
Consistency Checking of Financial Derivatives
Transactions

Daniel Dui and Christian Nentwich
Department of Computer Science

University College London

Gower Street

London WC1E 6BT, UK

{d.dui,c.nentwich}@cs.ucl.ac.uk

Wolfgang Emmerich
Zuhlke Engineering Ltd

49 Great Cumberland Place

London, W1H 7TH UK

wje@zuhlke.com

http://www.zuhlke.com

Bryan Thal
UBS Warburg

1 Finsbury Avenue

London EC2M 2PP,UK

bryan.thal@ubsw.com

Abstract. Financial institutions are increasingly using XML as
a de-facto standard to represent and exchange information about
their products and services. Their aim is to process transac-
tions quickly, cost-effectively, and with minimal human interven-
tion. Due to the nature of the financial industry, inconsistencies
inevitably appear throughout the lifetime of a financial transaction
and their resolution introduces cost and time overheads.

We give an overview of requirements for inconsistency detection in
our particular domain of interest: the Over-The-Counter (OTC)
financial derivatives sector. We propose a taxonomy for the differ-
ent classes of consistency constraints that occur in this domain and
present how xlinkit, a generic technology for managing the consis-
tency of distributed documents, can be used to specify consistency
constraints and detect transaction inconsistencies. We present the
result of an evaluation where xlinkit has been used to specify the
evaluation rules for version 1.0 of the Financial Products Markup
Language (FpML). The results of that evaluation were so encour-
aging that they have led the FpML Steering Committee to con-
sider xlinkit as the standard for specifying validation constraints
throughout.

1 Introduction

Financial institutions offer their clients a wide range of financial products. In-
creasingly data about these products are exchanged electronically in ordering,
trading and confirmation processes between financial institutions, stock ex-
changes and institutional clients.

The financial products that are traded on stock exchanges tend to be stan-
dard products, such as equity, currency or fixed income products. In addition
to these standard security products there are secondary products, whose value
is derived from such securities. Examples for such products are futures, swaps,
interest rate and energy derivatives. These derivative contracts are often very
specialized and not traded in large volumes. Derivatives are therefore mostly
traded between institutions without the involvement of an exchange in so called
over-the-counter transactions.

To address cost pressures and increased timeliness requirements in trading
derivative contracts, financial institutions increasingly rely on electronic trading.
To facilitate data interchange between different institutions the International
Swaps and Derivatives Association (ISDA) has standardized an XML markup
language called Financial Products Markup Language (FpML), which supports
many types of derivative products. While successful in standardizing the con-
crete syntax the FpML consortium has acknowledged that to support effective
electronic trading of derivatives it is necessary to also be able to validate con-
straints within one FpML trade document and between a trade and other FpML
documents, which are beyond those that can be expressed using XML Document
Type Definitions (DTDs) and Schemas [18].

The novel contribution of this paper is a systematic classification of the dif-
ferent classes of constraints that need to be checked when electronic derivative
data is exchanged. We describe how these constraint classes can be expressed
using xlinkit, an XML-based first-order rule language [15] that we have devel-
oped over the last three years. While doing so, we elaborate on how the different
xlinkit concepts, such as plug-in operators, are used in practice. We have used
xlinkit to describe all validation constraints for FpML 1.0. Xlinkit rules are
executed by an efficient rule engine and we show that validations of FpML 1.0
trades can be performed in about 980 milliseconds, which is fast enough to be
able to embed checks in a straight-through-processing architecture.

In the next section we summarize the results of our requirements elicitation
exercise, which highlights the different kinds of consistency constraints that fi-
nancial institutions are interested in. In Section 3, we classify these different
classes of constraints based on the primitives that are needed for expressing the
required correctness criteria. In Section 4, we briefly present the background of
xlinkit to make the paper self-contained. The aim of Section 5 is to show how
the different constraint classes are supported by xlinkit in order to give evidence
that xlinkit can support all required checks. In Section 6, we report on the
experience we made when expressing validation rules for FpML 1.0 and show
the performance figures for FpML validation before discussing related work in
Section 7 and concluding the paper in Section 8.

