutral
value.

The neutral pricing approach can be applied to various types of expected utility maxi-
mization (cf. Kallsen (2001)). In fact, the first to suggest this kind of valuation seems to
be Davis (1997) (cf. also Karatzas and Kou (1996)), who considered expected utility of ter-
minal wealth. Davis’ suggestion for a reasonable derivative price is such that among all
strategies that buy an infinitesimal number of contingent claims and hold it till maturity,
a portfolio containing no derivative is optimal. Although he does not claim that this re-
mains true if we compare among all portfolios tradingarbitrarily with the contingent claim,
this follows in an Itô-process setting from duality results by He and Pearson (1991b) and
Karatzas et al. (1991). The first to notice the duality between portfolio optimization and
least favourable market completionseem to be He and Pearson (1991a,b). They extended
related earlier work by Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989) and
even Bismut (1975) on complete models, where, of course, selecting a pricing measure
is not an issue. Recently, many papers addressed and applied the duality between portfo-
lio optimization and the choice of martingale measures (e.g. Cvitanić and Karatzas (1992),
Kramkov and Schachermayer (1999), Schachermayer (2001), Cvitanić et al. (2001), Frittelli
(2000), Bellini and Frittelli (2000), Kallsen (2000, 2001), Goll and Kallsen (2000), Goll and
Rüschendorf (2001), Xia and Yan (2000), Delbaen et al. (2000)).

Here, we assume that derivative speculators maximize their local utility in the sense of
the previous section. In contrast to more common forms of utility, this leads to relatively
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explicit results for diverse models (cf. Section 5). From a theoretical point of view one may
critisize that neutral derivative values depend on the utility function. However, the numerical
differences are often small in practice. In models with continuous paths, the neutral prices
do not depend on the utility function at all.

The general setting is as in the previous section. Fix a utility functionu. We distinguish
two kinds of securities:underlyings1, . . . ,m andderivativesm+ 1, . . . ,m+n. The under-
lyings are given in terms of their discounted price processŜ = (Ŝ1, . . . , Ŝm). At this stage,
the only information on the derivatives is their discounted terminal payoffsRm+1, . . . , Rm+n

at timeT , which are supposed to beFT -measurable random variables. As explained above,
our goal is to determineneutralprice processes in the sense of the following

Definition 3.1 Special semimartingaleŝSm+1, . . . , Ŝm+n are calledneutral derivative price
processesif

1. Ŝm+i
T = Rm+i P -almost surely fori = 1, . . . , n,

2. there exists au-optimal portfolioϕ in the extended market(Ŝ1, . . . , Ŝm+n) with ϕi =

0 for i = m+ 1, . . . ,m+ n.

For the following, we need some

Assumptions 3.2 1. There exists au-optimal strategyϕ ∈ L 1(Ŝ) for the market̂S =

(Ŝ1, . . . , Ŝm).

2. The local martingaleE (N) is a martingale, where

N := u′′(0)

∫ ·
0

ϕ>t dŜ
c
t +

u′(ϕ>x)− 1

1 + V
∗ (µŜ − ν)

andVt :=
∫

(u′(ϕ>t x) − 1)ν({t} × dx) for t ∈ [0, T ]. We define the probability
measureP ? ∼ P by dP ?

dP
= E (N)T .

3. TheP ?-local martingaleŝS1, . . . , Ŝm areP ?-martingales.

4. We assume thatRm+1, . . . , Rm+n can besuperhedgedby simple trading strategies,
i.e. for i = 1, . . . , n there existM ∈ R and simple strategiesξ, χ such that

−M +

∫ T

0

ξ>t dŜt ≤ Rm+i ≤M +

∫ T

0

χ>t dŜt.

By simple strategywe refer to a predictableRm-valued process of the form
∑k

i=1 ψi
1]Ti−1,Ti] wherek ∈ N, 0 ≤ T1 ≤ . . . ≤ Tk ≤ T are stopping times, andψi is a
boundedFTi−1

-measurable,Rm-valued random variable fori = 1, . . . , k.

Remark. The density process ofP ? can also be written as

E (N) = exp(X −KX),

whereX := u′′(0)
∫ ·

0
ϕ>t dŜt +

∑
t≤·(log(u′(ϕ>t ∆Ŝt))− u′′(0)ϕ>t ∆Ŝt) andKX denotes the

modified Laplace cumulant processintroduced in Kallsen and Shiryaev (2000). In that paper
one can also find sufficient conditions ensuring thatE (N) is actually a martingale.
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Definition 3.3 We call the above probability measureP ? neutral pricing measure.

The following theorem treats existence and uniqueness of neutral derivative prices. More-
over, it shows that these prices are obtained via conditional expectation relative to some
equivalent martingale measure. This implies that the corresponding securities market al-
lows no arbitrage opportunity.

Theorem 3.4 Suppose that Assumptions 3.2 hold. Then the semimartingalesŜm+1, . . . ,

Ŝm+n defined by
Ŝm+i
t := E?(Rm+i|Ft)

for t ∈ [0, T ], i = 1, . . . , n are neutral derivative price processes, whereE? denotes (con-
ditional) expectation relative toP ?. These are up to indistinguishability the only neutral
derivative price processes that donot lead to simple arbitrage opportunities (cf. Remark 1
below).

Remarks.

1. By simple arbitragein the previous theorem, we refer to aRm+n-valued simple strat-
egyξ =

∑k
i=1 ψi1]Ti−1,Ti] with stopping times0 ≤ T1 ≤ . . . ≤ Tk ≤ T and bounded

FTi−1
-measurable random variablesψi such thatGT (ξ) =

∫ T
0
ξ>t d(Ŝ1, . . . , Ŝm+n)t ≥

0 a.s. and> 0 with positive probability.

It may seem counterintuitive that simple arbitrages are not automatically excluded if
derivatives are neutrally priced. On the mathematical side, this phenomenon corre-
sponds to the fact that local martingales are not necessarily martingales. Put differ-
ently, some games as e.g. the doubling or the suicide strategy are locally fair but turn
out to be unfair on a global level.

2. Note thatP ? is an equivalent martingale measure (EMM) for the extended market
(Ŝ1, . . . , Ŝm+n). In particular, neutral derivative prices coincide with the unique
arbitrage-based prices in complete models.

3. The choice ofT does not affect neutral derivative prices because the density process
E (N) of P ? does not depend onT . Of course,T has to be chosen so large that the
terminal payoffsRm+1, . . . , Rm+n areFT -measurable.

A simple calculation shows thatN and hence neutral derivative prices do not depend
on the risk aversion parameterκ if standard utility functions in the sense of Remark
2 following Definition 2.1 are chosen. For contiuous processes (i.e.F = 0), P ? does
not depend on the utility functionu at all.

For explicit calculations it is often helpful to know the dynamics of the securities price
procesŝS under the pricing measure, as stated in the following
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Lemma 3.5 TheP ?-characteristics of̂S = (Ŝ1, . . . , Ŝm) are of the form (2.1) with(b?, c?,
F ?) instead of(b, c, F ), whereb?t = 0, c?t = ct, and

F ?
t (G) =

∫
G

u′(ϕ>t x)

1 +
∫

(u′(ϕ>t x̃)− 1)ν({t} × dx̃)
Ft(dx)

for t ∈ [0, T ] andG ∈ B(Rm).

In discrete-time markets, the above results can be formulated in a simpler fashion. By
discrete-time marketwe refer to the case thatT is an integer and that̂S = (Ŝ1, . . . , Ŝm) and
(Ft)t∈[0,T ] are constant on the open intervals between neighbouring integers.

