
A new save and restore file format forR
Honours project
December 1999

Chris K. Young

Copyright © 1999, 2000 Chris K. Young.
Permission is granted to copy, distribute and/or modify this document under the terms of theGNU Free
Documentation Licence, Version 1.1 or any later version published by the Free Software Foundation;
with the Invariant Sections being “Colophon”, with no Front­Cover Texts, and with no Back­Cover Texts.

i

Table of Contents

Abstract .1

1 Introduction .3
1.1 A cursory glance atR data structures. .3

1.1.1 TheSEXPRECstructure. .3
1.1.2 Thenil object. .3
1.1.3 Simple objects. .3

1.1.3.1 Simple vectors. .3
1.1.3.2 Strings. .3
1.1.3.3 Primitive functions. .4

1.1.4 Composite objects. .4
1.1.4.1 Lists. .4
1.1.4.2 Language objects. .4
1.1.4.3 Composite vectors. .6
1.1.4.4 Symbols. .6
1.1.4.5 Environments. .6
1.1.4.6 Closures. .6

1.2 The project mission. .6
1.2.1 Saving data, the old way. .6
1.2.2 Loading data, the old way. .7
1.2.3 The joys of using the old format. .7

2 Design. .9
2.1 A brief look atR environment semantics. .9

2.1.1 Scoping. .9
2.1.2 State sharing. .9
2.1.3 Environment loops. .10

2.2 The design criteria. .10

3 Implementation .11
3.1 A quick peek atR kernel code. .11

3.1.1 Calling primitive functions. .11
3.1.2 Storage areas. .11
3.1.3 The symbol table. .11
3.1.4 SEXPTYPE. .12

3.2 Code commentary. .13
3.2.1 Helper functions. .13

3.2.1.1 R_assert .13
3.2.1.2 Out * , In * .13
3.2.1.3 cky_make_lists .13
3.2.1.4 cky_ * _special_hook .13
3.2.1.5 cky_ * _auxiliary .14

3.2.2 Saving/loading functions. .14
3.2.2.1 cky_DataSave , cky_DataLoad14
3.2.2.2 cky_ * _item .14
3.2.2.3 cky_ * _vec .15

ii A new save and restore file format forR

4 Postscript. .17
4.1 The use of sentinels. .17
4.2 Backward­compatibility. .17
4.3 The symbol list. .18
4.4 Previous approaches. .18

Appendix A The old format .19

Appendix B The (tentative) new format21

Appendix C Complete code listing. .23

Appendix D Glossary. .33

Colophon .35

Abstract 1

Abstract

This paper describes a new file format that is used inR to save and restore data objects. It works by
employing recursion, and while not at all compatible with the previous format, it is in the author’s opinion
a more suitable format for reflecting the recursive nature ofR data objects. Environment dependency
loops and multiple dependencies (state sharing) are also addressed.

The format described here has been implemented in code, which is also discussed in this document.
A modified version of this code has been merged with the mainstreamR code for testing.

2 A new save and restore file format forR

Chapter 1: Introduction 3

1 Introduction

1.1 A cursory glance atR data structures

The first section takes a casual look atwhatexactly is being saved and restored; readers familiar with
R’s data structures should not hesitate to skip to the next section (see Section 1.2 [The project mission],
page 6) which discusseswhyexactly the project described in this paper exists.

1.1.1 TheSEXPRECstructure

The atomic data unit inR is called anSEXPREC—its naming roughly corresponds to a Lisp “S­
expression”.EveryR object, ultimately, is represented as anSEXPREC.

tag

Attributes DataFlags

car cdr

Each rectangular block in the figure can be seen as a “word”. The first word contains various
information about the object, notably its type (explained shortly). The second word points to the
attributes list of the object, which the user can access viaattributes(object) . The last three words
contain the actual data; their use varies with the object type, but are typically referred to ascar , cdr ,
andtag .

Pointers toSEXPRECstructures are so often used within theR kernel code (the code that makes up
the basicR core) that such pointers are given their own type,SEXP.

1.1.2 Thenil object

Perhaps the simplest object inR is thenil object; one can see it as an object holding no data. To an
R user, this object is calledNULLand often represents a list with zero items (in other words, an empty
list), though it has many other uses. InR kernel code, thenil object is referred to asR_NilValue .

1.1.3 Simple objects

Simple objectsare typically understood to be those that can exist on their own, and do not refer to
other (non­nil) objects.

1.1.3.1 Simple vectors

Vectors of logical values (FALSE and TRUE), integers, real numbers, and complex numbers are
considered simple objects. Some readers may now be wondering why this would be the case. After all,
an integer vector is made up of some number of integers, each of which surely must be more simple than
the vector that contains them.

In R, even a single integer is an integer vector (containing one item); similarly for the other types
above.

1.1.3.2 Strings

A string itself is also a simple object, being a vector of its component characters. However, since an
R user can only get at vectors of strings (even if one such vector contains only the one string), string
vectors (see Section 1.1.4.3 [Composite vectors], page 6) are not simple objects.

4 A new save and restore file format forR

1.1.3.3 Primitive functions

Primitive functionsare functions defined within theR kernel. Such functions provide basic function­
ality “necessary” forR to be useful, and cannot be implemented asR library code. For example, the
arithmetic operators (+, ­ , * , / , ˆ , &c) are primitive functions.

References to primitive functions are simple objects. InR kernel code, these are used as offsets
into theR function table (see Section 3.1.1 [Calling primitive functions], page 11). From version 0.90
onwards, user­level code can use.Primitive(name) to make such references.

1.1.4 Composite objects

Composite objectsare larger objects built together from a group of simple objects. A selection of
composite object types are discussed briefly below, among an abundant range of types available inR.

1.1.4.1 Lists

Lists in R are singly­linked. Each element of a list, except the last, links to the one after it. These
elements are known ascons cellsfrom the way they are constructed in Lisp (using thecons function).
A cons cell has two elements, historically known ascar andcdr .

Conventionally, thecar contains the first item in the list, and thecdr points to a list containing the
other items. Since thenil object (see Section 1.1.2 [Thenil object], page 3) represents an empty list,
a one­item list has one cons cell: thecar contains that one item, and thecdr containsnil .

A three­item list, containing ‘foo’, ‘bar’, and ‘baz’, would look like

nil
car cdr car cdr car cdr

foo bar baz

A cons cell is sometimes called a “dotted pair”, because a cons cell can be made in Lisp using a dot:
the following expressions are equivalent:

(cons 1 2)
’(1 . 2)

In R, cons cells have atag slot, which can be used to name the list item by pointing that slot to a
symbol (see Section 1.1.4.4 [Symbols], page 6). Lists that use thetag slots are calledtagged lists, and
have uses in certain applications (such as in environments; see Section 1.1.4.5 [Environments], page 6).

