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Abstract—In the Airspace Sectorization Problem, airspace 

has to be partitioned into a given number of sectors, each of 
which being assigned to a team of air traffic controllers. The 
objective is to minimize the coordination workload between 
adjacent sectors while balancing the total workload of 
controllers and respecting some specific constraints.  This 
problem is solved by a constraint programming formulation, in 
which each sector is defined as a set of vertices. In this paper, 
we present an approach to calculate the sector boundary from 
its vertices. The method ensures also the connectivity constraint 
of the sectors.  
 

Index Terms—Airspace Sectorization, Computational 
Geometry, Constraint Programming 
 
 

I. INTRODUCTION 

ectorization of airspace is a fundamental architectural 
feature of Air Traffic Management (ATM). The airspace 

is divided into a number of sectors, each one is assigned to a 
team of controllers. Controllers of a given sector have (1) to 
monitor flights, (2) to avoid conflicts between aircrafts and 
(3) to exchange information with adjacent sectors to take or 
to hand-on the control responsibility of flights. These tasks 
induce a workload which must be balanced between the 
sectors. On top of this balance constraint, several specific 
ATC (Air Traffic Control) constraints have also to be taken 
into account: 

• Route-based convexity constraint: the same 
aircraft can not enter the same sector twice.  

• Minimum distance constraint: the distance 
between a sector border and a vertex must be not 
less than a given distance.  

• Minimum sector crossing time constraint: the 
aircraft must stay in each crossed sector at least a 
given amount of time. 

The Airspace Sectorization Problem (ASP) is solved in a 
Constraint Programming [1] framework [2]. In this 
approach, follow the idea of [3], instead of defining sectors 
through a geometric description, we can define a sector as a 
convex set of vertices. The main advantage of this approach 
is to resume to a purely discrete problem. The airspace is 
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then sectorized by the following steps: 
• The airspace which is made of routes that cross 

each others is represented by a graph G={V,E}. 
V is the set of crossing points vi, and (vi, vj)∈E if 
and only if there is a direct route from vi to vj. 
The graph G is labeled both on its vertices and 
edges by the static estimated workloads. 

• The sectorization problem of the graph G={V,E}, 
|V|=n, |E|=m is then modeled in a constraint 
programming formulation by introducing n 
variables xi∈{1..k}, where k is the number of 
sectors and xi = j means that the vertex vi is in 
the subset Vj representing the sector j. The 
constraints of ASP are naturally stated, or by 
using predefined constraints of the solver, or by 
using user-defined constraints come with a 
specific constraint propagation algorithm. The 
optimization function is defined in terms of the 
minimum number of cut routes. A heuristic is 
also defined for variables and values ordering. 

• A “good” initial solution is found by a recursive 
bisection scheme. At each step of bisection, 
solution is found with help of constraint 
programming formulation and then improved by 
the restricted Kernighan/Lin heuristic. 

• At last, the solution obtained in the previous step 
is improved by a random local re-optimization 
scheme: a small group of adjacent sectors is 
selected randomly and again, the constraint 
programming formulation is used to find locally 
its optimal sectorization. This procedure is 
repeated and ends if after predefined N 
consecutive iterations, the solution is not longer 
improved. 

 
As reported in [2], the result of this approach is 

promising. But we have at least two sub-problems to solve: 
• The computation of sector boundary: until now, 

the sectorization is considered as a partitioning 
of the set of vertices and a sector is defined as a 
subset of vertices. From this partitioning, we 
must then compute non-overlapping sector 
boundaries such that each sector boundary 
contents all its vertices. 

• The connectivity constraint: when defining the 
sector boundaries, we must ensure that the 
sectors are not fragmented. For example, the case 
in which sector A is fragmented in Figure 1 must 
be avoided: 
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Figure 1: Connectivity Constraint 

In the next, we will propose an approach, which can help 
us not only to compute the sector boundaries but also to 
ensure the connectivity constraint. 

II.  SECTOR BOUNDARIES COMPUTATION AND CONNECTIVITY 

CONSTRAINT 

Assume that we have an airspace which has to be 
partitioned into a number of sectors, each represented by a 
set of vertices; we must then compute non-overlapping 
sector boundaries such that each sector boundary contents all 
its vertices and, as mentioned above, can not be fragmented. 

