
XML Data Integration and Distribution in a Web-
based Object Video Server System

Shermann Sze-Man Chan1, and Qing Li2

1 Department of Computer Science,
2 Department of Computer Engineering and Information Technology,

City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China

{shermann@cs., itqli@} cityu.edu.hk

Abstract. Data integration and distribution, albeit “old” topics, are necessary
for developing a distributed video server system which can support multiple key
functions such as video retrieval, video production and editing capabilities. In a
distributed object video server (DOVS) system, objects from (homogeneous
and heterogeneous) servers usually need to be integrated for efficient operations
such as query processing and video editing. On the other hand, due to practical
factors and concerns (such as resource cost and/or intellectual property con-
cerns), raw/source video files often need to be well protected. XML is becom-
ing the standard for multimedia data description (e.g. MPEG-7), and is very
suitable for Web-based data presentation owing to its expressiveness and flexi-
bility. In this paper, we describe our approach to process XML descriptions for
data integration and distribution in a Web-based DOVS system.

1 Introduction

Web-enabled multimedia search and management systems become important in mul-
timedia information management. Video is a rich and colorful media widely used in
many of our daily life applications like education, entertainment, news spreading etc.
Digital videos have diverse sources of origin such as tape recorder and Internet. Ex-
pressiveness of video documents decides their dominant position in the next-
generation multimedia information systems. Unlike traditional types of data, digital
video can provide more effective dissemination of information for its rich content.

Collectively, a digital video can have several information descriptors: (i) media
data - actual video frame stream, including its encoding scheme and frame rate; (ii)
metadata - information about the characteristics of video content, such as structural
information and spatio-temporal features; (iii) semantic data - text annotation relevant
to the content of video, obtaining by manual or automatic understanding. Metadata is
created independently from how its contents are described and how its database struc-
ture is organized later. It is thus natural to define “video” and other meaningful con-
structs such as “scene”, “frame” as objects corresponding to their respective inherent
semantic and visual contents. Meaningful video scenes are identified and associated

with their description data incrementally. Depending on user’s viewpoint, same
video/scene may be given different descriptions. On the other hand, XML is becoming
the standard for multimedia data description (e.g. MPEG-7), and it is very suitable for
Web-based data presentation owing to its expressiveness and flexibility. More specifi-
cally, video data can be separated into XML data description and raw videos. Using
XML data description and a newly proposed Bi-Temporal Object-oriented XML
Processing and Storage model, data integration and distribution can be easily achieved
over the Web while the server keeps its own raw videos.

1.1 Background of Research

Over the last few years, we have been working on developing a generic video man-
agement and application processing (VideoMAP) framework [4], [5], [13]. A central
component of VideoMAP is a query-based video retrieval mechanism called
CAROL/ST, which supports spatio-temporal queries. While the original CAROL/ST
has contributed on working with video semantic data based on an extended object
oriented approach, little support has been provided to support video retrieval using
visual features. To come up with a more effective video retrieval system, we have
made extensions to the VideoMAP framework, and particularly the CAROL/ST
mechanism to furnish a hybrid approach [6]. Meanwhile, we have worked out a pre-
liminary version of our Web-based prototype called VideoMAP* [2], [3].

1.2 Paper Contribution and Organization

In this paper, we introduce a generic data conversion mechanism between Temporal
Object-oriented Database and Temporal Object-oriented XML Data. The mechanism
converts binary object data into XML packets for transmission. We also propose a Bi-
Temporal Object-oriented XML Processing and Storage model as the central integra-
tion mechanism. The central mechanism can process and store infinite incoming XML
packets (streams) from group of servers for data integration and distribution. The rest
of the paper is organized as follows. We review some related work on Web-based
video data model and issues of data streams in sect. 2. Sect. 3 is a preliminary intro-
duction of our Web-based VideoMAP* framework. In sect. 4, we describe the archi-
tecture and mechanisms for data integration and distribution in detail. Finally, we
conclude the paper and offer further research directions in sect. 5.

2 Related Work

2.1 Web-based Video Data Management

The DiVAN project [8] built a distributed audio-visual digital library system provid-
ing TV broadcasters and video archives owners with: (i) facilities to effectively com-
press, annotate, organize and store raw material; (ii) coherent content-based access

facilities via user-friendly interface paradigms. It can demonstrate and assess the ap-
plicability and acceptability of the system through experiments based on the archives
of major European broadcasters and audio-visual Institutions. The A4SM project [11]
integrated an IT framework into video production process: (i) pre-production (e.g.,
script development, story boarding); (ii) production (e.g. collection of media-data by
using an MPEG-2/7 camera); (iii) post-production (support of non-linear editing). In
collaboration with TV-reporters, cameramen and editors, a MPEG-7 camera is de-
signed in combination with a mobile annotation device for reporter, and a mobile
editing suite suitable for generation of news-clips.