Although linked lists are heavily used within theR kernel code, all user­level lists are converted to
generic vectors (see Section 1.1.4.3 [Composite vectors], page 6). The difference is that lists use up cons
cells whereas vectors fill the vector heap (both of these have fixed­size allocation); read the “Memory”
section inR help, as well as Section 3.1.2 [Storage areas], page 11, for a discussion ofR’s memory
management as it stands at the time of writing. Since lauguage objects (see Section 1.1.4.2 [Language
objects], page 4) are lists, and theR library defines many complicated functions, cons cells are worth
conserving.

1.1.4.2 Language objects

A language objectis R’s notion of separating code and data: unlike Lisp, it will not treat data as code,
nor vice versa. A language object is structured like a linked list, except it is used to hold code, whereas a
linked list is used to hold data.

Arbitrarily complicated functions can be made out of cons cells. For example, then­th fibonacci
number can be calcuated in Lisp using the expression

(let ((s5 (sqrt 5))) (/ (­ (expt (/ (1+ s5) 2) n)
(expt (/ (­ 1 s5) 2) n)) s5))

Chapter 1: Introduction 5

which is roughly identical to
(

1+
√

5
2

)n
−

(

1−
√

5
2

)n

√
5

As a tree of cons cells, this would look like

s5

let

s5

sqrt 5

/ s5

−

expt n

/ 2

1+ s5

expt n

/ 2

− 1

In R, such a function would be written as

{
s5 <­ sqrt(5);
(((1 + s5) / 2)ˆn ­ ((1 ­ s5) / 2)ˆn) / s5;

}

with a corresponding tree of

s5

{

<− s5

sqrt 5

/ s5

(

−

^ n

(

/ 2

(

+ 1 s5

^ n

(

/ 2

(

− 1

Notice that for even such a simple function, 42 cons cells were used. Granted, 10 cons cells can be
saved by removing the(objects, which are purely for cosmetic purposes, but then the code will print as

{
s5 <­ sqrt(5)
1 + s5/2ˆn ­ 1 ­ s5/2ˆn/s5

}

Despite that not being very human­readable, it does work correctly.

6 A new save and restore file format forR

1.1.4.3 Composite vectors

There are three types of vectors which hold objects. A string vector holds zero or more strings
(see Section 1.1.3.2 [Strings], page 3), an expression vector holds language objects (see Section 1.1.4.2
[Language objects], page 4), and a generic vector holds objects of any type (and is suitable to serve as a
replacement for lists, to conserve cons cell usage—see Section 1.1.4.1 [Lists], page 4).

1.1.4.4 Symbols

A symbol is an object holding a name. Whenever you define a variable, its name is used to construct
a symbol object, which is then put intoR’s internal symbol table (see Section 3.1.3 [The symbol table],
page 11).

1.1.4.5 Environments

An environmentconsists of a list of variables, and their values. InR it is implemented as a tagged
dotted pairs list: thetag slot of a list item is used to hold the name of the variables, and thecar slot the
value.

Each environment has a parent environment, which is searched if a sought variable cannot be found
in the current environment “frame”. Tracing environment “ancestry” will ultimately lead to the global
environment, which is its own parent. The global environment holds most of a user’s data, and is
accessible at the user level as.GlobalEnv , and inR’s kernel code asR_GlobalEnv .

1.1.4.6 Closures

An R user level function is stored internally as a so­calledclosure; apart from containing the function
body (as a language object), it holds information on which formal arguments will be passed in to the
function, as well as which environment to begin variable searches in.

1.2 The project mission

To explain the problems with the old save/load file format, and possible advantages of a new one,
the former will be briefly described. See Appendix A [The old format], page 19, for a more detailed
description.

1.2.1 Saving data, the old way

The currentR saving mechanism works by marking the given list of objects to be saved, and all
objects referenced by the same, by recursing into composite objects until simple objects are reached.

The number of symbol and non­symbol objects marked as above are counted, and recorded in the file.
Each such marked object is assigned a sequence number, starting from zero, up to one less than the total
number of marked objects. Thus, each object has a different sequence number.

For each symbol, its sequence number, relative address (relative to the start of the vector heap; see
Section 3.1.2 [Storage areas], page 11), and name are written out. This set of data will collectively be
referred to in this section as the “symbol list”.

The sequence numbers and relative addresses of the non­symbol objects are then written out—the
“forwarding­address list”. When the file is loaded back, the relative addresses saved here are translated
(or “forwarded”) to newly­allocated object spaces.

Then the actual data contained in each object referred to in the forwarding­address list are written
out—any references to an object, such as in composite objects, use the relative address.

Finally, the relative address of the given list of objects to save, is itself recorded.

Chapter 1: Introduction 7

1.2.2 Loading data, the old way

Remember that in saving the objects, the number of symbols and non­symbols were recorded. When
loading, anSEXPRECis allocated to hold each of the saved objects, and a translation table is set up to
map the relative addresses (as saved in the symbol and forwarding­address lists) to the newly­allocated
SEXPRECstructures. This translation table is indexed by the sequence numbers of the saved objects.

In practice, the symbol list functions equivalently to the forwarding­address list, only that the former
is listed first so that all the symbols can be “installed” (see Section 3.1.3 [The symbol table], page 11) first
before loading the data objects. The sole purpose of the forwarding­address list is to set up the translation
table.

During the loading of actual data, any reference to a relative address is resolved to the new location,
as per the translation table.

1.2.3 The joys of using the old format

There are some reasons why a new format is in order; these are listed in no particular order, and totally
subjective:
• The use of relative addresses in the old format ties it down to the memory system, which is long

overdue for change. It is difficult (but not impossible—see Section 4.2 [Backward­compatibility],
page 17) to hack the save/load code to free it of such ties, but since the notion of relative addresses
is so utterly arbitrary, why bother?

• The old format treats allSEXPRECstructures as disjoint, making it hard for human readers (if people
actually read the saved files manually) to make links between structures that make up a composite
object.

8 A new save and restore file format forR

Chapter 2: Design 9

2 Design

2.1 A brief look at R environment semantics

The design of the new file format had much influence from the way environments work in
R; this is described by Ross Ihaka in his article, “RFC: A Partial Redesign ofR Internals”
(http://www.stat.auckland.ac.nz/˜ihaka/R/Redesign.html).

2.1.1 Scoping

R uses a variant of lexical scoping; Kurt Hornik explains this extensively in “TheR FAQ”
(http://www.ci.tuwien.ac.at/˜hornik/R/), with some really useful examples (including
object orientation, which I will get into; see Section 2.1.2 [State sharing], page 9).

The bottom line is that all functions are closures, with attached environments where variables not
found in the local environment frame (which is created per invocation of a function) are looked up. Which
environment gets attached to a closure depends on where the latter is created: a typical function entered
by the user interactively is most likely to have the global environment as its environment, whereas a
function defined within a function will use the enclosing function’s environment.