For example in the 2D case, we must determine for each 
sector a simple polygon which contents all its vertices. We 
propose a way to compute such sector boundaries for the 2D 
airspace case. Note that it can be extended to the 3D case. 
The idea is to partition the plane of airspace with n vertices 
into n non-overlapping polygons, each polygon contain one 
and only one vertex. The boundary of a sector defined by a 
subset of vertices is computed by grouping the polygons 
corresponding. From this partitioning, a neighboring relative 
graph is determined and used to ensure the connectivity 
constraint. 

A. Point-based Polygonal Tessellation and Neighboring 
Relative Graph 

Definition:   A Point-based Polygonal Tessellation of a 
plane with a set of n points V, denoted by PT(V), is a 
partitioning of the plane into n non-overlapping polygons, 
called tiles, such that each polygon P(v) contains exactly one 
point v∈V. 

Definition:  The Neighboring Relative Graph of a point-
based polygonal tessellation PT(V), denoted by 
NRG(PT(V)), is the graph constituted by (V,E), where edge 
(u,v) belongs to E if and only if P(u) and P(v) have at least 
one common side. 

  
Figure 2: Delauney Triangulation (dashed line) and 

Voronoi Diagram 

Example: The Figure 2 illustrates us an example of the 
case in which the Delauney Triangulation is the NRG of 
Voronoi Diagram [4]. The Voronoi diagram (also known as 
the Direchlet tessellation or Theissen tessellation) is a 
subdivision of a plane into a number of tiles; each tile has 
one sample point in its interior called a generating point. All 
other points inside the polygonal tile are closer to the 

generating point than to any other. Its dual, the Delauney 
triangulation (the term triangulation is defined in the next), 
is created by connecting all generating points which share a 
common tile edge.  

Proposition: Let PT(V) be a point-based polygonal 
tessellation of a set of points V in a plane and the 
corresponding  NRG(PT(V)). For all subsets Vi⊂V, if a 
subgraph of NRG(PT(V)) corresponding to Vi is connected, 
then there exists a simple polygon which contains all points 
of Vi and no point in V\Vi. 

The proof of this proposition is given by construction of 
such a polygon: we group the tiles corresponding to all 
points in Vi and remove all shared sides. Since each tile 
contains only one point of V by the definition of PT(V), this 
polygon contains only the points of Vi, but no point in V\Vi. 

Hence, the boundary of a sector can be obtained by 
grouping the corresponding tiles of its vertices and a sector 
Vi is un-fragmented if NRG(PT(Vi)) is connected.  

B. Triangulation as Neighboring Relative Graph 

Our problem is now how to obtain a point-based 
polygonal tessellation of a set of points in a plane and its 
neighboring relative graph.  In the next, we firstly determine 
the neighboring relation between the vertices, which is a 
triangulation, and then construct the corresponding 
tessellation. 
 

Definition:  [5] A Triangulation of a set of n points V in 
the plane, denoted by T(V), is joining the points of V by non-
intersecting straight line segments such that all regions are 
triangles. 

 
 

 

Figure 3: Triangulation of 5 points and a Tessellation 
(dotted lines) 

Observation: For every triangulation T(V), we can always 
determine a point-based polygonal tessellation PT(V) such 
that T(V)=NRG(PT(V)). 

For instance, in Figure 3, we choose a point inside each 
triangle and the tiles are defined by joining these points and 
the center points of edges. 

 

vi 
vj 

 

Figure 4: Edge throughs three sectors 

But in our problem, to avoid the case in Figure 4 where an 
edge can through three sectors, two vertices of an edge in the 
graph representing airspace must be considered as neighbors 
each other. It means that this edge belongs to the set of 
edges of NRG. What we need is then a constrained 



 
 

 9 

triangulation. 
Definition:  [5] Given a planar graph G=(V,E), a 

constrained triangulation, denoted by CT(G), with respect 
to G is a triangulation T(V) such that all edges of E are edges 
of T(V). 

Figure 4 gives an example of a constrained triangulation. 
 

 

Figure 5: A constrained triangulation (right) of a given 
graph (left) 

A constrained triangulation can be obtained by adding 
edges that do not intersect any of existing edges, till no more 
new edges can be added. This technique has a poor 
complexity of O(n4). In [5], an O(nlog n) constrained 
triangulation  algorithm is described. 

Now let us come back to our problem: given an airspace 
represented by G=(V,E), we construct a constrained 
triangulation CT(G) with respect to G. The airspace then will 
be sectorized into a number of subsets Vi such that, for all Vi, 
the subgraph of CT(G) corresponding to Vi is connected. 
From this constrained triangulation, we determine the 
corresponding point-based polygonal tessellation, and the 
boundary for each sector is constructed by grouping the tiles 
of its vertices. 