2 Validation Requirements

During the initial stages of our research, we have investigated the requirements
that financial institutions have for checking electronic trade representations. We
discuss these requirements ordered by sources where inconsistencies may oc-
cur. Fig. 1 shows an overview of the different sources that we have identified.
Alongside the discussion of the validation requirements in each of these areas
we endeavour to present rationales that will make the importance of automated
validation evident.

Fig 1. Classification of Consistency Constraints

2.1 Internal Inconsistencies

First, inconsistencies may arise due to internal faults within a trade document.
These inconsistencies might occur because the fact that an FpML document
is valid with respect to a DTD or XML Schema definition does not necessarily
imply that it is meaningful and suitable for being processed by middle- and back-
office tools. There are a large number of consistency constraints that cannot be
expressed in a DTD or XML Schema, for example:

Example 1: An FpML trade identifies a number of payment dates when cash
flows are exchanged between the parties involved. The list of these payment
dates needs to be in chronological order, they need to be subsequent to the date
when the trade has been struck, and they need to be valid calendar dates.

Thus there is a need for us to be able to express validation rules for indi-
vidual trade documents, that go beyond the syntactic correctness that can be
established by an XML parser. In many ways this is similar to the static se-
mantic rules that programming language designers introduce to a programming
language, because the context free grammar is just not suitable to express the
rules that a program must obey so that it has a meaning.

It is important for financial institutions to detect such internal inconsistencies
during the exchange of electronic trading data. The later inconsistencies are
detected the more effort would have been wasted processing the trade and the
more costly the settlement of the trade will become.

2.2 Amendments

Trade amendments are common and are a prime source of inconsistencies. An
amendment modifies the terms of an existing trade; therefore the trade document
representing the original trade is replaced with a new document that represents
the new version of the trade. The new document, which by itself is valid, is not
necessarily an acceptable replacement for the first one.

Example 2: The way of identifying securities in Germany is about to be changed
from Wertpapierkennummern to the International Security Identification Num-
ber system (ISIN) defined by ISO [9]. As a result trades that have not been
completed by the change due date will have to be amended.

It is important to note that not all parts of a trade document can be changed
during the lifetime of a transaction. In particular banks would be reluctant (and
require higher approval) if the economics of a trade were changed. We therefore
have to check that amendments are only made to parts of the trade document
that do not affect the economics.

2.3 Reference Data

By “reference data” we mean any information that is outside the control of the
organisations involved in the transaction. Reference data therefore subsumes
identifications of security products issued by exchanges or market data issued
by, for example Reuters or Bloomberg.

Example 3: An option to sell German Telecom shares identifies the underlying
equity share by referring to the international security identification number.
Consistency with reference data in this context means that that number has to
exist and identify a security instrument that is compatible with the option.

The rationale for demanding consistency of trading documents to reference
data is to prevent meaningless trades to be passed on to settlement.

2.4 Workflow

A workflow consists of a collection of activities that support a specific business
process: in our case, the execution of a financial transaction. Banks have work-
flow definitions in place that are, in part, demanded by the banking authorities.
Workflow constraints ensure that a trade has a state that is consistent with its
prescribed workflow at any point during the trade’s life-cycle.

Example 4: A swap contract specifies that Party A shall transfer a certain sum
to Party B’s account each month. At the time of making each new payment,
Party A wants to check that all due payments up to that point have occurred;
if not, an inconsistency should be flagged.

The rationale for workflow constraints in general is that organizations want
to ensure that the actions on the trading floor match the workflows prescribed
by the institution’s compliance department.

2.5 Organisational Policies

Organisational policies are decided by the organisation itself and do not depend
on anything from the outside world. They lead to constraints that the organi-
sation imposes on itself and that are meaningful only within the organisation.

Example 5: A trading desk deals exclusively with standard interest rate prod-
ucts with a face value not greater than $1,000,000 and with clients from EU
countries. All trades booked on that desk will be flagged as not consistent if
they do not meet the constraints, for example if one the parties is a client from
Japan.

Usually these policies define constraints that regard the identity and the
geographical location of the parties involved in the trade, the identity of the
employee booking or processing the trade, the type and the cost of the products.

2.6 Semantic Equivalence Across Representations

Different organisations inevitably represent the same information in different
document formats. Often this also happens for different systems within a single
organisation. This class of constraints ensures that the data in one document is
consistent with the data in another document in another format.

