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Abstract—In the Airspace Sectorization Problem, airspace
has to be partitioned into a given number of secta; each of
which being assigned to a team of air traffic contllers. The
objective is to minimize the coordination workload between
adjacent sectors while balancing the total workload of
controllers and respecting some specific constraist This
problem is solved by a constraint programming formdation, in
which each sector is defined as a set of verticda. this paper,
we present an approach to calculate the sector bodary from
its vertices. The method ensures also the connedtywconstraint
of the sectors.

Index Terms—Airspace Sectorization,
Geometry, Constraint Programming
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I. INTRODUCTION

S;actorization of airspace is a fundamental archiredt
eature of Air Traffic Management (ATM). The airgea
is divided into a number of sectors, each onesgyasd to a
team of controllers. Controllers of a given sedtave (1) to
monitor flights, (2) to avoid conflicts between aafts and
(3) to exchange information with adjacent sectortake or
to hand-on the control responsibility of flightshése tasks

then sectorized by the following steps:

induce a workload which must be balanced between th

sectors. On top of this balance constraint, sevapatific
ATC (Air Traffic Control) constraints have also be taken
into account:
¢ Route-based convexity constraint: the same
aircraft can not enter the same sector twice.
e Minimum distance constraint: the distance

between a sector border and a vertex must be not

less than a given distance.
¢ Minimum sector crossing time constraint: the

aircraft must stay in each crossed sector at least

given amount of time.

Constraint Programming [1] framework [2].
approach, follow the idea of [3], instead of deftpisectors

In this

The airspace which is made of routes that cross
each others is represented by a gr&pst{V,E}.

V is the set of crossing poinis and §;, v;)UE if

and only if there is a direct route fromto v;.
The graphG is labeled both on its vertices and
edges by the static estimated workloads.

The sectorization problem of the graph{V,E},
[V|]=n, |E]=m is then modeled in a constraint
programming formulation by introducingn
variables x,/{1..k}, wherek is the number of
sectors and; = j means that the vertex is in

the subsetV; representing the sectdr The
constraints of ASP are naturally stated, or by
using predefined constraints of the solver, or by
using user-defined constraints come with a
specific constraint propagation algorithm. The
optimization function is defined in terms of the
minimum number of cut routes. A heuristic is
also defined for variables and values ordering.

A “good” initial solution is found by a recursive
bisection scheme. At each step of bisection,
solution is found with help of constraint
programming formulation and then improved by
the restricted Kernighan/Lin heuristic.

At last, the solution obtained in the previous step
is improved by a random local re-optimization
scheme: a small group of adjacent sectors is
selected randomly and again, the constraint
programming formulation is used to find locally
its optimal sectorization. This procedure is
repeated and ends if after predefined
consecutive iterations, the solution is not longer
improved.

As reported in [2], the result of this approach is
The Airspace Sectorization Problem (ASP) is solved promising. But we have at least two sub-problemsotue:

through ageometric description, we can define a sector as a
convexset of vertices. The main advantage of this approach

is to resume to a purely discrete problem. Thepaus is
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The computation of sector boundary: until now,

the sectorization is considered as a partitioning
of the set of vertices and a sector is defined as a
subset of vertices. From this partitioning, we
must then compute non-overlapping sector
boundaries such that each sector boundary
contents all its vertices.

The connectivity constraint: when defining the
sector boundaries, we must ensure that the
sectors are not fragmented. For example, the case
in which sector A is fragmented in Figure 1 must
be avoided:
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Figure 1: Connectivity Constraint

In the next, we will propose an approach, which kalp
us not only to compute the sector boundaries bst &b
ensure the connectivity constraint.

[I. SECTOR BOUNDARIES COMPUTATION AND CONNECTIVITY
CONSTRAINT

Assume that we have an airspace which has to
partitioned into a number of sectors, each reptedeby a
set of vertices; we must then compute non-overfapp
sector boundaries such that each sector boundatgrs all
its vertices and, as mentioned above, can notaggnfented.

For example in the 2D case, we must determine doh e
sector a simple polygon which contents all its ices. We
propose a way to compute such sector boundarigbdd?D
airspace case. Note that it can be extended t@Ghease.
The idea is to partition the plane of airspace witrertices

generating point than to any other. Its dual, thedabDney
triangulation (the terntriangulation is defined in the next),
is created by connecting all generating points tvisicare a
common tile edge.
Proposition: Let PT(V) be a point-based polygonal
tessellation of a set of point¥ in a plane and the
corresponding NRG(PT(V)). For all subsetsv;/V, if a
subgraph oNRG(PT(V)) corresponding td/; is connected,
then there exists a simple polygon which contalhpants
of V; and no point inAV,.
The proof of this proposition is given by constrantof
such a polygon: we group the tiles correspondingalto
ﬁoints inV, and remove all shared sides. Since each tile
Bntains only one point &f by the definition ofPT(V), this

. polygon contains only the points \gf but no point inAV;.

: Hence, the boundary of a sector can be obtained by
grouping the corresponding tiles of its verticed ansector
V; is un-fragmented INRG(PT(V;)) is connected.

B. Triangulation as Neighboring Relative Graph

Our problem is now how to obtain a point-based
polygonal tessellation of a set of points in a pland its
neighboring relative graph. In the next, we firstetermine

into n non-overlapping polygons, each polygon contain on@e neighboring relation between the vertices, Wwhi a

and only one vertex. The boundary of a sector ddfiny a
subset of vertices is computed by grouping the gmig
corresponding. From this partitioning, a neighbgrnialative

graph is determined and used to ensure the cowmitgecti

constraint.

A. Point-based Polygonal Tessellation and Neighboring

Relative Graph

Definition: A Point-based Polygonal Tessellation of a
plane with a set oh points V, denoted byPT(V), is a
partitioning of the plane intm non-overlapping polygons,
called tiles, such that each polyg8fv) contains exactly one
pointv/N.