Lemma 3.6 Suppose that the marketŜ = (Ŝ1, . . . , Ŝm) is discrete in time and that the first
of Assumptions 3.2 holds. Then the second of Assumptions 3.2 holds as well. If, moreover,
the price processeŝS1, . . . , Ŝm are non-negative, then the third assumption also holds, i.e.
P ? is an equivalent martingale measure. Its density is of the form

dP ?

dP
=

∏
t=1,...,T

u′(ϕ>t ∆Ŝt)

E(u′(ϕ>t ∆Ŝt)|Ft−1)
,

whereϕt solves
E(u′(ϕ>t ∆Ŝt)∆Ŝt|Ft−1) = 0

for t = 1, . . . , T .

Proofs

PROOF OF THE STATEMENTS INASSUMPTIONS3.2. In the first two steps we prove that
E (N) is a well-defined local martingale and that it can be written as in the remark following
Assumptions 3.2.

Step 1: In the proof of Kallsen (1999), Theorem 3.1 it is shown thatϕ ∈ L(Ŝ),
which implies thatu′′(0)ϕ> · Ŝ is a well-defined semimartingale. Note thatlog(u′(x)) −
u′′(0)x ≤ Mx2 for x ∈ [−1, 1] and someM ∈ R that is independent ofx. Since∑

t≤·(∆Xt)
21{|∆Xt|≤1} ∈V for any semimartingaleX, it follows thatX := u′′(0)ϕ> ·

Ŝ +
∑

t≤·(log(u′(ϕ>t ∆Ŝt)) − u′′(0)ϕ>t ∆St) is a well-defined semimartingale as well. The
fact thate∆X is bounded by some constant implies thateX is a special semimartingale (cf.
Kallsen and Shiryaev (2000), Lemma 2.13).

Step 2:Let Ŵt :=
∫

(ex − 1)νX({t} × dx) for t ∈ [0, T ]. From Kallsen and Shiryaev
(2000), Theorem 2.19 it follows that the local martingaleexp(X−KX) equalsE (N) with
N := Xc+ ex−1

1+Ŵ
∗(µX−νX). It remains to be shown thatN can be written as in Assumptions

3.2. Obviously, we haveXc = u′′(0)ϕ> · Ŝc (cf. e.g. Goll and Kallsen (2000), Proposition
A.2). Moreover,∆X = log(u′(ϕ>∆Ŝ)) implies that̂Wt =

∫
(u′(ϕ>t x)−1)ν({t}×dx) = Vt

and ex−1

1+Ŵ
∗ (µX − νX) = u′(ϕ>x)−1

1+V
∗ (µŜ − ν).
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Step 3:LetZ := E (N). From∆N = u′(ϕ>∆Ŝ)−1
1+V

− V
1+V

= u′(ϕ>∆Ŝ)

1+Ŵ
− 1 it follows that

Z = Z−(1 + ∆N) = Z−
u′(ϕ>∆Ŝ)

1+Ŵ
. Defineβ := u′′(0)ϕ andY : Ω× [0, T ]× Rm → R+ by

Y (t, x) :=
u′(ϕ>t x)

1+Ŵt
. Sincex = ∆Ŝt(ω) for MP

µŜ
-almost all(ω, t, x) ∈ Ω × [0, T ] × Rm, we

haveUZ = UZ−
u′(ϕ>∆Ŝ)

1+Ŵ
= UZ−Y MP

µŜ
-almost everywhere for anỹP-measurable func-

tion U . Moreover,Zc = Z− · (u′′(0)ϕ> · Ŝc) = (Z−β)> · Ŝc implies that〈Zc, Ŝi,c〉 =

(Z−c
i·β) · A for i = 1, . . . ,m. From Girsanov’s theorem for semimartingales (cf. JS,

III.3.24), it follows that theP ?-characteristics(B?, C?, ν?) of Ŝ are given byC? = C,
ν? = Y · ν, andB?,i = Bi + (u′′(0)ci·ϕ) · A+ hi(x)(Y − 1) ∗ ν for i = 1, . . . ,m.

Step 4:Fix i ∈ {1, . . . ,m}. Note that Condition (2.3) impliesbit+
∫

(hi(x)−xi)Ft(dx) =

−u′′(0)ci·t ϕt−
∫

(xiu′(ϕ>t x)−hi(x))Ft(dx). On the set{Ŵt = 0} this equals−u′′(0)ci·t ϕt−∫
(xiY (t, x) − hi(x))Ft(dx). On{Ŵt 6= 0} we have∆At 6= 0, ct = 0, and

∫
hi(x)Ft(dx)

∆At =
∫
hi(x)ν({t} × dx) = ∆Bi

t = (bit +
∫

(hi(x) − xi)Ft(dx))∆At, which implies
bit +

∫
(hi(x) − xi)Ft(dx) =

∫
hi(x)Ft(dx). Therefore

∫
xiu′(ϕ>t x)Ft(dx) = 0 and hence∫

xiY (t, x)Ft(dx) = 0. This in turn implies thatbit+
∫

(hi(x)−xi)Ft(dx) = −u′′(0)ci·t ϕt−∫
(xiY (t, x)−hi(x))Ft(dx) holds on the set{Ŵt 6= 0} as well. SinceBi = (bit +

∫
(hi(x)−

xi)Ft(dx)) · A, it follows from the previous step thatB?,i = −(xi − hi(x)) ∗ ν?. By JS,
II.2.29 this means that̂Si is aP ?-local martingale. �

Proposition 3.7 LetU, V be special semimartingales. IfX is a semimartingale withU ≤
X ≤ V , thenX is a special semimartingale as well.

PROOF. SinceX = (X − U) + U , it suffices to consider the caseU = 0. Let B :=∑
t≤·∆Xt1{|∆Xt|>1} andX̃ := X −B. By JS, I.4.24,X̃ is a special semimartingale. More-

over,B has pathwise only finitely many jumps on any finite interval. SinceV is a special
semimartingale, we havesupt≤· |Vt−V0| ∈ A +

loc (cf. JS, I.4.23). Let(Tn)n∈N be a sequence
of stopping times withTn ↑ ∞ P -almost surely such that|{t ≤ Tn : |∆Xt| > 1}| ≤ n and
E(supt≤Tn |Vt − V0|) < ∞ andV0 ≤ n on {Tn > 0}. From |∆X| ≤ V + V− we can now
concludeVar(B)Tn =

∑
t≤Tn |∆Xt|1{|∆Xt|>1} ≤ 2n supt≤Tn Vt for the variation process of

B, which implies thatE(Var(B)Tn) < ∞ for anyn ∈ N. Therefore,B ∈ A loc and hence
it is a special semimartingale (cf. JS, I.4.23). �

PROOF OFTHEOREM 3.4. Step 1:From JS, I.1.47, it follows thatξ> · Ŝ is aP ?-martingale
for any simple strategyξ. This implies−M + ξ> · Ŝ ≤ Ŝm+i ≤ M + χ · Ŝ if M, ξ, χ

correspond toRm+i as in the fourth part of Assumptions 3.2. In view of Jacod (1979), (2.51)
and Proposition 3.7, we conclude thatŜm+i is aP -special semimartingale fori = 1, . . . , n.

Step 2:W.l.o.g. the characteristics ofS := (Ŝ1, . . . , Ŝm+n) are given in the form (2.1),
but with (b, c, F ) instead of(b, c, F ). Let us repeat the steps leading to the measureP ?

with theRm+n-valued processesS andϕ := (ϕ, 0, . . . , 0) ∈ L 1(S) instead ofŜ andϕ.
Obviously, the definition ofN andP ? is not affected by this alternative choice. In Step
4 of the next to last proof, we obtained theP ?-local martingale property of̂Si for i =

1, . . . ,m from the equationbit + u′′(0)ci·t ϕt +
∫
xi(u′(ϕ>t x)− 1)Ft(dx) = 0 or equivalently
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b
i

t + u′′(0)ci·t ϕt +
∫
xi(u′(ϕ>t x) − 1)F t(dx) = 0. By reversing the argumentation in that

step, we obtain the corresponding equation fori = m + 1, . . . ,m + n from theP ?-local
martingale property of̂Sm+1, . . . , Ŝm+n. In view of Theorem 2.2,ϕ is au-optimal strategy
for S, which implies that̂Sm+1, . . . , Ŝm+n are neutral derivative price processes.