Examples (assume these are entered interactively):

foo <­ function()
{

bar;
}

foo uses the global environment. When run, since its local frame does not containbar , it will return
the value ofbar in the global environment if it exists (or signal an error otherwise).

baz <­ (function()
{

bar <­ 3;
function()
{

bar;
}

})();

baz uses the local environment of the anonymous outer function. When run, since its own local
environment does not containbar , it looks one level up, into the environment of the anonymous
function. There,bar is 3, so it returns that; but if that environment does not containbar , then the search
will ascend one level into the global environment.

2.1.2 State sharing

R can be used in a quasi­object­oriented fashion. A simple example (a huge simplification of the
demo("scoping") material):

ctor <­ function(x) list(get=function() x, set=function(i) x <<­ i);

ctor is essentially a constructor for a very simple class (containing just one object). It would work
like this:

> instance <­ ctor("hello world");
> instance$get();
[1] "hello world"
> instance$set(ctor);

10 A new save and restore file format forR

> instance$get();
function (x)
list(get = function() x, set = function(i) x <<­ i)
> instance$set(NULL);
> instance$get();
NULL

. . . and so on.instance holds one object, of any type. Notice that looking atinstance itself, we
see

> instance;
$get
function () x
<environment: 0x584bc0>

$set
function (i) x <<­ i
<environment: 0x584bc0>

Of course the environment address will be different for every different instance, but the important
thing here is that both functions use the same environment, which contains the state information both the
get andset methods share.

2.1.3 Environment loops

In a rather contrived example, an environment can be made to contain items that refer to itself (the
environment). For example

foo <­ function() bar <­ function() bar;

When you runfoo , a function is returned that uses an environment that contains a function. This
latter function is bound to that same environment, which contains the same function. And so on and on.

2.2 The design criteria

From the previous chapter, and the above, we see that:
1. The general strategy for saving a data object is to recurse through composite objects, until we come

to a simple object, writing each object out as it is traversed. This preserves the links between all the
otherwise­separateSEXPRECstructures.

2. But, we can’t just write out environments entirely every time we come across one—with an example
like the one in Section 2.1.3 [Environment loops], page 10, the environment will never be completely
saved. There’s also the state sharing business to deal with: if we write out separate environments
for each of the methods described in Section 2.1.2 [State sharing], page 9, they will have disjoint
states when they are loaded back, andget will not refer to the same object asset .

Thankfully, the other object types inR don’t have such complications. So, if we keep tabs on which
environments have been seen, and write out just references (rather than the whole environment) when we
encounter them again, then we have a way to tell apart, multiple instances of the same environment, from
multiple identical (in content) but different environments. This solves the problem with state sharing,
and with environment loops too.

With one other change, that’s the new format in a nutshell: all environments encountered have their
contents written out the first time, and a reference written out subsequent times, and every other composite
object is recursed into and written out in full. The one other change is an idea inherited from the old
format; we keep tabs on symbols too, and write out references for symbols encountered just as for
environments. The motivation for that is given in Section 4.3 [The symbol list], page 18.

The new format, in detail, is described in Appendix B [The new format], page 21.

Chapter 3: Implementation 11

3 Implementation

3.1 A quick peek atR kernel code

The code used to save and load in the new file format (see Appendix C [Complete code listing],
page 23), is implemented inR’s kernel. The first section hopefully allows people, who have never
tinkered with the kernel, to understand the code better.

3.1.1 Calling primitive functions

R’s primitive functions are listed inR_FunTab, an array ofFUNTABstructures. EachFUNTAB
represents one primitive function, and includes such information as its name (as accessed inR user code),
the kernel function that handles it, how many arguments it accepts, and so on.R_FunTab is defined in
‘src/main/names.c ’.

For example, the user­level functions to save a list of objects to a file, and to load objects from a file,
are respectively"save" and"load" . In R_FunTab one can find

{"save", do_save, 0, 111, 3, PP_FUNCALL},
{"load", do_load, 0, 111, 2, PP_FUNCALL},

In this case, the kernel functions to save and load data objects aredo_save anddo_load respec­
tively. do_save expects 3 arguments;do_load expects 2.

TheStrToInternal function converts a primitive function name into an index intoR_FunTab.
Internally, references to primitive functions are stored as this index.

3.1.2 Storage areas

(It is my understanding that the memory system will be changing soon. This section serves only to
describe certain aspects of the memory system that the old format used.)

Under the current memory management system, there are two main areas of memory thatR utilises—
they do not grow, but their sizes can be set when startingR:

1. One area of memory is used specifically to store cons cells. All cons cell allocation comes from this
pool. Things that use cons cells are lists (see Section 1.1.4.1 [Lists], page 4) and language objects
(see Section 1.1.4.2 [Language objects], page 4).R’s cons cell usage is quite heavy: after loading
the standardR library, about half of the default allocation of 250000 cells are used.

The number of cons cells allocated can be changed using ‘­­nsize ’; for example, to increase to
400000 cons cells, useR ­­nsize 400000 .

2. Another area of memory is used for everything else; this area is known as the vector heap, as most
of this space is used to store vectors.

6 megabytes are allocated towards the vector heap, by default; this amount can be changed using
‘ ­­vsize ’; for example,R ­­vsize 8388608 will causeR to allocate 8 megabytes.

3.1.3 The symbol table

R has a symbol table,R_SymbolTable , that every symbol (see Section 1.1.4.4 [Symbols], page 6)
is a member of. Symbols are typically created using theinstall function, which returns the symbol
for the given name if it exists in the symbol table, or makes a new symbol (and puts it in the symbol table)
otherwise. In effect, every name corresponds to one, and just one, symbol.

Example:install("foo") returns the (new or existent) symbol associated with"foo" .

12 A new save and restore file format forR

3.1.4 SEXPTYPE

SEXPTYPEis a field in theSEXPRECstructure which determines the type of the object described.
Commonly­used values are:

NILSXP (0)
thenil object (R_NilValue andNULL—see Section 1.1.2 [Thenil object], page 3);
used for no other object.