2.2 Data Stream Modeling

Data streams become useful for online analysis of continuous data e.g., sales transac-
tion, stock market. Compared with the large volume of incoming data streams, most
systems for stream processing have relatively limited amount of memory and space.
Whatever the size of data streams, data streams will be removed once they are proc-
essed. Important information extracted from the data streams is stored in a data sum-
mary (intermediate results) repository for further processing. For example, sales trans-
actions need to be stored in customers’ profiles. Therefore, some ACID (atomic, con-
sistent, isolation, and durability) characteristics of a relational database are necessary
to maintain and some data models should be derived in order to handle data streams
over the Web. Dionisio et al. [7] proposed a unified data model that represented mul-
timedia, timeline, and simulation data utilizing a single set of related data modeling
constructs. They developed a knowledge-based multimedia medical distributed data-
base, which can handle time-based multimedia streams with structural information.
Another research effort advocates a Data Stream Management System (DSMS) for
network traffic management [1]. DSMS supports collecting and processing data
streams using four data stores (Stream, Store, Scratch, and Throw). In addition, an-
other complete DSMS called STREAM (Stanford stREam datA Manager) [9] is to be
built to manage continuous and rapid data streams, which will have functionality and
performance similar to a traditional DBMS.

2.3 XML Data Stream

For the purposes of data integration and distribution, XML (text-based) format is
suitable due to its expressiveness and presentation power over the Web. Ives et al. [10]
provided an overview of their Tukwila data integration system, which is based on a
query engine designed for processing network-bound XML data sources. Tufte et al.
[16] proposed merge operation and template for aggregation and accumulation of
XML data. XML document can be created by integrating several XML documents,
which are collected from the Internet. Their approach is simply to merge the docu-
ments semantically together, but without updating. Besides the research work on XML
data integration, recent research on punctuated XML streams focuses on the format of
XML streams, which aim is to handle fast processing of sequence of streams [14].

Suppose some blocking operators (such as sort) from data streams may block and
delay stream processing, data streams should be embedded with some priori knowl-
edge, which can be expressed in the form of punctuations.

3 Overview of the Web-based Object Video Management System

Concurrency
Control Profile

DB

Global
Query

Processing

Global
Query

Optimization

Profile
Processing

Profile

Local
Query

Optimization

Local
Query

Processing

Global
VPDB

CCM/ST

Local
VPDB

Profile

SL

CCM/ST

Video Administrator/Producer

Network

User Interface

VCC

Local
VPDB

Profile

SL

CCM/ST

Video Editor Video Query Client

User Interface User Interface

VPDB
Processing

Control
DB

Fig. 1. Architecture of VideoMAP*: a Web-based Object Video Management System

3.1 VideoMAP* Architecture

The architecture of our Web-based object video management system (VideoMAP*) is
shown in Fig. 1. There are two types of components: server- and client- components.
The client-components are grouped inside the gray boxes; the server-components are
shown below the network backbone. The main server-components providing services
to the clients include Video Production Database (VPDB) Processing, Profile Process-
ing, and Global Query Processing. Four kinds of users can utilize and work with the
system: Video Administrator (VA), Video Producer (VP), Video Editor (VE), and
Video Query Client (VQ). Each type of users is assigned with a priority level for the
VPDB Processing component to handle the processing requests from a queue. The
user priority levels of our system, in descending order, are from VA, VP, VE, to VQ.
Detailed discussions of the main components are described in [2].

3.2 Global and Local Video Production Databases

In the Web-based environment, cost of data communication is an important issue
worth great attention. In order to reduce this overhead, databases can be fragmented
and distributed into different sites. There are many research efforts on data fragmenta-
tion of relational databases. On the contrary, there is only limited recent work on data
(object) fragmentation in object databases [12], [15]. In VideoMAP*, different types
of users can retrieve the Global Video Production Database (Global VPDB) into their
Local VPDBs for processing, and their work may affect, and be propagated to, the
Global VPDB. In particular, each type of users may work on a set of video segments
and create dynamic objects out of the video segments. Therefore, a generic mecha-

nism for object data integration and distribution is necessary to address the problem of
inconsistency among databases.