Step 3:By JS, I.1.47,G(ξ) is aP ?-martingale for any simple strategy in the marketS.
Hence there exists no simple arbitrage in this extended market.

Step 4: For the uniqueness part assume thatS̃m+1, . . . , S̃m+n are neutral derivative
prices corresponding to someu-optimal portfolio ϕ̃ = (ϕ̃1, . . . , ϕ̃m, 0, . . . , 0) in the ex-
tended market(Ŝ1, . . . , Ŝm, S̃m+1, . . . , S̃m+n). Sinceϕ̃ does not contain any derivative, we
have that(ϕ̃1, . . . , ϕ̃m) is an optimal strategy for the market̂S with the same local utility.
Similarly, the local utility ofϕ in the marketŜ and ofϕ := (ϕ, 0, . . . , 0) in the market
(Ŝ1, . . . , Ŝm, S̃m+1, . . . , S̃m+n) tally. Sinceϕ is u-optimal in the market̂S, it follows thatϕ
is optimal for(Ŝ1, . . . , Ŝm, S̃m+1, . . . , S̃m+n). Hence we may w.l.o.g. assumẽϕ = ϕ.

Step 5:Similar as above we repeat the steps leading to the measureP ? with theRm+n-
valued processes(Ŝ1, . . . , Ŝm, S̃m+1, . . . , S̃m+n) andϕ instead ofŜ andϕ. As before, the
resulting measureP ? remains the same. As in Step 4 of the next to last proof, we conclude
thatŜ1, . . . , Ŝm, S̃m+1, . . . , S̃m+n areP ?-local martingales.

Step 6:Fix i ∈ {1, . . . , n} and letM, ξ, χ be chosen for derivativem+ i as in the fourth
part of Assumptions 3.2. The absence of simple arbitrage implies that−M + ξ> · Ŝ ≤
S̃m+i ≤M +χ> · Ŝ. From JS, I.1.47 it follows thatψ> · Ŝ is aP ?-martingale for any simple
strategyψ. Therefore,S̃m+i is bounded from below and above byP ?-martingales, which
implies that it is of class (D) relative toP ? (cf. JS, I.1.47). HencẽSm+i is aP ?-martingale
with the same terminal valueRm+i asŜm+i, which yields the uniqueness. �

PROOF OFLEMMA 3.5. The assertion forc? andF ? has been shown in Step 3 of the first
proof in this section. SincêS is aP ?-martingale, its predictable part of finite variationb? ·A
vanishes. Hence the statement onb? follows as well. �

PROOF OFLEMMA 3.6. Step 1:For discrete-time processes the canonical choice forA

in representation (2.1) of the characteristics isA :=
∑

t≤· 1N\{0}(t). Moreover, we have

Ft(G) = P (∆Ŝt ∈ G \ {0}|Ft−1), bt = E(∆Ŝt|Ft−1), andct = 0 for t ∈ [0, T ], G ∈ Bm

(cf. JS II.3.14). Equation (2.3) then reads as0 = E(∆Ŝit + ∆Ŝit(u
′(ϕ>t ∆Ŝt) − 1)|Ft−1) =

E(u′(ϕ>t ∆Ŝt)∆Ŝt|Ft−1). The equation fordP
?

dP
follows from ∆u′(ϕ>x)−1

1+V
∗ (µŜ − ν)t =

u′(ϕ>t ∆Ŝt)−1−E(u′(ϕ>t ∆Ŝt)−1|Ft−1)

1+E(u′(ϕ>t ∆Ŝt)−1|Ft−1)
=

u′(ϕ>t ∆Ŝt)

E(u′(ϕ>t ∆Ŝt)|Ft−1)
− 1 and from the explicit formula for the

stochastic exponential (cf. JS, I.4.63).
Step 2: Any non-negative local martingale is a supermartingale and in particular in-

tegrable (cf. Jacod (1979), (5.17)). Since any integrable discrete-time local martingale is
a martingale (cf. JS, I.1.64 and the following remark), it follows that any non-negative
discrete-time local martingale is actually a martingale. Hence we obtain the second of As-
sumptions 3.2. IfŜ1, . . . , Ŝm are non-negative, the same argument yields that these pro-
cesses areP ?-martingales. �
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4 Sensitivity processes

In complete models there is no uncertainty about derivative prices as long as one believes in
the model for the underlyings and in absence of arbitrage. In incomplete models derivative
prices are subject to supply and demand. Contingent claim valuation approaches can only
produce a suggestion based on more or less reasonable assumptions. Therefore it is desirable
to quantify how much the price actually depends on supply and demand. Very intuitively, the
situation may be compared to parameter estimation: One does not only produce an estimate
but one also assesses its accuracy e.g. in terms of its variance or by confidence regions.

Below, we express the robustness of neutral prices in terms of asensitivity process, which
can be interpreted as a kind of derivative (in the mathematical sense) of the contingent claim
price with respect to demand for the claim. By multiplying this process with some fixed
number one obtains price bounds which serve as a counterpart to confidence intervals in
statistics. Our approach is related toconsistent derivative pricingin Kallsen (1998, 2000),
but it allows to obtain more explicit results. An alternative concept is proposed in Cochrane
and Saá-Requejo (2000),Černý and Hodges (1999) under the nameno-good-deal pricing
(cf. the end of this section).

If all participants in a derivative market are speculators in the sense of the preceding
section, then derivative prices must coincide with neutral values: If they did not tally, then
all derivative speculators would trade in the same direction (either buy or sell) and nobody
would be there to take the counterposition. Let us now consider the more realistic situation
that some traders (from now on calledother investors) do not purely speculate (in the above
sense) but trade for different reasons (e.g. insurance purposes). How are market prices
affected if the aggregate demand for derivatives by these other investors does not sum up to
0? Since the speculators have to take the counterposition, market prices must be such that
the number of derivatives in the speculators’ aggregate portfolio exactly offsets the demand
from the other traders. Intuitively, a positive demand by the other investors should lead to
market prices which are higher then the neutral value in order to prompt speculators to sell
contingent claims. Below we compute how robust prices are against small supply or demand
from the other investors.

In the following definition,δ stands for a kind of derivative (in the mathematical sense)
of the optimal portfolio relative to some price perturbationD: If the price process differs
from a given model̂S by a small amountεD, then one should adjust the optimal portfolio
for Ŝ by εδ.

Definition 4.1 Let Ŝ = (Ŝ1, . . . , Ŝd) be a securities market as in Section 2 andϕ a corre-
spondingu-optimal portfolio. Moreover, letD = (D1, . . . , Dd) denote aRd-valued special
semimartingale andδ aRd-valued process. We call the family of strategies(ϕ+ εδ : ε ∈ R)

asymptoticallyu-optimal for the family of markets(Ŝ + εD : ε ∈ R) if, outside some
(P ⊗ A)-null set, we have for anỹδ ∈ Rd:

γŜ+εD
t (ϕt + εδt) ≥ γŜ+εD

t (ϕt + εδ̃) + o(ε2),

11



where o(ε2)
ε2
→ 0 for ε → 0. (Here,γŜ+εD

t denotes the local utility of the securities price
procesŝS + εD. It is w.l.o.g. assumed that the characteristics of bothŜ andD are absolutly
continuous with respect to the sameA ∈ A +

loc.) We call δ a derivative of the optimal
strategy relative toD in Ŝ and we writeδ = ∂ϕ

∂D
(Ŝ).