SYMSXP(1)
symbols (see Section 1.1.4.4 [Symbols], page 6)

LISTSXP (2)
cons cell lists (see Section 1.1.4.1 [Lists], page 4)

CLOSXP(3)
closures (see Section 1.1.4.6 [Closures], page 6)

ENVSXP(4)
environments (see Section 1.1.4.5 [Environments], page 6)

PROMSXP(5)
promises (lazily evaluated closures; may or may not have been evaluated)

LANGSXP(6)
language objects (see Section 1.1.4.2 [Language objects], page 4)

SPECIALSXP(7)
special forms (primitive functions whose arguments are not evaluated before passing in—
expression , the primitive used to make expression vectors, is an example of one)

BUILTINSXP (8)
primitive functions—likeSPECIALSXP, this type contains only an index intoR_FunTab
(see Section 3.1.1 [Calling primitive functions], page 11), not the actual primitive function,
obviously

CHARSXP(9)
single strings (see Section 1.1.3.2 [Strings], page 3); users cannot access this type directly

LGLSXP(10)
logical vectors (containingFALSEandTRUEvalues; see Section 1.1.3.1 [Simple vectors],
page 3)

INTSXP (13)
integer vectors (see Section 1.1.3.1 [Simple vectors], page 3)—types 11 and 12 are depre­
cated factor types that are now converted to this type

REALSXP(14)
real number vectors (see Section 1.1.3.1 [Simple vectors], page 3)

CPLXSXP(15)
complex number vectors (see Section 1.1.3.1 [Simple vectors], page 3)

STRSXP(16)
string vectors (containingCHARSXPobjects; see Section 1.1.4.3 [Composite vectors],
page 6)

DOTSXP(17)
‘ ... ’ objects used in function argument lists, and sometimes function calls

VECSXP(19)
generic vectors (see Section 1.1.4.3 [Composite vectors], page 6)

EXPRSXP(20)
expression vectors (see Section 1.1.4.3 [Composite vectors], page 6)

Chapter 3: Implementation 13

3.2 Code commentary

For maximum enjoyment of this section, please refer regularly to Appendix C [Complete code listing],
page 23. Functions will be covered in a top­down fashion.

3.2.1 Helper functions

3.2.1.1 R_assert

In C programming,assert is a simple but useful bug tracking device; it is used to detect “impossible”
situations, resulting from internal errors. My code was littered all around withassert calls, until
frequent crashes became annoying.

R_assert is an attempt to make a “friendlier”assert , by virtue of thelongjmp ­like behaviour
of R’s error function—instead of crashing it returns program control to the “top level”. It is invoked
exactly the same way asassert , and can be disabled by definingNDEBUG.

3.2.1.2 Out * , In *

In the old save/load code,do_save set up theOutInit , OutInteger , OutReal , OutComplex ,
OutString , OutSpace , OutNewline , andOutTerm function pointers to the versions appropriate
for the format to save as (text, binary, orXDR), prior to callingDataSave (which does the grunt work
saving the objects).

Similarly for do_load in regard toInInit , InInteger , InReal , InComplex , InString ,
andInTerm , except they are used for loading. TheOutSpace andOutNewline functions are there
purely for cosmetic reasons when saving in text format, and so there exist no functions to explicitly read
them in.

To extend the analogy, I’ve put in functionsOutCHARSXPand InCHARSXP, which deal with
CHARSXPobjects (single strings, see Section 1.1.3.2 [Strings], page 3). There are also macrosOutVec
and InVec , which generically handle all the simple vector types (including string vectors, with the
addition ofOutCHARSXPand InCHARSXP). You will see them in action incky_write_vec and
cky_read_vec .

3.2.1.3 cky_make_lists

This function builds the symbol and environment lists. Each object to be saved is recursed into, and
each symbol/environment encountered is added to the respective list if unique. Currently this check for
uniqueness is done via a linear search.

3.2.1.4 cky_ * _special_hook

Some objects need to be special­cased. These are checked for first when saving or loading any
object, by calling the appropriate special­object hook (cky_save_special_hook andcky_load_
special_hook respectively).

R_NilValue (−1)
Thenil object probably occurs the most frequently of all the data types; making it a special
case will make the saved file much smaller.

R_GlobalEnv (−2)
The global environment is huge, and its contents largely depend on theR (user­level)
libraries in use, which are dependent on theR version. Not saving the global environment
not only reduces the size of the saved file, but also makes the file more portable.

14 A new save and restore file format forR

R_UnboundValue (−3)
R_MissingArg (−4)

These are special objects that would lose their semantic significance if they are saved by
writing the objects out in full (they are differentiated by their locations in memory, not by a
field in theSEXPRECstructure—while the old format could very well have exploited that,
as they will have a fixed relative address, the new format cannot hope to).

3.2.1.5 cky_ * _auxiliary

Objects contain certain other attributes that were stored in the old format; these are also used in
the new format.cky_write_auxiliary andcky_read_auxiliary handle these, and can be
extended as necessary.

ATTRIB The user­settable attributes associated with the object; these are accessible to the user via
attributes(obj) .

LEVELS This is an attribute that has many uses, and often overloaded. Rather than describe all the
uses, I shall leave the reader to “Use the Source, Luke”.

OBJECT This attribute is accessible to the user viais.object(obj) , which is all I can say about
it.

3.2.2 Saving/loading functions

Thedo_save anddo_load functions callDataSave andDataLoad (respectively) at the end,
so the latter are the points my code patch into.

3.2.2.1 cky_DataSave , cky_DataLoad

These functions are responsible for writing out/reading in the header information (the numbers of
symbols and environments saved, and the symbols and environments themselves).cky_DataSave
then writes the objects that the user asked to save;cky_DataLoad reads them back in.

As part of writing out the header,cky_DataSave callscky_make_lists (see Section 3.2.1.3
[cky_make_lists], page 13) to construct the symbol and environment lists.

For each item to write,cky_DataSave calls cky_write_item ; for each item to read,cky_
DataLoad callscky_read_item .

3.2.2.2 cky_ * _item

These functions (cky_write_item , cky_read_item) handle writing/loading one object of any
type.

Several objects are not written out in full (see Section 3.2.1.4 [cky_ * _special_hook], page 13);
these are the same objects special­cased by the old format.

Two types are also special­cased, the symbol and environment types. An index to the respective list
is written out/read in instead of the full object.

Vectors are handled incky_ * _vec (see Section 3.2.2.3 [cky_ * _vec], page 15), primitive functions
(and special forms) have their names written out/read in, and everything else is recursed into (since they
are composite objects).

Certain “meta­information” are also written/read via the functionscky_ * _auxiliary (see Sec­
tion 3.2.1.5 [cky_ * _auxiliary], page 14).

Chapter 3: Implementation 15

3.2.2.3 cky_ * _vec

These functions (cky_write_vec , cky_read_vec) handle writing/loading one vector (whether
simple or composite) object.

Simple vectors (this includes string vectors here, because of theOutCHARSXPand InCHARSXP
functions) are written/read using theOutVec /InVec function. See Section 3.2.1.2 [Out * /In *], page 13.

Composite vectors (generic vectors and expression vectors) have each of their items processed by
cky_ * _item (see Section 3.2.2.2 [cky_ * _item], page 14)—in essence, a recursion.

16 A new save and restore file format forR

Chapter 4: Postscript 17

4 Postscript

The code, as described in Chapter 3 [Implementation], page 11, and presented in Appendix C
[Complete code listing], page 23, was my work as of 15 August 1999; that was the version that I have
submitted to Ross Ihaka for inclusion intoR. I have not touched the code any further, and since that time
I have become aware of several issues. These, and others I’ve thought about back when I wrote the code,
are presented here.

