
These are lecture notes for the course 2D1441 Seminars on Theoretical Com-
puter Science given at KTH, spring 2003. They were written by Jon Larsson
(with corrections by Johan Håstad) and based on notes taken on the lectures of
the March 18th, 2003.

1 Cryptographic Assumptions
Information theory is the foundation of some forms of cryptography, such as
one-time pads and certain forms of multi-party computation. However, most
modern cryptography rests on one or more assumptions. Such assumptions are
usually in the form of a certain computational problem which is difficult to solve.

The reasons for the current discussion of assumptions is two-fold. Firstly,
knowledge of the standard assumptions is definitely part of any cryptographer’s
general knowledge. Secondly, some of these assumption will be used at various
points in the course and hence will be of immediate use to us.

1.1 Computational Intractability
The course will use as its basic principle that polynomial time is feasible while
non-polynomial time is not feasible. Many of our algorithms will use randomness
and thus in fact we will use probabilistic polynomial time as our basic model of
computation.

Many cryptographic problems have the property that cracking them is a
problem that lies in the complexity class NP . Thus to be able to do any
interesting cryptography we need to assume that NP �= P , or more strongly
that NP �⊆ BPP 1. However this assumption is not sufficient for at least two
reasons.

The first reason is that the only problems that this assumption allows us to
conclude are difficult are the NP-complete problems and essentially no problem
that we will encounter is NP-complete.

The second reason is that the standard complexity theoretic formulation of
the P vs NP problem is a worst case formulation. It only discusses algorithms
that always return the correct solution. In particular if NP �= P then we
know that for each polynomial time algorithm trying to solve an NP-complete
problem there is some instance on which it fails. We would not be content with
a cryptosystem that could be broken 99% of the time and hence we need to
discuss average case complexity.

There is a theory concerning tuples (L, µ), where L is a language in NP
and µ is a probability measure on the inputs, which can be used to formally
define average-case polynomial time. It’s a rather well-developed theory that
even has a number of complete (mutually reducible) problems. However, these
problems are again not sufficient for us. They are rather few and rather artificial
and in fact they do not share a property that is shared by most problems in
cryptography, namely that they are in fact generated in such a way that along
with the problem also the solution is generated. For instance, in an encryption
scheme the user has the key which would enable an attacker to break the system.
For problems that are hard in the average case theory the algorithm generating
the hard instances does not have such access to the solutions.

1Bounded Probabilistic Polynomial time

1

The conclusion here is that normal complexity theory does not provide what
cryptographers need. Something else is required. Enter the one-way functions.

1.2 One-way Functions
One-way functions are used in nearly all modern cryptography. A one-way
function f : X �→ Y has two basic properties:

1. It is easy to compute: x �→ f(x) must run in time polynomial in |x|.
2. It is difficult to invert: f(x) �→ x must not run in time polynomial in

|x| or, equivalently, polynomial time inversion succeeds with probability
o(n−c)∀c.

Looking further at the second condition, we can ask ourselves if we require that
f must be injective (1-1). In fact it turns out that the best definition is not to
require that a one-way function is invertible and we allow an inverter to come
up with any preimage of a given value. Let us formalize this and consider the
following procedure.

1. Choose x ∈ {0, 1}n randomly.

2. Compute y = f(x) and give y to the adversary A.

3. A returns z and wins if f(z) = y.

A function is one-way iff, for any polynomial time adversary, the probability
that the adversary wins is smaller than any inverse polynomial.

To be more precise, for any such A and any constant c there is a length n0

such that for all n > n0 the probability that A wins the above game is bounded
by n−c provided that n > n0.

The property of being a one-way function is sometimes not sufficient to al-
low a certain cryptographic construction and hence one might look for stronger
assumptions by asking for a one-way function with special properties. One sub-
class of functions that is useful is that of the one-way, length-preserving permu-
tations. A one-way, length-preserving permutation is a function f : {0, 1}n �→
{0, 1}n∀n. It is both one-way and injective and in general much nicer to work
with than a general one-way function.