From now on, let̂S = (Ŝ1, . . . , Ŝm) be a securities price process as in Section 3 (includ-
ing Assumptions 3.2). Moreover, let̂Sm+1, . . . Ŝm+n denote neutral derivative prices of con-
tingent claims with discounted payoffsRm+1, . . . , Rm+n and letϕ = (ϕ1, . . . , ϕm, 0, . . . , 0)

be au-optimal strategy in the extended marketS := (Ŝ1, . . . , Ŝm+n). The previous defini-
tion considers how the optimal portfolio is affected by changing the price process. But our
principal question is rather the opposite: If the optimal portfolio of the speculators contains
a small non-zero numberεδ(2) of derivatives (caused by supply or demand from the other
investors), what does this mean for the derivative price process?

Definition 4.2 A R
n×n-valued locally square-integrable special semimartingale∂Ŝ with

∂ŜT = 0 is calledsensitivity processif the following holds:

1. Under the neutral pricing measureP ?, we have that∂Ŝ is a special semimartingale
whose local martingale part is a square-integrable martingale.

2. For anyδ(2) ∈ Rn there exists someRm-valued processδ(1) such that(δ(1), δ(2))

is a derivative of the optimal strategy relative to(0, . . . , 0, ∂Ŝ1·δ(2), . . . , ∂Ŝn·δ(2)) in
S := (Ŝ1, . . . Ŝm+n).

Remarks.

1. The first property is a moderate integrability condition. We include it in the above
definition to avoid pathological cases.

2. The real number∂Ŝijt δ indicates how the price of claimm+ i at timet is affected by
a small constant demandδ ∈ R for derivativem + j. Let us paraphrase the previous
definition for one contingent claim (i.e.n = 1): In a market where the derivative price
process equalŝSm+1 + ∂Ŝδ(2), it is approximately optimal to holdδ(2) contingent
claims.

The sensitivity process will later be expressed in terms oflocal sensitivityin the sense
of

Definition 4.3 Suppose thatS = (Ŝ1, . . . , Ŝm+n) meets the integrability condition∫ T

0

(
|ct|+

1

1 + Vt

∫
|x|2F t(dx)

)
dAt ∈ L2(Ω,F, P ?), (4.1)

whereb, c, F are chosen as in (2.1) forS instead ofŜ. Define theR(m+n)×(m+n)-valued
stochastic processH by

H ij
t :=

(
− u′′(0)cijt −

1

1 + Vt

∫
u′′(ϕ>t x)xixjF t(dx)

)
12



for i, j = 1, . . . ,m + n andt ∈ [0, T ]. We denote some sub-matrices ofH by H(uu) :=

(H ij)j=1,...,m
i=1,...,m , H(ud) := (H ij)j=m+1,...,m+n

i=1,...,m , H(du) := (H ij)j=1,...,m
i=m+1,...,m+n = (H(ud))>, H(dd)

:= (H ij)j=m+1,...,m+n
i=m+1,...,m+n . We call theRn×n-valued process

E := H(dd) −H(du)(H(uu))−H(ud)

local sensitivity, where(H(uu))− denotes the Moore-Penrose pseudo inverse of the matrix
H(uu) (cf. Albert (1972)).

Proposition 4.4 The values ofH and of the local sensitivityE are non-negative, symmetric
matrices.

The following theorem characterizes sensitivity processes in terms of local sensitivity.

Theorem 4.5 Suppose that Condition (4.1) holds and that(E?(
∫ T

0
EsdAs|Ft))t∈[0,T ] is a

locally square-integrable special semimartingale, whereE∗ denotes expectation relative to
P ?. Then there exists an up to indistinguishability unique sensitivity process. It is given by

∂Ŝt := E∗
(
−
∫ T

t+

EsdAs

∣∣∣Ft)
for t ∈ [0, T ], where

∫ T
t+
EsdAs :=

∫ T
0
EsdAs −

∫ t
0
EsdAs.

Remark. The (infinitesimal) numberEij
s dAs indicates how the price of claimm + i is af-

fected by a small demand shock for derivativem+j which lasts for an (infinitesimal) period
ds.

Roughly speaking, a contingent claim can be replicated if and only if its price process is
insensitive to small supply and demand:

Theorem 4.6 Suppose that the assumptions in the previous theorem hold and denote by∂Ŝ

the sensitivity process. Leti ∈ {1, . . . , n}. Then we have equivalence between:

1. ∂Ŝii0 = 0

2. ∂Ŝij = 0 for j = 1, . . . , n

3. There exists someϑ ∈ L(Ŝ) such thatŜm+i = Ŝm+i
0 +

∫ ·
0
ϑ>s dŜs.

Remark. Statement 3 in the previous theorem essentially means that the derivative price
processeŝSm+i and in particular its terminal payoffRm+i can be replicated by using the
trading strategyϑ. The restrictionessentiallyrefers to the fact thatϑ generally belongs to
the setL(Ŝ) of all Ŝ-integrable processes and not necessarily to some particular smaller
class of admissible trading strategies.

Sensitivity processes can be used to construct price bounds as a valuation counterpart to
confidence regions in statistics. Suppose for simplicity that only one derivative is given (i.e.
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n = 1) and consider timet = 0. Fix a demand/supply parameterδ(2) ∈ R, e.g.δ(2) = 1. The
interval[Ŝm+1

0 +∂Ŝ0δ
(2), Ŝm+1

0 −∂Ŝ0δ
(2)] can be interpreted as the set of initial prices which

correspond to at most moderate external demand resp. supply of contingent claims. In the
general case (i.e. for arbitraryn andt), one obtains time-varyingprice regions. The previous
theorem shows that these price regions reduce to a single point for attainable claims.

Let us relate this approach to the concept ofno-good-deal pricingin the sense of̌Cerný
and Hodges (1999). Among all model extensions, neutral price processes correspond to the
lowest expected utility for the derivative speculators: They cannot increase their utility by
investing in contingent claims at all. Instead of focusing on demand for derivatives, the con-
cept of no-good-deal pricing considers the rise of expected utility if derivative prices deviate
from neutral values. If one assumes that utility does not exceed its lower bound by some
given number (i.e. there are no attractive derivative investments (good deals) in the market),
then one obtains price regions similarly as above (no-good-deal bounds).

For risk management purposes one does not need a contingent claim valuation approach
to determine derivative prices because current quotations are observable at the market. In
this case, the concept of neutral valuation is used to obtain a reasonabledistribution of
future price changes, which in turn is needed to determine the risk involved in a portfolio of
underlyings and derivatives. If the neutral values deviate from observed market quotations,
one can use the sensitivity process to calibrate the model. The idea is to determine the
demand vectorδ(2) ∈ Rn in such a way that the calibrated model pricesŜm+i

0 + ∂Ŝi·0 δ
(2) for

i = 1, . . . , n coincide with the observed quotations. The distribution of(Ŝ1, . . . , Ŝm, Ŝm+1+

∂Ŝ1·δ(2), . . . , Ŝm+n+∂Ŝn·δ(2)) serves as an improved model for risk management purposes.
This approach may be compared to the use ofimplicit volatilities to make theoretical and
observed derivative prices tally. But in contrast to the latter, the calibration viaimplicit
demandδ(2) does not affect the model for the underlyings. Moreover, the vectorδ(2) can be
interpreted economically in the sense that a large valueδ(2),j indicates a strong demand for
derivativem+ j.