4.1 The use of sentinels

. . . was a big mistake. Two types of sentinels are used in the code, and both cause problems.
1. The use ofCAR(obj) = TAG(obj) = R_NilValue as the last item of a list was far from sensible,

as it was possible to construct lists (or at least language objects) that containnil in the middle.
Consider a function returning justnil :
function()
{

NULL;
}

That function will save under the new format, but it won’t load back properly. It appears that the
only sane way to determine where the end of a list is, is to see whereCDR(obj) == R_NilValue .
(The amended file format, as used in the mainstreamR source tree, has fixed this problem.)
So, it was back to a recursive style of saving lists, just like the other object types. With big lists,
this might cause the stack to get unnecessarily big, but two factors suggest that this is not a serious
concern:

a. in recent versions ofR, lists are automatically converted to vectors
b. if the cky_write_auxiliary (and by extension alsocky_read_auxiliary)

function is called at the beginning instead of the end ofcky_write_item , and the
OutNewline(fp) at the very end is removed,tail recursioncan occur (i.e., when recursing
into the final item, use the same recursion level rather than descend one level, on the premise
that there are no more items on the current level to process)

2. The use of null­terminated strings was also far from sensible. InR, a string is represented internally
as aCHARSXP, which specifies a size (just like all other vector types). The most evil code are
the OutString and InString functions, which make big assumptions that strings are null­
terminated.
At the moment, myOutCHARSXPand InCHARSXP functions use the said functions. With
little modification, namely by not using those evil functions, they can be made to handle null
characters properly. Parties considering implementing such a change should remember to exclude
‘<string.h> ’ in the process.

4.2 Backward­compatibility

I had thought about making the functions use the old format, complete with a dummy forwarding
table and all. However, it’d be difficult to write code that can handle the old format and still not depend
on the memory structure.

(Not impossible though: theOffsetToNode function, used in restoring, is independent of the
memory system; the fake forwarding table can be constructed without depending on the memory location
of objects too—after all the relative addresses are just serial numbers, as far as the file format is concerned.
Using that approach however, anobjectlist has to be built, as opposed to just symbol or environment lists
which are not expected to get very large.)

Having said that: the new format has been designed to contain all the information contained in the
old format. It should be possible to convert one format to the other with no loss of information.

18 A new save and restore file format forR

4.3 The symbol list

The symbol list was an idea copied from the old format. It’s not a strictly necessary “feature”, but it
does improve loading speed if at least some of the symbols occur in high frequencies.

Because quite often most or all of the symbols occur only once, especially for small data sets, it
would be beneficial to have a variation on the new format: if the symbol count (in the header) is−1, then
a type 1 object (SYMSXP—see Section 3.1.4 [SEXPTYPE], page 12) contains the name of the symbol
(represented as a string) rather than the location of the symbol in the symbol list.

That is, in addition to than using

1 0
"foo"
­1
2
1 1 ­1 0 0
16 1 "bar" ­1 0 0
­1 ­1 ­1 0 0
­1

to represent a symbolfoo (with value"bar"), this would also be possible:

­1 0
­1
2
1 "foo" ­1 0 0
16 1 "bar" ­1 0 0
­1 ­1 ­1 0 0
­1

This idea has not been incorporated into code, but would be trivial to implement. Instead of having
the program decide when to make a symbol list and when not to, this choice should be left to the user.

4.4 Previous approaches

Currently, thecky_make_lists function builds both the symbol and environment lists at once.
Previously, a functional approach was attempted where each list was saved separately.

Unfortunately, environments do loop at times (see Section 2.1.3 [Environment loops], page 10), and
it would do no good for a symbol scan to not also be able to tell which environments have already
been traversed. Having both lists updated in the same function makes this possible. It also reduces one
recursive scan of the data.

I also found out along the way that the code looked a lot more readable when I removed the hacks
needed to make the original list building functions (calledcky_env_list andcky_sym_list —no
longer in the final code obviously) use functional strategies.

Appendix A: The old format 19

Appendix A The old format

file format

number of symbols
integer

number of non­symbols
integer

number of vector cells
integer

symbol list symbol list item× number of symbols

forwarding­address list
forwarding entry× number of non­symbols

object list object× number of non­symbols

address of list of objects to save
relative address1 → LISTSXP

symbol list item
sequence number2

integer

symbol address
relative address→ SYMSXP

printing name
string

forwarding entry
sequence number

integer

object address
relative address

object

sequence number
integer

object type integer3

OBJECTattribute
integer

LEVELS attribute
integer

user­settable attributes
relative address→ LISTSXP or R_NilValue

1 The relative address is the address of the object relative to the start of the vector heap (see Section 3.1.2 [Storage areas],
page 11), unless that object is special­cased (see Section 3.2.1.4 [cky_ * _special_hook], page 13). Any reference to
an object in this file format will be via a relative address.

2 A sequence number is assigned to each object; this goes from 0 to (number of symbols+ number of
non­symbols). The sequence numbers used inforwarding address listandobject listare the same, and do
not include the sequence numbers allocated for the symbol objects.

3 See Section 3.1.4 [SEXPTYPE], page 12.

20 A new save and restore file format forR

object data generic object (LISTSXP , LANGSXP, CLOSXP, PROMSXP, ENVSXP)
string with length (SPECIALSXP, BUILTINSXP , CHARSXP)
simple vector (REALSXP, CPLXSXP, INTSXP, LGLSXP)
composite vector (STRSXP, VECSXP, EXPRSXP)

generic object
car relative address

cdr relative address

tag relative address

string with length
string length

integer

string string

simple vector
number of items

integer

items relevant type× number of items

composite vector
number of items

integer

items relative address× number of items

Appendix B: The (tentative) new format 21

Appendix B The (tentative) new format

file format

number of symbols
integer

number of environments
integer

symbol name list
string× number of symbols

environment list
full environment× (number of environments+ 1)1

full environment
parent environment

object→ ENVSXP

frame object→ LISTSXP

tag object

object2

object type integer3

object data integer4 (SYMSXP)
linked list× variable5 (LISTSXP , LANGSXP)
integer6 (ENVSXP)
generic object (CLOSXP, PROMSXP)
string (SPECIALSXP, BUILTINSXP)
string with length (CHARSXP)
simple vector (LGLSXP, INTSXP, REALSXP, STRSXP)
composite vector (VECSXP, EXPRSXP)

user­settable attributes
object→ LISTSXP

LEVELS attribute
integer

OBJECTattribute
integer

linked list

tag object

car object

1 The list of objects to save is masqueraded as the final environment to save, which is why (number of environments+ 1)
environments are saved.

2 The usual special­casing rules (see Section 3.2.1.4 [cky_ * _special_hook], page 13) apply. If the
object is a special item, the relevant negative number is used, and the rest of this structure is omitted.

3 See Section 3.1.4 [SEXPTYPE], page 12.
4 A symbol reference, specifying the one­based index intosymbol name list.
5 The list ends when bothtag andcar point toR_NilValue . As mentioned in Section 4.1 [The use of sentinels], page 17,

this isreally broken.
6 An environment reference, specifying the one­based index intoenvironment list.