An even more restricted class of functions is given by the trapdoor permuta-
tions and these can be seen as a generalization of RSA. A trapdoor permutation
is a tuple of functions (G,E,D) (where G is a key generator, E is an encryption
function and D a decryption function) satisfying that the computations

G : s �→ (e, d)
E : (p, e) �→ c

D : (c, d) �→ p

are all easy, whereas
(c, e) �→ p

is intractable.

2

1.3 Function-specific Assumptions
In reality we use specific, explicitly defined functions, which often have some
additional properties. For example, RSA uses integer factorisation, which is
based on multiplication being one-way, and Diffie-Hellman key exchange uses
discrete logarithms, which are based on exponentiation being one-way. Once
again, the one-way nature of these functions is not something that has been
proven, but merely assumed.

1.3.1 RSA and Factorisation

In the RSA cryptosystem we choose two large primes p, q and compute their
product n. We then choose e, d such that ed ≡ 1 modφ(n). Now let P be the
plaintext and C the crypto text. Then

C ≡ P e modn
P ≡ Cd modn

It is clear that if we can factor integers efficiently then we can break RSA. It is
not difficult to prove that if we can, given e and n, find the decryption exponent d
then in fact we can also find the factorisation of n using an additional polynomial
time computation. This does not prove that breaking RSA is equivalent to
factorisation as it might be possible to break RSA without calculating d. In
fact the equivalence of breaking and integer factorisation remains unknown.

At first glance, it may seem that we would want it to be true, as that would
imply a greater security. However, it would have its merits if inversion of RSA
does not imply factorisation of n. For example, having temporary access to
a “black box” RSA inverter would not necessarily make it possible to find the
factorisation of n.

1.3.2 Diffie-Hellman and discrete logarithms

The discrete logarithm problem is that of given a prime p, a generator g and a
number y to find x such that gx ≡ ymod p. The Diffie-Hellman key exchange
scheme2 was the first example of how the assumed intractability of discrete
logarithm could be used to create an interesting protocol. Let us describe this
protocol. The two parties each choose a number, let us call them a and b, at
random. They then agree upon a g and a p, compute ga mod p and gb mod p
respectively and send the results to each other. The shared secret k is then
equal to gab mod p. An eavesdropper will see that values ga and gb but might
still have difficulties finding k.

It is easy to see that if we can compute discrete logarithms, we can break
DH. It is unknown whether the converse is true and it might be possible that
this key exchange protocol is insecure without the discrete logarithm problem
being easy.

There is a variation of this problem, known as Decision DH (or simply
DDH) in which the question is: given (ga, gb, gc), is it possible to tell whether
c = ab or c is generated independendly of a and b. The DDH-assumption says
that for any polynomial time algorithm A and constant d, if A is given an

2henceforth referred to simply as DH

3

instance that with probability 1
2 is generated with c = ab and with probability

1
2 is generated with a random independent c the probability that A can guess
which of the two cases applies is bounded by 1

2 + n−d for any constant d and
sufficiently large n where n is the number of bits in the prime p.

Breaking ordinary DH, which is sometimes called computation DH, clearly
implies breaking DDH but the converse is not known and DDH might be a
stronger assumption.

Decision DH may be solvable unless we choose our g and p carefully, due to
rather simple reasons. If we choose g to be a generator mod p then a is even iff
ga is a quadratic residue mod p and this can be checked efficiently by calculating
(ga)

p−1
2 which is 1 if a is even and −1 if it is odd. If a is even then ab is always

even while if a is odd then ab is even only half of the time. The standard way
to avoid this problem is to choose p = 2q+ 1, where q is also prime and use a g
that generates only the set of quadratic residues mod p. Such a g can be found
as g = (g′)2 where g′ generates the full group.

4