Proofs

PROOF OFPROPOSITION4.4. The symmetry ofH andE is obvious.c is non-negative def-
inite by JS, II.2.9. SetM := (−

∫
u′′(ϕ>t x)xixjF t(dx))j=1,...,m+n

i=1,...,m+n ∈ R(m+n)×(m+n). Forλ ∈
R
m+n we haveλ>Mλ = −

∫
(
∑m+n

i,j=1 λ
ixiλjxj)u′′(ϕ>t x)F t(dx). Since

∑m+n
i,j=1 λ

ixiλjxj =

(λ>x)2 ≥ 0, it follows thatM is non-negative definite. Together, we have that the sum
H = −u′′(0)c+ (1 + V )−1M is non-negative definite. By Albert (1972), Theorem 9.1.6,E

is non-negative definite as well. �

PROOF OFTHEOREM 4.5. Step 1: In this proof, superscripts at the local utilityγ or at
the characteristicsb, c, F in the sense of (2.1) refer to the process under consideration. Let
D = (D1, . . . , Dm+n) be aRm×n-valued locally square-integrable special semimartingale
with D1 = . . . = Dm = 0. Suppose that, relative toP ?, the processD is a special
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semimartingale whose local martingale part is square-integrable. Letδ be aRm+n-valued
process andε ∈ (0,∞). By definition, we have that the local utility ofS + εD in ϕ + εδ

equalsγS+εD(ϕ+εδ) = (ϕ+εδ)>bS+εD+ u′′(0)
2

(ϕ+εδ)>c(S+εD,S+εD)(ϕ+εδ)+
∫

(u((ϕ+

εδ)>x) − (ϕ + εδ)>x)F S+εD(dx). We will consider the three terms on the right-hand side
seperately. Note that the first part can be written as(ϕ + εδ)>bS+εD = ϕ>bS + ε(δ>bS +

ϕ>bD) + ε2δ>bD. Moreover, the second term without the factoru′′(0)
2

equals

(ϕ+ εδ)>c(S+εD,S+εD)(ϕ+ εδ) = ϕ>c(S,S)ϕ+ ε
(

2δ>c(S,S)ϕ+ 2ϕ>c(S,D)ϕ
)

+ ε2
(
δ>c(S,S)δ + 2δ>c(D,S)ϕ+ 2δ>c(S,D)ϕ+ ϕ>c(D,D)ϕ

)
+ o(ε2),

where o(ε2)
ε2
→ 0 for ε → 0. For the third term, we need the second order representation

u(x) = u(x0) +u′(x0)(x−x0) + 1
2
u′′(x0)(x−x0)2 +

∫ 1

0
(u′′(x0 + t(x−x0))−u′′(x0))(1−

t)dt(x−x0)2 for x0, x ∈ R. Note thatϕ>t ∆Dt = 0 and henceϕ>t y = 0 for F (S,D)
t -almost all

(x, y) ∈ R2(m+n). Moreover, the local square-integrability ofD and Condition (4.1) imply
that

∫
|(x, y)|2F (S,D)(d(x, y)) <∞ (cf. JS, II.2.29). Therefore, we have∫
(u((ϕ+ εδ)>x)− (ϕ+ εδ)>x)F S+εD(dx) =

∫
(u(ϕ>x)− ϕ>x)F S(dx)

+ ε

∫
δ>x(u′(ϕ>x)− 1)F S(dx)

+ ε2

(∫
δ>y(u′(ϕ>x)− 1)F (S,D)(d(x, y)) +

1

2

∫
u′′(ϕ>x)(δ>x)2F S(dx)

)
+ o(ε2).

Sinceϕ>bD = 0, c(S,D)ϕ = 0 andc(D,D)ϕ = 0, we obtain

γS+εD(ϕ+ εδ) = γS(ϕ) + εδ>
(
bS + u′′(0)c(S,S)ϕ+

∫
x(u′(ϕ>x)− 1)F S(dx)

)
+ ε2

(
δ>
(
bD + u′′(0)c(D,S)ϕ+

∫
y(u′(ϕ>x)− 1)F (S,D)(d(x, y))

)
+

1

2
δ>
(
u′′(0)c(S,S) +

∫
u′′(ϕ>x)xx>F S(dx)

)
δ

)
+ o(ε2). (4.2)

Note thatbS + u′′(0)c(S,S)ϕ +
∫
x(u′(ϕ>x) − 1)F S(dx) = 0 because of Equation (2.3).

Similarly as in Step 3 of the first proof in Section 3, it follows that

bD,? := bD + u′′(0)c(D,S)ϕ+

∫
y
(u′(ϕ>x)

1 + V
− 1
)
F (S,D)(d(x, y))

=
1

1 + V

(
bD + u′′(0)c(D,S)ϕ+

∫
y(u′(ϕ>x)− 1)F (S,D)(d(x, y))

)
is theP ?-drift of D, in the sense that the predictable part of finite variation in the canonical
decomposition of theP ?-special martingaleD equalsbD,? ·A. The second equality follows
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from the fact that∆At 6= 0, c(D,S)
t = 0 andbDt =

∫
yF (S,D)(d(x, y)) on the set{V 6= 0}

(cf. JS, II.2.9 and II.2.29). Hence, Equation (4.2) can be rewritten as

γS+εD(ϕ+ εδ) = γS(ϕ) + ε2(1 + V )
(
δ>bD,? − 1

2
δ>Hδ

)
+ o(ε2).

Consequently,δ is a derivative of the optimal strategy relative toD if and only if δ̃ 7→
δ̃>bD,? − 1

2
δ̃>Hδ̃ attains its maximum inδ. SinceH is non-negative, differentiation yields

that this is the case if and only if0 = bD,? −Hδ. In view ofD1 = . . . = Dm = 0, we can
rewrite this condition as

0 = H(uu)δ(1) +H(ud)δ(2) (4.3)

b(Dm+1,...,Dm+n),? = H(du)δ(1) +H(dd)δ(2), (4.4)

where we use the notationδ = (δ(1), δ(2)) with Rm-valuedδ(1) andRn-valuedδ(2). The
first equation implies thatH(du)δ(1) + H(dd)δ(2) = H(du)(H(uu))−H(uu)δ(1) + H(dd)δ(2) =

(−H(du)(H(uu))−H(ud) +H(dd))δ(2) = Eδ(2) (cf. Albert (1972), Theorem 9.1.6). Therefore,
Equations (4.3) and (4.4) are equivalent to

0 = H(uu)δ(1) +H(ud)δ(2) (4.5)

b(Dm+1,...,Dm+n),? = Eδ(2). (4.6)

Step 2:Define∂Ŝt = E∗(−E · AT |Ft) + E · At for t ∈ [0, T ]. Note that0 ≤ E ≤
H(dd) by Albert (1972), Theorem 9.1.6. By Huppert (1990), A II.7.7 this implies‖E‖ ≤
‖H(dd)‖ if we set‖E‖ := sup{|Ex| : |x| ≤ 1} and likewise forH(dd). Since all norms on
finite-dimensional spaces are equivalent, it follows that|E| ≤ α|H(dd)| for someα ∈ R+.
Therefore|E · AT | ≤ |E| · AT ≤ α|H(dd)| · AT ∈ L2(Ω,F, P ?) by Condition 4.1. In
particular,∂Ŝ is well-defined. Moreover, it is aP ?-special semimartingale with drift part
b∂Ŝ,? ·A = E ·A and square-integrable martingale partE?(−E ·AT |F·) (cf. JS, I.1.42). For
δ(2) ∈ Rn chooseδ(1) := −(H(uu))−H(ud)δ(2) and letD := (0, ∂Ŝδ(2)). Since Equations
(4.5) and (4.6) are satisfied, we have that∂Ŝ is a sensitivity process.