22 A new save and restore file format forR

generic object
car object

cdr object

tag object

string with length
string length

integer

string string

simple vector
number of items

integer

items relevant type× number of items

composite vector
number of items

integer

items object× number of items

Appendix C: Complete code listing 23

Appendix C Complete code listing
/*

* x­saveload.c —experimental save/load procedures forR.
* Chris K. Young<cky@pobox.com> , June 1999.
*

* This file is to be licensed under the same conditions as the rest ofR.
*

* Under the current experimental stage, all functions are prefixed with
* ‘cky_ ’. . . feel free to rename them when they come in production use.
*

* I’m not entirely sure when toPROTECT(), due to a lack of understanding
* of how theGC system works. So I might have overlooked many places.
*/

/*

* Right now, in order to avoid altering ‘saveload.c ’, I’ll have this
* file include ‘saveload.c ’ at the top. In production, this file should
* be included at the bottom of ‘saveload.c ’.
*/

#include "saveload.c"

#include "Defn.h"

#include <string.h>

/* assert function which doesn’t crash the program.*/

#ifdef NDEBUG

#define R_assert(e) ((void) 0)

#else

/* The line below requires anANSI C preprocessor (stringify operator)*/
#define R_assert(e) ((e) ? (void) 0 : \

error("assertion ‘%s’ failed: file ‘%s’, line %d\n", #e, __FILE__, __LINE__))

#endif

static void cky_write_item (SEXP s, SEXP sym_list, SEXP env_list, FILE *fp);

static SEXP cky_read_item (SEXP sym_table, SEXP env_table, FILE *fp);

/*

* This function determines if the item is ‘special’ (R_NilValue ,
* R_GlobalEnv , R_UnboundValue , R_MissingArg). Returns a non­zero
* value if it is.
*/

static int

cky_save_special_hook (SEXP item)

{

if (item == R_NilValue) return ­1;

if (item == R_GlobalEnv) return ­2;

if (item == R_UnboundValue) return ­3;

if (item == R_MissingArg) return ­4;

return 0;

}

24 A new save and restore file format forR

static SEXP

cky_load_special_hook (SEXPTYPE type)

{

switch (type) {

case ­1: return R_NilValue;

case ­2: return R_GlobalEnv;

case ­3: return R_UnboundValue;

case ­4: return R_MissingArg;

}

return (SEXP) 0; /* not strictly legal. . . . */

}

/*

* There could be a lot of wheel­reinvention here, because I haven’t had
* a hard­enough look at the rest of the code to see whether all this had
* been covered elsewhere.
*

* The lookup code certainly can do with improvement, because I doubt a
* linear search works best here.
*/

static int

cky_lookup (SEXP item, SEXP list)

{

SEXP iterator = list;

int count;

if ((count = cky_save_special_hook(item))) /* variable reuse:­) */

return count;

/* nowcount is zero */

while (iterator != R_NilValue) {

R_assert(TYPEOF(list) == LISTSXP);

++count;

if (CAR(iterator) == item)

return count;

iterator = CDR(iterator);

}

return 0;

}

/* a genericcons function which also sets thetag value. */

static SEXP

cky_cons (SEXPTYPE type, SEXP tag, SEXP head, SEXP tail)

{

SEXP atom;

if (head == R_NilValue)

return tail;

atom = (type == LANGSXP) ? LCONS(head, tail) : CONS(head, tail);

TAG(atom) = tag;

return atom;

}

Appendix C: Complete code listing 25

/*

* One thing I’ve found out is that you have to build all the lists together
* or you risk getting infinite loops. Of course, the method used here
* somehow shoots functional programming in the head—sorry.
*/

static void

cky_make_lists (SEXP obj, SEXP *sym_list, SEXP *env_list)

{

int count, length;

if (cky_save_special_hook(obj))

return;

switch (TYPEOF(obj)) {

case SYMSXP:

if (cky_lookup(obj, *sym_list))

return;

*sym_list = CONS(obj, *sym_list);

break;

case ENVSXP:

if (cky_lookup(obj, *env_list))

return;

*env_list = CONS(obj, *env_list);

/* FALLTHROUGH */

case LISTSXP:

case LANGSXP:

case CLOSXP:

case PROMSXP:

cky_make_lists(TAG(obj), sym_list, env_list);

cky_make_lists(CAR(obj), sym_list, env_list);

cky_make_lists(CDR(obj), sym_list, env_list);

break;

case VECSXP:

case EXPRSXP:

length = LENGTH(obj);

for (count = 0; count < length; ++count)

cky_make_lists(VECTOR(obj)[count], sym_list, env_list);

break;

}

cky_make_lists(ATTRIB(obj), sym_list, env_list);

}

/* e.g.,OutVec(fp, obj, INTEGER, OutInteger) */

#define OutVec(fp, obj, accessor, outfunc) \

do { \

int count; \

for (count = 0; count < LENGTH(obj); ++count) { \

OutSpace(fp); \

outfunc(fp, accessor(obj)[count]); \

} \

} while (0)

26 A new save and restore file format forR

/*

* simply outputs the string associated with aCHARSXP, one day this will
* handle null characters inCHARSXPs and not just blindly callOutString .
*/

static void

OutCHARSXP (FILE *fp, SEXP s)

{

R_assert(TYPEOF(s) == CHARSXP);

OutString(fp, CHAR(s));

}

static void

cky_write_vec (SEXP s, SEXP sym_list, SEXP env_list, FILE *fp)

{

int count;

/*

* I can assert here thats is one of the vector types, but it’ll
* turn out to be one big ugly statement. . . so I’ll do it at the
* bottom.
*/

OutInteger(fp, LENGTH(s));

switch (TYPEOF(s)) {

case CHARSXP:

OutSpace(fp);

OutCHARSXP(fp, s);

break;

case LGLSXP:

case INTSXP:

OutVec(fp, s, INTEGER, OutInteger);

break;

case REALSXP:

OutVec(fp, s, REAL, OutReal);

break;

case CPLXSXP:

OutVec(fp, s, COMPLEX, OutComplex);

break;

case STRSXP:

OutVec(fp, s, STRING, OutCHARSXP);

break;

case VECSXP:

case EXPRSXP:

for (count = 0; count < LENGTH(s); ++count) {

OutSpace(fp);

cky_write_item(VECTOR(s)[count], sym_list, env_list, fp);

}

break;

default:

error("cky_write_vec called with non­vector type");

}

Appendix C: Complete code listing 27

OutNewline(fp);

}

/*

* If we changecky_write_auxiliary , cky_read_auxiliary has to be changed
* too.
*/

static void

cky_write_auxiliary (SEXP obj, SEXP sym_list, SEXP env_list, FILE *fp)

{

OutSpace(fp); cky_write_item(ATTRIB(obj), sym_list, env_list, fp);

OutSpace(fp); OutInteger(fp, LEVELS(obj));

OutSpace(fp); OutInteger(fp, OBJECT(obj));