4 Object Data Integration and Distribution

V id e o S e r v e r

V id e o P ro d u c t io n D B

V id e o D e sc r ip t io n
in T x n -O O D B

L in k s

1

F ilte r in g o u t
In c o n s is te n t
T x n -O b je c ts

2

T x n -O b je c t to
X M L

C o n v e rs io n

C e n tra l In te g ra t io n S e rv e r

T x n -O O -X M L
in -S tre a m

P ro c e s s in g

R a w
V id e o
F ile s

T x n -O O -X M L e d
D a ta a n d O p e ra t io n

3

5

B iT -O O -X M L
S to ra g e

6

V id e o D o m a in
/T im e s ta m p s

9 D o m a in
F ilte r in g

8
F i lte re d

T x n -O O -X M L e d
D a ta a n d O p e ra tio n

T x n -O O -X M L
o u t-S tre a m
P ro c e s s in g

1 2

1 0

4

T x n -O O -X M L
o u t-S tre a m
P ro c e s s in g

1 1
T x n -O O -X M L

in -S tre a m
P ro c e s s in g

1 3
B iT -O O -X M L

S to ra g e

1 5

X M L to
T x n -O b je c t
C o n v e rs io n

1 4

7
X M L V o c a b u la ry

fo r V id e o M A P

Fig. 2. Add-on Components for Object Data Integration and Distribution

4.1 Architecture and Process Flow

In Fig. 2, there are two servers: Video Server (VS) and Central Integration Server
(CIS). In VS, there are four data stores: (i) Video Production Database (the VPDB
described in sect. 3); (ii) temporary Transaction-timestamped Object-oriented XML
Database (Txn-OO-XMLed Data and Operation); (iii) Bi-Temporal Object-oriented
XML Database (BiT-OO-XML Storage); (iv) Video Server Domain Database (Video
Domain/Timestamps). Besides, processes and mechanisms in between those data
stores include (i) filtering process of inconsistent transaction-timestamped objects
(Filtering out Inconsistent Txn-Objects); (ii) conversion processes between transac-
tion-timestamped objects and XML (Txn-Object to XML Conversion, and XML to
Txn-Object Conversion); (iii) transaction-timestamped object-oriented XML stream
processing (Txn-OO-XML in-Stream/out-Stream Processing). In CIS, there are three
data stores: (i) BiT-OO-XML Storage; (ii) Filtered Txn-OO-XMLed Data and Opera-
tion; (iii) XML Vocabulary for VideoMAP. The processes in CIS include Txn-OO-
XML in-Stream/out-Stream Processing, and Domain Filtering.

The numberings shown in Fig. 2 depict the process flow of data integration and dis-
tribution between VS and CIS. Starting from process 1 of VS, some inconsistent ob-
jects (cf. Fig. 3) from the Transaction-timestamped Object-oriented Database (Txn-
OODB) are first filtered out by the algorithm (i.e., FilterInconsistentObject) described
in Appendix. Then, follow process 2 to 3, inconsistent objects are converted to XML
format with proper transaction timestamps (Txn-OO-XMLed). The outputs of the

filtering and conversion processes are shown in Fig. 4, Fig. 5, and Fig. 6 respectively.
The description of each component and process is provided in the subsequent sections.
The Txn-OO-XMLed Data and Operation component in VS is a temporary data store,
in which XML data will then be trimmed into small pieces for sending out to CIS.
XML data received by CIS are processed by the structural information of VideoMAP
(XML vocabulary for VideoMAP), and the output is stored in the Bi-Temporal Ob-
ject-oriented XML (BiT-OO-XML) Storage finally. Data from various VSs are inte-
grated into CIS. According to the domain of each VS, data is then filtered and distrib-
uted to VS (from process 9 to 13). Once groups of XML packets are collected in the
BiT-OO-XML Storage in VS, the data will be converted instantly to Txn-OODB
(from process 14 to 15) for VPDB processing.

4.2 Component Description

Video Production Database. Video Production Database (VPDB) is a temporal
(transaction-timestamped) object-oriented database designed for object data
integration and distribution. With the introduction of transaction timestamps,
inconsistent objects can be easily filtered out. Meanwhile, with the introduction of
duplicate (backup) data, object can be rollback if the process of integration and
distribution in CIS failed. It is also necessary to identify equivalent and/or identical
objects in CIS, in which the objects are logically the same but exist separately among
various VSs. Txn-OODB includes some base classes: TxnObject, ObjectId, ObjectRef,
and TxnTimestamp. All classes of VideoMAP can be derived from TxnObject, which
is embedded with three main features of object orientation: object identifier, object
inheritance, and object composition. ObjectId contains a global identifier (global_id),
a local identifier (local_id), and a version. With a global_id, object can be identified
among different sites. local_id is for local processing in local site. version is useful for
object versioning. TxnObject only stores the object identifiers of other objects for
inheritance relationships and composite relationships. Therefore, conversion and
extraction of binary objects (TxnObject) are relatively easy to perform, and dynamic
construction of video programs can be performed. The structure of ObjectRef consists
of an update frequency and a timestamp, type of operation, and a reference counter.
All these data items are valid in the current local site only. The timestamps are
obtained from a centralized controller once the user logons to the system. This
information may be useful for integration.