Example 6: A bank communicates with its clients using FpML, but internally
uses another format that captures the same information in the FpML document
plus other data about the state of the transaction. We want to be able to define
constraints to ensure that the document in the Bank’s internal format represents
the data in the FpML document accurately.

Example 7: An FpML document specifies that Party A shall pay $100,000 to
Party B every three months. As the trade is executed, every three months Party
A will produce another (XML) document that instructs to transfer $100,000
from Party A’s account to Party B’s account. The data in the FpML document
should be consistent with the data in the cash-transfer documents.

In this discussion we are assuming that all file formats are XML-based. In
the finance industry, this is acceptable because most organisations already de-
ploy XML internally or are currently in the process of doing so. Other formats
are generally unsophisticated and easily convertible to XML. Also interchange
formats, which evolve more slowly, are converging to XML. This is the case for
the FIX and SWIFT, currently the most widely used.

The Financial Information eXchange (FIX) protocol is a messaging standard
developed for the exchange of securities transactions. A FIX message simply
consists of an ASCII string that lists an unstructured series of tag-value pairs.
FIX 4.3, the current version, defines a dual syntax consisting of the traditional
“tag=value” notation and an XML-based equivalent: FIXML.

The Society for Worldwide Interbank and Financial Telecommunication
(SWIFT) provides an industry standard messaging service for inter-bank com-
munication since 1977. The messages (known as “FIN” messages) consist of a

simple ASCII string, much like a FIX message, and are delivered by means of
a store-and-forward protocol over an X.25 connection. The next generation of
the service, SwiftNet, will deliver XML messages over a secure IP network and
will become available from the end of 2002. The message format is known as
swiftML.

Any standard, no matter how well received, is destined to change over time.
This is particularly so in the derivative market where traders invent new and
more complicated financial products on a weekly basis. In the case of FpML,
version 1.0 has been available since May 2001, a trial recommendation of version
2.0 is currently in use and a first working draft of version 3.0 has been published
in January 2002. It is therefore inevitable that organisations will need to handle
documents that conform to different versions of the standard specifications. In
any case, parties to a derivative trade are often interested in evidence that, al-
though expressed in a different markup language, the trade documents represent
the same trade.

3 Constraint Classification

In this section, we classify the consistency constraints that occur in financial
transactions. The aim of this classification is to provide a basis for the assessment
of the appropriateness of the xlinkit rule language in this setting.

When we classified the constraints a question arose as to where to draw
the boundary between constraints that can be expressed in XML Schemas and
constraints that one would want to express using xlinkit. Firstly, the above re-
quirements imply a large number of constraints that simply cannot be expressed
in a schema (e.g. those that imply more than one document or that are not
related to a simple attribute or element).

Moreover one might choose to express constraints in xlinkit even though they
could be expressed in an XML schema. For derivative products, ISDA agrees the
schema based on consensus among its member organizations. This means that
only constraints will be reflected in the schema for which there is wide-spread
agreement. To express organization-specific constraints, such as those discussed
in Section 2.5 it might be appropriate not to change the schema but to express
those constraints in a separate representation.

We now discuss the different classes of constraints. We exemplify these con-
straints with examples taken from the FpML 1.0 validation rules that we created
in order to evaluate our approach.

3.1 Simple Constraints

Existence: Existence constraints impose that a certain element must be
present in a trade document. A DTD or schema can enforce this simplest case,
but it cannot enforce existence of one element conditional upon the existence of
another element.

Example 8: A trade document should specify reset dates only if it describes a
floating rate swap.

Equality: The constraint specifies that that two elements must have the same
value.

Example 9: When comparing two trade documents we want to check that the
trade settlement date is the same in both documents.

Uniqueness: Uniqueness constraints impose that, in a set of values, each value
should appear exactly once.

Example 10: An FpML trade document lists a number of business center codes
that identify the locations on which date calculations are based. For a document
to be meaningful, each business center code must appear in the list only once.

Comparison: These involve the usual <, >, ≤, and ≥ operators. In our case
it is more common for the operands to be dates and not integers or real numbers.