}

static void

cky_write_item (SEXP s, SEXP sym_list, SEXP env_list, FILE *fp)

{

int i;

SEXP iterator;

if ((i = cky_save_special_hook(s))) {

OutInteger(fp, i);

} else {

OutInteger(fp, TYPEOF(s)); OutSpace(fp);

switch (TYPEOF(s)) {

/*

* we shouldn’t encounterNILSXP here, as it should’ve been
* handled above (incky_save_special_hook). Unless there
* are moreNILSXP’s thanR_NilValue .
*/

case SYMSXP:

i = cky_lookup(s, sym_list);

R_assert(i);

OutInteger(fp, i); OutNewline(fp);

break;

case LISTSXP:

case LANGSXP:

iterator = s;

while (iterator != R_NilValue) {

cky_write_item(TAG(iterator), sym_list, env_list, fp);

cky_write_item(CAR(iterator), sym_list, env_list, fp);

iterator = CDR(iterator);

}

/* This is our sentinel*/
cky_write_item(R_NilValue, sym_list, env_list, fp);

cky_write_item(R_NilValue, sym_list, env_list, fp);

break;

case ENVSXP:

i = cky_lookup(s, env_list);

R_assert(i);

28 A new save and restore file format forR

OutInteger(fp, i); OutNewline(fp);

break;

case CLOSXP:

case PROMSXP:

cky_write_item(TAG(s), sym_list, env_list, fp);

cky_write_item(CAR(s), sym_list, env_list, fp);

cky_write_item(CDR(s), sym_list, env_list, fp);

break;

case SPECIALSXP:

case BUILTINSXP:

OutString(fp, PRIMNAME(s));

break;

case CHARSXP:

case LGLSXP:

case INTSXP:

case REALSXP:

case CPLXSXP:

case STRSXP:

case VECSXP:

case EXPRSXP:

/* The blasted vector thingies. . . .*/
cky_write_vec(s, sym_list, env_list, fp);

break;

default:

/* don’t know—maybe just writeTAG CAR& CDR */

warning("cky_write_item: unknown type %i", TYPEOF(s));

cky_write_item(TAG(s), sym_list, env_list, fp);

cky_write_item(CAR(s), sym_list, env_list, fp);

cky_write_item(CDR(s), sym_list, env_list, fp);

}

cky_write_auxiliary(s, sym_list, env_list, fp);

}

OutNewline(fp);

}

/*

* General format: the total number of symbols, then the total number of
* environments. Then all the symbol names get written out, followed by
* the environments, then the items to be saved. If symbols or environments
* are encountered, references to them are made instead of writing them
* out totally.
*/

void

cky_DataSave (SEXP s, FILE *fp)

{

SEXP the_sym_list = R_NilValue, the_env_list = R_NilValue, iterator;

int sym_count, env_count;

cky_make_lists(s, &the_sym_list, &the_env_list);

OutInit(fp);

Appendix C: Complete code listing 29

OutInteger(fp, sym_count = length(the_sym_list)); OutSpace(fp);

OutInteger(fp, env_count = length(the_env_list)); OutNewline(fp);

for (iterator = the_sym_list; sym_count­­; iterator = CDR(iterator)) {

R_assert(TYPEOF(CAR(iterator)) == SYMSXP);

OutString(fp, CHAR(PRINTNAME(CAR(iterator))));

OutNewline(fp);

}

for (iterator = the_env_list; env_count­­; iterator = CDR(iterator)) {

R_assert(TYPEOF(CAR(iterator)) == ENVSXP);

cky_write_item(ENCLOS(CAR(iterator)), the_sym_list, the_env_list, fp);

cky_write_item(FRAME(CAR(iterator)), the_sym_list, the_env_list, fp);

cky_write_item(TAG(CAR(iterator)), the_sym_list, the_env_list, fp);

}

/*

* If you stare at the incoming data structure hard enough, you can
* actually see it as an environment frame.
*/

/* this is for the fictitious ‘enclos ’ */

cky_write_item(R_NilValue, the_sym_list, the_env_list, fp);

cky_write_item(s, the_sym_list, the_env_list, fp);

/* this is for the fictitious ‘tag ’ */

cky_write_item(R_NilValue, the_sym_list, the_env_list, fp);

OutTerm(fp);

}

#define InVec(fp, obj, accessor, infunc, length) \

do { \

int count; \

for (count = 0; count < length; ++count) \

accessor(obj)[count] = infunc(fp); \

} while (0)

static SEXP

InCHARSXP (FILE *fp)

{

SEXP s;

char *tmp;

AllocBuffer(MAXELTSIZE ­ 1);

/*

* FIXME: rather than usestrlen , use actual length of string when
* sized strings get implemented inR’s save/load code.
*/

tmp = InString(fp);

s = allocVector(CHARSXP, strlen(tmp));

memcpy(CHAR(s), tmp, strlen(tmp));

return s;

}

static SEXP

cky_read_vec (SEXPTYPE type, SEXP sym_table, SEXP env_table, FILE *fp)

30 A new save and restore file format forR

{

int length, count;

SEXP my_vec;

length = InInteger(fp);

my_vec = allocVector(type, length);

switch (type) {

case CHARSXP:

my_vec = InCHARSXP(fp);

break;

case LGLSXP:

case INTSXP:

InVec(fp, my_vec, INTEGER, InInteger, length);

break;

case REALSXP:

InVec(fp, my_vec, REAL, InReal, length);

break;

case CPLXSXP:

InVec(fp, my_vec, COMPLEX, InComplex, length);

break;

case STRSXP:

InVec(fp, my_vec, STRING, InCHARSXP, length);

break;

case VECSXP:

case EXPRSXP:

for (count = 0; count < length; ++count)

VECTOR(my_vec)[count] = cky_read_item(sym_table, env_table, fp);

break;

default:

error("cky_read_vec called with non­vector type");

}

return my_vec;

}

static void

cky_read_auxiliary (SEXP obj, SEXP sym_table, SEXP env_table, FILE *fp)

{

ATTRIB(obj) = cky_read_item(sym_table, env_table, fp);

LEVELS(obj) = InInteger(fp);

OBJECT(obj) = InInteger(fp);

}

static SEXP

cky_read_item (SEXP sym_table, SEXP env_table, FILE *fp)

{

SEXPTYPE type;

SEXP s, tmp1, tmp2, tmp3;

int pos;

R_assert(TYPEOF(sym_table) == VECSXP && TYPEOF(env_table) == VECSXP);

type = InInteger(fp);

Appendix C: Complete code listing 31

if ((s = cky_load_special_hook(type)))

return s;

switch (type) {

case SYMSXP:

pos = InInteger(fp);

s = pos ? VECTOR(sym_table)[pos ­ 1] : R_NilValue;

break;

case LISTSXP:

case LANGSXP:

/*

* HACK ALERT: lists have to be done this way, instead of
* justcons ’ing tmp2 on top of the list, or else the list
* will come out reversed.
*/

tmp1 = cky_read_item(sym_table, env_table, fp);

tmp2 = cky_read_item(sym_table, env_table, fp);

tmp3 = s = cky_cons(type, tmp1, tmp2, R_NilValue);

while (tmp1 != R_NilValue || tmp2 != R_NilValue) {

tmp1 = cky_read_item(sym_table, env_table, fp);

tmp2 = cky_read_item(sym_table, env_table, fp);

tmp3 = CDR(tmp3) = cky_cons(type, tmp1, tmp2, R_NilValue);

}

break;

case ENVSXP:

pos = InInteger(fp);

s = pos ? VECTOR(env_table)[pos ­ 1] : R_NilValue;

break;

case CLOSXP:

case PROMSXP:

PROTECT(s = allocSExp(type));

TAG(s) = cky_read_item(sym_table, env_table, fp);

CAR(s) = cky_read_item(sym_table, env_table, fp);

CDR(s) = cky_read_item(sym_table, env_table, fp);

UNPROTECT(1);

break;

case SPECIALSXP:

case BUILTINSXP:

AllocBuffer(MAXELTSIZE ­ 1);

s = mkPRIMSXP(StrToInternal(InString(fp)), type == BUILTINSXP);

break;

case CHARSXP:

case LGLSXP:

case INTSXP:

case REALSXP:

case CPLXSXP:

case STRSXP:

case VECSXP:

case EXPRSXP:

s = cky_read_vec(type, sym_table, env_table, fp);

break;

default:

32 A new save and restore file format forR

warning("cky_read_item: unknown type %i", type);

PROTECT(s = allocSExp(type));

TAG(s) = cky_read_item(sym_table, env_table, fp);

CAR(s) = cky_read_item(sym_table, env_table, fp);

CDR(s) = cky_read_item(sym_table, env_table, fp);

UNPROTECT(1);

}

cky_read_auxiliary(s, sym_table, env_table, fp);

return s;

}

SEXP

cky_DataLoad (FILE *fp)

{

int sym_count, env_count, count;

SEXP sym_table, env_table;

InInit(fp);

sym_count = InInteger(fp);

/*

* the+1 is for the extra environment tacked on the end—the
* list the user asked to save.
*/

env_count = InInteger(fp) + 1;

PROTECT(sym_table = allocVector(VECSXP, sym_count));

PROTECT(env_table = allocVector(VECSXP, env_count));

for (count = 0; count < sym_count; ++count) {

AllocBuffer(MAXELTSIZE ­ 1);

VECTOR(sym_table)[count] = install(InString(fp));

}

/* allocate the structures first*/
for (count = 0; count < env_count; ++count)

PROTECT(VECTOR(env_table)[count] = allocSExp(ENVSXP));

/* now stick stuff in them. . . don’t want to usemkEnv here. . . . */

for (count = 0; count < env_count; ++count) {

SEXP tmp;

tmp = VECTOR(env_table)[count];

ENCLOS(tmp) = cky_read_item(sym_table, env_table, fp);

FRAME(tmp) = cky_read_item(sym_table, env_table, fp);

TAG(tmp) = cky_read_item(sym_table, env_table, fp);

}

/* the+2 is for the first twoPROTECT()s (of {sym ,env}_table) */

UNPROTECT(env_count + 2);

InTerm(fp);

return FRAME(VECTOR(env_table)[env_count ­ 1]);

}

Appendix D: Glossary 33

Appendix D Glossary

closure A closure is a function with additional variable bindings. InR, these additional bindings
come in the form of an attached environment.

composite object
An object built up of other objects (comparesimple object). Linked lists and language
objects are perhaps the most used composite object types inR.

cons cell In R, basic building units of a linked list; one cons cell makes one list element. In Lisp,
cons cells have more general uses that do not apply toR.

environment
Roughly, a set of variables, represented as a list of symbols with their values.

kernel code
In the context of this paper, program code that make up theR interpreter (compareuser
code); much of this are written in C, the rest in Fortran. This paper covers only the C side
of the code.

kernel­level
Accessible only to kernel code; said typically of functions and data structures.

language object
A specialised linked list type, that is used to hold user­level code inR.

library function
A user­level function that all user code can access. Library functions usually provide
more elegant interfaces to primitive functions; for example,plot is a library function that
ultimately calls the primitive functionplot.xy , but is more “user friendly” than the latter.

primitive function
A kernel­level function that is callable by user code. Primitive functions typically provide
features that user code will be useless without. Arithmetic operators and assignment
operators fall into this category; in one version ofR there are 442 primitive functions.

simple object
A single standalone object (comparecomposite object). In R, the simple object types are
logical, integer, real and complex vectors, as well as primitive function references.

symbol An object that contains a unique name; these names might be names of variables, functions,
whatever. Symbols are stored in a hashed list; for each different name, there is exactly one
associated symbol (no two distinct symbols will have the same names).

tagged list A list where the elements are named. Thector function in Section 2.1.2 [State sharing],
page 9 returns a tagged list.

user code In the context of this paper, program code that are not part of theR interpreter (compare
kernel code); such code are written in theR programming language, and are interpreted as
they execute.

user­level Accessible to user code (and by extension also kernel code); said typically of functions and
data structures.

34 A new save and restore file format forR

Colophon 35

Colophon

This paper was typeset usingTexinfo, a macro package that runs on top of TEX. I used a hacked version
that changes the default fonts to Times, Courier, Helvetica, and (for the mathematical symbols) Computer
Modern. The rendering of ‘R’ emulates the one seen in the LATEX version of theR documentation; this
was accomplished via the undocumented@sf command, which uses the sans­serif font family (much
like \textsf in LATEX).

Figures were done withXfig (http://www.xfig.org/), a “Facility for Interactive Generation of
figures”. It’s a very cool point­and­click program that, not very surprisingly, draws figures. These were
then exported as encapsulated PostScript files and included using the ‘epsf ’ package (via the@image
command).

Program code were marked up by hand. The new save/load code, as listed in Appendix C
[Complete code listing], page 23, has been incorporated inR from version 0.90 onwards in
‘src/main/saveload.c ’; you can use it by definingUSE_NEW_SAVE_FORMAT. Be aware how­
ever that the formathaschanged since I wrote the code.

The program code was based on version 0.64.2 ofR, and was originally developed on a 486 machine
running Linux. From July 1999, it was moved to a Pentium II machine running OpenBSD, which was
also used in making this document.

The source code to this document, its associated figures and macros, should be available at
http://cloud9.hedgee.com/doc/ by the time you read this.

I gratefully acknowledge the assistance of Dr Ross Ihaka, my project supervisor. Many of the ideas
used in this project have been his, and the amount of patience he has shown is amazing, especially during
his sabbatical. Thank you, Ross.

You can contact me about this paper via the email addresscky­doc@m.org.nz .

36 A new save and restore file format forR

