
Mach-O Runtime Architecture

August 7, 2003

Apple Computer, Inc.
© 2003, 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Macintosh, and MPW are
trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

Finder and Velocity Engine are trademarks
of Apple Computer, Inc.

Objective-C is a trademark of NeXT
Software, Inc.

AIX is a trademark of IBM Corp., registered
in the U.S. and other countries, and is being
used under license.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this manual,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to Runtime Architecture 7

Who Should Read This Book 8
Where to Find Things in This Book 8
Where to Find More Information 8

Chapter 1 Mach-O Runtime Architecture 11

Building Mach-O Files 11
The Tools—Building and Running Mach-O Files 12
The Products—Types of Mach-O Files You Can Build 13
Modules—The Smallest Unit of Code 14
Static Archive Libraries 15

Executing Mach-O Files 15
Launching an Application 16
Forking and Executing the Process 16
Finding Imported Symbols 17

Loading Code At Runtime 21
Using Shared Libraries and Frameworks 21
Loading Plug-In Code With Bundles 25

Chapter 2 Mach-O Runtime Conventions for PowerPC 27

PowerPC Data Types 27
PowerPC Data Alignment 29
PowerPC Stack Structure 31

Prologs and Epilogs 33
The Red Zone 34

PowerPC Calling Conventions 35
Parameter Passing 35
Function Return 39
Register Preservation 39

PowerPC Dynamic Code Generation 41
Position-Independent Code 41
Indirect Addressing 44

3
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

Chapter 3 Mach-O File Format Reference 49

Mach-O Types and Data Structures 53
Mach-O Header Data Structure 53
Load Command Data Structures 56
Symbol Table and Related Data Structures 72
Relocation Data Structures 80
Static Archive Libraries 84
Multi-CPU Architecture Files 86

Chapter 4 Mach-O Dynamic Linking Functions Reference 89

Dynamic Linker Functions 89
Object File Image Functions 89
Section and Segment Accessors 100
Low-Level Dynamic Linking Functions 103
Glue Functions for Indirect Addressing 111

Dynamic Linker Data Types 112
Boolean Return Value 112

Document Revision History 113

Glossary 115

Index 119

4
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C O N T E N T S

Tables, Figures, and Listings

Chapter 1 Mach-O Runtime Architecture 11

Listing 1-1 Building a framework 23
Listing 1-2 Building a private framework 24
Listing 1-3 Building a simple umbrella framework 25

Chapter 2 Mach-O Runtime Conventions for PowerPC 27

Figure 2-1 The PowerPC stack 32
Figure 2-2 The red zone 34
Figure 2-3 The organization of the parameter area of the stack 37
Figure 2-4 Parameter layout in registers and the parameter area 38
Figure 2-5 Passing a variable number of parameters 38
Listing 2-1 Sample PowerPC assembler prolog code 33
Listing 2-2 Sample PowerPC routine epilog 34
Listing 2-3 A variable-argument routine 38
Listing 2-4 C source code example for position-independent code 42
Listing 2-5 Position-independent code generated from the C example (with addresses
in the left column) 42
Listing 2-6 Sample C code for indirect function calls 45
Listing 2-7 Example of an indirect function call 45
Listing 2-8 Example of a position-independent indirect function call 46
Table 2-1 Scalar data types in the Mach-O PowerPC Runtime Environment 28
Table 2-2 Vector data types in the Mach-O PowerPC runtime environment 29
Table 2-3 Embedded alignment modes (in bytes) 31
Table 2-4 Volatile and nonvolatile registers 41

Chapter 3 Mach-O File Format Reference 49

Figure 3-1 Mach-O file format basic structure 50
Table 3-1 Typical sections in a Mach-O file 53
Table 3-2 Mach-O load commands 58

5
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

6
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

T A B L E S , F I G U R E S , A N D L I S T I N G S

A runtime architecture is a set of rules that define the software environment. Authors of compilers
and other development tools must follow the definition of the runtime architecture to guarantee
that programs released by different developers will work with each other. A runtime architecture
typically specifies

■ how to address code and data

■ how to load and keep track of portions of program code in memory

■ how compilers should generate code

■ how to invoke certain system services, such as loading of application plug-ins

Mac OS X supports a number of different application environments, each with its own runtime
rules, conventions, and file formats. The only executable format the Mac OS X kernel reads directly
is the Mach-O file format, which gives the Mach-O runtime architecture its name. In Mac OS X,
kernel extensions, command-line tools, applications, frameworks, and libraries (shared and static)
are all implemented using Mach-O files.

The following list describes other runtime environments supported by Mac OS X:

■ Classic is a Mac OS X application that runs Mac OS 9 within its address space and provides
bridging services that allow Mac OS X to interact with the Mac OS 9 applications. Both classic
68K applications and PowerPC Code Fragment Manager (CFM) applications can run under
Mac OS 9 in Classic. (Mac OS 9 does not support the 68K variant of the Code Fragment
Manager, so you cannot run CFM-68K applications in Mac OS X.)

■ LaunchCFMApp is a command-line tool that runs programs created for the PowerPC Code
Fragment Manager. The file format used by such programs is called the Preferred Executable
Format (PEF). Carbon provides bridging for Code Fragment Manager applications that allows
them to link to Mach-O–based code, but, for ease of debugging if for no other reason, it’s
generally a good idea to use Mach-O for Carbon applications.

■ The HotSpot Java virtual machine is a Mac OS X application that executes Java bytecode
applications and applets.

■ The Mac OS X kernel supports kernel extensions (kexts), static Mach-O executable files that
are loaded directly into the address space of the kernel. Because errant code can write directly
to memory used by the kernel, kernel extensions have the potential to crash the operating
system, and you should generally avoid implementing functionality as kernel extensions if
possible.

7
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Runtime Architecture

The Code Fragment Manager is documented in the book Mac OS Runtime Architectures, available
from the Apple Developer Connection website.

This book describes the dynamic Mach-O runtime environment, including the data formats and
calling conventions to which applications must adhere to successfully interoperate with other
Mach-O applications and code libraries.

Who Should Read This Book

If you write development tools for Mac OS X, you will need to understand the information
presented in this book.

This book is also useful for developers of shared libraries and frameworks, and for developers
of applications that need to load code at runtime.

Where to Find Things in This Book

This document describes the Mach-O runtime linking architecture and calling conventions as of
Mac OS X 10.2. The individual chapters discuss the following topics:

■ “Mach-O Runtime Architecture” (page 11) describes the basics of the Mac OS X runtime
architecture, including detailed conceptual information about how Mach-O executable files
are built, linked, and executed. This chapter also explains how dynamic linking works with
shared libraries, frameworks, bundles and plug-ins. All programmers who create shared
libraries or who dynamically load code at runtime should read this chapter.

■ “Mach-O Runtime Conventions for PowerPC” (page 27) describes the Mac OS X application
binary interface for PowerPC microprocessors, which specifies low-level routine calling
conventions and data formats. Writers of assembly language code and authors of developer
tools should read this chapter.

■ “Mach-O File Format Reference” (page 49) describes the layout of the Mach-O file format,
used for executables, shared libraries, bundles, and all other native executable machine code
in the Mach-O runtime architecture. Authors of developer tools should read this chapter.

■ “Mach-O Dynamic Linking Functions Reference” (page 89) describes the Mach-O low-level
programming interface. If you are loading code at runtime but cannot or do not wish to use
CFBundle or NSBundle, you should refer to this chapter.

Where to Find More Information

You can access full reference documentation for the standard command line development tools
using the man tool on the command line, or by selecting Open Man Page… from Project Builder’s
Help menu in Mac OS X 10.2 and later.

8 Who Should Read This Book
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Runtime Architecture

This book documents effectively what a developer tool vendor might need to create a
Mach-O-based development environment for a procedural language such as C. It does not
document the following:

■ The GCC C++ application binary interface—the specification of C++ class member layout,
function/method name mangling, and related C++ issues. This information is documented
for GCC 3.0 and later at http://www.codesourcery.com/cxx-abi/abi.html.

■ The GCC Objective-C data structures and dynamic runtime functions. For this information,
see the book Inside Mac OS X: The Objective-C Programming Language.

■ The runtime environment of the Mac OS X kernel, Darwin. Darwin documentation is available
at http://developer.apple.com/documentation.

For additional documentation on the standard Mac OS X developer tools, see the Tools
documentation at http://developer.apple.com/documentation.

Source code from the Darwin project can be downloaded from
http://developer.apple.com/darwin/. The source code for all of the Mac OS X linking and
compiling tools is available in the following Darwin subprojects.

■ gcc3—The Mac OS X compiler for the C, C++, and Objective-C languages, based on the GNU
Compiler Collection version 3.1 (as of this writing). This is the standard compiler for Mac OS
X 10.2 and later versions.

■ gcc—The Mac OS X compiler for the C, C++, and Objective-C languages, based on the GNU
Compiler Collection version 2.95.2. This is the standard compiler for Mac OS X 10.1 and earlier
versions.

■ cctools—The Mac OS X static linker, dynamic linker, and related tools for examining and
manipulating Mach-O files and static archive libraries.

You might also find the following books useful in conjunction with this one.

■ Linkers and Loaders, John R. Levine, Morgan Kaufmann, 2000, ISBN 1-55860-496-0. Describes
the workings and operation of standard linkers from the earliest program loaders to the
present dynamic link editors. Among the contents of this book are discussions of the classic
BSD a.out format, the ELF format preferred by many current operating systems, the IBM
System/360 linker output format, and the Microsoft Portable Executable (PE) format.

■ Mac OS Runtime Architectures, Apple Computer, Inc. Available at
http://developer.apple.com/documentation. Documents the classic 68K segment loader
architecture, as well as the Code Fragment Manager Preferred Executable executable format
used with classic PowerPC applications and with many Carbon applications.

Where to Find More Information 9
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Runtime Architecture

http://www.codesourcery.com/cxx-abi/abi.html
http://developer.apple.com/documentation
http://developer.apple.com/documentation
http://developer.apple.com/darwin/
http://developer.apple.com/documentation

10 Where to Find More Information
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to Runtime Architecture

This chapter discusses how you use the Mach-O runtime architecture. It describes the types of
programs you can build; how programs are loaded and executed; the ways in which you can
change the way programs are loaded executed; how to load code at runtime; how to load and
link code at runtime. If you create or load bundles, shared libraries or frameworks, you’ll probably
want to read and understand everything in this chapter.

The Mach-O file format provides both intermediate (during the build process) and final (after
linking the final product) storage of machine code and data. It was designed as a flexible
replacement for the BSD a.out format, to be used by the compiler and the static linker and to
contain statically-linked executable code at runtime. Features for dynamic linking were added
as the goals of the system evolved, resulting in a single file format for both statically and
dynamically linked code.

A Mach-O file contains three primary regions of data: a header, a set of load commands, and raw
segment data. The header and load commands describe the features, layout, and linking
characteristics of the file. The segment data contains raw data for the segments that are defined
in the load commands. The complete format is described in “Mach-O File Format Reference” (page
49).

The following sections describe the concepts behind the Mach-O runtime architecture:

■ “Building Mach-O Files” (page 11) discusses how Mach-O programs are built and the types
of build products that are supported.

■ “Executing Mach-O Files” (page 15) discusses how Mach-O programs are loaded and linked.

■ “Loading Code At Runtime” (page 21) discusses how you can load Mach-O code, or set up
code to be loaded, at runtime.

Building Mach-O Files

The following sections loosely describe how Mac OS X programs are built, and discusses, in
depth, the types of programs that you can build.

■ “The Tools—Building and Running Mach-O Files” (page 12) describes the tools involved in
the Mach-O build process.

Building Mach-O Files 11
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

■ “The Products—Types of Mach-O Files You Can Build” (page 13) describes the types of
Mach-O files that you can build.

■ “Modules—The Smallest Unit of Code” (page 14) explains the role of the smallest indivisible
unit of code within a Mach-O shared library.

The Tools—Building and Running Mach-O Files

To perform the work of actually loading and binding a program at runtime, the kernel uses the
dynamic linker (a specially-marked dynamic shared library located at /usr/lib/dyld). The
kernel loads the dynamic linker into the new process and then executes it. The dynamic linker
loads the program and all of the frameworks and shared libraries that the program uses.

Throughout this book, the following tools are discussed abstractly:

■ A compiler is a tool that translates from source code written in a high-level language into
intermediate object files that contain machine binary code and data. Unless otherwise specified,
this book considers a machine-language assembler to be a compiler.

■ A static linker is a tool that combines intermediate object files into final products (in the next
section, “The Products—Types of Mach-O Files You Can Build” (page 13)).

The Mac OS X Developer Tools CD contains several command-line tools (which this book refers
collectively to as the standard tools) for building and analyzing your application, include compilers
and ld, the standard static linker. Whether you use Project Builder, the standard command-line
tools, or a third-party tool set to develop your application, understanding the role of each of the
following tools can enhance your understanding of the Mach-O runtime and facilitate
communication about these topics with other Mac OS X developers. The standard tools include
the following:

■ The compiler driver, /usr/bin/cc (or, on Mac OS X 10.2, /usr/bin/gcc), contains support
for compiling, assembling, and linking modules of source code from the C, C++, and
Objective-C languages. The compiler driver calls several other tools that implement the actual
compiling, assembling, and static linking functionality. The actual compiler tools for each
language dialect are normally hidden from view by the compiler driver; their role is to
transform input source code into assembly language for input to the assembler.

■ The C++ compiler driver, /usr/bin/c++, is like /usr/bin/cc, but automatically links C++
runtime functions (to support exceptions, runtime type information and other advanced
language features) into the output file.

■ The assembler, /usr/bin/as, creates intermediate object files from assembly-language code.
It is primarily used by the compiler driver, which feeds it the assembly language source
generated by the actual compiler.

■ The static linker, /usr/bin/ld, is used by the compiler driver (and as a standalone tool to
combine Mach-O executable files). You can use the static linker to bind programs either
statically or dynamically. Statically bound programs are complete systems in and of themselves;
they cannot make calls, other than system calls, to frameworks or shared libraries. In Mac OS
X, kernel extensions are statically bound, while all other program types are dynamically
bound, even traditional UNIX and BSD command line tools. All calls to the Mac OS X kernel
by programs outside of the kernel are made through shared libraries, and only dynamically
bound programs can access shared libraries.

12 Building Mach-O Files
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

■ The library creation tool, /usr/bin/libtool, creates either static archive libraries or dynamic
shared libraries, depending on the parameters given. libtool supersedes an older tool called
ranlib, which was used in conjunction with the ar tool to create static libraries. When building
shared libraries, libtool calls the static linker (ld).

Note: There is also a GNU tool named libtool, which allows portable source code to build
libraries on various different UNIX systems. Don’t confuse it with Mac OS X libtool; while they
serve similar purposes, they are not related and they do not accept the same parameters.

Tools for analyzing Mach-O files include the following:

■ The Mach-O file analyzer, /usr/bin/otool, lists the contents of specific sections and segments
within a Mach-O file. It includes symbolic disassemblers for each supported CPU architecture
and it knows how to format the contents of many common section types.

■ The symbol table display tool, /usr/bin/nm, allows you to view the contents of a Mach-O
file’s symbol table.

The following sections describe how to create typical (and some atypical) Mach-O files. The
section “Searching for Symbols” (page 18) discusses how to analyze existing Mach-O files. For
more documentation on the tools, see “Where to Find More Information” (page 8).

The Products—Types of Mach-O Files You Can Build

In Mac OS X, a typical application executes code that originates from many different files. All of
these different types of files contain code that conforms to the Mach-O file format and runtime
calling conventions.

The main executable file usually contains the core logic of the program, including the entry point
main function. The primary functionality of a program is usually implemented in the main
executable file’s code. See “Executing Mach-O Files” (page 15) for more information. Other
Mach-O files that contain executable code include these:

■ Intermediate object files are not final products; they are the basic building blocks of larger
Mach-O files. Usually, a compiler creates one intermediate object file on output for the code
and data generated from each input source code file. You can then use the static linker to
combine the object files into dynamic linkers. Integrated development environments such as
Project Builder usually hide this level of detail, and some development tools may not use the
Mach-O format to store intermediate code and data.

■ Dynamic shared libraries are files that contain modules of reusable executable code that your
application references dynamically, and that are loaded by the dynamic linker when the
application is launched. Shared libraries are typically used to store large amounts of code
that is usable by many applications. See “Using Shared Libraries and Frameworks” (page
21) for more information.

■ Frameworks are shared libraries that are packaged with associated resources, such as graphics
files, developer documentation, and programming interfaces. See “Using Shared Libraries
and Frameworks” (page 21) for more information.

■ Umbrella frameworks are special types of frameworks that themselves contain more than
one subframework. For example, the Cocoa umbrella framework consists of the Application
Kit (user interface classes) and Foundation (non–user-interface classes) frameworks. See
“Using Shared Libraries and Frameworks” (page 21) for more information.

