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ABSTRACT

We design filter banks that are best matched to input signal
statistics in M -channel subband coders, using a broad class
of rate–distortion criteria. We present fundamental proper-
ties and analytical expressions for minimum mean-squared
error (MMSE) filter banks, without constraints on filter
length, under optimal bit allocation requirements. We also
investigate a constrained–length version of this problem,
which is applicable to practical coding scenarios. While
the optimal filter banks are nearly perfect-reconstruction
at high rates, we show that MMSE FIR filter banks en-
joy a significant advantage (in the MSE sense) over optimal
perfect–reconstruction FIR filter banks at all rates.

1. INTRODUCTION

We consider M–channel subband coders with analysis filters
{Hi(f), 0 ≤ i < M} and synthesis filters {H̃i(f), 0 ≤ i <
M}. Fig. 1 shows an equivalent representation of the codec
in terms of the M×M analysis and synthesis polyphase ma-
tricesH(f) and H̃(f). The problem of interest here is to de-
sign the filters so as to optimize the rate–distortion perfor-
mance of subband coders that use uniform scalar quantizers
in each channel. The distortion measure is mean–squared
reconstruction error. We explore fundamental properties
of MMSE filter banks (for which the perfect–reconstruction
(PR) is not imposed a priori [1]). We also present analytical
expressions for the resulting optimal filter banks in terms
of bit rate and second-order input signal statistics.

1.1. Basic Model for Signal and Quantization Noise

The input x(n) to the subband coder is assumed to be real–
valued and wide–sense stationary with zero mean and spec-
tral density S(f). Throughout, we assume that S(f) is
bounded away from zero. The total bit budget is R bits
per sample, to be allocated to the quantizers in each chan-
nel. Quantizer Qi in channel i operates on a signal yi(n)
with variance σ2

i , is scalar and uniform, and is allocated Ri

bits, where 1
M

∑M−1

i=0
Ri = R. We make the assumption

that the quantization noise is additive, white and indepen-
dent of the signal; and that the quantization noise sources in
different channels are mutually independent. This is a stan-
dard model which is valid at high bit rates, but not at low
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bit rates. Each quantizer is assumed to have a distortion–
rate function σ2

i D(Ri), where in this context distortion is
quantization noise variance. The following properties are
required : D(.) is strictly positive, strictly monotonic de-
creasing, and strictly convex. For Theorems 2.1 and 2.2 to
hold, we also require lnD(.) to be concave. The standard ex-
ponential model D(Ri) = γσ2

i 2−2Ri for the rate–distortion
function satisfies all of the assumptions above. We first
state the design criterion for PR filter banks in Sec. 1.2 and
extend it to MMSE filter banks in Sec. 1.3.

1.2. Design Criterion for PR Systems

Under the assumptions above, the reconstruction error x̂(n)−
x(n) is a cyclostationary process with period M . For PR
systems, the goal is to minimize the expected mean–squared
error (MSE) [2]

1

M

M−1∑
n=0

E|x̂(n)− x(n)|2 =
1

M

M−1∑
i=0

D(Ri)σ
2
i ||h̃i||2 (1)

where ||h̃i||2 represents the amplification factor for white

noise passed through synthesis filter h̃i. In order to find the
optimal bit allocation given the filter banks, the optimiza-
tion problem (1) with bit rate constraints is transformed
into the Lagrange optimization problem

Minimize 1
M

∑M−1

i=0
D(Ri)σ

2
i ||h̃i||2 − µ 1

M

∑M−1

i=0
Ri

where −µ is the Lagrange multiplier. The solution satisfies
the condition,

σ2
i ||h̃i||2 dD(R)

dR

∣∣∣∣
Ri

= µ, 0 ≤ i < M. (2)

Hence, for optimal bit allocation, the slope of the distortion–
rate function 1

M
D(Ri)σ

2
i ||h̃i||2 at the encoder’s operating

point must be the same for all i. It has been assumed here
that R is large enough so that the positivity constraints
Ri ≥ 0 are all inactive. Due to the strict convexity of D(.),
the optimal bit allocation problem has a unique solution.
Let S(f) be the M × M spectral density matrix for the
polyphase vector x(n), input to H(f) in Fig. 1. We have

σ2
i =

∫ 0.5

−0.5

(HSH†)ii df, ||h̃i||2 =

∫ 0.5

−0.5

(H̃†H̃)ii df.
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Figure 1: Polyphase representation of M–channel subband
coder and decoder using analysis filters Hi(f) and syn-

thesis filters H̃i(f). The polyphase components of Hi(f)

(resp. H̃i(f)) are contained in row (resp. column) i of the

polyphase matrix H(f) (resp. H̃(f).)