Step 3:Conversely, let∂Ŝ be any sensitivity process. Forδ(2) ∈ Rn let theRm-valued
processδ(1) be as in Definition 4.2. Since(δ(1), δ(2)) is a derivative of the optimal strategy
relative toD := (0, ∂Ŝδ(2)), Equation (4.6) yields that0 = b(Dm+1,...,Dm+n),? − Eδ(2) =

(b∂Ŝ,?−E)δ(2). Since this holds for anyδ(2), we have that∂Ŝ−E ·A is aP ?-local martingale.
From Condition 1 in Definition 4.2 it follows that∂Ŝ − E · A is a square-integrableP ?-
martingale. Therefore,∂Ŝt − E · At = E?(∂ŜT − E · AT |Ft) = −E?(E · AT |Ft) for
t ∈ [0, T ], which yields the uniqueness.

Observe that in the uniqueness part, we have not used thatE?(E · AT |F·) is a locally
square-integrable special semimartingale. Since this follows automatically from the last
equation, we conclude that this assumption is in fact a necessary condition for the existence
of a sensitivity process. �
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Proposition 4.7 LetX be aRd-valued locally square-integrable martingale andϑ anRd-
valued predictable process. Suppose that〈X i, Xj〉 = aij · A for i, j = 1, . . . , d whereA ∈
A

+
loc and a is a predictable process whose values are symmetric, non-negative matrices.

Then the following statements are equivalent:

1. ϑ ∈ L(X) andϑ> ·X = 0

2. (ϑ>aϑ) · A = 0

PROOF. 1⇒2: By Jacod (1980), Proposition 2 we have thatϑ ∈ L1
loc(X) and hence0 =

[ϑ> ·X,ϑ> ·X] = (ϑ>ãϑ) · Ã, whereÃ ∈V + and the adaptedRd×d-valued process̃a are
chosen such that[X i, Xj] = ãij · Ã for i, j = 1, . . . , d. But this impliesϑ ∈ L2(X) and
hence0 = 〈ϑ> ·X,ϑ> ·X〉 = (ϑ>aϑ) · A by Jacod (1979), (4.59), (4.37).

2⇒1: From Jacod (1979), (4.33), (4.37), (4.61) it follows thatϑ ∈ L2(X) ⊂ L(X) and
〈ϑ> ·X,ϑ> ·X〉 = (ϑ>aϑ) · A = 0. This impliesϑ> ·X = 0 (cf. JS, I.4.13). �

PROOF OF OFTHEOREM 4.6. Step 1:The equivalence 1⇔2 follows from Albert (1972),
Theorem 9.1.6. Since∂Ŝii does not depend on̂Sm+j for j 6= i, it suffices to consider the
casen = 1 for the rest of the proof.

Step 2:Define theR(m+1)×(m+1)-valued process̃H by H̃ ij
t = cijt + (1 + V )−1

∫
xixj

u′(ϕ>t x)F t(dx) for i, j = 1, . . . ,m + 1 and t ∈ [0, T ]. Moreover, defineH̃(uu), H̃(ud),
H̃(du), H̃(dd), Ẽ similarly as in Definition 4.3. As in the proof of Proposition 4.4 one shows
that the values of̃H andẼ are non-negative, symmetric matrices. Letλ ∈ Rm+1. It follows
from the proof of Proposition 4.4 thatλ>Hλ = 0 holds if and only ifλ>cλ = 0 and
λ>x = 0 for F t-almost allx ∈ Rm+1. Since the same is true for̃H instead ofH, we have
thatλ>Hλ = 0 holds if and only ifλ>H̃λ = 0.

Step 3:Letϑ ∈ Rm. A straightforward calculation yields that
(−ϑ

1

)>H(−ϑ
1

)
= ϑ>H(uu)ϑ

−2ϑ>H(ud) +H(dd) = (ϑ− (H(uu))−H(ud))>H(uu)(ϑ− (H(uu))−H(ud)) +E. SinceH(uu)

andE are non-negative, we have
(−ϑ

1

)>H(−ϑ
1

)
= 0 for someϑ ∈ Rm if and only ifE = 0 if

and only if
(−ψ

1

)>H(−ψ
1

)
= 0 for ψ := (H(uu))−H(ud).

Step 4:Suppose that Statement 3 holds. Observe that〈Ŝi, Ŝj〉∗ = H̃ ij · A for i, j =

1, . . . ,m+1, where〈·, ·〉∗ refers to the predictable covariation relative to the measureP ? (cf.
JS, II.2.29). From

(−ϑ
1

)> ·S = 0 and Proposition 4.7 we conclude that0 = (
(−ϑ

1

)>H̃(−ϑ
1

)
)·A.

Using Step 2, this implies
(−ϑ

1

)>H(−ϑ
1

)
= 0 (P ⊗ A)-almost everywhere and henceE = 0

by Step 3.
Step 5: Conversely, assume that∂Ŝii0 = 0 and henceE = 0 (P ⊗ A)-almost every-

where. By Steps 3 and 2 this implies
(−ϑ

1

)>H(−ϑ
1

)
= 0 and hence

(−ϑ
1

)>H̃(−ϑ
1

)
= 0

for ϑ := (H(uu))−H(ud). The predictability ofϑ can be shown using the definition of
the Moore-Penrose pseudoinverse in Albert (1972), Theorem 3.4. From Proposition 4.7
it follows that

(−ϑ
1

)
∈ L(S) and

(−ϑ
1

)> · S = 0. This in turn impliesϑ ∈ L(Ŝ) and
0 =

(−ϑ
1

)> · S = −ϑ · Ŝ + Ŝm+1. �
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5 Examples

In this section, we illustrate neutral derivative pricing and sensitivity processes by consider-
ing particular cases. Since we do not want to confuse the reader with technicalities, we omit
the conditions for existence of the neutral pricing measure etc. In all examples we suppose
that there is only one underlying with price processŜ1 besides the numeraire.

5.1 Markets with continuous paths

We assume that the price processŜ1 has characteristics of the form (2.1) withF = 0 (no
jumps). In this case the density processZ of the neutral pricing measureP ? is given by

Zt = exp
(
−
∫ t

0

bs
cs
dŜ1,c − 1

2

∫ t

0

(bs
cs

)2

d〈Ŝ1,c, Ŝ1,c〉s
)
, (5.1)

whereŜ1,c = Ŝ1−
∫ ·

0
bsdAs denotes theP -local martingale part of̂S1. Observe thatZ does

not depend on the utility functionu. Moreover,P ? coincides with theminimal martingale
measurein the sense of Föllmer and Schweizer (1991), Theorem 3.5. The latter is used to
determine hedging strategies that are optimal in a locally quadratic sense. But note that this
equality holds only for continuous processes.

Now let us introduce a contigent claimR2 into the market whose discounted price
processŜ2 is neutral and continuous. If we write the predictable covariation in the form
〈Ŝi,c, Ŝj,c〉 = cij · A for i, j = 1, 2, whereA is some predictable increasing process andc is
a predictable,R2×2-valued process, then the local sensitivity of the derivative equals

Et = −u′′(0)
(
c22
t −

(c12
t )2

c11
t

)
(5.2)

on the set{c11 6= 0}. We will illustrate this equation in the context of bivariate diffusion
models in the next subsection.

5.2 Bivariate diffusion models

A closer look at stock return data reveals that periods of violent price changes alternate with
relatively calm intervals. This behaviour led to the introduction of ARCH and GARCH
models on the one hand and bivariate diffusion settings on the other (cf. Frey (1997) for a
survey in view of derivative pricing). For the latter, the volatility is modelled by a stochastic
process following its own dynamic. More specifically, the price processŜ1 is assumed to
satisfy the stochastic differential equations (SDE’s)

dŜ1
t = µ(σt)Ŝ

1
t dt+ σtŜ

1
t dWt

dσt = α(σt)dt+ β(σt)dW̃t, (5.3)

whereµ, α : R → R andβ : R → R+ are given continuous functions andW, W̃ denote
standard Wiener processes with correlation% ∈ [−1, 1] (i.e. 〈W, W̃ 〉t = %t for anyt ∈ R+).
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The second SDE describes the dynamic of the stochastic volatilityσ. The characteristics of
Ŝ1 are of the form (2.1) withb1

t = µ(σt)Ŝ
1
t , c

11
t = (σtŜ

1
t )

2, Ft = 0, andAt = t for t ∈ [0, T ].
By Equation (5.1) the density processZ of the neutral pricing measureP ? equals

Zt = exp
(
−
∫ t

0

µ(σs)

σs
dWs −

1

2

∫ t

0

(µ(σs)

σs

)2

ds
)
.