Building Mach-O Files 13
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

■ Static archive libraries contain modules of reusable code that the static linker can add to your
application at build time. Static archive libraries generally contain very small amounts of code
that is usable to only a few applications, or code that is difficult to maintain in a shared library
for some reason. See “Static Archive Libraries” (page 15) for more information.

■ Bundles are executable files that your program can load at runtime using dynamic linking
functions. Bundles implement plug-in functionality, such as file format importers for a word
processor. The term “bundle” has two related meanings in Mac OS X:

❏ the actual Mach-O file containing the executable code

❏ a file package—a folder containing the Mach-O bundle file and associated resources. A
file package bundle need not contain a Mach-O bundle file.

The latter usage is the more common. However, unless otherwise specified, this book refers
to the former.

See “Loading Plug-In Code With Bundles” (page 25) for more information.

■ Kernel extensions are statically-bound Mach-O object files that are packaged similarly to
bundles. Kernel extensions are loaded into the kernel address space and must therefore be
built differently than other Mach-O file types; see the kernel documentation for more
information. The kernel’s runtime environment is very different from the user space Mac OS
X runtime, so it is not covered in this book.

To function properly in Mac OS X, all Mach-O files except kernel extensions must be dynamically
bound—that is, built with code that allows dynamic references to shared libraries.

By default, the static linker searches for frameworks and umbrella frameworks in the directory
/System/Library/Frameworks and for shared libraries and static archive libraries in the directory
/usr/lib. Bundles are usually located in the Resources directory of an application package.
However, you can specify the pathname for a different location at link time (and, for development
purposes, at runtime as well).

The next section describes the role and usage of modules.

Modules—The Smallest Unit of Code

At the highest level, you can view a Mach-O shared library as a collection of modules. A module
is the smallest unit of machine code and data that can be linked independently of other units of
code. Usually, a module is an object file generated by compiling a single C source file. For example,
given the source files main.c, thing.c, and foo.c, the compiler might generate the Mach-O
object files main.o, thing.o, and foo.o. Each of these output object files is one module. When
the static linker is used to combine all three files into a dynamic shared library, each of the object
files is retained as an individual unit of code and data. When linking applications and bundles,
the static linker always combines all of the object files into one module.

The static linker can also reduce several input modules into a single module. When building
most dynamic shared libraries, it’s usually a good idea to do this before creating the final shared
library, because function calls between modules are subject to a small amount of additional
overhead. With ld, you can perform this optimization by using the command line as follows:

ld -r -o things.o thing1.o thing2.o thing3.o

14 Building Mach-O Files
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

Project Builder performs this optimization by default.

Static Archive Libraries

To group a set of modules, you can use a static archive library, which is an archive file with a
table of contents entry. The format is that used by the ar command. You can use the libtool
command to build a static archive library, and you can use the ar command to manipulate
individual modules in the library.

Note: Again, please note that Mac OS X libtool is not GNU libtool.

In addition to Mach-O files, the static linker and other development tools accept static archive
libraries as input. You might use a static archive library to distribute a set of modules that you
do not want to include in a shared library, but that you want to make available to multiple
programs.

Although an ar archive can contain any type of file, the typical purpose is to group several object
files together with a table of contents file, forming a static archive library. The static linker can
link the object files stored in a static archive library into a Mach-O executable or dynamic library.
Note that you must use the libtool command to create the static library table of contents before
an archive can be used as a static archive library.

Note: For historical reasons, the tar file format is different from the ar file format. The two
formats are not interchangeable.

The ar archive file format is described in “Static Archive Libraries” (page 84).

With the standard tools, you can pass the -static option to libtool to create a static archive
library. The following command creates a static archive library named libthing.a from a set of
intermediate object files, thing1.o and thing2.o:

libtool -static thing1.o thing2 -o libthings.a

Note that if you pass neither -static nor -dynamic, libtool will assume -static. It is, however,
considered good style to explicitly pass -static when creating static archive libraries.

Executing Mach-O Files

The next sections provide an overview of the Mac OS X dynamic loading process. The process
of loading and linking a program in Mac OS X mainly involves two entities: the Mac OS X kernel
and the dynamic linker. When you execute a program, the kernel creates a new process for the
program, then loads and executes the dynamic linker shared library, /usr/lib/dyld, in the
program’s address space. The dynamic linker then loads the program and the libraries it references.
This process is described in detail in the next sections, as follows:

■ “Launching an Application” (page 16)

■ “Forking and Executing the Process” (page 16)

■ “Finding Imported Symbols” (page 17)

Executing Mach-O Files 15
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

Launching an Application

When you launch an application from the Finder or the Dock, or when you run a program in a
shell using Terminal, the system ultimately calls two functions on your behalf, fork and execve.
fork creates a new process; execve loads and executes the program. There are several variant
exec functions, such as execl, execv, and exect, each providing a slightly different way of
passing arguments and environment variables to the program. In Mac OS X, each of these other
exec routines eventually calls the kernel routine execve.

When writing a Mac OS X application, you should use the Launch Services framework to launch
other applications. Launch Services understands application packages, and you can use it to open
both applications and documents. The Finder and Dock use Launch Services to maintain the
database of mappings from document types to the applications that can open them. Cocoa
applications can use the class NSWorkspace to launch applications and documents; NSWorkspace
itself uses Launch Services. Launch Services ultimately calls fork and execve to do the actual
work of creating and executing the new process.

Forking and Executing the Process

To create a new process using BSD system calls, your process must call the fork system call.
fork creates a new logical copy of your process, then returns the new process ID to your process.
Both the original process and the new process continue executing from the call to fork; the only
difference is that fork returns the ID of the new process to the original process, and zero to the
new process. (fork returns -1 to the original process and sets errno to a specific error value if
the new process could not be created.)

To run a different executable, your process must call the execve system call with a pathname
specifying the location of the new executable. The execve call replaces the program currently in
memory with a new executable file.

A Mach-O executable file contains a header consisting of a set of load commands. For programs
that use shared libraries or frameworks, one of these commands specifies the location of the
linker to be used to load the program. If you are using the standard Mac OS X development tools,
this is always /usr/bin/dyld, the standard Mac OS X dynamic linker.

When you call the execve routine, the kernel first loads the specified program’s file and examines
the mach_header structure at the start of the file. The kernel verifies that the file appears to be a
valid Mach-O file, and then interprets the load commands stored in the header. The kernel then
loads the dynamic linker specified by the load commands into memory and executes the dynamic
linker on the program file.

The dynamic linker loads all of the shared libraries that the main program links against (the
dependent libraries) and binds enough of the symbols to start the program. It then calls the entry
point function. At build time, the static linker adds the standard entry point function into the
main executable file from the object file /usr/lib/crt1.o. This function sets up the runtime
environment state for the kernel and calls static initializers for C++ objects, initializes the
Objective-C runtime, and then calls the program’s main function.

16 Executing Mach-O Files
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

Finding Imported Symbols

When the dynamic linker loads a Mach-O file (which, for the purposes of this section, is called
the client program), it connects the file’s imported symbols to their definitions in a shared library
or framework. The settings used to build the client program affect this process, as explained in
the following sections:

■ “Binding Symbols” (page 17) describes the process of binding the imported symbols in one
Mach-O file to their definitions in other Mach-O files. The static linker allows you to specify
a number of different ways to perform the binding process.

■ “Searching for Symbols” (page 18) describes the process of finding a symbol. For each imported
symbol the dynamic linker finds, it uses this process to determine the location of the symbol.
Programs can also explicitly find symbols using the one of the APIs described in “Loading
Plug-In Code With Bundles” (page 25).

Binding Symbols

Binding is the process of resolving a module’s references to functions and data in other modules
(the undefined external symbols, sometimes called imported symbols). The modules may be
in the same Mach-O file or in different Mach-O files; the semantics are identical in either case.
When the application is first loaded, the dynamic linker loads the imported shared libraries into
the address space of the program. When binding is performed, the linker replaces each of the
program’s imported references with the address of the actual definition from one of the shared
libraries.

The dynamic linker can bind a program at several different points during loading and execution,
depending on the options you specify at build time.

■ With just-in-time binding (also called lazy binding), the dynamic linker binds a reference
(and all of the other references in the same module) when the program first uses the reference.
The dynamic linker loads any particular shared library the first time it binds a reference from
that shared library.

■ With load-time binding, the dynamic linker binds all of the imported references immediately
upon loading the program, or, for bundles, upon loading the bundle. To use load-time binding
with the standard tools, specify the -bind_at_load option to ld to specify that the dynamic
linker should immediately bind all external references when the file is loaded. Without this
option, ld will setup the output file for just-in-time binding.

■ With prebinding, a form of load-time binding, the shared libraries referenced by the program
are each prebound at a specified address. The static linker sets the address of each undefined
references in the program to default to these addresses. At runtime, the dynamic linker needs
only to verify that none of the addresses have changed since the program was built (or since
the prebinding was recomputed). If the addresses have changed, the dynamic linker must
undo the prebinding by clearing the prebound addresses for all of the undefined references
and then proceed as if the program had been just-in-time bound. Otherwise, it does not need
to perform any action to bind the program. Prebinding can greatly speed up application
launch times.
Prebinding requires that each framework specify its desired base virtual memory address
and that none of the prebound addresses of the loaded frameworks overlap. To prebind a file
with the standard tools, specify the -prebind option to ld.

Executing Mach-O Files 17
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

■ Weak references, a feature introduced in Mac OS X 10.2, is useful for selectively implementing
features that may be available on some systems, but not on others. This mode of binding
allows a program to optionally bind to specified shared libraries. If the dynamic linker cannot
find definitions for weak references, it sets them to null and continues to load the program.
The program can check at runtime to see whether or not a reference is null, and if so, avoid
using the reference. You can specify both libraries and individual symbols to be
weakly-referenced.

Note: The Mach-O weak linking design is derived from the classic Mac OS Code Fragment
Manager implementation of weak linking. If you are familiar with the ELF executable format,
you may be used to a different meaning for the terms “weak symbol” or “weak linking,” where
a “weak” symbol may be overridden by a non-weak symbol. The equivalent Mach-O feature is
the “weak definition”—see “Scope and Treatment of Symbol Definitions” (page 19) for more
information

If no other type of binding is specified for a given library, the static linker sets up the program’s
undefined references to that library to use just-in-time binding.

Searching for Symbols

A symbol is a generic representation of the location of a function, data variable, or constant in
an executable file. References to functions and data in a program are references to symbols. To
refer to a symbol when using the dynamic linking routines, you usually pass the name of the
symbol, although some functions also accept a number representing the ordering of the symbol
in the executable file. The name of a symbol representing a function that conforms to standard
C calling conventions is the name of the function with an underscore prefix. Thus, the name of
the symbol representing the function main would be _main.

Programs created by the original Mac OS X 10.0 development tools add all symbols from all
loaded shared libraries into a single global list. Any symbol that your program references can be
located in any shared library, as long as that shared library is one of the program’s dependent
libraries (or one of the dependent libraries of the dependent libraries).

Mac OS X 10.1 introduces a two-level symbol namespace feature. The first level of the two-level
namespace is the name of the library that contains the symbol, and the second is the name of the
symbol. With the two-level namespace enabled, when the static linker records references to
imported symbols, it records a reference to the name of the library that contains the symbol and
the name of the symbol. Linking your programs with the two level namespace feature offers two
benefits over the flat namespace:

■ Enhanced performance when searching for symbols. With the two-level namespace, the
dynamic linker knows exactly where to start looking for the implementation of a symbol.
With a flat namespace, the dynamic linker must search all of the loaded libraries for the one
that contains the symbol.

■ Enhanced forward compatibility. In the flat namespace, two or more libraries cannot contain
symbols with different implementations that share the same name, because the dynamic
linker cannot know which library contains the preferred implementation. This is not initially
a problem, because the static linker catches any such problems when you first build the
application. However, if the vendor of one of your dependent shared libraries later releases
a new version of the library that contains a symbol with the same name as one in your program
or in another dependent shared library, your program will fail to run.

18 Executing Mach-O Files
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

Your application must link directly to the shared library that contains the symbol (or, if the library
is part of an umbrella framework, to the umbrella framework that contains it).

When obtaining symbols in a program built with the two-level namespace feature enabled, you
must specify a reference to the shared library that contains the symbols.

By default, the Mac OS X 10.1 static linker defaults to a two-level namespace for all Mach-O files.

Note: The Mach-O two-level namespace feature is loosely based on the design of the Code
Fragment Manager’s namespace. A two-level namespace is approximately equivalent to the
namespace used to look up symbols in code fragments. Because the Code Fragment Manager
always requires an explicit reference to a the library in which a symbol should be found, there
is no Code Fragment Manager equivalent to a flat namespace search.

For programs that do not have a two-level namespace, you can tell the linker to define references
to undefined symbols even if the linker cannot find the library that contains them. When you
build an executable with such undefined symbols, you are making the assumption that one of
the other files loaded as part of the executable file at runtime contains those symbols. Bundles
and shared libraries sometimes use this option to reference symbols defined in the main executable.
However, this causes you to lose the performance and compatibility benefits of two-level
namespaces. It’s usually better to explicitly link against an executable that defines the references.
However, if you must link with undefined references, you can do it by enabling the flat namespace
and suppressing undefined reference warnings, using the options -flat_namespace and
-undefined suppress as in the following command line:

ld -o my_tool -flat_namespace -undefined suppress peace.o love.o

To build executables with a two-level namespace, the static linker must be able to find the source
library for each of the symbols. This can present difficulties for authors of bundles and dynamic
shared libraries that assume a flat, global symbol namespace. To build successfully with the
two-level namespace, keep the following points in mind:

■ Bundles that need to reference symbols defined in the program’s main executable must use
the -bundle_loader static linker option. The static linker can then search the main executable
for the undefined symbols.

■ Shared libraries that need to reference symbols defined in the program main executable must
load the symbol dynamically using a function that does not require a library reference, such
as NSLookupAndBindSymbol (page 96).

A two-level symbol namespace can still be searched using functions for doing flat symbol searches.

Scope and Treatment of Symbol Definitions

Symbols in a Mach-O file may exist at several different levels of scope. This section describes
each of the possible scopes that a symbol may be defined at, and provides examples of C code
used to create each symbol type. These examples work with the standard developer tools; a third
party tool set may have different conventions.

A defined external symbol is any symbol defined in the current Mach-O file, including functions
and data. The following C code defines an external symbol:

int x = 0;

Executing Mach-O Files 19
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

An undefined external symbol is any symbol defined in a file outside of the current file. The
following C code defines two external symbols, a variable and a function:

extern int x;
extern void SomeFunction(void);

A common symbol is a symbol that may appear in multiple intermediate object files. The static
linker permits multiple common symbol definitions with the same name in input files, and copies
the one with the largest size to the final product. If there is an another symbol with the same
name as a common symbol, the static linker will ignore the common symbol instead.

The standard C compiler generates a common symbol when it sees a tentative definition—a
global variable that has no initializer and is not marked extern. The following line is an example
of a tentative definition:

int x;

A shared library cannot have common symbols. To eliminate common symbols in an existing
shared library, you must either explicitly define the symbol (with an initialized value, for example)
in one of the modules of the shared library, or pass the -fno-common flag to the compiler.

A private defined symbol is a symbol that is not visible to other modules. The following C code
defines a private symbol:

static int x;

A private external symbol is an external defined symbol that is visible only to other modules
within the same Mach-O file as the module that contains it. The standard static linker changes
private external symbols into private defined symbols unless the application developer specifies
otherwise (using the -keep_private_externs parameter).

You can mark a symbol as private external by using the __private_extern__ attribute, as in
the following C example:

__attribute__(__private_extern__) int x;

A weak reference is an undefined external symbol that need not be found in order for the client
program to successfully link. If the symbol does not exist, the dynamic linker sets the address of
the symbol to zero. Files with weak references can only be used on Mac OS X 10.2 and later. The
following C code demonstrates conditionalizing an API call using a weak reference:

/* Only call this API if it exists */
if(SomeNewFunction != NULL)
 SomeNewFunction();

To specify that a function should be treated as a weak reference, an application developer should
use the weak_import attribute on a function prototype, as demonstrated by the following code:

void SomeNewFunction(void) __attribute(weak_import);

A coalesced symbol is a symbol that may be defined in multiple object files, but that the static
linker generates only one copy of in the output file. This can save a lot of memory with certain
C++ language features that the compiler must generate for each individual object file, such as
virtual function tables, runtime type information (RTTI) and C++ template instantiations. The
compiler determines which constructs should be coalesced; no work on the part of the application
developer is required.

20 Executing Mach-O Files
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

Note: Programmers who use other operating systems may be familiar with the concept of symbols
that are marked with a COMDAT flag; a coalesced symbol is the Mach-O equivalent feature.