Example 11: In a trade contract the effective date is the date when the deal
is booked, and usually when payments begin, the terminationDate when the
contract expires and payments end. For the trade document to be meaningful
the effective date must be earlier than the termination date.

3.2 Complex Constraints

In practice most rules are combinations of any of the above. We found examples
where simple constraints have to be combined using logical operators (AND,
OR, NOT), checks whether an element is included in a set of other elements and
checks whether sets are equal. We now give examples for each of these.

Example 12: For most dates in a trade document, it is necessary to specify a
“roll convention”, i.e. a date is to be adjusted when it is not a valid business
day. This can happen in a number of ways: it can be moved to the following
business day, the following Monday, etc.

If the rollConvention is not specified (’NONE’) or is the type used on the
Sydney Futures Exchange (’SFE’), then the payment period must be expressed
in months or years rather than weeks or fortnights.

Example 13: An FpML trade document defines groups of business center codes
that identify the locations on which date calculations are based. Instead of
repeating them many times in the same documents, it is possible to reference
them. Clearly, for the trade document to be valid, each reference must match
with at least one group of business centers.

Example 14: For two corresponding businessCenters in document A and docu-
ment B: each businessCenter element in document A shall have the same value
of a businessCenter element in document B and each businessCenter element

in document B shall have the same value of a businessCenter element in docu-
ment A.

3.3 Exotic Constraints

These constraints cannot be meaningfully expressed with the operators sketched
above and require the development of new operators. In our domain, date com-
parison operations tend to be particularly common.

Example 15: In order to define how interest rate calculation should occur in a
swap, an FpML trade document specifies a calculation period frequency, the fre-
quency at which calculation of interest rates should occur, and a reset frequency.
For the document to be meaningful the calculation period frequency should be
an integer multiple of the reset frequency.

Thus any constraint language has to be extensible to support domain-specific
operators.

4 xlinkit

xlinkit is a framework for expressing and checking the consistency of distributed,
heterogeneous documents. It comprises a language, based on a restricted form
of first order logic, for expressing constraints between elements and attributes
in XML documents. The restriction enforces that sets have a finite cardinality
which is not a problem in our application domain as XML documents only
have a finite set of elements and attributes. xlinkit also contains a document
management mechanism and an engine that can check the documents against
the constraints. A full description of xlinkit, including a formal specification of
its semantics and its scalability is beyond the scope of this paper and can be
found in [15].

xlinkit has been implemented as a lightweight mechanism on top of XML
and creates hyperlinks to support diagnostic by linking inconsistent elements.
Because it was built on XML, xlinkit is flexible and can be deployed in a variety
of architectures. It has also been applied in a variety of different application
areas, including the validation of Software Engineering documents such as the
design models and source code of Enterprise JavaBeans-based systems [16].

Sets used in quantifiers of xlinkit rules are defined using XPath. XPath [3]
is one of the foundational languages in the set of XML specifications. It permits
the selection of elements from an XML document by specifying a tree path in the
document. For example, the path /FpML/trade would select all trade elements
contained in the FpML element, which is the root element.

XLink [4] is the XML linking language and is intended as a standard way
of including hyperlinks in XML documents. XLink goes beyond the facilities
provided by HTML by allowing any XML element to become a link; by specifying
that links may connect more than two elements, so called extended links; and
by allowing links to be managed out-of-bound, as collections of links termed
linkbases. These features allow us to capture complex relationships between a

multitude of elements that are involved in an inconsistency without altering any
of the inconsistent documents.

The linkbases generated by xlinkit form an ideal intermediate representation
from which we can derive different forms of higher level diagnoses. Firstly, we
have developed a report generator that takes report templates and uses the
linkbase to obtain details of the elements involved in an inconsistency to provide
a report similar to an error report that a compiler generates. Secondly, we
have developed a servlet that can read a linkbase and allows users to select a
link and it will then open the documents referenced in the link, navigate to
elements identified in the link and in that way assist users to understand the
links. We have also developed a linkbase processor that folds links back into
the documents so that both consistent and inconsistent data can be captured
as hyperlinks. It depends on the application domain which of these higher-level
diagnoses mechanisms is most appropriate. For the domain discussed in this
paper we found the report generation to have generated most interest among
our partners in various investment banks.