Girsanov’s theorem (cf. e.g. JS, III.3.11, II.4.4) yields thatW ? := W +
∫ ·

0
µ(σs)
σs

ds and

W̃ ? := W̃ + %
∫ ·

0
µ(σs)
σs

ds areP ?-Wiener processes with correlation%. Therefore, theP ?-

dynamics ofŜ1 andσ can be better seen from the equations

dŜ1
t = σtŜ

1
t dW

?
t (5.4)

dσt =
(
α(σt)− %

µ(σt)β(σt)

σt

)
dt+ β(σt)dW̃

?
t . (5.5)

Now suppose that we want to price a contingent claimR2 = g(Ŝ1
T ) for some measurable

mappingg : R → R. We setCBS(x,Σ) :=
∫
g(x exp(

√
Σy − Σ

2
))φ(y)dy for x ∈ R,

Σ ∈ R+, whereφ denotes the density of the standard normal distribution. Let us assume
that the filtration(Ft)t∈[0,T ] is generated by(W, W̃ ). Moreover, suppose that the SDE (5.5)
has a unique strong solution and define the functionCbd : (0,∞)× (0,∞)× [0, T ]→ R by

Cbd(x, ς, t) := E

(
CBS

(
x exp

(
%

∫ T−t

0

σsdW s−
%2

2

∫ T−t

0

σ2
sds
)
,
√

1− %2

∫ T−t

0

σ2
sds

))
,

where(W,σ) denotes a solution to SDE (5.5) starting inσ0 = ς at time 0. Below it is shown
that

Ŝ2
t = E?(g(Ŝ1

T )|Ft) = Cbd(Ŝ
1
t , σt, t) (5.6)

holds for the neutral price procesŝS2 from Theorem 3.4.
If the mappingCbd is of classC2, Itô’s formula and theP ?-martingale property of̂S2

yield
dŜ2

t = D1Cbd(Ŝ
1
t , σt, t)σtŜ

1
t dW

?
t +D2Cbd(Ŝ

1
t , σt, t)β(σt)dW̃

?
t .

Therefore the joint characteristics(B,C, ν) of (Ŝ1, Ŝ2) are of the form (2.1) with drift vector

b1
t = µ(σt)Ŝ

1
t ,

b2
t = D1Cbd(Ŝ

1
t , σt, t)µ(σt)Ŝ

1
t + %D2Cbd(Ŝ

1
t , σt, t)β(σt)

µ(σt)

σt
,

diffusion matrix

c11
t = (σtŜ

1
t )

2,

c12
t = c21

t = D1Cbd(Ŝ
1
t , σt, t)(σtŜ

1
t )

2 + %D2Cbd(Ŝ
1
t , σt, t)β(σt)σtŜ

1
t ,

c22
t = (D1Cbd(Ŝ

1
t , σt, t)σtŜ

1
t )

2 + (D2Cbd(Ŝ
1
t , σt, t)β(σt))

2

+ 2%D1Cbd(Ŝ
1
t , σt, t)D2Cbd(Ŝ

1
t , σt, t)β(σt)σtŜ

1
t ,
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jump measureFt = 0, andAt = t. This allows to compute theoptimal hedging strategyfor
Ŝ2 in the sense of Kallsen (1999). If we have sold one contingent claim, the optimal number
of shares of the underlying in the hedge portfolio is given by

ϕ1
t =

c12
t

c11
t

+
1

−u′′(0)

b1
t

c11
t

= D1Cbd(Ŝ
1
t , σt, t) + %

β(σt)

σtŜ1
t

D2Cbd(Ŝ
1
t , σt, t) +

1

−u′′(0)

µ(σt)

Ŝ1
t σ

2
t

.

The third term represents the optimal investment in the underlying when no derivative is
present. It can be neglected for large values of therisk aversionparameter−u′′(0). The
dominating part consists of two terms. The first one corresponds to the classicaldeltaof the
option (i.e. its partial derivative with respect to the underlying) and it provides essentially the
optimal hedge for% = 0. If, however, the price movements of the underlying are correlated
with volatility, one should take care of this dependence by adjusting the hedge portfolio with
the second term.

Finally, let us compute the local sensitivity of the option. From Equation (5.2) we obtain

Et = −u′′(0)(1− %2)(β(σt)D2Cbd(Ŝ
1
t , σt, t))

2. (5.7)

As one may expect, the sensitivity depends on the diffusion coefficient of the volatility
process and on the partial derivative of the option price with respect to volatility. The latter
is calledvegaof the option in the financial literature (cf. Hull (1997), 14.9). Equation (5.7)
explains why risk managers try to constructvega-neutralportfolios, where this derivative is
close to 0.

Note that forα = β = 0 the volatility is deterministic and constant. Therefore, we re-
cover the Black-Scholes model. As we know already from Theorem 4.6, the local sensitivity
vanishes in this case.

Proofs

The following simple result is shown e.g. in Kallsen (1998), Proposition 4.21.

Proposition 5.1 LetW be a real-valued standard Wiener process on(Ω,F, (Ft)t∈[0,T ], P ),
and letC be a sub-σ-field ofF that is independent ofW . Moreover, denote byY a continuous
adapted process that isC-measurable. Then we have

P
∫ T
0 YtdWt|C = N

(
0,

∫ T

0

Y 2
t dt
)
P -almost surely.

PROOF OF EQUATION (5.6). Suppose that|%| 6= 1. (The statement for|%| = 1 follows
similarly.) Define theP ?-Brownian motionW

?
:= (1 − %2)−

1
2 (W ? − %W̃ ?) and letY 1 :=

Ŝ1
0E (%

∫ ·
0
σtdW̃

?
t ), Y 2 := E (

√
1− %2

∫ ·
0
σtdW

?

t ). ThenŜ1 = Y 1Y 2. Define a system of
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SDE’s

dX1
t =

(
α(X1

t )− %µ(X1
t )β(X1

t )

X1
t

)
dt+ β(X1

t )dW 1
t (5.8)

dX2
t = %X1

tX
2
t dW

1
t (5.9)

dX3
t =

√
1− %2X1

tX
3
t dW

2
t , (5.10)

where(W 1,W 2) denotes a standard Wiener process inR2. If the first SDE has a unique
strong solution for any starting valueX1

0 > 0, then the system (5.8) – (5.10) has a unique
strong solution for any(X1

0 , X
2
0 , X

3
0 ) ∈ (0,∞) × R2 because the last two equations are

uniquely solved byX2 = X2
0E (%

∫ ·
0
X1
t dW

1
t ) andX3 = X3

0E (
√

1− %2
∫ ·

0
X1
t dW

2
t ).