A weak definition is a symbol that will be ignored by the linker if an otherwise identical but
non-weak definition exists. This is used by the standard C++ compiler to support C++ template
instantiations. The compiler marks implicit—and not explicit—template instantiations as weak
definitions. The static linker will then prefer any explicit template instantiation to an implicit one
for the same symbol, which provides correct C++ linking semantics. As with coalesced symbols,
the compiler determines the constructs that require the weak definitions feature; no work on the
part of the application developer is required.

Note: Files with weak definitions can only be used on Mac OS X 10.2 and later. The static linker
changes any remaining weak definitions into non-weak definitions, so this is only a concern for
intermediate object files and static libraries that you wish to deploy on older system releases.

A debugging symbol is a symbol generated by the compiler that allows the debugger to map
from addresses in machine code to locations in source code. The standard compilers currently
generate debugging symbols in the stabs debugging format, which is documented in the GDB
debugger internals documentation (see “Where to Find More Information” (page 8)). Debugging
symbols, like other symbols, are stored in the symbol table (see “Symbol Table and Related Data
Structures” (page 72).

Loading Code At Runtime

This section describes how you can load code at runtime.

■ “Using Shared Libraries and Frameworks” (page 21)

■ “Static Archive Libraries” (page 15)

■ “Loading Plug-In Code With Bundles” (page 25)

Using Shared Libraries and Frameworks

Programmers often refer to dynamic shared libraries using different names, such as dynamically
linked shared libraries, dynamic libraries, DLLs, dylibs, or just shared libraries; in Mac OS X, all
of these names refer to the same thing: a library of code dynamically loaded into a process at
runtime.

Shared libraries allow the operating system as a whole to use memory more efficiently. Each
process in Mac OS X has its own virtual address space. The Mac OS X kernel allows regions of
logical memory to be mapped into multiple processes at different addresses. The dynamic linker
takes advantage of this feature by mapping the same read-only copy of the shared library code
into the address space of each process. The result is that only one physical copy of a shared library
is in memory at any time, even though many different processes may use it at the same time.
Data, such as variables and constants, contained by a shared library is mapped into each client
process using the kernel’s copy-on-write optimization capability. With copy-on-write, the data
is shared among processes until one of the processes attempts to change the data. At that point,

Loading Code At Runtime 21
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

the kernel creates a writable copy of the data private to that process. The other processes continue
to use the read-only shared copy. Thus, additional memory for data is allocated only when
absolutely necessary.

Shared libraries also provide a way for programs to seamlessly benefit from system upgrades.
When the system is upgraded, the shared libraries are updated, but the programs need not be;
since they are dynamically bound to the shared libraries, the programs can continue to call the
same functions and the updated implementation of the shared libraries will be executed.

Client Program Compatibility

This section describes various parameters that affect compatibility with client programs. You
can set these parameters at build time.

Shared libraries have two version numbers, which allow you to create new versions of a shared
library that are binary compatible (that is, they do not require client programs to be recompiled)
with the functions exported by the old versions of a library. These version numbers are as follows:

■ The current version of the library specifies the current revision number of the library’s
implementation. A client program can examine this version number to find out the exact
version of the library, which can be useful for checking for bug fixes and feature additions.
The shared library can also examine the version number that the client program originally
linked against, which can be useful for maintaining backwards compatibility.

■ The compatibility version of the library specifies the version of the library’s API that the
shared library claims to be backward-compatible with. If the compatibility version of the
shared library is newer than the version recorded with the client program, the program fails
to link and an error occurs.

The install name is the pathname used by the dynamic linker to find a shared library at runtime.
The install name is defined by the shared library and recorded into the client program by the
static linker.

You can locate private frameworks and shared libraries in an application package using a
relative-path install name beginning with @executable_path, such as
@executable_path/../Frameworks/MyFramework.framework. This is useful for sharing
functionality with plug-ins (bundles).

You can pass the -dynamic option to libtool to create a dynamic shared library. The following
command creates a dynamic shared library named libthing.dylib from a set of intermediate
object files, thing1.o and thing2.o:

libtool -dynamic thing1.o thing2.o-o libthing.dylib

Packaging a Shared Library as a Framework

A framework is a shared library packaged with associated resources, such as headers, localized
strings, and documentation. installed in a standard folder hierarchy, usually in a standard location
in the file system. The folders usually contain related header files, documentation in any format,
and resource files. A framework may contain multiple versions of itself, and each version may
have its own set of resources, documentation, and header files.

22 Loading Code At Runtime
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

From a tools perspective, a framework is a shared library whose install name ends in the form
frameworkName.framework/Versions/versionName/frameworkName or the form
frameworkName.framework/frameworkName.

You compile a framework by building a normal dynamic shared library into a folder with the
same name and a framework extension. For example, to create a framework named Chaos, place
a dynamic shared library named Chaos into a folder called Chaos.framework. You can create
other folders inside this folder to store related resources, such as header files, documentation,
and graphics (the standard folder names for these are called Headers, Documentation, and
Resources, respectively).

Apple follows a standard framework versioning convention, different from the shared library
version numbering system. By versioning your framework, you can ship older versions of your
framework alongside newer versions, to allow older clients to continue functioning, while still
allowing you to advance the design of the framework in ways not compatible with older clients.

To version your framework, create a parent folder inside the framework called Versions, create
a subfolder in Versions using a naming scheme of your choice, and build the framework shared
library and other folders in this subfolder. Then create symbolic links in the framework's root
folder to point to the shared library and folders. When you build a new, incompatible version of
your framework, build it into a new directory in the versions directory and update the symlinks
to point to the new version. When a client links to a versioned framework, the install name
recorded in the client executable includes the full path to the shared library executable, and the
dynamic linker will thus only load that version.

For example, a client links to a framework called Peace.framework, and the symlinks in
Peace.framework point to the latest version, which is named "B." The install name of the
framework ends with Peace.framework/Versions/B/Peace. The static linker records this install
name in the client. When the client is loaded, the dynamic linker will attempt to load the shared
library with this install name. Note that, while frameworks that ship with the system usually
name successive versions with consecutive letters of the English alphabet (A through Z), you
can use any name you wish.

A framework developer can build a simple, versioned framework in four steps.

1. Create the framework version directory.

2. Compile the framework executable into the framework version directory.

3. Create a symbolic link named Current that points to the framework version directory.

4. Create a symbolic link to the framework executable in the parent framework directory.

The shell commands in Listing 1-1 (page 23) build a framework named Peace from the C source
files peace.c and love.c. The resulting framework has the install name
Peace.framework/Versions/A/Peace

Listing 1-1 Building a framework

mkdir -p Peace.framework/Versions/A
cc -dynamiclib -o Peace.framework/Versions/A/Peace peace.c love.c
ln -s Peace.framework/Versions/A Peace.framework/Versions/Current
ln -s Peace.framework/Versions/A/Peace Peace.framework/Peace

Loading Code At Runtime 23
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

Listing 1-2 (page 24) demonstrates how to create a private framework—that is, a framework
located in an application’s package. Specify the install name explicitly during the linking phase
and prefix it with @executable_path. The install name of the resulting framework is
@executable_path/Frameworks/Peace.framework/Versions/A/Peace.

Listing 1-2 Building a private framework

mkdir -p Peace.framework/Versions/A
cc -c peace.c love.c
libtool -dynamic -install_name
@executable_path/Frameworks/Peace.framework/Versions/A/Peace -o
Peace.framework/Versions/A/Peace peace.o love.o -framework System

Packaging Frameworks and Libraries Under an Umbrella

An umbrella framework is a framework that serves as the “parent” of a group of frameworks
and shared libraries that implement related functionality. Umbrella frameworks are useful to
help manage extremely large development projects with complex interdependencies, such as
subsystems of Mac OS X itself; for all other projects, a single framework should suffice (and is
better for load-time performance).

To create an umbrella framework, you can take a normal framework and designate a subset of
its imported frameworks as subframeworks. The subframeworks themselves need not be aware
that they are part of the umbrella. With ld, you can use the -sub_umbrella option to designate
a subframework.

When your program links against an umbrella framework, it also implicitly links against all of
the subframeworks. Symbols located in subframeworks of umbrella frameworks are recorded
in the client program as if they were implemented directly in the umbrella framework. This
feature allows the contents of the umbrella framework to change over time while preserving
compatibility with older client programs.

To ensure that developers link to the “parent” umbrella framework and not one of the
subframeworks, the subframework can be built with a special load command to prevent
unauthorized linking. When a client tries to link directly to such a subframework, the static linker
produces an error. However, the subframework can authorize specific clients to link against it,
and all subframeworks of an umbrella framework are implicitly authorized to link against each
other. (Load commands are explained in “Mach-O File Format Reference” (page 49); the particular
load commands referenced here are documented as sub_framework_command (page 70) and
sub_client_command (page 71), and ld will generate them if given the -sub_framework
parent_umbrella_name and -sub_client client_name options) Note that these conventions are
enforced at build time by the static linker, but ignored by the dynamic linker at runtime.

You can also include libraries in umbrella frameworks. For example the Foundation framework
includes both the Objective-C runtime library (libobjc) as a sublibrary and the CoreFoundation
framework as a subframework. You might build Foundation using a variation on the commands
listed in Listing 1-3 (page 25).

24 Loading Code At Runtime
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

Listing 1-3 Building a simple umbrella framework

mkdir Foundation.framework
ld -dylib -o Foundation.framework/Foundation -sub_umbrella CoreFoundation
 -sub_library libobjc -framework CoreFoundation -lobjc Foundation.o

By convention, subframeworks of an umbrella framework live within a Frameworks directory
in the root directory of the umbrella framework, although this is obviously not a technical
requirement. For example, the Cocoa framework is an umbrella framework that includes the
AppKit framework; the AppKit framework is itself an umbrella framework that includes the
Foundation and ApplicationServices frameworks as subframeworks.

Because an umbrella framework is a framework, you can use the same directory-based versioning
strategy described in “Packaging a Shared Library as a Framework” (page 22).

Loading Plug-In Code With Bundles

Bundles provide the Mach-O mechanism for loading extension (or plug-in) code into an
application at runtime. Typically, a bundle links against the application binary to gain access to
the application’s exported API. Bundles can be—but are not required to be—packaged with
resources, using the same folder hierarchy as that of an application package. In some cases
(depending on the code in the bundle), bundles can also be unloaded.

Mac OS X supports several different schemes that allow other developers to extend the capabilities
of your application by writing plug-in code that your program can load at runtime. Although
you can use any one of these different plug-in schemes in any type of application, some are more
suited to particular situations than others. For example:

■ To load Objective-C classes at runtime, use the Foundation framework class NSBundle.
NSBundle provides general services for referring to a packaged program, whether the program
is an application or a plug-in.

■ To load C functions at runtime, use the Core Foundation framework object CFBundle, which,
like NSBundle, provides general services for referring to a packaged program, whether the
program is an application or a plug-in.

■ The Core Foundation framework object CFPlugin, implements a small subset of the Microsoft
Component Object Model (COM) standard. COM allows you to instantiate C functions and
data in an object-oriented manner at runtime.

■ Carbon developers can also use the Code Fragment Manager to load code fragments updated
for Carbon from PEF files. For more information, see the Code Fragment Manager
documentation.

■ For simpler needs, use the dyld library object file image functions and the dyld low-level
functions to load and link bundle files. When porting UNIX tools that support plug-ins to
Mac OS X, you usually want to use these two sets of functions. See “Object File Image
Functions” (page 89) and “Low-Level Dynamic Linking Functions” (page 103) for more
information.

Note: The dynamic linker in Mac OS X 10.0 will cause your program to crash if you ask it to load
programs that are built with a two-level namespace hint table, so, by default, the static linker
creates bundles that are compatible with Mac OS X 10.0 by not including the two-level namespace

Loading Code At Runtime 25
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

hint table. You can use the -twolevel_namespace_hints option to ask the static linker to include
the two-level hint table; the resulting bundle can be used only with Mac OS X 10.1 and later.

CFBundle and CFPlugin can both be used from Carbon applications running in both Mac OS 9
and Mac OS X. Both NSBundle and CFPlugin allow you to package plug-in code with the resources
associated with the plug-in (such as graphics files and documentation), similar to the packaging
for an application. To load COM objects in Mac OS 9, CFPlugin uses the Code Fragment Manager,
and on Mac OS X, CFPlugin uses the object file image dyld library functions.

For more information on NSBundle, see the Cocoa documentation for NSBundle—Loadable
Bundles and Dynamic Linking. For more information on the Code Fragment Manager, see the
book Mac OS Runtime Architectures. For more information on CFPlugin and COM, see the Core
Foundation framework documentation at http://developer.apple.com/documentation.

26 Loading Code At Runtime
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 1

Mach-O Runtime Architecture

http://developer.apple.com/documentation

This chapter covers specific low-level details of the Mac OS X PowerPC runtime architecture,
including the following:

■ “PowerPC Data Types” (page 27)

■ “PowerPC Data Alignment” (page 29)

■ “PowerPC Stack Structure” (page 31)

■ “PowerPC Calling Conventions” (page 35)

■ “PowerPC Dynamic Code Generation” (page 41)

Together, these details specify the Mach-O PowerPC Application Binary Interface (ABI). If you
are writing PowerPC assembly code or creating Mac OS X development tools, you should
understand and conform to these conventions to ensure compatibility with the other programs
running in the Mach-O runtime architecture.

PowerPC Data Types

Table 2-1 (page 27) lists the scalar binary data types and their sizes in the Mach-O PowerPC
runtime environment.

Table 2-1 Scalar data types in the Mach-O PowerPC Runtime Environment

Value rangeSize (in bytes)C or C++ type

0 to 2551unsigned char

–128 to 1271char signed char

0 to 65,5352unsigned short

–32,768 to 32,7672signed short

PowerPC Data Types 27
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for
PowerPC

Value rangeSize (in bytes)C or C++ type

0 or 1 (false or true)4_Bool bool

0 to 4,294,967,2964unsigned int
unsigned long

-2,147,483,648 to 2,147,483,6474int signed int
signed long

0 to 18,446,744,073,709, 551,6168unsigned long long

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

8signed long long

See PPC Numerics4float

See PPC Numerics8double

see notes belowlong double

0 to 0xFFFFFFFF4pointer

Table 2-2 (page 28) lists the binary vector types available in the Mach-O PowerPC runtime
environment with the Velocity Engine (AltiVec).

Table 2-2 Vector data types in the Mach-O PowerPC runtime environment

Value range for each unitSize (bytes)AltiVec C or C++ type

0 to 25516 (1 byte each)vector unsigned char

–128 to 12716 (1 byte each)vector char vector
signed char

0 to 65,53516 (2 bytes each)vector unsigned
short

–32,768 to 32,76716 (2 bytes each)vector signed short

0 to 4,294,967,29616 (4 bytes each)vector unsigned int

-2,147,483,648 to 2,147,483,64716 (4 bytes each)vector int vector
signed int

0 (false), 1 (true)16 (1 bytes each)vector bool char

0 (false), 1 (true)16 (2 bytes each)vector bool short

0 (false), 1 (true)16 (4 bytes each)vector bool int

28 PowerPC Data Types
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

Value range for each unitSize (bytes)AltiVec C or C++ type

See PPC Numerics16 (4 bytes each)vector float

1/5/5/5 pixel format16 (2 bytes each)vector pixel

Here are some things to note about PowerPC data types:

■ As in most CPU architectures, a byte is 8 bits long, and a NULL pointer has a value of zero.

■ All floating point types conform to the IEEE-754 standard representation. For the value range
and precise format of floating point data types, see the book Inside Macintosh: PPC Numerics.

■ PowerPC processors use big-endian format to store numeric and pointer data types—most
significant bytes first, then least significant bytes.

■ PowerPC processors use two’s-complement binary representation for signed integer types.

■ On 32-bit PowerPC processors, arithmetic for the 64-bit integer data types (long long) must
be implemented by the compiler (using math library routines), since the CPU itself does not
implement 64-bit integer math operations.

■ The long double extended-precision type is 16 bytes on classic Mac OS, but GCC for PowerPC
currently treats it as 8 bytes, equivalent to a double. A future revision of the compiler may
extend long double to 128 bytes. For this reason, it is not currently recommended that you
use long double on Mac OS X.

■ Vector types are available only on CPUs that implement AltiVec execution units.

PowerPC Data Alignment

The PowerPC runtime environment supports multiple data alignment modes. Alignment of data
types falls into two categories:

■ the natural alignment, which is the alignment of a data type when allocated in memory or
assigned a memory address

■ the embedding alignment, which is the alignment of a data type within a composite data
structure

For example, the alignment of a unsigned short variable on the stack may differ from that of a
unsigned short data item embedded in a data structure.

Note: Data items passed as parameters in a function call have their own special alignment rules.
See “PowerPC Calling Conventions” (page 35), for more information.

