
Intl. Conf. RIVF’04
February 2-5, Hanoi, Vietnam

 7

Abstract—In the Airspace Sectorization Problem, airspace

has to be partitioned into a given number of sectors, each of
which being assigned to a team of air traffic controllers. The
objective is to minimize the coordination workload between
adjacent sectors while balancing the total workload of
controllers and respecting some specific constraints. This
problem is solved by a constraint programming formulation, in
which each sector is defined as a set of vertices. In this paper,
we present an approach to calculate the sector boundary from
its vertices. The method ensures also the connectivity constraint
of the sectors.

Index Terms—Airspace Sectorization, Computational
Geometry, Constraint Programming

I. INTRODUCTION

ectorization of airspace is a fundamental architectural
feature of Air Traffic Management (ATM). The airspace

is divided into a number of sectors, each one is assigned to a
team of controllers. Controllers of a given sector have (1) to
monitor flights, (2) to avoid conflicts between aircrafts and
(3) to exchange information with adjacent sectors to take or
to hand-on the control responsibility of flights. These tasks
induce a workload which must be balanced between the
sectors. On top of this balance constraint, several specific
ATC (Air Traffic Control) constraints have also to be taken
into account:

• Route-based convexity constraint: the same
aircraft can not enter the same sector twice.

• Minimum distance constraint: the distance
between a sector border and a vertex must be not
less than a given distance.

• Minimum sector crossing time constraint: the
aircraft must stay in each crossed sector at least a
given amount of time.

The Airspace Sectorization Problem (ASP) is solved in a
Constraint Programming [1] framework [2]. In this
approach, follow the idea of [3], instead of defining sectors
through a geometric description, we can define a sector as a
convex set of vertices. The main advantage of this approach
is to resume to a purely discrete problem. The airspace is

Huy TRANDAC, Heudiasyc Laboratory, UMR CNRS 6599, University

of Technology of Compiègne, Centre de Recherches de Royallieu, BP
20529, F-60205 Compiègne cedex

Philippe BAPTISTE, Ecole Polytechnique, LIX F-91128 Palaiseau
Vu DUONG, Eurocontrol Experimental Centre, Centre de Bois des

Bordes, BP15, F-91222 Bretigny sur Orge cedex

then sectorized by the following steps:
• The airspace which is made of routes that cross

each others is represented by a graph G={V,E}.
V is the set of crossing points vi, and (vi, vj)∈E if
and only if there is a direct route from vi to vj.
The graph G is labeled both on its vertices and
edges by the static estimated workloads.

• The sectorization problem of the graph G={V,E},
|V|=n, |E|=m is then modeled in a constraint
programming formulation by introducing n
variables xi∈{1..k}, where k is the number of
sectors and xi = j means that the vertex vi is in
the subset Vj representing the sector j. The
constraints of ASP are naturally stated, or by
using predefined constraints of the solver, or by
using user-defined constraints come with a
specific constraint propagation algorithm. The
optimization function is defined in terms of the
minimum number of cut routes. A heuristic is
also defined for variables and values ordering.

• A “good” initial solution is found by a recursive
bisection scheme. At each step of bisection,
solution is found with help of constraint
programming formulation and then improved by
the restricted Kernighan/Lin heuristic.

• At last, the solution obtained in the previous step
is improved by a random local re-optimization
scheme: a small group of adjacent sectors is
selected randomly and again, the constraint
programming formulation is used to find locally
its optimal sectorization. This procedure is
repeated and ends if after predefined N
consecutive iterations, the solution is not longer
improved.

As reported in [2], the result of this approach is

promising. But we have at least two sub-problems to solve:
• The computation of sector boundary: until now,

the sectorization is considered as a partitioning
of the set of vertices and a sector is defined as a
subset of vertices. From this partitioning, we
must then compute non-overlapping sector
boundaries such that each sector boundary
contents all its vertices.

• The connectivity constraint: when defining the
sector boundaries, we must ensure that the
sectors are not fragmented. For example, the case
in which sector A is fragmented in Figure 1 must
be avoided:

From Sets to Geometrical Sectors in the
Airspace Sectorization Problem

Dac-Huy Tran, Philippe Baptiste, Vu Duong

S

 8

Sector B

Sector A

Sector A

Figure 1: Connectivity Constraint

In the next, we will propose an approach, which can help
us not only to compute the sector boundaries but also to
ensure the connectivity constraint.

