
In Proceedings, Second IEEE Workshop on Industrial Strength Formal Speci�cation Techniques, (WIFT'98), Boca Raton,
FL, Oct. 19, 1998.

Using the SCR* Toolset to Specify Software Requirements

Constance Heitmeyer
Naval Research Laboratory (Code 5546)

Washington, DC 20375

1. Background

Formulated in the late 1970s to specify the require-
ments of the Operational Flight Program (OFP) of the
A-7 aircraft [8], the SCR (Software Cost Reduction)
requirements method is a method based on tables for
specifying the requirements of software systems. Dur-
ing the 1980s and the early 1990s, many companies, in-
cluding Bell Laboratories, Grumman, Ontario Hydro,
and Lockheed, applied the SCR requirements method
to practical systems. Each of these applications of SCR
had, at most, weak tool support. To provide powerful,
robust tool support customized for the SCR method,
we have developed the SCR* toolset. To provide formal
underpinnings for the method, we have also developed
a formal model which de�nes the semantics of SCR
requirements speci�cations.

2. The SCR Requirements Model

In SCR,monitored and controlled variables represent
environmental quantities that the system monitors and
controls [7]. The environment nondeterministically
produces a sequence of input events, where an input

event is a change in some monitored quantity. The
system responds to each input event in turn by chang-
ing state and possibly changing one or more controlled
quantities.

The SCR formal model, a special case of the classic
state machine model, represents a system as a 4-tuple,
(S; S0; E

m; T ), where S is a set of states, S0 � S is
the initial state set, Em is the set of input events, and
T is a function describing the allowed state transitions
[7]. T is a composition of simpler functions derived
from the tables in an SCR speci�cation. The formal
model requires each table to satisfy certain properties.
These properties guarantee that each table describes
a total function. To specify the system requirements
concisely, the SCR method uses mode classes, condi-
tions, and events. A mode class organizes the system
states into equivalence classes, each called a mode. The
SCR model includes a set RF containing the names of

all variables (e.g., monitored and controlled variables,
mode classes) in a given speci�cation and a type func-
tion TY mapping each variable in RF to a set of val-
ues. In the model, a state is a function mapping each
variable r in RF to its value in TY(r), a condition is a
predicate de�ned on a state, and an event is a predicate
de�ned on two states when any state variable changes.

3. The SCR Tools

SCR* is an integrated suite of tools supporting the
SCR requirements method. It includes a speci�cation

editor for creating a requirements speci�cation, a de-

pendency graph browser for displaying the variable de-
pendencies, a consistency checker for detecting well-
formedness errors (e.g., missing cases), a simulator for
validating the speci�cation, a model checker and the-

orem prover for checking application properties, and
an invariant generator for automatically constructing
state invariants from the SCR tables.

Speci�cation Editor. To create and modify a re-
quirements speci�cation, the user invokes the speci-
�cation editor [4]. Each SCR speci�cation is orga-
nized into dictionaries and tables. The dictionaries de-
�ne the static information in the speci�cation, such as
the names and values of variables and the user-de�ned
types. The tables specify how the variables change in
response to input events. Eacj

Dependency Graph Browser. Understanding the
relationship between di�erent parts of a large speci�-
cation can be di�cult. To address this problem, the
Dependency Graph Browser (DGB) represents the de-
pendencies among the variables in a given SCR speci�-
cation as a directed graph [6]. By studying the graph,
a user can detect errors such as unde�ned variables
and circular de�nitions. He can also use the DGB to
extract and analyze subsets of the dependency graph,
e.g., the subgraph containing all variables upon which
a selected controlled variable depends.

Consistency Checker. The consistency checker [7, 6]
analyzes a speci�cation for consistency with the SCR



requirements model. It exposes syntax and type er-
rors, variable name discrepancies, missing cases, non-
determinism, and circular de�nitions. When an er-
ror is detected, the consistency checker provides de-
tailed feedback to facilitate error correction. A form of
static analysis, consistency checking avoids executing
the speci�cation and reachability analysis. In develop-
ing an SCR speci�cation, the user normally invokes the
consistency checker �rst and postpones more expensive
analysis, e.g., model checking, until later.

Simulator. To validate a speci�cation, the user can
run the simulator [6] and analyze the results to ensure
that the speci�cation captures the intended behavior.
Additionally, the user can de�ne invariant properties
believed to be true of the required behavior and, using
simulation, execute a series of scenarios to determine if
any violate the invariants. The simulator supports the
rapid construction of front-ends, customized for partic-
ular application domains. For example, we have con-
structed a front-end that simulates a cockpit display.
Pilots can use the simulated cockpit display to eval-
uate an attack aircraft speci�cation. By interacting
with this display, the pilot moves out of the world of
requirements speci�cation and into the world of attack
aircraft, where he is the expert. Such an interface facil-
itates customer validation of the speci�cation. A sec-
ond customized front-end, part of the weapons system
prototype mentioned below, has also been developed.