The natural alignment of a data type is the size of the type; Table 2-1 (page 27) shows the size
of each data type supported by the PowerPC runtime architecture.

PowerPC Data Alignment 29
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

In data structures, you can specify an embedding alignment that varies depending on the
alignment mode selected. You can typically select the alignment mode using compiler options
or pragmas. Your particular choice of mode is determined by compatibility and performance
concerns, as detailed for each mode in the following list:

■ Power alignment mode is derived from the alignment rules used by the IBM xlc compiler
for the AIX operating system. It is the default alignment mode for Apple’s PPCC and MrC
compilers for classic Mac OS, as well as the default for the PowerPC version of GCC used on
AIX and Mac OS X. Because this mode is most likely to be compatible between PowerPC
compilers from different vendors, you typically use it with data structures that will be shared
between different programs. The rules for power alignment are as follows:

❏ the embedding alignment of the first element in a data structure is equal to the element’s
natural alignment

❏ for subsequent elements with a natural alignment less than 4, the embedding alignment
of each element is equal to its natural alignment

❏ for subsequent elements that have a natural alignment greater than 4 bytes, the embedding
alignment is 4, unless the element is a vector data type

❏ the embedding alignment for vector data types is always 16 bytes

❏ the embedding alignment of a composite type (array or data structure) is determined by
the largest embedding alignment of its members

❏ the total size of a composite type is rounded up to a multiple of its embedding alignment,
and is padded with null bytes

Be careful when defining data structures with double and long long data types in power
alignment mode. Because these types have natural alignments greater than 4 bytes, they may
be not be appropriately aligned, which will impair performance when such data members
are accessed. If you use these data types for any element after the first element, be sure to
place padding in the data structure to align these elements to their natural alignment, or use
natural alignment mode instead.

■ Mac68k alignment mode is derived from the alignment rules used by the MPW compilers
for classic Mac OS. This alignment mode is usually used with legacy data structures inherited
from classic Mac OS. New code should not need to use this alignment mode except to preserve
compatibility with older data structures. The rules for mac68k alignment are as follows:

❏ the embedding alignment of a char type is 1 byte

❏ the embedding alignment of all other types other than vector types is 2 bytes

❏ the embedding alignment for vector data types is 16 bytes

❏ the total size of a composite data type is rounded up to a multiple of 2 bytes

■ Natural alignment mode uses the natural alignment of each data type as its embedding
alignment. Use this mode for highest performance when working with double, long long,
and long double data types.

■ Packed alignment mode contains no alignment padding between elements (the embedding
alignment for all elements is 1 byte). Use this mode when you need a data structure to be
compressed as small as possible in memory.

30 PowerPC Data Alignment
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

Table 2-3 (page 31) compares the embedding alignment for each data in each of the alignment
modes.

Table 2-3 Embedded alignment modes (in bytes)

NaturalPacked68KPowerC data type

1111char

2122short

4124long

4124_Bool

4124float

8124 or 8double

8128long long

1611616all vector types

1, 2, 4, 8, or 16124, 8, or 16composite (data structure
or array)

With the standard C compiler, you can control data structure alignment by adding pragmas to
your source code, or by using parameters on the command line. The power alignment mode will
be used if you do not specify otherwise.

To change the default alignment at the command line, you can pass the options -malign-power,
-malign-mac68k, and -malign-natural to the compiler. To enable a particular alignment mode
for a data structure, place an alignment pragma of the following form before the data structure:

#pragma option align=mode

where mode is power, mac68k, natural, or packed.

Alignment modes are nested. To restore the previous alignment mode, use reset, as follows:

#pragma option align=reset

PowerPC Stack Structure

The PowerPC runtime environment uses a grow-down stack that contains linkage information,
local variables, and a routine’s parameter information, as shown in Figure 2-1 (page 32).

PowerPC Stack Structure 31
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

Figure 2-1 The PowerPC stack

Stack grows
down

Local variables

Linkage area

Saved registers

Parameter area

Stack after
calling a

procedure

Stack before
calling a

procedure

SP

Parameter area

Linkage area

Parameter area

Linkage area
SP

Callee

Caller

Stack grows
down

Caller

The PowerPC stack conventions use only a stack pointer (held in register GPR1) and no frame
pointer. This configuration assumes a fixed stack frame size, which is known at compile time.
Parameters are not passed by pushing them onto the stack.

The calling routine’s stack frame includes a parameter area and some linkage information. The
parameter area has space for the parameters of any routines the caller calls (not the parameters
of the caller itself). Since the calling routine might call several different routines, the parameter
area must be large enough to accommodate the largest parameter list of all the routines the caller
calls. It is the calling routine’s responsibility for setting up the parameter area before each call to
some other routine, and the called routine’s responsibility for accessing the parameters placed
within it.

The calling routine’s linkage area holds a number of values, some of which are saved by the
calling routine and some by the called routine. The elements within the linkage area are as follows:

■ The Link Register (LR) value is saved at 8(SP) by the called routine if it chooses to do so.

■ The Condition Register (CR) value may be saved at 4(SP) by the called routine. As with the
Link Register value, the called routine is not required to save this value.

■ The stack pointer is always saved by the calling routine as part of its stack frame.

Note that the linkage area is at the top of the stack, adjacent to the stack pointer. This positioning
is necessary so the calling routine can find and restore the values stored there and also to enable
the called routine to find the caller’s parameter area. This placement means that a routine cannot
push and pop parameters from the stack once the stack frame is set up.

The stack frame also includes space for the called routine’s local variables. In general, the
general-purpose registers GPR13 through GPR31, the floating-point registers FPR14 through
FPR31, and vector registers v0, v1, and v14 through v31 are reserved for the routine’s local

32 PowerPC Stack Structure
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

variables. However, if the routine contains more local variables than would fit in the registers,
it uses additional space on the stack. The size of the local variable area is determined at compile
time; once a stack frame is allocated, the size of the local variable area cannot change.

Prologs and Epilogs

The called routine is responsible for allocating its own stack frame, making sure to preserve
16-byte alignment on the stack. This action is accomplished by a section of code called the prolog,
which the compiler places before the body of the routine. After the body of the routine, the
compiler generates an epilog to restore the processor to the state it was prior to the prolog.

The compiler-generated prolog code does the following:

■ Decrements the stack pointer to account for the new stack frame.

■ Writes the previous value of the stack pointer to its own linkage area. This procedure ensures
that the stack can be restored to its original state after returning from the call.

■ Saves all nonvolatile general-purpose and floating-point registers into the saved-registers
area. Note that if the called routine does not change a particular nonvolatile register, it does
not save it.

■ Saves the Link Register and Condition Register values in the caller’s linkage area, if needed.

These actions need not be executed in any particular order. Listing 2-1 (page 33) shows a sample
routine prolog. Note that the order of these actions differs from the order previously described.

Listing 2-1 Sample PowerPC assembler prolog code

linkageArea: set 24 # size in PowerPC environment
params: set 32 # callee parameter area
localVars: set 0 # callee local variables
numGPRs: set 0 # volatile GPRs used by callee
numFPRs: set 0 # volatile FPRs used by callee)

spaceToSave: set linkageArea + params + localVars
spaceToSave: set spaceToSave + 4*numGPRs + 8*numFPRs

.functionName: # PROLOG
 mflr r0, # extract return address
 stw r0,8(SP) # save the return address
 stwu SP, -spaceToSave(SP) # skip over caller save

At the end of the function, the compiler-generated epilog does the following:

■ Restores the nonvolatile general-purpose and floating-point registers that were saved in the
stack frame.

■ Restores the Condition Register and Link Register values that were stored in the linkage area.

■ Restores the stack pointer to its previous value.

■ Returns to the calling routine using the address stored in the Link Register.

PowerPC Stack Structure 33
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

Again, these actions need not be executed in any particular order. Listing 2-2 (page 34) shows
a sample PowerPC routine epilog.

Listing 2-2 Sample PowerPC routine epilog

 ; EPILOG
 lwz r0,spaceToSave(SP)+8 # get the return address
 mtlr R0 # into the Link Register
 addic SP,SP,spaceToSave # restore stack pointer
 blr # and branch to the return address

The Red Zone

The space beneath the stack pointer, where a new stack frame would normally be allocated, is
called the red zone. This area, as shown in Figure 2-2 (page 34), may be used for any purpose
as long as a new stack frame does not need to be added to the stack.

Figure 2-2 The red zone

Linkage area

Parameter area

red zone

SP

For example, the red zone may be used by a leaf procedure. A leaf procedure is a routine that
does not call any other routines. Since it does not call any other routines, it does not need to
allocate a parameter area on the stack. Furthermore, if it does not need to use the stack to store
local variables, it need save and restore only the nonvolatile registers that it uses for local variables.
Since by definition no more than one leaf procedure is active at any time, there is no possibility
of multiple leaf procedures competing for the same red zone space.

A leaf procedure does not allocate a stack frame nor does it decrement the stack pointer. Instead
it stores the Link Register and Condition Register values in the linkage area of the routine that
calls it (if necessary) and stores the values of any nonvolatile registers it uses in the red zone.
This streamlining means that a leaf procedure’s prolog and epilog do only minimal work; they
do not have to set up and take down a stack frame.

Note: The value of 224 bytes is the space occupied by nineteen 32-bit general-purpose registers
plus eighteen 64-bit floating-point registers, rounded up to the nearest 16-byte boundary. If a
leaf procedure’s red zone usage would exceed 224 bytes, then it must set up a stack frame just
like routines that call other routines.

34 PowerPC Stack Structure
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

PowerPC Calling Conventions

This section details the process of passing parameters to a routine in the PowerPC runtime
environment. See the section “PowerPC Dynamic Code Generation” (page 41) for information
about generating indirect calls and position-independent code.

Note: These parameter passing conventions are part of Apple’s standard for procedural interfaces.
Object-oriented languages may use different rules for their own method calls. For example, the
conventions for C++ virtual function calls may be different from those for C functions.

Parameter Passing

A routine can have a fixed or variable number of arguments. In an ANSI-style C syntax definition,
a routine with a variable number of arguments typically appears with ellipsis points (…) at the
end of its input parameter list.

A variable-argument routine may have several required (that is, fixed) parameters preceding the
variable parameter portion. For example, the routine definition

(void) fooColor(int number, ...)

gives no restriction on the number of arguments after number, but you precede them with a
number argument. Therefore, number is a fixed parameter.

Typically the calling routine passes parameters in registers. However, the compiler generates a
parameter area in the caller’s stack frame that is large enough to hold all parameters passed to
the called routine, regardless of how many of the parameters are actually passed in registers.
There are several reasons for this scheme:

■ It provides the callee with space to store a register-based parameter if it wants to use one of
the parameter registers for some other purpose (for instance, to pass parameters to a
subroutine).

■ Routines with variable-length parameter lists must often access their parameters from RAM,
not from registers. Such routines must reserve eight registers (32 bytes) in the parameter area
to hold the parameter values.

■ To simplify debugging, some compilers may write parameters from the parameter registers
into the parameter area in the stack frame; this allows you to see all the parameters by looking
only at that parameter area.

You can think of the parameter area as a data structure that has space to hold all the parameters
in a given call. The parameters are placed in the structure from left to right according to the
following rules:

■ All non-vector parameters are aligned on 4-byte (word) boundaries.

■ Noncomposite parameters (that is, parameters that are not arrays or data structures) smaller
than 4 bytes occupy the high-order bytes of their word.

■ Composite parameters (arrays or data structures) larger than 4 bytes are followed by padding
to make a multiple of 4 bytes, with the padding bytes being undefined. (It is recommended
that you use zero, however).

PowerPC Calling Conventions 35
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

■ Composite parameters smaller than 4 bytes are preceded by padding to 4 bytes.

Note: The latter rule is inconsistent with other PowerPC ABIs. In AIX and classic Mac OS, padding
bytes always follow the structure data even in the case of composite parameters smaller than 4
bytes.

For a routine with fixed parameters, the first 8 words (32 bytes) of the parameters, no matter the
size of the individual parameters, are passed in registers according to the following rules:

■ The first 8 words are placed in GPR3 through GPR10 unless a floating-point parameter is
encountered.

■ Floating-point parameters are placed in the floating-point registers FPR1 through FPR13.

■ If a floating-point parameter appears before all the general-purpose registers are filled, the
corresponding GPRs that match the size of the floating-point parameter are skipped. For
example, a float item causes one (4-byte) GPR to be skipped, while an item of type double
causes two GPRs to be skipped.

■ If the number of parameters exceeds the number of usable registers, the calling routine writes
the excess parameters into the parameter area of its stack frame.

■ The caller places vector parameters in vector registers v2 through v13. For routines with a
fixed number of parameters, the presence of vectors does not affect the allocation of GPR and
FPR registers. The caller should not allocate space for vector register values in the parameter
area of the stack unless the number of vector parameters exceeds the number of available
vector registers.

For example, consider a routine fooFunc with this declaration:

void fooFunc (SInt32 i1, float f1, double d1, SInt16 s1, double d2,
 UInt8 c1, UInt16 s2, float f2, SInt32 i2);

To see how the parameters of fooFunc are arranged in the parameter area on the stack, first
convert the parameter list into a structure, as follows:

struct params {
 SInt32 p_i1;
 float p_f1;
 double p_d1;
 SInt16 p_s1;
 double p_d2;
 UInt8 p_c1;
 UInt16 p_s2;
 float p_f2;
 SInt32 p_i2;
};

This structure serves as a template for constructing the parameter area on the stack. (Remember
that, in actual practice, many of these variables are passed in registers; nonetheless, the compiler
still allocates space for all of them on the stack, for the reasons just mentioned.)

The “top” position on the stack is for the field pi_1 (the structure field corresponding to parameter
i1). The floating-point field p_f1 is assigned to the next word in the parameter area. The 64-bit
double field p_d1 is assigned to the next two words in the parameter area. Next, the short integer
field p_s1 is placed into the following 32-bit word; the original value of p_s1 is in the lower half
of the word, and the padding is in the upper half. The remaining fields of the params structure

36 PowerPC Calling Conventions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

are assigned space on the stack in exactly the same way, with unsigned values being extended
to fill each field to make it a 32-bit word. The final arrangement of the stack is illustrated in
Figure 2-3 (page 37). (Because the stack grows down, it looks as though the fields of the params
structure are upside down.)

Figure 2-3 The organization of the parameter area of the stack

+44

+40

+36

+32
+28

+20

+16

+8

+4

0
Stack grows

down

f 2 FPR4

FPR3

FPR2

FPR1

GPR10

GPR9

GPR8
GPR7

GPR6

GPR5

GPR4

GPR3

x..............x

x.......................x

i 2

d2

s 2

c 1

x..............x s 1

d1

i 1

f 1

To see which parameters are passed in registers and which are passed on the stack, you need to
map the stack, as illustrated in Figure 2-3 (page 37), to the available general-purpose and
floating-point registers. Therefore, the parameter i1 is passed in GPR3, the first available
general-purpose register. The floating-point parameter f1 is passed in FPR1, the first available
floating-point register. This action causes GPR4 to be skipped.

The parameter d1 is placed into FPR2 and the corresponding general-purpose registers GPR5
and GPR6 are unused. The parameter s1 is placed into the next available general-purpose register,
GPR7. Parameter d2 is placed into FPR3, with GPR8 and GPR9 masked out. Parameter c1 is
placed into GPR10, which fills out the first 8 words of the data structure. Parameter s2 is then
passed in the parameter area of the stack. Parameter f2 is passed in FPR4, since there are still
floating-point registers available. Finally, parameter i2 is passed on the stack. Figure 2-4 (page
38) shows the final layout of the parameters in the registers and the parameter area.

PowerPC Calling Conventions 37
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

Figure 2-4 Parameter layout in registers and the parameter area

i 1 s 1 c 1

GPR3 GPR4 GPR5 GPR6 GPR7 GPR8 GPR9 GPR10

FPR1 FPR2

Parameter area

f 1

FPR4

f 2d1

FPR3

d2

i 2s 2

If you have a C routine with a variable number of parameters (that is, one that does not have a
fixed prototype), the compiler cannot know whether to pass a parameter in the variable portion
of the routine in the general-purpose (that is, fixed-point) registers or in the floating-point registers.
Therefore, the compiler passes the parameter in both the floating-point and the general-purpose
registers, as shown in Figure 2-5 (page 38).

Figure 2-5 Passing a variable number of parameters

i 1 s 1 c 1

GPR3 GPR4 GPR5 GPR6 GPR7 GPR8 GPR9 GPR10

FPR1 FPR2

Parameter area

f 1

FPR4

f 2d1

FPR3

d2

i 2f 2

f 1 d1 d2

s 2

The called routine can access parameters in the fixed portion of the routine definition as usual.
However, in the variable-argument portion of the routine, the called routine must copy the GPRs
to the parameter area and access the values from there. Listing 2-3 (page 38) shows a routine
that accesses values by walking through the stack.