5 Constraint Specification with xlinkit

In this section we show how each of the examples of consistency constraints
stated in English in Section 3 can be expressed using first order logic expression
and therefore xlinkit rules.

5.1 Existence

Example 8 leads to Constraint 1, which can be expressed in the xlinkit rule
language as shown below.

Constraint 1: A resetDates must exist if and only if there exists also a
floatingRateCalculation in calculation.

<forall var="x" in="//swapStream">

<iff>

<exists var="y" in="$x/resetDates" />

<exists var="z" in="$x/calculationPeriodAmount/

calculation/floatingRateCalculation" />

</iff>

</forall>

In this xlinkit rule, x refers to all swapStream nodes, y refers to the resetDates
that are children of swapStream nodes and x floatingRateCalculation nodes that
are contained in calculation elements, which are contained in calculationPerio-
dAmount elements of swapStream nodes.

5.2 Equality

Example 9 leads to Constraint 2:

Constraint 2: The tradeDate element in the document A must have the same
value of the tradeDate element in the document B.

This is translated into an xlinkit rule that compares two pairs of texts that
are contained in a tradeDate element and demands that they are the same.
Note that the rule itself does not make any assumption on where the trades are
located or, indeed, how many trades there are. This is achieved using a document
description that is given to the xlinkit rule engine. In this particular example,
the document set would contain two elements, with the URLs of document A
and B

<forall var="x" in /FpML/tradeDate/text()>

<forall var="y" in /FpML/tradeDate/text()>

<same op1="$x" op2="$y" />

</forall>

</forall>

5.3 Uniqueness

Example 10 leads to Constraint 3:

Constraint 3: The values of the businessCenter elements in businessCenters
must be unique.

<forall var="a" in="//businessCenters">

<forall var="x" in="$a/businessCenter">

<forall var="y" in="$a/businessCenter">

<implies>

<not>

<same op1="$x" op2="$y" />

</not>

<notequal op1="$x/text()" op2="$y/text()" />

</implies>

</forall>

</forall>

</forall>

This constraint says that for each pair of businessCenter elements that are
contained in a businessCenters element somewhere in an FpML trade that if
the two nodes are not identical, the text elements that they contain cannot be
identical either.

5.4 Comparison

Example 11 leads to Constraint 4:

Constraint 4: The value of effectiveDate must be smaller than the value of
terminationDate.

<forall var="x" in="//calculationPeriodDates">

<forall var="y" in="$x/terminationDate">

<forall var="z" in="$x/effectiveDate">

<greater_than>

op1="$x/terminationDate/unadjustedDate/text()"

op2="$x/effectiveDate/unadjustedDate/text()"

</greater_than>

</forall>

</forall>

</forall>

This constraint demands that for each pair of terminationDate and effective-
Date elements that are contained in a calculationPeriodDates element somewhere
in an FpML trade, that the effectiveDate has to be greater than the termina-
tionDate.

5.5 Logical Operators

Example 12 leads to Constraint 5

Constraint 5: If rollConvention is not either ’NONE’ or ’SFE’, then period
must be either ’M’ or ’Y’.

<forall var="x" in="//calculationPeriodFrequency">

<implies>

<or>

<notequal op1="$x/rollConvention/text()" op2="’NONE’" />

<notequal op1="$x/rollConvention/text()" op2="’SFE’" />

</or>

<or>

<equal op1="$x/period/text()" op2="’M’" />

<equal op1="$x/period/text()" op2="’Y’" />

</or>

</implies>

</forall>

The above rule is the first example of a complex rule, where logical operators
implies and or are used to specify the constraint.

5.6 Compare One Element with a Set

Example 13 leads to Constraint 6

Constraint 6: In businessCentersReference: the value of attribute href shall
be equal to the value of attribute id of exactly one businessCenters element.

<forall var="x" in="//businessCentersReference">

<exists var="y" in="//businessCenters">

<equal op1="substring($x/@href,2)" op2="$y/@id" />

</exists>

</forall>

This rule demands that for every businessCentersReference element of an
FpML trade there exists a businessCenters element such that the href attribute
matches the id attribute.

5.7 Date Modulo (operator)

Example 15 leads to Constraint 7:

Constraint 7: The calculationPeriodFrequency must be an integer multiple
of the resetFrequency.