Inconsistent Object Filtering. Inconsistent objects in Txn-OODB can be filtered out
using the algorithm (i.e., FilterInconsistentObject) in Appendix. The timestamp TS of
the last updated VPDB by CIS is used to compare with the transaction timestamps
stored in each object. If one of the timestamps in an object is greater than TS, it means
that this object is in an inconsistent state, and the object should be filtered out. An
example of two inconsistent objects is shown in Fig. 3. The object shown in the left-
side box was previously inserted with a timestamp of “20010102.223411”. The format
of the timestamp is “yyyymmdd.hhmmss”. Then, data integration and distribution was

performed at the timestamp of “20010102.223411”, therefore TS was set to
“20010102.223411”. At the timestamp of “20020907.0000”, the “name” attribute of
the left-object was updated. At this moment, a second object (shown in the right-side
box of Fig. 3) is being inserted into the database with the timestamp of
“20020908.105502”. As the second object is a child object of the first one, the
inheritance relationship between these two objects is being updated at this time, with
the timestamp of “20020908.105502”. Therefore, by comparing TS with the
timestamps of objects, these two objects are marked as inconsistent.

object Scene : TxnObject
 attributes
 id.global_id.SITE=”192.168.1.100"
 id.global_id.SEQ=2
 id.local_id.SITE=”192.168.1.100"
 id.local_id.SEQ=2
 id.version=1

 freq_info.update_freq=1
 freq_info.update_freq_ts.last_update=”20020908.105502"
 freq_info.operation_type=”insert”
 freq_info.reference_count=1

 // static data
 name=”MySecondScene”
 name_bak=””
 name_ts.last_update=”20020908.105502"

 // dynamic inheritance
 parent_id_list[0].global_id.SITE=”192.168.1.100"
 parent_id_list[0].global_id.SEQ=1
 parent_id_list[0].local_id.SITE=”192.168.1.100"
 parent_id_list[0].local_id.SEQ=1
 parent_id_list[0].version=1
 parent_id_list_bak=0
 parent_id_list_ts.last_update=”20020908.105502"
 child_id_list=0
 child_id_list_bak=0
 child_id_list_ts.last_update=”20020908.105502”

 // dynamic composite
 component_id_list=0
 component_id_list_bak=0
 component_id_list_ts.last_update=”20020908.105502”
 container_id_list=0
 container_id_list_bak=0
 container_id_list_ts.last_update=”20020908.105502”

object Scene : TxnObject
 attributes
 id.global_id.SITE=”192.168.1.100"
 id.global_id.SEQ=1
 id.local_id.SITE=”192.168.1.100"
 id.local_id.SEQ=1
 id.version=1

 freq_info.update_freq=2
 freq_info.update_freq_ts.last_update=”20020908.105502"
 freq_info.operation_type=”update”
 freq_info.reference_count=1

 // static data
 name=”MyFirstScene”
 name_bak=”MyScene”
 name_ts.last_update=”20020907.000000"

 // dynamic inheritance
 parent_id_list=0
 parent_id_list_bak=0
 parent_id_list_ts.last_update=”20010102.223411"
 child_id_list[0].global_id.SITE=”192.168.1.100"
 child_id_list[0].global_id.SEQ=2
 child_id_list[0].local_id.SITE=”192.168.1.100"
 child_id_list[0].local_id.SEQ=2
 child_id_list[0].version=1
 child_id_list_bak=0
 child_id_list_ts.last_update=”20020908.105502”

 // dynamic composite
 component_id_list=0
 component_id_list_bak=0
 component_id_list_ts.last_update=”20010102.223411”
 container_id_list=0
 container_id_list_bak=0
 container_id_list_ts.last_update=”20010102.223411”