Listing 2-3 A variable-argument routine

double dsum (int count, ...)
{
 double sum = 0.0;
 double * arg = (double *) (&count + 1 /* pointer arithmetic */);
 while (count > 0) {
 sum += *arg;
 arg += 1; /* pointer arithmetic */
 count -= 1;
 }
return sum;
}

Vector parameters in the fixed portion of the routine definition are passed in v2 through v13. For
functions with variable arguments only, they are also shadowed on the stack, where they must
be aligned to a 16-byte boundary. Vector parameters that appear in the variable-argument portion
of the routine must also be shadowed in the GPRs.

38 PowerPC Calling Conventions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

Function Return

In the PowerPC runtime environment, functions return floating-point values in register FPR1.
Other values are returned as follows:

■ Functions returning simple values smaller than 4 bytes (such as the GCC C compiler types
char or short) place the return value in the least significant byte or bytes of GPR3. The most
significant bytes in GPR3 are undefined.

■ Functions returning 4-byte values (such as pointers, including array pointers, or GCC C
compiler types long and int) return them normally in GPR3.

■ Functions returning long long values place the return value in GPR3 (the 4 high-order bytes)
and GPR4 (the 4 low-order bytes).

■ If a function returns a composite value (for example, a struct or union data type) or a value
larger than 4 bytes, a pointer must be passed as an implicit left-most parameter before passing
all the user-visible arguments (that is, the address is passed in GPR3, and the actual parameters
begin with GPR4). The address of the pointer must be a memory location large enough to
hold the function return value. Since GPR3 is treated as a parameter in this case, its value is
not guaranteed on return. Note that Mac OS X differs from PPC Linux in how they handle
64- bit composite values. In PPC Linux, those values are stored in GPR3 and GPR4.

Register Preservation

Table 2-4 (page 39) lists registers used in the PowerPC runtime environment and their volatility
in routine calls. Registers that retain their value after a routine call are called nonvolatile. All
registers are 4 bytes long.

Table 2-4 Volatile and nonvolatile registers

NotesPreserved by a
routine call
(nonvolatile)?

RegisterType

NoGPR0General-
purpose register

Used as the stack pointer
to store parameters and
other temporary data
items.

YesGPR1

PowerPC Calling Conventions 39
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

NotesPreserved by a
routine call
(nonvolatile)?

RegisterType

On other PowerPC
platforms, including Mac
OS 9, GPR2 is usually a
pointer to the current TOC.
Mac OS X uses a different
indirect addressing
scheme, and GPR2 is thus
considered a volatile
register available for
general use.

NoGPR2

The caller passes
parameter values to the
called function in GPR3
through GPR10. The called
function should place the
return value, if any, in
GPR3.

NoGPR3

Used to pass parameter
values in routine calls (see
previous row).

NoGPR4–GPR10

NoGPR11

Set to the address of the
branch target before an
indirect call for dynamic
code generation.

NoGPR12

This register is not set for
a routine that has been
called directly, so routines
that may be called directly
should not depend on this
register being set up
correctly.
See “Indirect
Addressing” (page 44) for
more information.

YesGPR13–GPR31

NoFPR0Floating- point
register

Used to pass floating-
point parameters in
routine calls.

NoFPR1–FPR13

40 PowerPC Calling Conventions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

NotesPreserved by a
routine call
(nonvolatile)?

RegisterType

YesFPR14–FPR31

The caller passes vector
parameters in v2 to v13
during a routine call.

Nov0–v19Vector register

Yesv20–31

32-bit special purpose
register; set bits for each
vector register that must
be saved during a thread
or process context switch.

YesVRSAVEVector special
purpose

Stores the return address
of the calling routine
during a routine call.

NoLRLink Register

NoCTRCount Register

NoXERFixed-point
exception
register

NoCR0–CR1Condition
Registers

YesCR2–CR4

NoCR5–CR7

PowerPC Dynamic Code Generation

To support dynamically-bound shared libraries, applications, and bundles, the compiler tools
and the dynamic linker support two features: position-independent code (abbreviated PIC) and
indirect addressing.

Position-Independent Code

Position-independent code, or PIC, is the name of the code generation technique that allows
the dynamic linker to load a region of code at a different virtual memory addresses. Without
some form of position-independent code generation, the operating system would need to place
all code you wanted to be shared at fixed addresses in virtual memory, which would make

PowerPC Dynamic Code Generation 41
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

maintenance of the operating system remarkably difficult. For example, it would be nearly
impossible to support shared libraries and frameworks, because each one would need to be
preassigned an address, which could never change.

Mach-O position-independent code design is based on the observation that the __DATA segment
is always located at a constant offset from the __TEXT segment. That is, the dynamic linker, when
loading any Mach-O file, will never move a file’s __TEXT segment relative to its __DATA segment.
Therefore, a function can use its own current address plus a fixed offset to determine the location
of the data it wishes to access. All segments of a Mach-O file are at fixed offsets relative to the
other segments.

Note: If you are familiar with the Executable Linking Format (ELF), you may note that Mach-O
position-independent code is similar to the GOT (global offset table) scheme. The primary
difference is that Mach-O code references data using a direct offset, while ELF indirects all data
access through the global offset table.

Position-independent code is typically required for shared libraries and bundles, to allow the
dynamic linker to relocate them to different addresses at load time. However, it is not typically
required for applications, which typically reside at the same address in virtual memory. Apple’s
version of GCC 3.1 introduces a new option, called -mdynamic-no-pic, to reduce the code size
of application executables by eliminating position-independent code references, while preserving
indirect calls to shared libraries. If you are using Project Builder to create your application, this
option is enabled by default. For an example of dynamic code generated without PIC, see Listing
2-7 (page 45).

Note: Dynamic code generation without PIC is new for GCC 3.1, the standard compiler shipped
with Mac OS X 10.2. However, executables generated with this option will run on older versions
of Mac OS X, as long as they do not rely on incompatible new features of the Mac OS X 10.2 tools
(such as weak references).

Listing 2-5 (page 42) shows an example of the position-independent code generated for the C
code in Listing 2-4 (page 42).

Listing 2-4 C source code example for position-independent code

struct s { int member1; int member2; };

struct s bar = {1,2};

int foo(void)
{
 return bar.member2;
}

Listing 2-5 Position-independent code generated from the C example (with addresses in the left column)

 .text
 ; The function foo
 .align 2
 .globl _foo

42 PowerPC Dynamic Code Generation
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

0x0 _foo: mflr r0 ; save the link register
 (LR)
0x4 bcl 20,31,L1$pb ; Use the branch always
instruction
 ; that does not affect
the link
 ; register stack to get
 the address
 ; of L1$pb into the LR.
0x8 L1$pb: mflr r10 ; then move LR to r10
0xc mtlr r0 ; restore the previous LR
 ; bar is located at L1$pc
 + distance
0x10 addis r9,r10,ha16(_bar-L1$pb); L1$pb plus high 16 bits
 of distance
0x14 la r9,lo16(_bar-L1$pb)(r9) ; plus low 16 of distance
 ; => r9 now contains
address of bar
0x18 lwz r3,4(r9) ; return bar.member2
0x1c blr
.data
 ; The initialized structure bar
 .align 2
 .globl _bar
0x20 _bar: .long 1 ; member1’s initialized
value
0x24 .long 2 ; member2’s initialized
value

To calculate the address of _bar, the generated code adds the address of the L1$pb symbol (0x8)
to the distance to bar. The distance to bar from the address of L1$pb is the value of the expression
_bar - L1$pb, which is 0x18 (0x20 - 0x8).

Relocating Position-Independent Code

To support relocation of code in intermediate object files, Mach-O supports a section difference
relocation entry format. Relocation entries are described in “Relocation Data Structures” (page
80).

Each of the add-immediate instructions is represented by two relocation entries. For the addis
instruction (at address 0x10 in the example), the following tables list the two relocation entries.
The fields of the first relocation entry (of type scattered_relocation_info (page 81)) are as
follows:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length

PPC_RELOC_HA16_SECTDIFFr_type

0x10—the address of the addis instructionr_address

0x20—the address of the symbol _barr_value

PowerPC Dynamic Code Generation 43
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

The values of the second relocation entry are as follows:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length

PPC_RELOC_PAIRr_type

0x18—the low sixteen bits of the expression (_bar -
L1$pb)

r_address

0x8—the address of the symbol L1$pbr_value

The first relocation entry for the la instruction (at address 0x14 in the example) is as follows:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length

PPC_RELOC_LO16_SECTDIFFr_type

0x14—the address of the addi instructionr_address

0x20—the address of the symbol _barr_value

The values of the second relocation entry are as follows:

1—truer_scattered

0—falser_pcrel

2—indicating 4 bytesr_length

PPC_RELOC_PAIRr_type

0x0—the high sixteen bits of the expression (_bar -
L1$pb)

r_address

0x8—the address of the symbol L1$pbr_value

Indirect Addressing

Indirect addressing is the name of the code generation technique, separate from
position-independent code, that allows symbols defined in one file to be referenced from another
file, without requiring the first file to have explicit knowledge of the layout of the second. This
allows the second file to be modified independently of the first.

44 PowerPC Dynamic Code Generation
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

When generating calls to functions that are defined in other files, the compiler creates a symbol
stub and a lazy symbol pointer. The symbol stub is a small amount of code that directly
dereferences and jumps to the lazy symbol pointer. The lazy symbol pointer is an address that
is initially set to glue code that calls the linker glue function dyld_stub_binding_helper.
dyld_stub_binding_helper calls the dynamic linker function that performs the actual work of
binding the stub. On return from dyld_stub_binding_helper, the lazy pointer points to the
actual address of the external function.

The simple example code in Listing 2-6 (page 45) might produce two different types of symbol
stubs, depending on whether or not it is compiled with position-independent code generation.
Listing 2-7 (page 45) shows indirect addressing without position-independent code, while Listing
2-8 (page 46) shows both indirect addressing and position-independent code.

Listing 2-6 Sample C code for indirect function calls

extern void bar(void);
void foo(void)
{
 bar();
}

Listing 2-7 Example of an indirect function call

.text
 ; The function foo
 .align 2
 .globl _foo
_foo:
 mflr r0 ; move the link register into r0
 stw r0,8(r1) ; save the link register value on the stack
 stwu r1,-64(r1) ; set up the frame on the stack
 bl L_bar$stub ; branch and link to the symbol stub for _bar
 lwz r0,72(r1) ; load the link register value from the stack
 addi r1,r1,64 ; removed the frame from the stack
 mtlr r0 ; restore the link register
 blr ; branch to the link register to return

.symbol_stub ; the standard symbol stub section
L_bar$stub:
 .indirect_symbol _bar ; identify this symbol stub
for the
 ; symbol _bar
 lis r11,ha16(L_bar$lazy_ptr) ; load r11 with the high 16
bits of the
 ; address of bar’s lazy
pointer
 lwz r12,lo16(L_bar$lazy_ptr)(r11) ; load the value of bar’s lazy
 pointer
 ; into r12
 mtctr r12 ; move r2 to the count register
 addi r11,r11,lo16(L_bar$lazy_ptr) ; load r11 with the address
of bars lazy
 ; pointer

PowerPC Dynamic Code Generation 45
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

 bctr ; jump to the value in bar’s
 lazy pointer

.lazy_symbol_pointer ; the lazy pointer section
L_bar$lazy_ptr:
 .indirect_symbol _bar ; identify this lazy pointer
 for symbol
 ; bar
 .long dyld_stub_binding_helper ; initialize the lazy pointerp
 to the stub
 ; binding helper address

Listing 2-8 Example of a position-independent indirect function call

.text
 ; The function foo
 .align 2
 .globl _foo
_foo:
 mflr r0 ; move the link register into r0
 stw r0,8(r1) ; save the link register value on the stack
 stwu r1,-80(r1) ; set up the frame on the stack
 bl L_bar$stub ; branch and link to the symbol stub for _bar
 lwz r0,88(r1) ; load the link register value from the stack
 addi r1,r1,80 ; removed the frame from the stack
 mtlr r0 ; restore the linkn register
 blr ; branch to the link register to return

.picsymbol_stub ; the standard pic symbol stub section
L_bar$stub:
 .indirect_symbol _bar ; identify this symbol stub for the
symbol _bar
 mflr r0 ; save the link register (LR)
 bcl 20,31,L0$_bar ; Use the branch-always instruction
that does not
 ; affect the link register stack to
 get the
 ; address of L0$_bar into the LR.
L0$_bar:
 mflr r11 ; then move LR to r11
 ; bar’s lazy pointer is
located at
 ; L1$_bar + distance
 addis r11,r11,ha16(L_bar$lazy_ptr-L0$_bar); L0$_bar plus high 16
 bits of
 ; distance
 mtlr r0 ; restore the previous LR
 lwz r12,lo16(L_bar$lazy_ptr-L0$_bar)(r11); ...plus low 16 of
distance
 mtctr r12 ; move r12 to the count
register
 addi r11,r11,lo16(L_bar$lazy_ptr-L0$_bar); load r11 with the
address of bar’s
 ; lazy pointer
 bctr ; jump to the value in
bar’s lazy

46 PowerPC Dynamic Code Generation
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

 ; pointer

.lazy_symbol_pointer ; the lazy pointer section
L_bar$lazy_ptr:
 .indirect_symbol _bar ; identify this lazy pointer for
 symbol bar
 .long dyld_stub_binding_helper ; initialize the lazy pointer to
 the stub
 ; binding helper address.

As you can see, the __picsymbol_stub code in Listing 2-8 (page 46) resembles the
position-independent code generated for Listing 2-5 (page 42). For any position-independent
Mach-O file, symbol stubs must obviously be position-independent, too.

The static linker performs two optimizations when writing output files:

■ it removes symbol stubs for references to symbols that are defined in the same module,
modifying branch instructions that were calling through stubs to branch directly to the call

■ it removes duplicates of the same symbol stub, updating branch instructions as necessary

Note that a routine that branches indirectly to another routine must store the target of the call in
the GPR12 register. Standardizing the register used by the compiler to store the target address
makes it possible to optimize dynamic code generation. Because the target address needs to be
stored in a register in any event, this convention simply standardizes what register to use. Routines
that may have been called directly should not depend on the value of GR12, because in the case
of a direct call, its value is not defined.

PowerPC Dynamic Code Generation 47
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

48 PowerPC Dynamic Code Generation
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 2

Mach-O Runtime Conventions for PowerPC

This chapter describes the structure of the Mach-O executable file format, which is the standard
used to store programs on disk in the Mach-O runtime architecture. To understand how the
development tools work with Mach-O files, and to perform low-level debugging tasks, you need
to understand this information.

A Mach-O file contains three major regions (as shown in Figure 3-1 (page 50)):

■ At the beginning of every Mach-O file is a header structure that identifies the file as a Mach-O
executable file. The header also contains other basic file type information, indicates the target
CPU architecture, and contains flags specifying options that affect the interpretation of the
rest of the file.

■ Directly following the header are a series of variable-size load commands that specify the
layout and linkage characteristics of the Mach-O file. Among other information, the load
commands can specify

❏ the initial layout of the file in virtual memory

❏ the location of the symbol table (used for both dynamic linking and debugging information)

❏ the initial execution state of the main thread of the program

❏ the names of shared libraries that contain definitions for the main executable’s imported
symbols

■ Following the load commands, all Mach-O files contain the data of one or more segments.
Each segment contains zero or more sections. Each section of a segment contains code or data
of some particular type. Each segment defines a region of virtual memory that the dynamic
linker will map into the address space of the process. The exact number and layout of segments
and sections is specified by the load commands and the file type.

49
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

Figure 3-1 Mach-O file format basic structure

Header

Load commands

Data

Section 1 data

Section 2 data

Section 3 data

Section 4 data

Section 5 data

Section n data

Segment command 1

Se
gm

en
t

1
Se

gm
en

t
2

Segment command 2

Various tables within a Mach-O file refer to sections by number. Section numbering begins at 1
(not zero) and continues across segment boundaries. Thus, the first segment in a file may contain
sections 1 and 2 and the second segment may contain sections 3 and 4.

A Mach-O file contains code and data for one CPU architecture. The header structure of a Mach-O
file specifies the target CPU architecture, which allows the kernel to ensure that, for example,
binary machine code intended for PowerPC processors is not executed on an x86 processor. You
can store Mach-O files for multiple CPU architectures in one file using the format described in
“Multi-CPU Architecture Files” (page 86).

Segments and sections are normally accessed by name. Segments, by convention, are named
using all uppercase letters preceded by two underscores (for example, __TEXT); sections should
be named using all lowercase letters preceded by two underscores (for example, __text). This
naming convention is standard, though not required for the tools to operate correctly.

A segment defines a range of bytes in a Mach-O file and the addresses and memory protection
attributes at which those bytes are mapped into virtual memory when the dynamic linker loads
the application. As such, segments are always virtual memory page-aligned.