This constraint demands an unusual check that we address using an xlinkit
plug-in operator. We define operator is period multiple, which takes four pa-
rameters: two (period, unit) pairs. For example (2, ’Y’, 6, ’M’) meaning two
years and six months. If the second period is contained an exact number of times
in the first one the operator will return true, otherwise it will return false. The
operator is made available to xlinkit via the following declaration, again in an
XML-based format.

<OperatorSet impl="fpmlOperators.es">

<OperatorDefinition name="is_period_multiple">

<param name="periodA" type="node"/>

<param name="unitA" type="node"/>

<param name="periodB" type="node"/>

<param name="unitB" type="node"/>

</OperatorDefinition>

The implementation is an ECMA (Standardized Java)Script function con-
tained in the file fpmlOperators.es.

<forall var="x" in="//swapStream">

<forall var="y" in="$x/paymentDates/paymentFrequency">

<forall var="z" in="$x/calculationPeriodDates/calculationPeriodFrequency">

<operator name="fpml:is_period_multiple">

<param name="periodA" value="$y/periodMultiplier/text()" />

<param name="unitA" value="$y/period/text()" />

<param name="periodB" value="$z/periodMultiplier/text()" />

<param name="unitB" value="$z/period/text()" />

</operator>

</forall>

</forall>

</forall>

The rule then checks that for each pair of paymentFrequency and calcula-
tionPeriodFrequency contained in a swapStream element that the invocation to
the is period multiple operator returns true.

5.8 Summary

We note that we have been able to formulate examples for each of the different
classes of constraints discussed in Section 3. The primitives built into the xlinkit
rule language were sufficient to express quite a large number of constraints and
we are able to express exotic constraints using plug-in operators.

6 Validation

Above we have shown that analytically xlinkit can express the different classes
of constraints that we have identified earlier. In order to also provide empirical
evidence that xlinkit is expressive enough to define all classes of consistency
constraints that occur in practice in a derivative trading setting, we have elicited
a set of 35 consistency rules from product departments in UBS Warburg. We
have then formalized these rules and evaluated the performance of the xlinkit
rule engine when checking them. The rules can be found at [5]. We report the
results in this section.

6.1 On the Benefits of Formalization

The rule descriptions that we obtained from people in Warburg were given in
English, attempting to be as precise as possible. We have then formalized these
constraints using the xlinkit rule language. During this process, we have iden-
tified many ambiguities and we had to discuss the meaning of some rules with
our business contact. Once formalized, we were able to reformulate the original
constraint in English, albeit in a more precise way. We give an example now.
We were first given the following description of a constraint.

BusinessCentersReference must reference a businessCenter element
within the document.

We translated that into the following xlinkit rule:
<forall var="x" in="//businessCentersReference">

<exists var="y" in="//businessCenters">

<equal op1="substring($x/@href,2)" op2="$y/@id" />

</exists>

</forall>

Once we had gone through the formalization, we were able to capture the
meaning of the constraint more precisely as:

In businessCentersReference there shall be a businessCenters
element where the href attribute of the businessCentersReference
element matches the attribute id of the businessCenters element.

This new description formulation identifies explicitly the attributes to com-
pare, which was unclear in the original formulation. The xlinkit rule also shows
exactly what it is meant with “matches”. If the id value is “primaryBusiness-
Center”, then the href values referencing it must have value “#primaryBusi-
nessCenter” (with a leading hash symbol). Hence, using an XPath expression,
we impose that the substring starting on the second character of the href string
must be equal to the entire id string.

Another by-product of the formalization process was that the detailed anal-
ysis of all the constraints has led us to identify gaps that demanded new con-
straints that were not evident from the beginning, or to condense several con-
straints into one. Therefore the whole exercise has led to a more complete and
precise formulation of the validation constraints.

6.2 Performance

After having formalized the initial set of 35 constraints a total of 28 constraints
remained (because some were subsumed) and others were proven to be obsolete.
We then checked a 17KByte FpML 1.0 trade document that did not have any
constraint violations using the xlinkit rule engine. The rule engine executed on a
dual-processor Pentium III with a clock speed of 1.7 GHz and 1GByte of RAM.
We show the rule execution times for the different rules in the performance graph
in Figure 2.