Fig. 3. Example of Inconsistent Objects

<Operation type=”update”>
 <Object type=”Scene”>
 <ObjectId>
 < id.global_id.site value=”192.168.1.100" />
 < id.global_id.seq value=”1" />
 < id.local_id.site value=”192.168.1.100" />
 < id.local_id.seq value=”1" />
 < id.version value=”1" />
 </ObjectId>
 <StaticData>
 <name value=”MyFirstScene” />
 <name_bak value=”MyScene” />
 <name_ts.last_update value=”20020907.000000" />
 </StaticData>
 <Inheritance>
 <child_id_list.0.global_id.site value=”192.168.1.100" />
 <child_id_list.0.global_id.seq value=”2" />
 <child_id_list.0.local_id.site value=”192.168.1.100" />
 <child_id_list.0.local_id.seq value=”2" />
 <child_id_list.0.version value=”1" />
 <child_id_list_bak value=”0" />
 <child_id_list_ts.last_update value=”20020908.105502" />
 </Inheritance>
 </Object>
</Operation>

<Operation type=”insert”>
 <Object type=”Scene”>
 <ObjectId>
 <id.global_id.site value=”192.168.1.100" />
 <id.global_id.seq value=”2" />
 <id.local_id.site value=”192.168.1.100" />
 <id.local_id.seq value=”2" />
 <id.version value=”1" />
 </ObjectId>
 <StaticData>
 <name value=”MySecondScene” />
 <name_bak value=”” />
 <name_ts.last_update value=”20020908.105502" />
 </StaticData>
 <Inheritance>
 <parent_id_list.0.global_id.site value=”192.168.1.100" />
 <parent_id_list.0.global_id.seq value=”1" />
 <parent_id_list.0.local_id.site value=”192.168.1.100" />
 <parent_id_list.0.local_id.seq value=”1" />
 <parent_id_list.0.version value=”1" />
 <parent_id_list_bak value=”0" />
 <parent_id_list_ts.last_update value=”20020908.105502" />
 </Inheritance>
 </Object>
</Operation>

Fig. 4. Example of Inconsistent Object to XML Conversion

XML Data Conversion from Inconsistent Object. After filtering out the
inconsistent objects, they are converted into plain-text XML format. The XML format

would restore the object-oriented features and contain transaction timestamps. It also
includes operation information. Such information is important and useful for other
databases to do further processing. Then each attribute (such as name) of Scene is
compared with its backup value (i.e., name_bak). If the timestamp of the attribute is
greater than TS (cf. FilterInconsistentObject in Appendix) and the value is different
from its backup value, this attribute will be copied to the format as shown in Fig. 4.
The format of the result is named Transaction-timestamped Object-oriented XML
Data (Txn-OO-XMLed Data and Operation).

<Stream>
 <Head>
 <Stream.Total value=”1" />
 </Head>
 <Stream.TxnId value=”192.168.1.100.1.1.345" />
 <Stream.Id value=”1"/>
 <Stream.Operation value=”update" />
 <Body>
 <Object type=”Scene”>
 <ObjectId>
 <id.global_id.site value=”192.168.1.100" />
 <id.global_id.seq value=”1" />
 <id.local_id.site value=”192.168.1.100" />
 <id.local_id.seq value=”1" />
 <id.version value=”1" />
 </ObjectId>
 <StaticData>
 <name value=”MyFirstScene” />
 <name_ts.last_update value=”20020907.000000" />
 </StaticData>
 </Body>
</Stream>

<Stream>
 <Head>
 <Stream.Total value=”1" />
 </Head>
 <Stream.TxnId value=”192.168.1.100.2.1.456" />
 <Stream.Id value=”1" />
 <Stream.Operation value=”insert" />
 <Body>
 <Object type=”Scene”>
 <ObjectId>
 <id.global_id.site value=”192.168.1.100" />
 <id.global_id.seq value=”2" />
 <id.local_id.site value=”192.168.1.100" />
 <id.local_id.seq value=”2" />
 <id.version value=”1" />
 </ObjectId>
 <StaticData>
 <name value=”MySecondScene” />
 <name_ts.last_update value=”20020908.105502" />
 </StaticData>
 </Body>
</Stream>