1.3. Design Criterion for MMSE Filter Banks

In the MMSE filter bank approach, the PR constraints are
relaxed so as to trade off systematic reconstruction errors
(due to lack of PR) against quantization noise. The solution
is nearly identical to the PR solution at high bit rates (low
quantization noise), but notable improvements over PR de-
signs have been obtained using numerical simulations at
lower bit rates [1]. Here, we seek analytical expressions for
the filters and bit allocation {Ri} that jointly minimize the
MSE. Using the model in Sec. 1.1, signal and quantization
noise are assumed to be independent, so the MSE is the
sum of the noise term (1) and a signal term. The MSE is

E = 1
M

∑M−1

i=0
D(Ri)

∫
(HSH†)ii

∫
(H̃†H̃)ii

+ 1
M

Tr
∫

(H̃H − IM ) S (H̃H − IM )†, (3)

to be minimized over H, H̃, and {Ri}. The optimal bit
allocation condition is still given by (2).

2. FUNDAMENTAL PROPERTIES OF MMSE
FILTER BANKS

We have recently proven that optimal (in the sense (1))
PR filter banks enjoy two fundamental properties: total
decorrelation of subband channels, and spectral majoriza-
tion [2, 3]. These properties were previously known to apply
only to paraunitary filter banks, in which case the solution
is a principal–component filter bank (PCFB) [4, 5, 6]. We
now show that these fundamental properties hold even if
the PR conditions are relaxed, and the cost function (3)
is used. The proof of the two theorems below uses vari-
ational techniques and parallels the proof of Theorem 2.3
and Lemma 2.6 in [2].

Theorem 2.1 (Total Decorrelation is Necessary for

Optimality.) The system H, H̃, {Ri} minimizes (3) only

if the matrices HSH† and H̃†H̃ are diagonal, and {Ri}
satisfies (2).

Theorem 2.2 (Spectral Majorization is Necessary for

Optimality.) Let H, H̃, {Ri} be a minimizer of (3), and

M = H̃†H̃. Without loss of generality, assume that R0 ≥
R1 ≥ · · · ≥ RM−1. The normalized spectral densities

1
wiσ2

i

Sy,ii(f) for the subband signals satisfy the spectral ma-

jorization property:

1

w0σ2
0

Sy,00(f) ≥ · · · ≥ 1

wM−1σ2
M−1

Sy,M−1,M−1(f), ∀f,

where wi
4
= 1

M
D(Ri). Likewise, the normalized quantities

1

wi||h̃i||2
Mii(f) satisfy the spectral majorization property

1

w0||h̃0||2
M00(f) ≥ · · · 1

wM−1||h̃M−1||2
MM−1,M−1(f), ∀f.

The particular filter bank structure shown in Fig. 2 was
shown to be optimal in the PR class [2, 3], in which case

G̃i(f) = 1/Gi(f). The first block in this structure, U(f), is
a PCFB. While at this point we are not able to ascertain
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Figure 2: Cascade of a principal–component filter bank
U(f) and a set of prefilters Gi(f) and postfilters G̃i(f)
around each quantizer. This system satisfies the total decor-
relation and spectral majorization properties.

whether the structure in Fig. 2 is also optimal for MMSE
filter banks, we are able to compute the best filters Gi(f)

and G̃i(f). We then prove some important properties of
the resulting filter bank 1.

We can write the cost function (3) in terms of the pre–

and postfilters Gi(f) and G̃i(f) as

E = 1
M

∑M−1

i=0
D(Ri)

∫
|Gi

√
Si|2

∫
|G̃i|2

+ 1
M

∑M−1

i=0

∫
|G̃iGi − 1|2Si, (4)

where Si(f) is the spectral density for the signal zi(n) in
Fig. 2. Analytical expressions for the optimal filters Gi(f),

G̃i(f) depend on the bit rates {Ri}.

Theorem 2.3 For any {Ri}, the filters that minimize the
MSE (3) for the system in Fig. 2 are

|Gi(f)| = ci

√
Pi(f)S

−1/4
i (f), |G̃i(f)| = c−1

i

√
Pi(f)S

1/4
i (f)
(5)

where ci are arbitrary positive scaling factors, and the prod-
uct filters Pi(f) = Gi(f)G̃i(f), 0 ≤ i < M , are given by

Pi(f) = max

(
0, 1− D(Ri)

1 + D(Ri)

∫
+

√
Si(f) df√
Si(f)

)
. (6)

The MSE for these filters is given by

E(H, H̃) =
1

M

M−1∑
i=0

[∫

+

√
Si(f) df

]2
D(Ri)

1 + D(Ri)

+
1

M

M−1∑
i=0

∫

−
Si(f) df, (7)

where
∫
+

means integration over the (unique) set F+
i that

satisfies F+
i =

{
f |

√
Si(f) > D(Ri)

1+D(Ri)

∫
+

√
Si

}
, and

∫
−

means integration over the complementary set 2.