Note that, relative toP ?, the pair((W 1,W 2), (X1, X2, X3)) = ((W̃ ?,W
?
)), (σ, Y 1, Y 2)) is

a solution to Equations (5.8) – (5.10) starting in(σ0, Y
1

0 , Y
2

0 ). If we denote byP(x1,x2,x3) the
solution measure to the above system corresponding to(X1

0 , X
2
0 , X

3
0 ) = (x1, x2, x3) and if

(Bt)t∈R+ denotes the filtration generated by the Wiener process(W 1,W 2), then we have

Ŝ2
t = E∗(g(Y 1

T Y
2
T )|Ft)

= E(σ0,Y 1
0 ,Y

2
0 )(g(X2

TX
3
T )|Bt)

by Theorem 3.4. From the Markov property of Itô diffusions (cf. e.g. Øksendal (1998),
Theorem 7.1.2), we conclude that

Ŝ2
t = E(σt,Y 1

t ,Y
2
t )(g(X2

T−tX
3
T−t))

= E(σt,Y 1
t ,Y

2
t )(E(σt,Y 1

t ,Y
2
t )(g(X2

T−tX
3
T−t)|σ(W 1))). (5.11)

By Proposition 5.1 the conditional law of
√

1− %2
∫ T−t

0
X1
sdW

2
s relative toσ(W 1) equals

N(0,
√

1− %2
∫ T−t

0
(X1

s )2ds). Therefore the conditional expectation in (5.11) equalsCBS(

X2
T−tX

3
0 ,
√

1− %2
∫ T−t

0
(X1

s )2ds). SinceX2
T−tX

3
0 = X2

0X
3
0E (%

∫ T−t
0

X1
sdW

1
s ), this in

turn implies that̂S2
t = Cbd(Ŝ

1
t , σt, t). �

5.3 Exponential Lévy processes

In the last couple of years,exponential Lévy processeshave become popular for securities
models, since they are mathematically tractable and provide a good fit to real data (cf. Eber-
lein and Keller (1995), Eberlein et al. (1998), Madan and Senata (1990), Barndorff-Nielsen
(1998)). By this notion we refer to the case that the discounted price processŜ1 is positive
and of the form

Ŝ1 = Ŝ1
E (L), (5.12)

whereL is some Lévy process with characteristic triplet(b, c, F ) relative to the truncation
functionh : x 7→ x (i.e. L is a PIIS in the sense of JS, II.4.1 and II.4.19). By Goll and
Kallsen (2000), Lemma A.8 these processes coincide with those of the formŜ1 = Ŝ1 exp(L̃)

for real-valued Lévy processes̃L. In the case(b, c, F ) = (µ − r, σ2, 0) we recover the
standard Osborne-Samuelson model with geometric Brownian motion.
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How does the underlying price processŜ1 behave under the neutral pricing measure
P ?? Note that the characteristics ofŜ1 are of the form (2.1) withbt = Ŝ1

t−b, ct = (Ŝ1
t−)2c,

Ft(G) = F ( 1

Ŝ1
t−
G), andAt = t for t ∈ [0, T ],G ∈ B. From Equation (2.3) we obtain thatϕ

in Assumptions (3.2) is of the formϕt = ψ

Ŝ1
t−

, where the real numberψ solves

b+ u′′(0)cψ +

∫
x(u′(ψx)− 1)F (dx) = 0.

Lemma 3.5 yields that theP ?-characteristics of̂S1 are as above, but with(b?, c?, F ?) given
by b? = 0, c? = c, and

F ?(G) =

∫
G

u′(ψx)F (dx) for G ∈ B

instead of(b, c, F ). Put differently, theP -Lévy processL in Equation (5.12) remains a
process with independent, stationary increments underP ?, but withP ?-characteristic triplet
(b?, c?, F ?).

5.4 Discrete-time markets

In this final example we consider the case thatŜ1 is a discrete-time process of the form

Ŝ1
t = Ŝ1

t−1(1 + Yt),

whereY1, Y2, . . . , YT are identically distributed random variables (with some distribution
Q on (R,B)) such thatYt is independent ofFt−1 for t = 1, 2, . . . , T . In this case the
characteristics of̂S1 are of the form (2.1) withAt =

∑
s≤t 1N\{0}(s), bt =

∫
xFt(dx),

ct = 0, Ft(G) = Q( 1

Ŝ1
t−1

(G \ {0})) for t = 1, . . . , T , G ∈ B (cf. JS, II.3.14). By Equation

(2.3) we have thatϕ in Assumptions 3.2 is of the formϕt = ψ

Ŝ1
t−1

, whereψ solves the

equation ∫
xu′(ψx)Q(dx) = 0.

Lemma 3.5 yields that theP ?-dynamics ofŜ1 are of the same form as above, but withQ?

instead ofQ wheredQ
?

dQ
(x) := u′(ψx)∫

u′(ψx̃)Q(dx̃)
. In other words, the random variablesY1, . . . , YT

are independent and identically distributed underP ? as well. Note that this corresponds to
the similar statement onL in the previous subsection.

As a concrete example let us consider a discretized version of the Osborne-Samuelson
setting underlying the Black-Scholes model: If Q is a lognormal distribution with parameters
−µ+ r+ σ2

2
, 1
σ
,−1 (i.e. the law oflog(1 +Yt) is normal with meanµ− r− σ2

2
and variance

σ2), then the joint law of̂S1
0 , Ŝ

1
1 , . . . , Ŝ

1
T is the same as for the geometric Brownian motion

underlying the Black-Scholes formula, which satisfiesdŜ1
t = (µ− r)Ŝ1

t dt+ σŜ1
t dWt. The

chosen parameters arer = 1.05/250, µ = 1.09/250, σ = 0.25/
√

250. Note that this
discrete-time model is incomplete and hence does not allow derivative pricing solely based
on the absence of arbitrage.

22



96 98 102 104

0.2

0.4

0.6

0.8 96 98 102 104

-0.00007

-0.00006

-0.00005

-0.00004

-0.00003

-0.00002

-0.00001

Figure 1: Time value and difference to Black-Scholes 1 day to maturity
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Figure 2: Time value 10 and 60 trading days to maturity

One may wonder how strongly the discretization of the Black-Scholes model affects
option prices. Consider a European call option with strike priceK = 100 expiring in 1, 10,
60 trading days, respectively. We define thetime valueof the option as the difference of its
current priceS2

0 and the payoff(S1
0 − K)+ if it were to expire immediately. Note that the

time value of a European call option is non-negative because(S1
0 −Ke−rT )+ ≥ (S1

0 −K)+

is a lower arbitrage bound. The solid line in the left diagram of Figure 1 shows the time
value of our European call one day before expiration as a function of the current stock price
S1

0 . The dotted horizontal line represents the lower arbitrage bound. In fact, the solid line in
the left diagram consists of two curves, firstly the time value in the discrete-time setting and
secondly in the continuous-time Black-Scholes model. We use standard utility functions in
the sense of Remark 2 following Definition 2.1. The tiny difference between the two curves
is plotted on the right, i.e. the Black-Scholes value is slightly greater than the price in the
discrete model. In Figure 2 we repeat the calculations for an option ten and sixty days before
expiration.

Having seen that the effect of discretization to neutral call prices in negligible, let us
now turn to price bounds based on the sensitivity process. For numerical computations it is
useful to note that the coefficients of the matrixH in Definition 4.3 are of the form

H ij
t =

E(−u′′(ϕt∆Ŝ1
t )∆Ŝ

i
t∆Ŝ

j
t |Ft−1)

E(u′(ϕt∆Ŝ1
t )|Ft−1)

=
E(−u′′(ψYt)∆Ŝit∆Ŝ

j
t |Ft−1)

E(u′(ψY1))
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for t = 1, . . . , T andi, j = 1, 2. The dashed lines in the left diagram of Figure 1 and in Fig-
ure 2 indicate the price interval in the sense of Section 4 relative toδ(2) = ±1 and standard
utility functions withκ = 1. As one may expect, the sensitivity of an option in absolute
numbers is highest at the money and its gets slightly larger with increasing time to matu-
rity. However, compared to the time value of the option, we observe an entirely different
behaviour. Since the value of an option increases rapidly with time to expiration, the price
of long-lived options is relatively more robust against supply and demand (cf. the narrow
bounds in the right diagram of Figure 2). Conversely, the price interval is comparatively
large e.g. for options that are far out of the money.
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