0
20
40
60
80

100
120
140
160
180
200

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Rule

T
im

e
(m

se
c)

Fig 2. xlinkit performance

Figure 2 shows that some rule require a significantly longer time than others
to evaluate. This happens when the evaluation of an XPath expression requires
the traversal of the entire DOM tree. For example expression “//businessCen-
tersReference” appears in rule 27.

Expressions of this kind are necessary when the element we are trying to
find can appear anywhere in the document, unless we can explicitly identify the
position of the element in the document tree. In rule 1 we changed the expression
from “//swapStream” to “/FpML/trade/product/swap/swapStream” and the
execution time reduced by five folds (the figure in the graph). The only drawback
is that long XPath expressions make rules less readable.

Caching is also important. If a rule uses an XPath expression that was
evaluated already for another rule, it will execute much faster. This happens,
for example, in rule 2, which uses an expression that the XPath processor had
previously evaluated for rule 1.

In general XPath evaluation is the dominant performance factor. We ex-
pected the rules that use plug-in operators (for example 8, 9, 10, and 15) to be
slower, but their execution time is in line with the other rules.

We are using Apache’s Xalan as an XPath processor. Preliminary tests with
a beta version of Jaxen indicate that a faster XPath processor can give significant
performance improvements. Rule optimisation is also something on which we
will be focussing.

7 Related Work

There is a large body of work on validation of constraints of context-free lan-
guages in Compiler construction. The constraints that are considered are typi-
cally static semantic constraints, such as scoping and typing rules. These con-
straints are specified using for example attribute grammars [13], which have been
shown to be efficiently executable by compilers. Attribute grammars are not very
concise specifications of consistency as one constraint is typically spread over a
large number of products. On the other hand, they have been shown to be very
amenable to efficient execution [11, 12], which is an important property when
considering compiling large amounts of source code on slow processors. We have
made a slightly different trade-off decision with xlinkit and favour conciseness of
the constraint definition over efficiency. This is particularly appropriate given
the small size of derivative trade documents, which are in the order of 17KBytes.

The work on attribute grammars was then taken on for the construction of
syntax-directed editors and software engineering environments, such as Gan-
dalf [8], Synthesizer Generator [17], IPSEN [14], Centaur [1] and GOOD-
STEP [6]. The focus of these environments was to incrementally check con-
straints during editing. This could only be achieved by translating attribute
or graph grammars into efficiently executable code. Our focus is not (yet) on
supporting the editing of trade representations, but to support the batch valida-
tion that occurs when trades are exchanged between organisations or different
departments within an organisation. Provision of support for incremental checks
is therefore not necessary and instead we favour the flexibility that comes with
interpretation of constraints in the xlinkit rule engine.

The weakness of expressing constraints in XML DTDs and Schemas has been
recognized for quite some time now. Various approaches have been reported that
use XSLT [2] for validation. In [7], we report about the TIGRA enterprise ap-
plication integration architecture that uses XML as transport representation for
financial trades. In that architecture we have used XSLT stylesheets to express
constraints. The expressive power of XSLT stylesheets is considerably lower
than that of xlinkit in that xlinkit supports the full power of first-order logic.
Moreover, xlinkit carefully separates the concerns of constraint specification,
document and rule location, and provision of diagnostic feedback, which would
be intertwined in XSLT.

Rick Jeliffe’s Schematron [10] also uses XSLT to translate documents into re-
ports about their consistency. However, Schematron manages to conceal the use
of XSLT and provides a higher level of abstraction for the definition. Although
Schematron works quite well for validating single documents it would not allow
us to express constraints across different documents, e.g. to check trades against
reference data or workflow representations or to compare two trades in different
representations.

We have also compared xlinkit rules with OMG’s Object Constraint Lan-
guage (OCL) [19]. OCL was defined to declare constraints in UML diagrams
or MOF meta models. OCL was not defined with an aim to be executable. In
particular, it allows for infinite sets, which prevents it from being executed effi-

ciently. The focus of xlinkit, however, was to be as expressive as possible, while
still being executable in polynomial time.