Outline of the Proof : By the Cauchy-Schwartz inequality,

(4) is lower bounded by ELB = 1
M

∑M−1

i=0
D(Ri)

∣∣∫ GiG̃i

√
Si

∣∣2
+ 1

M

∑M−1

i=0

∫ ∣∣GiG̃i − 1
∣∣2 Si, with equality iff Gi

√
Si =

1Since the class of filters considered in Fig. 2 contains the
optimal PR filter bank, the solution is clearly guaranteed to be
at least as good as the optimal PR filter bank.

2At high bit rates, F+
i =

[
− 1

2
1
2

]
. As our numerical results

have shown, F+
i =

[
− 1

2
1
2

]
at all bit rates for AR(1) processes.

ciG̃
∗
i . Additionally, ci > 0 and Pi(f) ≥ 0 (see [2]). The

functional ELB is strictly convex in Pi, and its unique min-
imizer is given by (6). Substituting into ELB , we obtain (7).

The optimal MSE (7) is upper–bounded by the optimal

value E = 1
M

∑M−1

i=0
D(Ri)

(∫ 0.5

−0.5

√
Si(f) df

)2

for the IIR

biorthogonal case [2], and tends to this limit as R → ∞.
The performance of FIR MMSE filter banks converges to
(7) as the filter length tends to infinity. As discussed in
[2, 3], PR filter banks do not enjoy a similar property: FIR
filter banks of arbitrary length must satisfy the constraint
detH(f) ≡ 1, and the performance of these filters does not
converge to that of IIR filter banks (for which the constraint
detH(f) ≡ 1 is not applicable). Even at high bit rates,
FIR MMSE filter banks of sufficient length can vastly out-
perform FIR biorthogonal filter banks of arbitrary length.
While conditions (5),(6) for optimality of the filter bank
apply for arbitrary {Ri}, the optimal {Ri} do satisfy (2).

3. IMPORTANT SPECIAL CASES

Consider the classical model D(Ri) = γ2−2Ri for the rate–
distortion function with optimal bit allocation. Then (2)

yields the closed–form solution 22Ri ∝ σ2
i ‖h̃i‖2. (Just be-

fore going to press, we discovered the paper [7] which derives
the optimal set of pre– and postfilters for a single–channel
problem. However, their framework apparently does not
lend itself to joint optimization of filter banks and bit alloca-
tion [7, p. 1024].) The resulting distortions σ2

i ‖h̃i‖2D(Ri)
are identical for all channels. The expected MSE (3) is then

E(H, H̃) = γ2−2R
[∏M−1

i=0

∫
(HSH†)ii

∫
(H̃†H̃)ii

]1/M

+ 1
M

Tr
∫

(H̃H − IM ) S (H̃H − IM )†. (8)

For the exponential D(Ri) model and optimal bit alloca-
tion, the general expressions (6),(7) are specialized in Theo-
rem 3.1 below. Analytical expressions for the optimal filters
are given in terms of constants {σ2

i } which are solutions to

a nonlinear system. If it is known that F+
i =

[
− 1

2
1
2

]
, then

the only constant to be solved for is Eq.

Theorem 3.1 The filters that minimize the MSE (8) for
the system in Fig. 2 are given by (5) with product filters

Pi(f) = max

(
0, 1− Eq/σ2

i√
Si(f)

)
, 0 ≤ i < M. (9)

Here

σ2
i =

1

2

∫

+

√
Si(f) df ±

√(
1

2

∫

+

√
Si(f) df

)2

− Eq|F+
i |,

(10)
are the normalized variances of the subband signals (using
ci = 1),

Eq = γ2−2R

(
M−1∏
i=0

σ2
i

)2/M

, (11)

and F+
i =

{
f |

√
Si(f) >

Eq

σ2
i

}
. The MSE for these filters



is given by

E(H, H̃) = Eq +
1

M

M−1∑
i=0

(
Eq

σ2
i

)2

|F+
i |+

1

M

M−1∑
i=0

∫

−
Si(f) df.

(12)
Note that according to (10), there exist two possible can-
didates for the solution σ2

i in each channel. Each of these
solutions is a local extremum for (8). The optimal solution
is the one that minimizes (8). For bit rates that are high
enough, each sign in (10) must be positive.