Segments that require more memory at runtime than they do at build time can specify a larger
in-memory size than they actually have on disk. For example, the __PAGEZERO segment generated
by the linker for PowerPC executable files has a virtual memory size of one page, but an on-disk
size of zero. Because __PAGEZERO contains no data, there is no need for it to occupy any space in
the executable file.

A segment contains zero or more sections. For performance reasons, sections that are to be filled
with zeros should always be placed at the end of the segment.

50
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

For compactness, an intermediate object file contains only one segment. This segment has no
name; it contains all of the sections destined ultimately for different segments in the final Mach-O
file. The data structure that defines a section (section (page 60)) contains the name of the segment
the section is intended for, and the static linker will place each section in the final Mach-O file
accordingly.

For best performance, segments should be aligned on virtual memory page boundaries—4096
bytes for PowerPC processors and 8192 bytes for x86 processors. To calculate the size of a segment,
add up the size of each section, then round up the sum to the next virtual memory page boundary
(4096 bytes, or 4 kilobytes). Using this algorithm, the minimum size of a segment is 4 kilobytes,
and thereafter it is sized at 4 kilobyte increments.

The header and load commands are considered part of the first segment of the file for paging
purposes. In an executable file, this generally means that the headers and load commands live
at the start of the __TEXT segment, because that is the first segment that contains data. The
__PAGEZERO segment contains no data on disk, and so is ignored for this purpose.

The standard Mac OS X development tools add five segment types to a typical Mac OS X
executable:

■ The static linker creates a __PAGEZERO segment as the first segment of an executable file. This
segment is located at virtual memory location zero and has no protection rights assigned, the
combination of which causes accesses to NULL, a common C programming error, to
immediately crash. The __PAGEZERO segment is the size of one full VM page for the current
CPU architecture (for x86 and PowerPC, this is 4096 bytes or 0x1000 in hexadecimal). Because
there is no data in the __PAGEZERO segment, it occupies no space in the file (the file size in the
segment command is zero).

■ The __TEXT segment contains executable code and other read-only data. To allow the kernel
to map it directly from the executable into sharable memory, the static linker sets this segment’s
virtual memory permissions to disallow writing. When the segment is mapped into memory,
it can be shared among all processes interested in its contents. (This is primarily used with
frameworks, bundles, and shared libraries, but it is possible to run multiple copies of the
same executable in Mac OS X, and this applies in that case as well.) The read-only attribute
also means that the pages that make up the __TEXT segment never need to be written back
to disk. When the kernel needs to free up physical memory, it can simply discard one or more
__TEXT pages and re-read them from disk when they are next needed.

■ The __DATA segment contains writable data. The static linker sets the virtual memory
permissions of this segment to allow both reading and writing. Because it is writable, the
__DATA segment of a framework or other shared library is logically copied for each process
linking with the library. When memory pages such as those making up the __DATA segment
are readable and writable, the kernel marks them copy-on-write; therefore when a process
writes to one of these pages, that process receives its own private copy of the page.

■ The __OBJC segment contains data used by the Objective-C language runtime support library.

■ The __LINKEDIT segment contains raw data used by the dynamic linker, such as symbol,
string, and relocation table entries.

The __TEXT and __DATA segments may contain a number of standard sections, listed in Table
3-1 (page 52). The __OBJC segment contains a number of sections which are private to the
Objective-C compiler. Note that the static linker and file analysis tools typically use the section
type and attributes (instead of the section name) to determine how they should treat the section.
The section name, type and attributes are explained further in the description of the section
(page 60) data type.

51
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

Table 3-1 Typical sections in a Mach-O file

ContentsSegment and Section Name

Executable machine code. The compiler places only
executable code in this section; no tables or data of any
sort are stored here.

__TEXT,__text

Constant C strings. A C string is a sequence of non-null
bytes that ends with a null byte (‘\0’). The static linker
coalesces constant C string values, removing duplicates,
when building the final product.

__TEXT,__cstring

Position -independent indirect symbol stubs. See
“Indirect Addressing” (page 44) for more information.

__TEXT,__picsymbol_stub

Indirect symbol stubs. See “Indirect
Addressing” (page 44) for more information.

__TEXT,__symbol_stub

Initialized constant variables. The compiler places all
data declared const in this section.

__TEXT,__const

4-byte literal values. The compiler places
single-precision floating point constants in this section.
The static linker coalesces these values, removing
duplicates, when building the final product. With some
CPU architectures, it is more efficient for the compiler
to use immediate load instructions rather than adding
to this section.

__TEXT,__literal4

8-byte literal values. The compiler places
double-precision floating point constants in this section.
The static linker coalesces these values, removing
duplicates, when building the final product. With some
CPU architectures, it is more efficient for the compiler
to use immediate load instructions rather than adding
to this section.

__TEXT,__literal8

Initialized mutable variables, such as writable C strings
and data arrays.

__DATA,__data

Lazy symbol pointers, which are indirect references to
functions imported from a different file. See “Indirect
Addressing” (page 44) for more information.

__DATA,__la_symbol_ptr

Non-lazy symbol pointers, which are indirect
references to data items imported from a different file.
See “Indirect Addressing” (page 44) for more
information.

__DATA,__nl_symbol_ptr

Information used by the static linker.__DATA,__dyld

52
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

ContentsSegment and Section Name

Unintialized constant variables.__DATA,__const

Module initialization functions. The C++ compiler
places static constructors here.

__DATA,__mod_init_func

Module termination functions.__DATA,__mod_term_func

Data for uninitialized static variables (for example,
static int i;).

__DATA,__bss

Uninitialized imported symbol definitions (for
example, int i;) located in the global scope (outside
of a function declaration).

__DATA,__common

Each section in a Mach-O file has both a type and a set of attribute flags. In intermediate object
files, the type and attributes determine how the static linker copy the sections from intermediate
object files into the final product. Object file analysis tools (such as otool) use the type and
attributes to determine how to read and display the sections. The section type and attributes are
not used by the dynamic linker. Descriptions for important variants of the symbol type and
attributes as they apply to static linking follow:

■ Regular sections. In a regular section, only one definition of an external symbol may exist in
intermediate object files. The static linker returns an error if it finds any duplicate external
symbol definitions.

■ Coalesced sections. In the final product, the static linker retains only one instance of each
symbol defined in coalesced sections. Some complex language features (such as C++ vtables
and RTTI) require a definition of a particular symbol to be duplicated in every intermediate
object file. This wastes a lot of space in the final product; to reduce the memory occupied by
a program, the compiler can place symbol definitions in coalesced sections.

Mach-O Types and Data Structures

This section describes the data types that compose a Mach-O file. Values for integer types in all
Mach-O data structures are written using the host CPU’s byte ordering scheme, except for
fat_header (page 86) and “fat_arch” (page 87), which are written in big-endian byte order. All
of these data types can be found in /usr/include/mach-o/loader.h, unless otherwise specified
in the description.

Mach-O Header Data Structure

mach_header

Specifies general attributes of the file.

struct mach_header

Mach-O Types and Data Structures 53
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

{
 unsigned long magic;
 cpu_type_t cputype;
 cpu_subtype_t cpusubtype;
 unsigned long filetype;
 unsigned long ncmds;
 unsigned long sizeofcmds;
 unsigned long flags;
};
/* Constant for the magic field of the mach_header */
#define MH_MAGIC 0xfeedface /* the mach magic number */
#define MH_CIGAM NXSwapInt(MH_MAGIC)

Field Descriptions

magic

An integer containing a value identifying this file as a Mach-O executable file. Use the
constant MH_MAGIC if the file is intended for use on a CPU with the same endianness as
the machine on which the compiler is running. The constant MH_CIGAM can be used when
the byte ordering scheme of the target machine is the reverse of the host CPU.

cputype

An integer indicating the CPU architecture you intend to use the file on. Appropriate
values include

■ CPU_TYPE_POWERPC for PowerPC-architecture CPUs

■ CPU_TYPE_I386 for x86-architecture CPUs

cpusubtype

An integer specifying the exact model of the CPU. To run on all PowerPC or x86 processors
supported by the Mac OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL or
CPU_SUBTYPE_I386_ALL.

54 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

filetype

An integer indicating the usage and alignment of the file. Valid values for this field include
the following:

■ The MH_OBJECT file type is the format used for intermediate object files. It is a very
compact format containing all of its sections in only one segment. The compiler and
assembler usually create one MH_OBJECT file for each source code file. By convention,
the file name extension for this format is .o.

■ The MH_EXECUTE file type is the format used by standard executable programs.

■ The MH_BUNDLE file type is the type typically used by code that you load at runtime
(typically called bundles or plug-ins). By convention, the file name extension for this
format is .bundle.

■ The MH_DYLIB file type is for dynamic shared libraries. It contains some additional
tables to support multiple modules. By convention, the file name extension for this
format is .dylib, except for the main shared library of a framework, which does not
usually have a file name extension.

■ The MH_PRELOAD file type is an executable format used for special-purpose programs
that are not loaded by the Mac OS X kernel, such as programs burned into
programmable ROM chips. Do not confuse this file type with the MH_PREBOUND flag,
which is a flag that the static linker sets in the header structure to mark a prebound
image.

■ The MH_CORE file type is used to store core files, which are traditionally created when
a program crashes. Core files store the entire address space of a process at the time it
crashed; you can later run gdb on the core file to figure out why the crash occurred.

■ The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the
type that dyld is constructed from.

ncmds

An integer indicating the number of load commands following the header structure.

sizeofcmds

An integer indicating the number of bytes occupied by the load commands following the
header structure.

Mach-O Types and Data Structures 55
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

flags

An integer containing a set of bit flags that indicate the state of certain optional features
of the Mach-O file format. Masks that you can use to manipulate this field are as follows:

■ MH_NOUNDEFS—the object file contained no undefined references when it was built.

■ MH_INCRLINK—the object file is the output of an incremental link against a base file
and can’t be linked again.

■ MH_DYLDLINK—the file is input for the dynamic linker and can’t be statically linked
again.

■ MH_BINDATLOAD—the dynamic linker should bind the undefined references when the
file is loaded.

■ MH_PREBOUND—the file’s undefined references are prebound.

■ MH_SPLIT_SEGS—the file has its read only and read-write segments split.

■ MH_TWOLEVEL—the image is using two-level namespace bindings.

■ MH_FORCE_FLAT—the executable is forcing all images to use flat namespace bindings.

Special Considerations

For all except the MH_OBJECT file type, segments must be aligned on page boundaries for the
given CPU architecture; 4096 bytes for PowerPC processors and 8192 bytes for x86 processors.
This allows the kernel to page virtual memory directly from the segment into the address space
of the process. The header and load commands must be aligned as part of the data of the first
segment stored on disk (which would be the __TEXT segment, in all current file types).

Load Command Data Structures

The load command structures are located directly after the header of the Mach-O file, and they
specify both the logical structure of the file and the layout of the file in virtual memory. Each
load command begins with fields that specify the command type and the size of the command
data.

load_command

Contains fields that are common to all load commands.

struct load_command
{
 unsigned long cmd;
 unsigned long cmdsize;
};

Field Descriptions

cmd

An integer indicating the type of load command. Table 3-2 (page 57)lists the valid load
command types.

56 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

cmdsize

An integer specifying the total size in bytes of the load command data structure. Each
load command structure contains a different set of data depending on the load command
type, so each might have a different size. The size must always be a multiple of 4. This
means the cmdsize field must always divide evenly into 4. If the load command data does
not divide evenly into four, add bytes containing zeros to the end until it does.

Discussion

Table 3-2 (page 57) lists the valid load command types, with links to the full data structures for
each type.

Table 3-2 Mach-O load commands

PurposeData structureCommand

Defines a segment of this file to be
mapped into the address space of the
process that loads this file. It also
includes all of the sections contained by
the segment. See “Mach-O File Format
Reference” (page 49).

segment_command
(page 58)

LC_SEGMENT

Specifies the symbol table for this file.
This information is used by both static
and dynamic linkers when linking the
file, and also by debuggers to map
symbols to the original source code files
from which the symbols were generated.

symtab_command
(page 72)

LC_SYMTAB

Specifies additional symbol table
information used by the dynamic linker.

dysymtab_command
(page 76)

LC_DYSYMTAB

For an executable file, the
LC_UNIXTHREAD command defines the
initial thread state of the main thread of
the process. LC_THREAD is like
LC_UNIXTHREAD, but does not cause the
kernel to allocate a stack.

thread_command
(page 68)

LC_THREAD
LC_UNIXTHREAD

Defines the name of a dynamic shared
library that this file links against.

dylib_command
(page 66)

LC_LOAD_DYLIB

Specifies the install name of a dynamic
shared library.

dylib_command
(page 66)

LC_ID_DYLIB

For a shared library that this executable
is linked prebound against, specifies the
modules in the shared library that are
used.

prebound_dylib_command
(page 67)

LC_PREBOUND_DYLIB

Mach-O Types and Data Structures 57
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

PurposeData structureCommand

Specifies the dynamic linker that the
kernel executes to load this file.

dylinker_command
(page 67)

LC_LOAD_DYLINKER

Identifies this file as a dynamic linker.dylinker_command
(page 67)

LC_ID_DYLINKER

Contains the offset of the shared library
initialization routine (specified by the
linker’s -init option).

routines_command
(page 69)

LC_ROUTINES

Contains the two-level namespace
lookup hint table.

twolevel_hints_command
(page 63)

LC_TWOLEVEL_HINTS

Identifies this file as the implementation
of a subframework of an umbrella
framework. The name of the umbrella
framework is stored in the string
parameter.

sub_framework_command
(page 70)

LC_SUB_FRAMEWORK

Specifies a file that is a subumbrella of
this umbrella framework.

sub_umbrella_command
(page 70)

LC_SUB_UMBRELLA

Identifies this file as the implementation
of a sublibrary of an umbrella
framework. The name of the umbrella
framework is stored in the string
parameter. Note that Apple has not
defined a supported location for
sublibraries at this time.

sub_library_command
(page 71)

LC_SUB_LIBRARY

A subframework can explicitly allow
another framework or bundle to link
against it by including a LC_SUB_CLIENT
load command containing the name of
the framework or a client name for a
bundle.

sub_client_command
(page 71)

LC_SUB_CLIENT

segment_command

Segments are defined by the LC_SEGMENT load command, which specifies a range of bytes in the
file that are to be mapped by the loader into the address space of a program.

struct segment_command
{
 unsigned long cmd; /* LC_SEGMENT */
 unsigned long cmdsize; /* includes sizeof section structs */
 char segname[16]; /* segment name */
 unsigned long vmaddr; /* memory address of this segment */
 unsigned long vmsize; /* memory size of this segment */
 unsigned long fileoff; /* file offset of this segment */
 unsigned long filesize; /* amount to map from the file */

58 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

 vm_prot_t maxprot; /* maximum VM protection */
 vm_prot_t initprot; /* initial VM protection */
 unsigned long nsects; /* number of sections in segment */
 unsigned long flags; /* flags */
};

Field Descriptions

cmd

Common to all load command structures. Set to LC_SEGMENT for this structure.

cmdsize

Common to all load command structures. For this structure, set this field to
sizeof(segment_command) plus the size of all of the section data structures that follow
(sizeof(segment_command + (sizeof(section) * segment->nsect))).

segname

A C string specifying the name of the segment. The value of this field can be any sequence
of ASCII characters, although segment names defined by Apple begin with two underscores
and consist of capital letters (as in __TEXT and __DATA). This field is fixed at 16 bytes in
length.

vmaddr

Indicates the starting virtual memory address of this segment.

vmsize

Indicates the number of bytes of virtual memory occupied by this segment. See also the
description of filesize, below.

fileoff

Indicates the offset in this file of the data to be mapped at vmaddr.

filesize

Indicates the number of bytes occupied by this segment on disk. For segments that require
more memory at runtime than they do at build time, vmsize can be larger than filesize.
For example, the __PAGEZERO segment generated by the linker for MH_EXECUTABLE files
has a vmsize of 0x1000 but a filesize of zero. Because __PAGEZERO contains no data,
there is no need for it to occupy any space until runtime. Also, the static linker often
allocates uninitialized data at the end of the __DATA segment; in this case, the vmsize will
be larger than the filesize. The loader guarantees that any memory of this sort is
initialized with zeros.

maxprot

Specifies the maximum permitted virtual memory protections of this segment.

initprot

Specifies the initial virtual memory protections of this segment.

nsects

Indicates the number of section data structures following this load command.

Mach-O Types and Data Structures 59
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

flags

Defines a set of flags which affect the loading of this segment.

■ SG_HIGHVM—The file contents for this segment are for the high part of the virtual
memory space, the low part is zero filled (for stacks in core files).