II. SECTOR BOUNDARIES COMPUTATION AND CONNECTIVITY

CONSTRAINT

Assume that we have an airspace which has to be
partitioned into a number of sectors, each represented by a
set of vertices; we must then compute non-overlapping
sector boundaries such that each sector boundary contents all
its vertices and, as mentioned above, can not be fragmented.

For example in the 2D case, we must determine for each
sector a simple polygon which contents all its vertices. We
propose a way to compute such sector boundaries for the 2D
airspace case. Note that it can be extended to the 3D case.
The idea is to partition the plane of airspace with n vertices
into n non-overlapping polygons, each polygon contain one
and only one vertex. The boundary of a sector defined by a
subset of vertices is computed by grouping the polygons
corresponding. From this partitioning, a neighboring relative
graph is determined and used to ensure the connectivity
constraint.

A. Point-based Polygonal Tessellation and Neighboring
Relative Graph

Definition: A Point-based Polygonal Tessellation of a
plane with a set of n points V, denoted by PT(V), is a
partitioning of the plane into n non-overlapping polygons,
called tiles, such that each polygon P(v) contains exactly one
point v∈V.

Definition: The Neighboring Relative Graph of a point-
based polygonal tessellation PT(V), denoted by
NRG(PT(V)), is the graph constituted by (V,E), where edge
(u,v) belongs to E if and only if P(u) and P(v) have at least
one common side.

Figure 2: Delauney Triangulation (dashed line) and

Voronoi Diagram

Example: The Figure 2 illustrates us an example of the
case in which the Delauney Triangulation is the NRG of
Voronoi Diagram [4]. The Voronoi diagram (also known as
the Direchlet tessellation or Theissen tessellation) is a
subdivision of a plane into a number of tiles; each tile has
one sample point in its interior called a generating point. All
other points inside the polygonal tile are closer to the

generating point than to any other. Its dual, the Delauney
triangulation (the term triangulation is defined in the next),
is created by connecting all generating points which share a
common tile edge.

Proposition: Let PT(V) be a point-based polygonal
tessellation of a set of points V in a plane and the
corresponding NRG(PT(V)). For all subsets Vi⊂V, if a
subgraph of NRG(PT(V)) corresponding to Vi is connected,
then there exists a simple polygon which contains all points
of Vi and no point in V\Vi.

The proof of this proposition is given by construction of
such a polygon: we group the tiles corresponding to all
points in Vi and remove all shared sides. Since each tile
contains only one point of V by the definition of PT(V), this
polygon contains only the points of Vi, but no point in V\Vi.

Hence, the boundary of a sector can be obtained by
grouping the corresponding tiles of its vertices and a sector
Vi is un-fragmented if NRG(PT(Vi)) is connected.

B. Triangulation as Neighboring Relative Graph

Our problem is now how to obtain a point-based
polygonal tessellation of a set of points in a plane and its
neighboring relative graph. In the next, we firstly determine
the neighboring relation between the vertices, which is a
triangulation, and then construct the corresponding
tessellation.

Definition: [5] A Triangulation of a set of n points V in
the plane, denoted by T(V), is joining the points of V by non-
intersecting straight line segments such that all regions are
triangles.

Figure 3: Triangulation of 5 points and a Tessellation
(dotted lines)

Observation: For every triangulation T(V), we can always
determine a point-based polygonal tessellation PT(V) such
that T(V)=NRG(PT(V)).

For instance, in Figure 3, we choose a point inside each
triangle and the tiles are defined by joining these points and
the center points of edges.

vi
vj

Figure 4: Edge throughs three sectors

But in our problem, to avoid the case in Figure 4 where an
edge can through three sectors, two vertices of an edge in the
graph representing airspace must be considered as neighbors
each other. It means that this edge belongs to the set of
edges of NRG. What we need is then a constrained

 9

triangulation.
Definition: [5] Given a planar graph G=(V,E), a

constrained triangulation, denoted by CT(G), with respect
to G is a triangulation T(V) such that all edges of E are edges
of T(V).

Figure 4 gives an example of a constrained triangulation.

Figure 5: A constrained triangulation (right) of a given
graph (left)

A constrained triangulation can be obtained by adding
edges that do not intersect any of existing edges, till no more
new edges can be added. This technique has a poor
complexity of O(n4). In [5], an O(nlog n) constrained
triangulation algorithm is described.