2–Channel Case

Substantial simplifications arise if the number of channels
is M = 2. The product filters are given by

P0(f) = max

(
0, 1− γ2−2Rσ2

1√
S0(f)

)
,

P1(f) = max

(
0, 1− γ2−2Rσ2

0√
S1(f)

)
. (13)

The optimal filters are again given by (5). Here the nor-
malized variances of the subband signals are (using ci = 1)

σ2
0 =

∫
+

√
S0(f) df − |F+

0 |γ2−2R
∫
+

√
S1(f) df

1− (γ2−2R)2|F+
0 ||F+

1 |
,

σ2
1 =

∫
+

√
S1(f) df − |F+

1 |γ2−2R
∫
+

√
S0(f) df

1− (γ2−2R)2|F+
0 ||F+

1 |
. (14)

The MSE corresponding to these filters is given by

E = γ2−2Rσ2
0σ2

1+
1

2
(γ2−2R)

2
(|F+

0 |σ4
0+|F+

1 |σ4
1)+

1

2

1∑
i=0

∫

−
Si(f) df.

(15)
(14) is a nonlinear system in σ2

0 , σ2
1 . But if it is known that

F+
0 =F+

1 =
[
− 1

2
1
2

]
, (14) (15) no longer contains unknowns.

4. SIMULATION RESULTS

An AR(1) process with correlation coefficient r = 0.8 in
the two–band case has been considered to illustrate the
analysis above. In this case, the PCFB is the traditional
filter bank with ideal low and high pass filters. The opti-
mization problem (8) for the pre– and postfilters has been
solved for various rates R and the results have been com-
pared with optimal IIR biorthogonal filter banks and op-
timal unconstrained–length FIR biorthogonal filter banks
[2, 3]. At all bit rates, F+

i =
[
− 1

2
1
2

]
. For R = 1.76, the bit

rate in the high–pass channel becomes zero, in which case
the criterion (8) becomes clearly invalid. The performance
of the optimal unconstrained–length MMSE filter banks is
very close to optimal IIR biorthogonal filter banks at very
high rates, but improvements become quite significant as
R decreases (Fig. 3). At very high rates, the optimal filter
banks are close to the (PR) IIR biorthogonal solution. At
lower bit rates, the filters differ significantly from those op-
timal PR filters. Frequency responses are shown in Fig. 4
for an AR(1) process with correlation coefficient r = 0.8,

and rate R = 2.91. The scaling factors c0 and c1 for all
three filter banks have been chosen so that the frequency
responses are the same at f = 0 and at f = 0.5.

The remarks at the end of Sec. 2 motivated us to in-
vestigate the constrained–length version of this design. A
simple rectangular windowing technique was used to design
constrained–length FIR–MMSE filterbanks from the opti-
mum unconstrained–length solution. As shown in Fig. 5,
the results are excellent at medium bit rates. At R = 2.91,
the length–63 FIR–MMSE filter bank outperforms optimal
FIR biorthogonal filter banks of arbitrary length, and the
length–103 FIR–MMSE filter bank outperforms optimal IIR
biorthogonal filter banks. Similar advantages hold at arbi-
trarily high bit rates, but longer FIR filters are needed to
break the performance bounds for FIR and IIR biorthog-
onal filters. Refinements in the FIR–MMSE filter design
method are likely to yield further improvements.
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Figure 3: AR(1) process with correlation coefficient r =
0.8: Optimum values of MSE as a function of overall
bit rate R for different filter design methods. Solid line:
IIR biorthogonal (half-whitening) filters [2],[3]; Dotted line:
FIR biorthogonal filters [2],[3]; Dashed line: MMSE filters.



0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

frequency

m
ag

ni
tu

de

Analysis lowpass, AR1 process, r = 0.95

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

frequency

m
ag

ni
tu

de

Analysis highpass, AR1 process, r = 0.95

Figure 4: Frequency responses of optimal, unconstrained
length analysis filters in two-band case, for AR(1) process
at bit rate R = 2.91. Solid line: IIR biorthogonal (half-
whitening) filters [2],[3]; Dotted line: FIR biorthogonal fil-
ters [2],[3]; Dashed line: MMSE filters.
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Figure 5: AR(1) process, R = 2.91: Convergence of MSE
(solid curve) for FIR–MMSE filterbanks to -17.22 dB limit
(dashed line) for unconstrained–length MMSE filter banks.
Compare with MSEs for IIR biorthogonal filter banks
(dash–dotted line, -16.86 dB), and unconstrained–length
FIR biorthogonal filter banks (dotted line, -16.61 dB).