■ SG_NORELOC—This segment has nothing that was relocated in it and nothing relocated
to it. It maybe safely replaced without relocation.

section

Directly following a segment_command data structure is an array of section data structures,
with the exact count determined by the nsect field of the segment_command structure.

struct section
{
 char sectname[16]; /* name of this section */
 char segname[16]; /* segment this section goes in */
 unsigned long addr; /* memory address of this section */
 unsigned long size; /* size in bytes of this section */
 unsigned long offset; /* file offset of this section */
 unsigned long align; /* section alignment (power of 2) */
 unsigned long reloff; /* file offset of relocation entries */
 unsigned long nreloc; /* number of relocation entries */
 unsigned long flags; /* flags (section type and attributes)*/
 unsigned long reserved1; /* reserved */
 unsigned long reserved2; /* reserved */
};

Field Descriptions

sectname

A string specifying the name of this section. The value of this field can be any sequence
of ASCII characters, although section names defined by Apple begin with two underscores
and consist of lowercase letters (as in __text and __data). This field is fixed at 16 bytes
in length.

segname

A string specifying the name of the segment that should eventually contain this section.
For compactness, intermediate object files—files of type MH_OBJECT—contain only one
segment, in which all sections are placed. The static linker places each section in the named
segment when building the final product (any file that is not of type MH_OBJECT).

addr

An integer specifying the virtual memory address of this section.

size

An integer specifying the size in bytes of the virtual memory occupied by this section.

offset

An integer specifying the offset in this file to the section.

60 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

align

An integer specifying the section’s byte alignment. Specify this as a power of two; for
example, a section with 8-byte alignment would have an align value of 3 (2 to the 3rd
power equals 8).

reloff

An integer specifying the file offset of the first relocation entry for this section.

nreloc

An integer specifying the number of relocation entries located at reloff for this section.

Mach-O Types and Data Structures 61
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

flags

An integer divided into two parts. The least significant 8 bits contain the section type,
while the most significant 24 bits contain a set of flags that specify other attributes of the
section. These types and flags are primarily used by the static linker and file analysis tools
such as otool to determine how to modify or display the section. These are the possible
types:

■ S_REGULAR—This section has no particular type. The standard tools create a
__TEXT,__text section of this type.

■ S_ZEROFILL—Zero fill-on-demand section—when this section is first read from or
written to, each page within is automatically filled with bytes containing zero.

■ S_CSTRING_LITERALS—This section contains only constant C strings. The standard
tools create a __TEXT,__cstring section of this type.

■ S_4BYTE_LITERALS—This section contains only constant values that are 4 bytes long.
The standard tools create a __TEXT,__literal4 section of this type.

■ S_8BYTE_LITERALS—This section contains only constant values that are 8 bytes long.
The standard tools create a __TEXT,__literal8 section of this type.

■ S_LITERAL_POINTERS—This section contains only pointers to constant values.

■ S_NON_LAZY_SYMBOL_POINTERS—This section contains only nonlazy pointers to
symbols. The standard tools create a section of the __DATA,__nl_symbol_ptrs section
of this type.

■ S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The
standard tools create a __DATA,__la_symbol_ptrs section of this type.

■ S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools create
__TEXT,__symbol_stub and __TEXT,__picsymbol_stub sections of this type. See
“Indirect Addressing” (page 44) for more information.

■ S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization
functions. The standard tools create __DATA,__mod_init_func sections of this type.

■ S_MOD_TERM_FUNC_POINTERS—This section contains pointers to module termination
functions. The standard tools create __DATA,__mod_term_func sections of this type.

■ S_COALESCED—This section contains symbols that are coalesced by the static linker
and possibly the dynamic linker. More than one file may contain coalesced definitions
of the same symbol without causing multiple-defined-symbol errors.

The following are the possible attributes of a section:

■ S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine
instructions. The standard tools set this flag for the sections __TEXT,__text,
__TEXT,__symbol_stub, and __TEXT,__picsymbol_stub.

■ S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in
the table of contents (SYMDEF member) of a static archive library.

■ S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine instructions
and other data.

62 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

■ S_ATTR_EXT_RELOC—This section contains references that must be relocated. These
references refer to data that exists in other files (undefined symbols). To support external
relocation, the maximum virtual memory protections of the segment that contains this
section must allow both reading and writing.

■ S_ATTR_LOC_RELOC—This section contains references that must be relocated. These
references refer to data within this file.

reserved1

An integer reserved for use with certain section types. For symbol pointer sections and
symbol stubs sections which refer to indirect symbol table entries, this is the index into
the indirect table for this section’s entries. The number of entries is based on the section
size divided by the size of the symbol pointer or stub. Otherwise this field is set to zero.

reserved2

For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol
stub entries contained in the section. Otherwise, this field is reserved for future use and
should be set to zero.

Discussion

Each section in a Mach-O file has both a type and a set of attribute flags. In intermediate object
files, the type and attributes determine how the static linker copy the sections from intermediate
object files into the final product. Object file analysis tools (such as otool) use the type and
attributes to determine how to read and display the sections. The section type and attributes are
not used by the dynamic linker. Descriptions for important variants of the symbol type and
attributes as they apply to static linking follow:

■ Regular sections. In a regular section, only one definition of an external symbol may exist in
intermediate object files. The static linker returns an error if it finds any duplicate external
symbol definitions.

■ Coalesced sections. In the final product, the static linker retains only one instance of each
symbol defined in coalesced sections. Some complex language features (such as C++ vtables
and RTTI) require a definition of a particular symbol to be duplicated in every intermediate
object file. This wastes a lot of space in the final product; to reduce the memory occupied by
a program, the compiler can place symbol definitions in coalesced sections.

■ Coalesced weak definition sections (available in Mac OS X 10.2 and later). When the static
linker finds duplicate definitions for a symbol, it will discard any that are in a section that
has the weak definitions attribute. If there are no non-weak definitions, the first weak definition
is used instead. This feature is designed to support C++ templates; it allows explicit template
instantiations to override implicit ones. The C++ compiler places the explicit definitions in a
section that is not marked weak, and places the implicit ones in a coalesced section marked
weak. Intermediate object files (and thus static archive libraries) built with weak definitions
cannot be used with static linker versions prior to Mac OS X 10.2. Final products (applications
and shared libraries) should not contain weak definitions, so they can usually be used on
prior versions of Mac OS X.

twolevel_hints_command

The data structure of a LC_TWOLEVEL_HINTS load command.

struct twolevel_hints_command
{
 unsigned long cmd; /* LC_TWOLEVEL_HINTS */

Mach-O Types and Data Structures 63
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

 unsigned long cmdsize; /* sizeof(struct twolevel_hints_command) */
 unsigned long offset; /* offset to the hint table */
 unsigned long nhints; /* number of hints in the hint table */
};

Field Descriptions

cmd

Common to all load command structures. Set to LC_TWOLEVEL_HINTS for this structure.

cmdsize

Common to all load command structures. For this structure, set to
sizeof(twolevel_hints_command).

offset

An integer specifying the byte offset from the start of this file to an array of twolevel_hint
data structures, known as the two-level namespace hint table.

nhints

The number of twolevel_hint data structures located at offset.

Discussion

The static linker adds the LC_TWOLEVEL_HINTS load command and the two-level namespace hint
table to the output file when building a two-level namespace image.

Special Considerations

By default, ld does not include the LC_TWOLEVEL_HINTS command or the two-level namespace
hint table in an MH_BUNDLE file, because the presence of this load command causes the version
of the dynamic linker shipped with Mac OS X 10.0 to crash. If you know the code will run only
on Mac OS X 10.1 and later, you should explicitly enable the two-level namespace hint table. See
the ld man page, specifically about the -twolevel_namespace_hints option, for more
information.

twolevel_hint

Specifies an entry in the two-level namespace hint table.

struct twolevel_hint
{
 unsigned long isub_image:8,
 itoc:24;
};

Field Descriptions

isub_image

The subimage in which the symbol is defined. It is an index into the subimage list of the
symbol’s image (which is specified by the high eight bits of the n_desc field of the symbol
data structure—see nlist (page 73)). If this field is zero, the symbol is assumed to be in
the umbrella image itself. If the symbol is not from a an umbrella framework or library,
isub_image must be zero

64 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

itoc

The symbol index into the table of contents of the image specified by the isub_image field

Discussion

The two-level namespace hint table provides the dynamic linker with suggested positions to
start searching for symbols in the libraries the current image is linked against.

Every undefined symbol (that is, every symbol of type N_UNDF or N_PBUD) in a two-level namespace
image must have a corresponding entry in the two-level hint table, at the same index.

The static linker adds the LC_TWOLEVEL_HINTS load command and the two-level namespace hint
table to the output file when building a two-level namespace image.

By default, the linker does not include the LC_TWOLEVEL_HINTS command or the two-level
namespace hint table in an MH_BUNDLE file, because the presence of this load command causes
the version of the dynamic linker shipped with Mac OS X 10.0 to crash. If you know the code
will run only on Mac OS X 10.1 and later, you should explicitly enable the two-level namespace
hints. See the linker documentation for more information.

lc_str

Defines a variable-length string.

union lc_str
{
 unsigned long offset;
 char* ptr;
};

Field Descriptions

offset

A long integer. A byte offset from the start of the load command that contains this string
to the start of the string data.

ptr

A pointer to an array of bytes. At runtime, this pointer contains the virtual memory address
of the string data.

Discussion

Load commands store variable-length data such as library names using the lc_str data structure.
Unless otherwise specified, the data consists of a C string.

The data pointed to is stored just after the load command, and the size is added to the size of the
load command. You can determine the size of the string by subtracting the size of the load
command data structure from the cmdsize field of the load command data structure.

dylib

Defines the data used by the dynamic linker to match a shared library against the files that have
linked to it. Used exclusively in the dylib_command data structure.

struct dylib
{

Mach-O Types and Data Structures 65
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

 union lc_str name;
 unsigned long timestamp;
 unsigned long current_version;
 unsigned long compatibility_version;
};

Field Descriptions

name

A data structure of type lc_str (page 65). Specifies the name of the shared library.

timestamp

The date and time when the shared library was built.

current_version

The current version of the shared library.

compatibility_version

The compatibility version of the shared library.

Discussion

In order for the dynamic linker to successfully link an file to a dynamic library at runtime, two
criteria must be met:

■ The name for the shared library must match exactly the install name previously recorded by
the static linker in the file, or as modified by the various dynamic linker environment variables
(see the dyld man page for more information.)

■ The compatibility version for the shared library must be less than or equal to the compatibility
version recorded by the static linker in the image.

The dynamic linker uses the timestamp to determine whether it can use the prebinding
information. The current version is returned by the function NSVersionOfRunTimeLibrary to
allow you to determine the version of the library your program is using.

dylib_command

The data structure for the LC_LOAD_DYLIB and LC_ID_DYLIB load commands.

struct dylib_command
{
 unsigned long cmd; /* LC_ID_DYLIB or LC_LOAD_DYLIB */
 unsigned long cmdsize; /* includes pathname string */
 struct dylib dylib; /* the library identification */
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to either LC_LOAD_DYLIB
or LC_ID_DYLIB.

66 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

cmdsize

Common to all load command structures. For this structure, set to
sizeof(dylib_command), plus the size of the data pointed to by the name field of the
dylib field.

dylib

A data structure of type dylib (page 65). Specifies the attributes of the shared library.

Discussion

The static linker adds a LC_ID_DYLIB load command to shared libraries to identify the linking
attributes of the library.

The static linker adds one LC_LOAD_DYLIB load command for each shared library that a file links
against. All the LC_LOAD_DYLIB commands together form a list that is ordered according to
location in the file, earliest LC_LOAD_DYLIB command first. For two-level namespace files,
undefined symbol entries in the symbol table refer to their parent shared libraries by index into
this list. The index is called a library ordinal, and it is stored in the n_desc field of the nlist (page
73) data structure.

dylinker_command

The data structure for the LC_LOAD_DYLINKER and LC_ID_DYLINKER load commands.

struct dylinker_command
{
 unsigned long cmd; /* LC_ID_DYLINKER or LC_LOAD_DYLINKER */
 unsigned long cmdsize; /* includes pathname string */
 union lc_str name; /* dynamic linker's path name */
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to either LC_ID_DYLINKER
or LC_LOAD_DYLINKER.

cmdsize

Common to all load command structures. For this structure, set to
sizeof(dylinker_command), plus the size of the data pointed to by the name field.

name

A data structure of type lc_str (page 65). Specifies the name of the dynamic linker.

Discussion

Every executable file that is dynamically linked contains a LC_LOAD_DYLINKER command that
specifies the name of the dynamic linker that the kernel must load in order to execute the file.
The dynamic linker itself specifies its name using the LC_ID_DYLINKER load command.

prebound_dylib_command

The data structure for the LC_PREBOUND_DYLIB load command. For every library that a prebound
executable file links to, the static linker adds one LC_PREBOUND_DYLIB command.

Mach-O Types and Data Structures 67
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

struct prebound_dylib_command
{
 unsigned long cmd; /* LC_PREBOUND_DYLIB */
 unsigned long cmdsize; /* includes strings */
 union lc_str name; /* library's path name */
 unsigned long nmodules; /* number of modules in library */
 union lc_str linked_modules; /* bit vector of linked modules */
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_PREBOUND_DYLIB

cmdsize

Common to all load command structures. For this structure, set to
sizeof(prebound_dylib_command), plus the size of the data pointed to by the name and
linked_modules fields.

name

A data structure of type lc_str (page 65). Specifies the name of the prebound shared
library.

nmodules

An integer. Specifies the number of modules the prebound shared library contains. The
size of the linked_modules string is (nmodules / 8) + (nmodules % 8).

linked_modules

A data structure of type lc_str (page 65). Usually, this data structure defines the offset
of a C string; in this usage, it is a variable-length bitset, containing one bit for each module.
Each bit represents whether the corresponding module is linked to a module in the current
file, 1 for yes, zero for no. The bit for the first module is the low bit of the first byte.

thread_command

The data structure for the LC_THREAD and LC_UNIXTHREAD load commands. The data of this
command is specific to each CPU architecture, and appears in the header thread_status.h
located in the CPU’s directory in /usr/include/mach/.

struct thread_command
{
 unsigned long cmd;
 unsigned long cmdsize;
 /* unsigned long flavor;*/
 /* unsigned long count; */
 /* struct cpu_thread_state state;*/
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_THREAD or
LC_UNIXTHREAD.

68 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

cmdsize

Common to all load command structures. For this structure, set to
sizeof(thread_command) plus the size of the flavor and count fields, plus the size of
the CPU-specific thread state data structure.

flavor

Integer specifying the particular flavor of the thread state data structure. See the
thread_status.h header file for your CPU architecture.

count

Size of the thread state data, in number of 32-bit integers. The thread state data structure
must be fully padded to 32-bit alignment.

routines_command

The data structure for the LC_ROUTINES load command. Describes the location of the shared
library initialization function, which is a function that the dynamic linker calls before allowing
any of the routines in the library to be called.

struct routines_command
{
 unsigned long cmd;
 unsigned long cmdsize;
 unsigned long init_address;
 unsigned long init_module;
 unsigned long reserved1;
 unsigned long reserved2;
 unsigned long reserved3;
 unsigned long reserved4;
 unsigned long reserved5;
 unsigned long reserved6;
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_ROUTINES

cmdsize

Common to all load command structures. For this structure, set to
sizeof(routines_command).

init_address

An integer specifying the virtual memory address of the initialization function.

init_module

An integer specifying the index into the module table of the module containing the
initialization function.

reserved1

Reserved for future use. Set this field to zero.

Mach-O Types and Data Structures 69
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

reserved2

Reserved for future use. Set this field to zero.

reserved3

Reserved for future use. Set this field to zero.

reserved4

Reserved for future use. Set this field to zero.

reserved5

Reserved for future use. Set this field to zero.

reserved6

Reserved for future use. Set this field to zero.