Fig. 5. Example of Independent XML Packets

XML Processing. In order to allow immediate (stream) processing in CIS (due to
limited size of space and memory of buffers), two groups of XML data as shown in
Fig. 4 are further trimmed into four smaller pieces (i.e., XML packets shown in Fig. 5
and Fig. 6) in VS. If the object data is a simple attribute type (static data), the
inconsistent value (e.g. name) will be copied to the packet. However, if the data is a
list (e.g. parent_id_list), then the list is needed to compare with its backup value in
order to further trim the elements of the list into more pieces (cf. ObjectList2Packets
in Appendix). Two out of the four packets (cf. Fig. 7) can be processed independently
(immediately), but some cannot.1 Therefore, dependent packets are grouped together
for transmission. The first packet of each group contains the head of packet
(“/Stream/Head”). Inside the Head, it stores the total number of data packages
(“/Stream/Head/Stream.Total”) in each group. If this value is one, it means the packet
is an independent packet. Each group of packets has a unique transaction identifier
(“/Stream/Stream.TxnId”). Each packet has a packet transmission order
(“/Stream/Stream.Id”) and the type of operation (“/Stream/Stream.Operation”). There
are three types of operations: update, insert, and delete. More specifically, operations
are: (i) insert a new object; (ii) delete an object; (iii) insert object id to the object id
list; (iv) delete object id from the object id list; (v) update static attribute data. Fig. 5
shows two independent packets, each belonging to its own group; Fig. 6 shows two
dependent packets from an identical group.

1 Therefore, data processing in CIS is semi-streaming.

<Stream>
 <Stream.TxnId value=”192.168.1.100.2.1.457" />
 <Stream.Id value=”2" />
 <Stream.Operation value=”insert" />
 <Body>
 <Object type=”Scene”>
 <ObjectId>
 <id.global_id.site value=”192.168.1.100" />
 <id.global_id.seq value=”1" />
 <id.local_id.site value=”192.168.1.100" />
 <id.local_id.seq value=”1" />
 <id.version value=”1" />
 </ObjectId>
 <Inheritance>
 <child_id_list.global_id.site value=”192.168.1.100" />
 <child_id_list.global_id.seq value=”2" />
 <child_id_list.local_id.site value=”192.168.1.100" />
 <child_id_list.local_id.seq value=”2" />
 <child_id_list.version value=”1" />
 <child_id_list_ts.last_update value=”20020908.105502" />
 </Inheritance>
 </Body>
</Stream>

<Stream>
 <Head>
 <Stream.Total value=”2" />
 </Head>
 <Stream.TxnId value=”192.168.1.100.2.1.457" />
 <Stream.Id value=”1" />
 <Stream.Operation value=”insert" />
 <Body>
 <Object type=”Scene”>
 <ObjectId>
 <id.global_id.site value=”192.168.1.100" />
 <id.global_id.seq value=”2" />
 <id.local_id.site value=”192.168.1.100" />
 <id.local_id.seq value=”2" />
 <id.version value=”1" />
 </ObjectId>
 <Inheritance>
 <parent_id_list.global_id.site value=”192.168.1.100" />
 <parent_id_list.global_id.seq value=”1" />
 <parent_id_list.local_id.site value=”192.168.1.100" />
 <parent_id_list.local_id.seq value=”1" />
 <parent_id_list.version value=”1" />
 <parent_id_list_ts.last_update value=”20020908.105502" />
 </Inheritance>
 </Body>
</Stream>

Parent and Child
are related

Fig. 6. Example of Dependent XML Packets

T=1

Processing Storage Waiting Storage

Incoming Queue

TxnId=4, Id=1 TxnId=3, Id=1
3 2

TxnId=1, Id=1
1

TxnId=2, Id=1
1

TxnId=3, Id=2

T=2

Processing Storage Waiting Storage

Incoming Queue

TxnId=3, Id=1
2

TxnId=3, Id=2

TxnId=4, Id=1
3

T=3

Processing Storage

Waiting Storage

Incoming Queue

TxnId=4, Id=2

TxnId=3, Id=2

TxnId=4, Id=1
3

TxnId=3, Id=1
2

T=4

Processing Storage Waiting Storage

TxnId=4, Id=1
3TxnId=3, Id=2

TxnId=3, Id=1
2

Incoming Queue

TxnId=4, Id=3

TxnId=4, Id=2
XML packet (with Head)

XML packet

Legend

Actual incoming sequence

TxnId=1, Id=1 TxnId=2, Id=1
TxnId=3, Id=2

TxnId=4, Id=1 TxnId=3, Id=1
1 1 3 2

TxnId=4, Id=2 TxnId=4, Id=3

Fig. 7. XML Packet Processing

A scenario of XML packet transmission is shown in Fig. 7. XML packets are sent
from VS to CIS during the process of Txn-OO-XML out-Stream Processing. The first
two packets (i.e., with TxnId=1 and TxnId=2) are independent packets of Fig. 5. The
dependent packets of Fig. 6 are illustrated by the packets with TxnId=3. The Actual
Incoming Sequence shows the packets received by CIS. CIS receives the packets and
stores them in the Incoming Queue. In addition, two temporary storages are used to
process the incoming packets. As memory may be limited, the window processing size
for the Processing Storage can be set to an optimal value according to the configura-
tion of CIS. Besides window processing size, there are some other parameters and
checking needed (e.g., time period for processing, checking of whether the size of next
packet is over the size of window, and checking of the size of packet, etc.). For sim-
plicity of the scenario, the value of the window processing size is infinite here, and all
packets in the Processing Storage can be processed in one unit time of timestamp. Fig.
7 shows four snapshots of the process from timestamp T=1 to T=4. At T=1, the first