Model Checker. After using SCR* to develop a re-
quirements speci�cation, a developer can invoke the
Spin model checker [9] to check properties of the spec-
i�cation. Once a property violation is detected, the
user can run the simulator to demonstrate and vali-
date the violation. To make model checking practical,
we have developed sound methods for deriving abstrac-
tions from SCR speci�cations [2, 5]. The methods are
practical: none requires ingenuity on the user's part,
and each derives a smaller, more abstract speci�cation
automatically. Based on the property to be analyzed,
these methods eliminate unneeded detail from the spec-
i�cation.

Theorem Prover. When model checking fails to re-
veal an error in a requirements speci�cation or pro-
duces many spurious counterexamples, the user may
use mechanical theorem proving to establish the prop-
erty. We have in fact done this for a small SCR speci�-
cation, using the mechanical prover in PVS. For details,
see [1].

Invariant Generator. Recently, a prototype tool
that automatically generates state invariants from SCR
tables [10] was integrated into SCR*. This tool has
generated more than 20 interesting state invariants

from the mode tables in a revised version of the A-7
requirements document.

4. Applying SCR* to Practical Systems.

To date, SCR* has been applied in several pilot
projects. In one project, NASA researchers used SCR*
to detect missing cases and nondeterminism in the
prose software requirements speci�cation of the Inter-
national Space Station [3]. In a second project, Rock-
well engineers used SCR* to expose 24 errors, many
of them serious, in the requirements speci�cation of
a ight guidance system [11]. Of the detected errors,
a third were uncovered in constructing the speci�ca-
tion, a third by the consistency checker, and the re-
maining third with the simulator. In a third project,
NRL applied SCR* to a sizable contractor-produced re-
quirements speci�cation of the Weapons Control Panel
(WCP) of a safety-critical US military system [5]. The
tools uncovered numerous errors in the speci�cation,
including a safety violation. Translating the speci�-
cation into the SCR tabular notation, using SCR* to
detect errors, and building a WCP prototype required
only one person-month, thus demonstrating the utility
and cost-e�ectiveness of the SCR method.

To date, more than 40 industry and government
organizations and 30 universities in the US, the UK,
Canada, and Germany are experimenting with SCR*.
Moreover, a growing number of universities are incor-
porating SCR* into their software engineering courses.

5. Learning More About SCR*

To obtain a copy of the SCR* toolset and
a draft toolset user guide, send a request to
labaw@itd.nrl.navy.mil. For more information about
SCR*, see our web site at

http://www.chacs.itd.nrl.navy.mil/SCR

References

[1] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS
interface to simplify proofs for automata models. In
Proc. User Interfaces for Theorem Provers, Eindhoven,
Netherlands, July 1998. Eindhoven Univ. Tech. Re-
port.

[2] R. Bharadwaj and C. Heitmeyer. Model checking
complete requirements speci�cations using abstraction.
Automated Software Engineering Journal, 6(1), Jan.
1999.

[3] S. Easterbrook and others. Experiences using
lightweight formal methods for requirements modeling.
IEEE Transactions on Software Engineering, 24(1),
Jan. 1998.



[4] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw.
SCR*: A toolset for specifying and analyzing require-
ments. In Proc. 10th Annual Conf. on Computer As-
surance, June 1995.

[5] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model check-
ing to detect safety violations in requirements speci-
�cations. IEEE Trans. on Softw. Eng., 24(11), Nov.
1998.

[6] C. Heitmeyer, J. Kirby, Jr., and B. Labaw. Tools for
formal speci�cation, veri�cation, and validation of re-
quirements. In Proc. 12th Annual Conf. on Computer
Assurance, June 1997.

[7] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Au-
tomated consistency checking of requirements speci�-
cations. ACM Trans. on Softw. Eng. and Methodology,
5(3), 1996.

[8] K. L. Heninger. Specifying software requirements for
complex systems: New techniques and their applica-
tion. IEEE Trans. Softw. Eng., SE-6(1):2{13, Jan.
1980.

[9] G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice-Hall, 1991.

[10] R. Je�ords and C. Heitmeyer. Automatic generation
of state invariants from requirements speci�cations. In
Proc. 6th ACM Symp. on Foundations of Softw. Eng.,
Nov. 1998.

[11] S. Miller. Specifying the mode logic of a ight guid-
ance system in CoRE and SCR. In Proc. 2nd ACM
Workshop on Formal Methods in Software Practice
(FMSP'98), 1998.