Note that for a given graph, we can obtain several 
constrained triangulations. It is difficult and outside the 
scope of this paper to determine which one is the ``best''. 

C. Connectivity Constraint Propagation 

We firstly recall a brief overview of the principles of 
Constraint Programming (CP). Constraint Programming is a 
paradigm aimed at solving Constraint Satisfaction Problems 
(CSP). An instance of the CSP is described by a set of 
variables X={x1, x2, .., xn}, each variable xi has a set D(xi) of 
possible values (domain of variable), and a set of constraints 
between the variables. A solution of the CSP is an 
instantiation (assignment of values for all variables), such 
that all constraints are satisfied. 

CSPs can be solved as follows. A tree search is created 
and the variables are instantiated sequentially. Each node of 
the tree search represents a partial solution (partial 
assignment) and the algorithm attempts to extend it to a full 
solution by assigning a value to an uninstantiated variable. 
Whenever a partial solution violates any of constraints, 
backtracking is performed.  

The key idea of CP is Constraint Propagation: when a 
variable is instantiated, the constraints are not only used to 
check the validity of solution, but they are also used to 
deduce new constraints, to remove inconsistent values of 
uninstantiated variables, so to reduce the search space. 

In [2], the Airspace Sectorization Problem is modeled as 
an instance of the CSP by introducing n variables xi∈{1..k}, 
where k is the number of sectors and xi = j means that the 
vertex vi is in the subset Vj representing the sector j. 

Now to ensure the connectivity constraint, we define a 
global constraint concerning all variables and the following 
propagation algorithm is applied for each partition p, 

whenever a variable is instantiated: 
• We first compute the set of vertices of which the 

corresponding variables can take the value p: 
Vp={vi| p∈D(xi)} 

• Determine the connected components of the sub 
graph of  CT(G) corresponding to Vp: 

Vp1 ∪Vp2 ∪. . . ∪ Vpk = Vp 
• No more than one of these subsets belongs to 

sector p hence, if a variable xi in a subset Vpl 
takes already the value p, we can then deduce 
that p can be removed from the domain of the 
variables of all other subsets. 

 
Vp 

Vp1 

Vpk 

Vpl 

xi=p 

xi≠p 

xi≠p 

 

Figure 6: Connectivity Constraint Propagation. Only the 
variables of Vpl can take the value p 

With n and m are respectively the number of vertices and 
the number of edges of the graph representing the airspace, 
the first step of the algorithm can be performed in O(n); the 
second one is in O(m) by the Tarjan depth-first search 
algorithm [6] and the last one in O(n). We check the 
connectivity for all k partitions, the algorithm is then in 
O(k.m). 

III.  RESULT AND PERSPECTIVE 

This approach for sector boundary computation and the 
constraint propagation algorithm are implemented and 
integrated to complete the works in [2]. It has been tested 
with the generated data. Figure and give us respectively a 
view of a 100-vertices graph sectorized into 8 and a 500-
vertices graph sectorized into 40. 

As mention above, with a given airspace, we can have 
several constrained triangulation, and the choice arbitrary 
one of them may restrain the search space, hence the better 
solution. One of perspectives is then to build dynamically 
the constrained triangulation progressively with the 
instantiation procedure. Another work to do is the smoothing 
of the sector boundary, in terms of the number of its 
segments. 
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Figure 7: A 100-Vertices Graph Sectorized Into 8 

 

 

Figure 8: A 500-Vertices Graph Sectorized into 40 

REFERENCES 

[1] Bartak R.,1998. Online Guide to Constraint Programming. 
http://kti.mff.cuni.cz/~bartak  

[2] TranDac H., Baptiste P., Duong V., 2002. A Constraint 
Programming Formulation for Dynamic AirSpace Sectorization. 
Proc. of 21st Digital Avionics Systems Conference. 

[3] Delahaye D., M. Schoenauer and J. M. Alliot, 1998. Airspace 
Sectoring by Evolutionary Computation. IEEE International 
Congress on Evolutionary Computation. 

[4] Okabe A. and al., 1992. Spatial Tessellations: Concepts and 
Applications of Voronoi Diagrams. New York: Wiley. 

[5] Chen J., 1996. Computational Geometry: Methods and Applications. 
Computer Science Department, Texas A&M University. 

[6] R. E. Tarjan, 1972. Depth-first Search and Linear Graph Algorithms. 
SIAM Journal on Computing, 1:146-160. 