Definition: The Neighboring Relative Graph of a point-
based polygonal tessellationPT(V), denoted by
NRG(PT(V)), is the graph constituted l{y,E), where edge
(u,v) belongs tcE if and only if P(u) andP(v) have at least
one common side.

Figure 2: Delauney Triangulation (dashed line) and
Voronoi Diagram

Example: The Figure 2 illustrates us an example of the

case in which the Delauney Triangulation is the NBIG
Voronoi Diagram [4]. The Voronoi diagram (also knoas
the Direchlet tessellation or Theissen tessellatien a
subdivision of a plane into a number of tiles; eétsh has
one sample point in its interior called a genewpoint. All
other points inside the polygonal tile are closer the

triangulation, and then construct

tessellation.

the corresponding

Definition: [5] A Triangulation of a set ofn pointsV in
the plane, denoted BiV), is joining the points o¥ by non-
intersecting straight line segments such thategdians are
triangles.

Figure 3: Triangulation of 5 points and a Tessellaon
(dotted lines)

Observation: For every triangulatio(V), we can always
determine a point-based polygonal tessellat#difV) such
that T(V)=NRG(PT(V)).

For instance, in Figure 3, we choose a point ingideh
triangle and the tiles are defined by joining thpeats and
the center points of edges.

Vi

Figure 4: Edge throughs three sectors

But in our problem, to avoid the case in Figurehtrme an
edge can through three sectors, two vertices efdge in the
graph representing airspace must be consideredigisbors
each other. It means that this edge belongs toséteof
edges of NRG. What we need is thencenstrained



triangulation.

Definition: [5] Given a planar graphG=(V,E), a
constrained triangulation, denoted byCT(G), with respect
to G is a triangulatiorT(V) such that all edges & are edges
of T(V).

Figure 4 gives an example of a constrained tricatri.

Pty

Figure 5: A constrained triangulation (right) of a given
graph (left)

A constrained triangulation can be obtained by rgldi
edges that do not intersect any of existing ediesp more

whenever a variable is instantiated:
We first compute the set of vertices of which the
corresponding variables can take the value
V={Vil pLD(x)}

Determine the connected components of the sub
graph of CT(G) corresponding t&/;:

Vg Ny . .. ONw =V,
No more than one of these subsets belongs to
sectorp hence, if a variables in a subsety
takes already the valug we can then deduce
that p can be removed from the domain of the
variables of all other subsets.

Vo

new edges can be added. This technique has a poor

complexity of O(n"). In [5], an O(nlog n) constrained
triangulation algorithm is described.

Now let us come back to our problem: given an aicsp
represented byG=(V,E), we construct a constrained
triangulationCT(G) with respect t&s. The airspace then will
be sectorized into a number of subsétsuch that, for alV/;,
the subgraph ofCT(G) corresponding tdv; is connected.
From this constrained triangulation, we determire t
corresponding point-based polygonal tessellationd the
boundary for each sector is constructed by groutiiegiles
of its vertices.

Figure 6: Connectivity Constraint Propagation. Onlythe
variables ofV, can take the valugp

With n andm are respectively the number of vertices and

Note that for a given graph, we can obtain sever#he number of edges of the graph representingitbpaze,

constrained triangulations. It is difficult and side the
scope of this paper to determine which one is thest".

C. Connectivity Constraint Propagation

We firstly recall a brief overview of the princigleof
Constraint Programming (CP). Constraint Programnisng
paradigm aimed at solving Constraint SatisfactioobRRms
(CSP). An instance of the CSP is described by aotet
variablesX={xy, X, .., X,}, €ach variable; has a seD(x;) of
possible values (domain of variable), and a seboktraints
between the variables. Aolution of the CSP is an
instantiation (assignment of values for all varg)| such
that all constraints are satisfied.

CSPs can be solved as follows. A tree search mtenle
and the variables are instantiated sequentiallghEede of
the tree search represents a partial solution igbart
assignment) and the algorithm attempts to exteial é full
solution by assigning a value to an uninstantiatedable.
Whenever a partial solution violates any of coristsa
backtracking is performed.

The key idea of CP i€onstraint Propagation: when a
variable is instantiated, the constraints are mdy ased to
check the validity of solution, but they are alssed to
deduce new constraints, to remoweonsistent values of
uninstantiated variables, so to reduce the se@ates

In [2], the Airspace Sectorization Problem is medeas
an instance of the CSP by introducimgariablesx /{1..k},
wherek is the number of sectors amgd= j means that the
vertexy; is in the subsey; representing the sectpr

Now to ensure the connectivity constraint, we defa
global constraint concerning all variables and the following
propagation algorithm is applied for each partitipn

the first step of the algorithm can be performe®(n); the
second one is iMO(m) by the Tarjan depth-first search
algorithm [6] and the last one i®(n). We check the
connectivity for allk partitions, the algorithm is then in
O(k.m).

This approach for sector boundary computation dmed t
constraint propagation algorithm are implementedd an
integrated to complete the works in [2]. It has rbéested
with the generated data. Figure and give us resedcta
view of a 100-vertices graph sectorized into 8 an800-
vertices graph sectorized into 40.

As mention above, with a given airspace, we carehav
several constrained triangulation, and the choid®trary
one of them may restrain the search space, hepcbetiter
solution. One of perspectives is then to build dyically
the constrained triangulation progressively withe th
instantiation procedure. Another work to do is sheothing
of the sector boundary, in terms of the number tef i
segments.

RESULT AND PERSPECTIVE
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Figure 7: A 100-Vertices Graph Sectorized Into 8
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Figure 8: A 500-Vertices Graph Sectorized into 40
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