8 Conclusions

We have shown in this paper that xlinkit can express consistency constraints
between financial documents at a very high level of abstraction. We have pre-
sented the requirements and classified the different kinds of constraints. We
have used this classification to show completeness of our rule language in the
support for defining consistency constraints. We have used xlinkit to implement
a full suite of validation rules for FpML 1.0 and used this implementation to
evaluate performance. As a result, we are confident that it is feasible to employ
xlinkit in straight through processing architectures to validate trades that are
exchanged between different organisations or different departments in the same
organisation.

The success of the evaluation has led the FpML steering committee to con-
sider a proposal to use xlinkit as the standard language to express validation
constraints for FpML documents. The high-level of abstraction provided by
xlinkit makes it particularly suitable. Moreover, FpML will use the xlinkit rule
language as the reference implementation for an FpML validation engine against
which the industry can compare their proprietary implementations.

Finally, we believe that beyond derivative trading, xlinkit has many different
potential application areas. Problems similar to the ones described in this pa-
per occur whenever semi-structured information is exchanged between different
organizations. This is the case in e-commerce and electronic business. We have,
for example also investigated the use of xlinkit in procurement processes, such
as those standardized by RosettaNet. Moreover, we have successfully applied
xlinkit to detecting inconsistencies in software engineering documents.

References

[1] P. Borras, D. Clément, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. CENTAUR: The System. ACM SIGSOFT Software Engineering Notes,
13(5):14–24, 1988. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Boston, MA, USA.

[2] J. Clark. XSL Transformations (XSLT). Technical Report
http://www.w3.org/TR/xslt, World Wide Web Consortium, November 1999.

[3] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. Recommenda-
tion http://www.w3.org/TR/1999/REC-xpath-19991116, World Wide Web Con-
sortium, November 1999.

[4] S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink) Version
1.0. W3C Recommendation http://www.w3.org/TR/xlink/, World Wide Web
Consortium, June 2001.

[5] D. Dui. Fpml 1.0 validation rules. http://www.cs.ucl.ac.uk/staff/D.Dui/FpML/
Rules1.0/validation.html, 2002.

[6] W. Emmerich. GTSL — An Object-Oriented Language for Specification of Syntax
Directed Tools. In Proc. of the 8th Int. Workshop on Software Specification and
Design, pages 26–35. IEEE Computer Society Press, 1996.

[7] W. Emmerich, E. Ellmer, and H. Fieglein. TIGRA – An Architectural Style for
Enterprise Application Integration. In Proc. of the 23rd Int. Conf. on Software
Engineering, pages 567–576. IEEE Computer Society Press, 2001.

[8] A. N. Habermann and D. Notkin. Gandalf: Software Development Environments.
IEEE Transactions on Software Engineering, 12(12):1117–1127, 1986.

[9] ISO 6166. Securities and related financial instruments – International securities
identification numbering system (ISIN). Technical report, International Standards
Organisation, 2001.

[10] R. Jelliffe. The Schematron Assertion Language 1.5. Technical report, GeoTempo
Inc., October 2000.

[11] U. Kastens. Ordered Attributed Grammars. Acta Informatica, 13(3):229–256,
1980.

[12] U. Kastens and W. M. Waite. Modularity and reusability in attribute grammars.
Acta Informatica, 31:601–627, 1991.

[13] D. E. Knuth. Semantics of Context-Free Languages. Mathematical Systems The-
ory, 2(2):127–145, 1968.

[14] M. Nagl, editor. Building Tightly Integrated Software Development Environ-
ments: The IPSEN Approach, volume 1170 of Lecture Notes in Computer Science.
Springer Verlag, 1996.

[15] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet
Technology, 2002. To appear.

[16] C. Nentwich, W. Emmerich, and A. Finkelstein. Flexible Consistenc Checking.
Research note, University College London, Dept. of Computer Science, 2001. Sub-
mitted for Publication.

[17] T. W. Reps and T. Teitelbaum. The Synthesizer Generator. ACM SIG-
SOFT Software Engineering Notes, 9(3):42–48, 1984. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environments, Pittsburgh, PA, USA.

[18] B. Thal. Fpml tools workshop. http://www.fpml.com/tools/toolswork.asp, Au-
gust 2001.

[19] J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Mod-
eling With UML. Addison Wesley, 1999.