two independent packets are received and stored into the Processing Storage for in-
stant processing. As the third packet is a dependent packet, it is received and stored
into the Waiting Storage. At T=2, the packet of TxnId=4 is stored into the Waiting
Storage as it should wait for its dependent packets. Then at T=3, all packets in the
group of TxnId=3 are completely received, therefore at T=4, this group of packets is
sent to the Processing Storage.

The Bi-Temporal Object-oriented XML Model. Packets from the Processing
Storage of Fig. 7 are stored into a Bi-Temporal Object-oriented XML (BiT-OO-XML)
model. The model is bi-temporal because it contains transaction timestamps of the
incoming XML packets and valid timestamps. By the assumption of limited space of
CIS and large amount of video descriptions from VPDBs, data stored in the model
will be removed periodically and/or when it is demanded, according to the valid
timestamps. Therefore, the temporal structure of the model is designed for easy
removal of data (cf. Fig. 8). According to the amount of resources, the structure
grouped in the darker grey box is created and defined dynamically by the server with
valid time. The root node named as “3d” means the model stores data for three days
only. (It can be five days or even longer). The nodes in the second level (or further
levels) further divide and group the packets according to the valid time.

Objects inside XML packets are to be stored in the structure below the grey box (cf.
Fig. 8). Objects from the same transaction are first grouped together. Then the objects
are clustered by their object types (e.g. scene, video), and are stored in a Data Pack
with indices and a new valid timestamp. Once a Data Pack is formed, a scheduler
would trigger the distribution process from CIS to all VSs. When the valid timestamp
is expired, the Data Pack will be removed. Otherwise, if an object inside the Data
Pack needed to be updated (by global_id, local_id, version, and txn_timestamp), the
updated object will be migrated to a new Data Pack with a new valid timestamp and
the distribution process will be triggered. We assume that objects are evolved from the
same source, i.e. they are of their unique global ids. Different users can get an object,
modify it, and then store it with a new local_id. However, global_id will never change.
Other logical index structures can be formed (e.g., domain and any important attrib-
ute), with links to the physical structure. As domain information can be collected from
VS, objects created from VSs with similar domains can be grouped together in the
index structure. In order to facilitate the retrieval of XML data, indexes are created
according to the XML Vocabulary for VideoMAP.

Domain Filtering. Domain filtering is to extract necessary data from Bi-Temporal
Object-oriented XML Storage of CIS by the requirement specified by the VS. An
indexing structure shown in Fig. 8 has grouped objects together from different VSs,
which have similar domains information. Moreover, data can also be extracted based
on the timestamps. Therefore, packets from different VSs with similar domain can be
integrated and sent back to VSs in order to complete the cycle of data integration and
distribution. VPDB can then be updated to a consistent state or started the process of
rollback.

Domain

Post-processing storage

3d

1d 2d 3d

8h 16
h

24
h 8h 16

h
24
h 8h 16

h
24
h

Data
Pack

1

Data
Pack

2

Data
Pack

3

Data Pack 4

Data
Pack

5

Data
Pack
n-1

Data
Pack

n

TxnObject

VideoScene Semantic
Feature

NewsSports

MyFirstScene MySecondScene

link

link

Index by Domain and ”name”

TxnObject

VideoScene Semantic
Feature

Static
Data

Class type

G lobal Id

Local Id

Root

Version Id

192.168.1.100, 1 192.168.1.100, 2

192.168.1.100, 1 192.168.1.100, 2

11

Composite

Inheritance

Static
Data

Inheritance

Composite
Object

attribute

Fig. 8. Bi-Temporal Object-oriented XML Packet Storage

5 Conclusion and Future Research

In this paper, we gave an overview of our Web-based object video management sys-
tem (i.e., VideoMAP*), from which the problem of data (object) inconsistency arose.
In order to fix the problem, we introduced a generic data conversion mechanism be-
tween Temporal Object-oriented Database and Temporal Object-oriented XML Data.
Both temporal data include transaction-based timestamps. In addition, we proposed a
Bi-Temporal Object-oriented XML Processing and Storage model as the central inte-
gration mechanism. There are a number of issues for us to further work on. Among
others, we plan to develop an object XML query language with a sufficient expressive
power to accommodate VideoMAP* user queries adequately. Performance evaluation
of processing such object XML queries is another important issue and will be con-
ducted upon the VideoMAP* prototype system.