Now let us come back to our problem: given an airspace
represented by G=(V,E), we construct a constrained
triangulation CT(G) with respect to G. The airspace then will
be sectorized into a number of subsets Vi such that, for all Vi,
the subgraph of CT(G) corresponding to Vi is connected.
From this constrained triangulation, we determine the
corresponding point-based polygonal tessellation, and the
boundary for each sector is constructed by grouping the tiles
of its vertices.

Note that for a given graph, we can obtain several
constrained triangulations. It is difficult and outside the
scope of this paper to determine which one is the ``best''.

C. Connectivity Constraint Propagation

We firstly recall a brief overview of the principles of
Constraint Programming (CP). Constraint Programming is a
paradigm aimed at solving Constraint Satisfaction Problems
(CSP). An instance of the CSP is described by a set of
variables X={x1, x2, .., xn}, each variable xi has a set D(xi) of
possible values (domain of variable), and a set of constraints
between the variables. A solution of the CSP is an
instantiation (assignment of values for all variables), such
that all constraints are satisfied.

CSPs can be solved as follows. A tree search is created
and the variables are instantiated sequentially. Each node of
the tree search represents a partial solution (partial
assignment) and the algorithm attempts to extend it to a full
solution by assigning a value to an uninstantiated variable.
Whenever a partial solution violates any of constraints,
backtracking is performed.

The key idea of CP is Constraint Propagation: when a
variable is instantiated, the constraints are not only used to
check the validity of solution, but they are also used to
deduce new constraints, to remove inconsistent values of
uninstantiated variables, so to reduce the search space.

In [2], the Airspace Sectorization Problem is modeled as
an instance of the CSP by introducing n variables xi∈{1..k},
where k is the number of sectors and xi = j means that the
vertex vi is in the subset Vj representing the sector j.

Now to ensure the connectivity constraint, we define a
global constraint concerning all variables and the following
propagation algorithm is applied for each partition p,

whenever a variable is instantiated:
• We first compute the set of vertices of which the

corresponding variables can take the value p:
Vp={vi| p∈D(xi)}

• Determine the connected components of the sub
graph of CT(G) corresponding to Vp:

Vp1 ∪Vp2 ∪. . . ∪ Vpk = Vp
• No more than one of these subsets belongs to

sector p hence, if a variable xi in a subset Vpl
takes already the value p, we can then deduce
that p can be removed from the domain of the
variables of all other subsets.

Vp

Vp1

Vpk

Vpl

xi=p

xi≠p

xi≠p

Figure 6: Connectivity Constraint Propagation. Only the
variables of Vpl can take the value p

With n and m are respectively the number of vertices and
the number of edges of the graph representing the airspace,
the first step of the algorithm can be performed in O(n); the
second one is in O(m) by the Tarjan depth-first search
algorithm [6] and the last one in O(n). We check the
connectivity for all k partitions, the algorithm is then in
O(k.m).

III. RESULT AND PERSPECTIVE

This approach for sector boundary computation and the
constraint propagation algorithm are implemented and
integrated to complete the works in [2]. It has been tested
with the generated data. Figure and give us respectively a
view of a 100-vertices graph sectorized into 8 and a 500-
vertices graph sectorized into 40.

As mention above, with a given airspace, we can have
several constrained triangulation, and the choice arbitrary
one of them may restrain the search space, hence the better
solution. One of perspectives is then to build dynamically
the constrained triangulation progressively with the
instantiation procedure. Another work to do is the smoothing
of the sector boundary, in terms of the number of its
segments.

 10

Figure 7: A 100-Vertices Graph Sectorized Into 8

Figure 8: A 500-Vertices Graph Sectorized into 40

REFERENCES

[1] Bartak R.,1998. Online Guide to Constraint Programming.
http://kti.mff.cuni.cz/~bartak

[2] TranDac H., Baptiste P., Duong V., 2002. A Constraint
Programming Formulation for Dynamic AirSpace Sectorization.
Proc. of 21st Digital Avionics Systems Conference.

[3] Delahaye D., M. Schoenauer and J. M. Alliot, 1998. Airspace
Sectoring by Evolutionary Computation. IEEE International
Congress on Evolutionary Computation.

[4] Okabe A. and al., 1992. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. New York: Wiley.

[5] Chen J., 1996. Computational Geometry: Methods and Applications.
Computer Science Department, Texas A&M University.

[6] R. E. Tarjan, 1972. Depth-first Search and Linear Graph Algorithms.
SIAM Journal on Computing, 1:146-160.