References

1. Babu, S., Subramanian, L., Widom, J.: A Data Stream Management System for Network
Traffic Management. Proc. Workshop on Network-Related Data Management (2001)

2. Chan, S.S.M., Li, Q.: Architecture and Mechanisms of a Web-based Video Data Manage-
ment System. Proc. IEEE ICME, New York City (2000)

3. Chan, S.S.M., Li, Q.: Architecture and Mechanisms of a Multi-paradigm Video Querying
System over the Web. Proc. Int. Workshop on Cooperative Internet Computing, Hong
Kong (2002) 17-23

4. Chan, S.S.M., Li, Q.: Facilitating Spatio-Temporal Operations in a Versatile Video Data-
base System. Proc. Int. Workshop on Multimedia Information Systems (1999) 56-63

5. Chan, S.S.M., Li, Q.: Developing an Object-Oriented Video Database System with Spatio-
Temporal Reasoning Capabilities. Proc. Int. Conf. on Conceptual Modeling (1999) 47-61

6. Chan, S.S.M., Wu, Y., Li, Q., Zhuang, Y.: A Hybrid Approach to Video Retrieval in a
Generic Video Management and Application Processing Framework. Proc. IEEE ICME,
Japan (2001)

7. Dionisio, J.D.N., Cárdenas, A.F.: A Unified Data Model for Representing Multimedia,
Timeline, and Simulation Data. IEEE TKDE, Vol. 10, No. 5 (1998) 746-767

8. The DiVAN project. http://divan.intranet.gr
9. The DSMS project. http://www-db.stanford.edu/stream
10. Ives, Z.G., Halevy, A.Y., Weld, D.S.: Integrating Network-Bound XML Data. Bulletin of

IEEE Computer Society TCDE, Vol. 24, No. 2 (2001) 20-26
11. The A4SM project. GMD IPSI – Integrated Publication and Information Systems Institute,

Darmstadt. http://www.darmstadt.gmd.de/IPSI/movie.html
12. Karlapalem, K., Li, Q.: A Framework for Class Partitioning in Object Oriented Databases.

Distributed and Parallel Databases, Kluwer Academic Publishers (2000) 317-350
13. Lau, R.W.H., Li, Q., Si, A.: VideoMAP: a Generic Framework for Video Management and

Application Processing. Proc. Int. Conf. on System Sciences: Minitrack on New Trends in
Multimedia Systems, IEEE Computer Society Press (2000)

14. The Punctuated Stream project. http://www.cse.ogi.edu/~ptucker/PStream
15. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database System, Prentice Hall, Upper

Saddle River, New Jersey (1999)
16. Tufte, K., Maier, D.: Aggregation and Accumulation of XML Data. Bulletin of IEEE Com-

puter Society TCDE, Vol. 24, No. 2 (2001) 34-39

Appendix: Algorithms

FilterInconsistentObject
 input :
 objects of Video Production DB, IN-OBJ
 timestamp of consistent Video Production DB, TS
 output :
 inconsistent objects, OUT-OBJ
 begin
 /* Compare Transaction Timestamps */
 for each object A in IN-OBJ do
 if A.freq_info.update_freq_ts.last_update > TS, then
 Mark object A as OUT-OBJ
 else if there is any timestamp in object A > TS, then
 Mark object A as OUT-OBJ
 end-if
 end-for
 end. {FilterInconsistentObject}

O b je ctL is t2 P ac k e ts
 in p u t :
 o rd ered o b je c t lis t , N E W -L IS T
 o rd ered o b je c t lis t ba c ku p , O L D -L IS T
 o u tpu t :
 p a c ke ts
 b eg in
 fo r e a ch e le m e n t A in N E W -L IS T do
 c om p a re A a n d w ith a ll e lem en ts in O L D -L IS T
 if A is in O L D -L IS T the n
 M ark th e e le m e n t o f O L D -L IS T
 e lse if A is no t in O L D -L IS T th en
 c re a te an “ in ser t” p ac k et fo r e lem en t A
 e nd -if
 en d -fo r

 fo r a ll u nm arke d e le m en ts in O L D -L IS T
 c re a te a “ d e le te” p a ck e t fo r e ac h un m a rk e d e lem e n t
 en d -fo r
 e nd . { O b je c tL ist2 P a c ke ts}

http://www-db.stanford.edu/stream