Discussion

The static linker adds an LC_ROUTINES command when you specify a shared library initialization
function using the -init parameter.

sub_framework_command

The data structure for the LC_SUB_FRAMEWORK load command. Identifies the umbrella framework
of which this file is a subframework.

struct sub_framework_command
{
 unsigned long cmd;
 unsigned long cmdsize;
 union lc_str umbrella;
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_SUB_FRAMEWORK.

cmdsize

Common to all load command structures. For this structure, set to
sizeof(sub_framework_command) plus the size of the data pointed to by the umbrella
field.

umbrella

A data structure of type lc_str (page 65). Specifies the name of the umbrella framework
of which this file is a member.

sub_umbrella_command

The data structure for the LC_SUB_UMBRELLA load command. Identifies the named framework as
a subumbrella of this framework. Unlike a subframework, any client may link to a subumbrella.

struct sub_umbrella_command
{
 unsigned long cmd;

70 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

 unsigned long cmdsize;
 union lc_str sub_umbrella;
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_SUB_UMBRELLA

cmdsize

Common to all load command structures. For this structure, set to
sizeof(sub_umbrella_command) plus the size of the data pointed to by the sub_umbrella
field.

sub_umbrella

A data structure of type lc_str (page 65). Specifies the name of the umbrella framework
of which this file is a member.

sub_library_command

The data structure for the LC_SUB_LIBRARY load command. Identifies a sublibrary of this
framework, and marks this framework as an umbrella framework. Unlike a subframework, any
client may link to a sublibrary.

struct sub_library_command
{
 unsigned long cmd;
 unsigned long cmdsize;
 union lc_str sub_library;
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_SUB_LIBRARY.

cmdsize

Common to all load command structures. For this structure, set to
sizeof(sub_library_command) plus the size of the data pointed to by the sub_library
field.

sub_library

A data structure of type lc_str (page 65). Specifies the name of the framework of which
this file is a member.

sub_client_command

The data structure for the LC_SUB_CLIENT load command. Specifies the name of a file that is
allowed to link to this subframework; this file would otherwise be required to link to the umbrella
framework of which this file is a component.

struct sub_client_command
{
 unsigned long cmd;

Mach-O Types and Data Structures 71
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

 unsigned long cmdsize;
 union lc_str sub_client;
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_SUB_CLIENT

cmdsize

Common to all load command structures. For this structure, set to
sizeof(sub_client_command) plus the size of the data pointed to by the sub_client
field.

sub_client

A data structure of type lc_str (page 65). Specifies the name of a client authorized to link
to this library.

Special Considerations

ld generates a sub_client_command load command in the built product if you pass the option
-allowable_client_name name, where name is the install name of a framework or the client
name of a bundle. See the ld man page, specifically about the options -allowable_client_name
and -client_name, for more information.

Symbol Table and Related Data Structures

Two load commands, LC_SYMTAB and LC_DYSYMTAB, describe the size and location of the symbol
tables, along with additional metadata. The other data structures listed in this section represent
the symbol tables themselves.

symtab_command

The data structure for the LC_SYMTAB load command. Describes the size and location of the symbol
table data structures.

struct symtab_command
{
 unsigned long cmd; /* LC_SYMTAB */
 unsigned long cmdsize; /* sizeof(struct symtab_command) */
 unsigned long symoff; /* symbol table offset */
 unsigned long nsyms; /* number of symbol table entries */
 unsigned long stroff; /* string table offset */
 unsigned long strsize; /* string table size in bytes */
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_SYMTAB

72 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

cmdsize

Common to all load command structures. For this structure, set to
sizeof(symtab_command).

symoff

An integer containing the byte offset from the start of the file to the location of the symbol
table entries. The symbol table is an array of nlist (page 73) data structures.

nsyms

An integer indicating the number of entries in the symbol table.

stroff

An integer containing the byte offset from the start of the image to the location of the string
table.

strsize

An integer indicating the size (in bytes) of the string table.

Discussion

LC_SYMTAB should exist in both statically linked and dynamically linked file types.

nlist

Describes an entry in the symbol table. Declared in the header /usr/include/mach-o/nlist.h.

struct nlist
{
 union {
 char *n_name;
 long n_strx;
 } n_un;
 unsigned char n_type;
 unsigned char n_sect;
 short n_desc;
 unsigned long n_value;
};

Field Descriptions

n_un

A union that holds an index into the string table, n_strx. To specify an empty string (“”),
set this value to zero. The n_name field is not currently used in Mach-O.

Mach-O Types and Data Structures 73
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

n_type

A byte value consisting of data accessed using four bit masks. The masks are used as
follows:

■ N_STAB (0xe0) If any of these 3 bits are set, the symbol is a symbolic debugging table
(stab) entry. In that case, the entire n_type field is interpreted as a stab value. See the
header /usr/include/mach-o/stab.h for valid stab values.

■ N_PEXT (0x10). If this bit is on, this symbol is marked as having limited global scope.
When the file is fed to the static linker, it clears the N_EXT bit for each symbol with the
N_PEXT bit set. (The ld option -keep_private_externs disables this behavior.) With
Mac OS X GCC, you can use the __private_extern__ function attribute to set this
bit.

■ N_TYPE (0x0e) These bits define the type of the symbol.

■ N_EXT (0x01) If this bit is on, this symbol is an external symbol, a symbol that is either
defined outside of this file or that is defined in this file, but can be referenced by other
files.

Values for the N_TYPE field include the following:

■ N_UNDF (0x0)—the symbol is undefined. Undefined symbols are symbols referenced
in this module but are defined in a different module. Set the n_sect field to NO_SECT.

■ N_ABS (0x2) —the symbol is absolute. The linker does not update the value of an
absolute symbol. Set the n_sect field to NO_SECT.

■ N_SECT (0xe) —the symbol is defined in the section number given in n_sect.

■ N_PBUD (0xc) —the symbol is undefined and the image is using a prebound value for
the symbol. Set the n_sect field to NO_SECT.

■ N_INDR (0xa) —the symbol is defined to be the same as another symbol. The n_value
field is an index into the string table specifying the name of the other symbol. When
that symbol is linked, both this and the other symbol point to the same defined type
and value.

n_sect

An integer specifying the number of the section that this symbol can be found in, or
NO_SECT if the symbol is not to be found in any section of this image. The sections are
contiguously numbered across segments, starting from 1, according to the order they
appear in the LC_SEGMENT load commands.

74 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

n_desc

A 16-bit value providing additional information about the nature of this symbol. The
reference flag can be accessed using the REFERENCE_TYPE mask (0xF) and are defined as
follows:

■ REFERENCE_FLAG_UNDEFINED_NON_LAZY (0x0)—This symbol is a reference to an external
non-lazy (data) symbol.

■ REFERENCE_FLAG_UNDEFINED_LAZY (0x1)—This symbol is a reference to an external
lazy symbol—that is, to a function call.

■ REFERENCE_FLAG_DEFINED (0x2)—This symbol is defined in this module.

■ REFERENCE_FLAG_PRIVATE_DEFINED (0x3)—This symbol is defined in this module and
is visible only to modules within this shared library.

■ REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY (0x4)—This symbol is defined in
another module in this file, is a non-lazy (data) symbol, and is visible only to modules
within this shared library.

■ REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY (0x5)—This symbol is defined in another
module in this file, is a lazy (function) symbol, and is visible only to modules within
this shared library.

Additionally, the following bits might also be set:

■ REFERENCED_DYNAMICALLY (0x10) must be set for any symbol that might be referenced
by another image. The strip tool uses this bit to avoid removing symbols that must
exist: If the symbol has this bit set, strip does not strip it.

■ N_DESC_DISCARDED (0x20) is used by the dynamic linker at runtime; do not set this bit.

■ N_WEAK_REF (0x40) indicates that this symbol is a weak reference; if the dynamic linker
cannot find a definition for this symbol, it set the address of this symbol to zero. The
static linker sets this symbol given the appropriate weak-linking flags.

■ N_WEAK_DEF (0x80) indicates that this symbol is a weak definition; if the static linker
or the dynamic linker finds another (non-weak) definition for this symbol, the weak
definition is ignored.

If this file is a two-level namespace image (that is, if the MH_TWOLEVEL flag of the
mach_header structure is set), the high 8 bits of n_desc specify the number of the library
in which this symbol is defined. Use the macro GET_LIBRARY_ORDINAL to obtain this value,
and the macro SET_LIBRARY_ORDINAL to set it. A zero value indicates the current image.
1 through 254 specify the library number according to the order of LC_LOAD_DYLIB
commands in the file. For plug–ins that load symbols from the executable program they
are linked against, 255 specifies the executable image. For flat namespace images, the high
8 bits must be zero.

n_value

An integer that contains the value of the symbol. This format of this value is different for
each type of symbol table entry (as specified by the n_type field). For the N_SECT symbol
type, n_value is the address of the symbol. See the description of the n_type field for
information on other possible values.

Mach-O Types and Data Structures 75
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

Discussion

Common symbols must be of type N_UNDF and must have the N_EXT bit set. The n_value for a
common symbol is the size (in bytes) of the data of the symbol. In C, a common symbol is a
variable that is declared but not initialized in this file. Common symbols can only appear in
MH_OBJECT-type Mach-O files.

dysymtab_command

The data structure for the LC_DYSYMTAB load command. Describes the sizes and locations of the
parts of the symbol table used for dynamic linking.

struct dysymtab_command
{
 unsigned long cmd; /* LC_DYSYMTAB */
 unsigned long cmdsize; /* sizeof(struct dysymtab_command) */
 unsigned long ilocalsym; /* index to local symbols */
 unsigned long nlocalsym; /* number of local symbols */
 unsigned long iextdefsym; /* index to externally defined symbols */
 unsigned long nextdefsym; /* number of externally defined symbols */
 unsigned long iundefsym; /* index to undefined symbols */
 unsigned long nundefsym; /* number of undefined symbols */
 unsigned long tocoff; /* file offset to table of contents */
 unsigned long ntoc; /* # of entries in table of contents */
 unsigned long modtaboff; /* file offset to module table */
 unsigned long nmodtab; /* # of module table entries */
 unsigned long extrefsymoff; /* offset to referenced symbol table */
 unsigned long nextrefsyms; /* # of referenced symbol table entries */
 unsigned long indirectsymoff; /* f-offset to the indirect symbol table */
 unsigned long nindirectsyms; /* #of indirect symbol table entries */
 unsigned long extreloff; /* offset to external relocation entries */
 unsigned long nextrel; /* number of external relocation entries */
 unsigned long locreloff; /* offset to local relocation entries */
 unsigned long nlocrel; /* number of local relocation entries */
};

Field Descriptions

cmd

Common to all load command structures. For this structure, set to LC_DYSYMTAB

cmdsize

Common to all load command structures. For this structure, set to
sizeof(dysymtab_command).

ilocalsym

An integer indicating the index of the first symbol in the group of local symbols.

nlocalsym

An integer indicating the total number of symbols in the group of local symbols.

iextdefsym

An integer indicating the index of the first symbol in the group of defined external symbols.

76 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

nextdefsym

An integer indicating the total number of symbols in the group of defined external symbols.

iundefsym

An integer indicating the index of the first symbol in the group of undefined external
symbols.

nundefsym

An integer indicating the total number of symbols in the group of undefined external
symbols.

tocoff

An integer indicating the byte offset from the start of the file to the table of contents data.

ntoc

An integer indicating the number of entries in the table of contents.

modtaboff

An integer indicating the byte offset from the start of the file to the module table data.

nmodtab

An integer indicating the number of entries in the module table.

extrefsymoff

An integer indicating the byte offset from the start of the file to the external reference table
data.

nextrefsyms

An integer indicating the number of entries in the external reference table.

indirectsymoff

An integer indicating the byte offset from the start of the file to the indirect symbol table
data

nindirectsyms

An integer indicating the number of entries in the indirect symbol table

extreloff

An integer indicating the byte offset from the start of the file to the external relocation
table data

nextrel

An integer indicating the number of entries in the external relocation table

locreloff

An integer indicating the byte offset from the start of the file to the local relocation table
data.

nlocrel

An integer indicating the number of entries in the local relocation table.

Mach-O Types and Data Structures 77
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

Discussion

The LC_DYSYMTAB load command contains a set of indexes into the symbol table and a set of file
offsets that define the location of several other tables. Fields for tables not used in the file should
be set to zero. These tables are described in the section “Indirect Addressing” (page 44).

dylib_table_of_contents

Describes an entry in the table of contents of a dynamic shared library.

struct dylib_table_of_contents
{
 unsigned long symbol_index;
 unsigned long module_index;
};

Field Descriptions

symbol_index

An index into the symbol table indicating the defined external symbol to which this entry
refers.

module_index

An index into the module table indicating the module in which this defined external
symbol is defined.

dylib_module

Describes a module table entry for a dynamic shared library.

struct dylib_module
{
 unsigned long module_name;
 unsigned long iextdefsym;
 unsigned long nextdefsym;
 unsigned long irefsym;
 unsigned long nrefsym;
 unsigned long ilocalsym;
 unsigned long nlocalsym;
 unsigned long iextrel;
 unsigned long nextrel;
 unsigned long iinit_iterm;
 unsigned long ninit_nterm;
 unsigned long objc_module_info_addr;
 unsigned long objc_module_info_size;
};

Field Descriptions

module_name

An index to an entry in the string table indicating the name of the module.

iextdefsym

The index into the symbol table of the first defined external symbol provided by this
module.

78 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

nextdefsym

The number of defined external symbols provided by this module.

irefsym

The index into the external reference table of the first entry provided by this module.

nrefsym

The number of external reference entries provided by this module.

ilocalsym

The index into the symbol table of the first local symbol provided by this module.

nlocalsym

The number of local symbols provided by this module.

iextrel

The index into the external relocation table of the first entry provided by this module.

nextrel

The number of entries in the external relocation table that are provided by this module.

iinit_iterm

Contains both the index into the module initialization section (the low 16 bits) and the
index into the module termination section (the high 16 bits) to the pointers for this module.

ninit_nterm

Contains both the number of pointers in the module initialization (the low 16 bits) and
the number of pointers in the module termination section (the high 16 bits) for this module.

objc_module_info_addr

The statically linked address of the start of the data for this module in the __module_info
section of the __OBJC segment.

objc_module_info_size

The number of bytes of data for this module that are used in the __module_info section
of the __OBJC segment.

dylib_reference

The structure of an external reference table entry for the external reference entries provided by
a module in a shared library.

struct dylib_reference
{
 unsigned long isym:24, /* index into the symbol table */
 flags:8; /* flags to indicate the type of reference */
};

Field Descriptions

isym

An index into the symbol table for the symbol being referenced.

Mach-O Types and Data Structures 79
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

flags

A constant for the type of reference being made. Use the same REFERENCE_FLAG constants
as described in the nlist (page 73) structure description.

Relocation Data Structures

Relocation is the process of moving symbols to a different address. When the static linker moves
a symbol (a function or an item of data) to a different address, it needs to change all of the
references to that symbol to use the new address. The relocation entries in a Mach-O file contain
offsets in the file to addresses that need to be relocated when the contents of the file are relocated.
The addresses are usually relative offsets stored in CPU instructions; the exact format of the
address is specified in each relocation entry. When creating the intermediate object file, the
compiler generates one relocation entry for every instruction that contains a relative address.
The static linker typically removes the relocation entries when building the final product, as
relocation local to a single Mach-O file does not usually occur at runtime.

relocation_info

Describes an item in the file that uses an address that needs to be updated if the address is
changed. This data structure is declared in the header /usr/include/mach-o/reloc.h.

struct relocation_info
{
 long r_address;
 unsigned int r_symbolnum:24,
 r_pcrel:1,
 r_length:2,
 r_extern:1,
 r_type:4;
};
#define R_ABS 0 /* absolute relocation type for Mach-O files */

Field Descriptions

r_address

In MH_OBJECT files, this is an offset from the start of the section to the item containing the
address requiring relocation. If the high bit of this field is set (which you can check using
the R_SCATTERED bit mask), the relocation_info structure is actually a
scattered_relocation_info (page 81) structure.

In images used by the dynamic linker, this is an offset from the virtual memory address
of the data of the first segment_command (page 58) that appears in the file (not necessarily
the one with the lowest address). For images with the MH_SPLIT_SEGS flag set, this is an
offset from the virtual memory address of data of the first read/write segment_command
(page 58).

r_symbolnum

Indicates either an index into the symbol table (when the r_extern field is set to 1) or a
section number (when the r_extern field is set to zero). As previously mentioned, sections
are ordered from 1 to 255 in the order in which they appear in the LC_SEGMENT load
commands.

80 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

r_pcrel

Indicates whether the item containing the address to be relocated is part of a CPU
instruction that uses PC-relative addressing.

For addresses contained in PC-relative instructions, the CPU adds the address of the
instruction to the address contained in the instruction.

r_length

Indicates the length of item containing the address to be relocated. A value of zero indicates
a single byte; a value of 1 indicates a 2-byte address, and a value of 2 indicates a 4-byte
address.

r_extern

Indicates whether the r_symbolnum field is an index into the symbol table (1) or a section
number (zero).

r_type

Indicates the type of relocation to be performed. Possible values for this field are shared
between this structure and the scattered_relocation_info (page 81) data structure;
see the description of the r_type field in the scattered_relocation_info (page 81) data
structure for more details.

scattered_relocation_info

Describes an item in the file that uses a non-zero constant in its relocatable expression or two
addresses in its relocatable expression that needs to be updated if the addresses being used are
changed. This information is needed to reconstruct the addresses that make up the relocatable
expression's value in order to change the addresses independently of each other. This data
structure is declared in the header /usr/include/mach-o/reloc.h.

struct scattered_relocation_info
{
#ifdef __BIG_ENDIAN__
 unsigned int r_scattered:1,
 r_pcrel:1,
 r_length:2,
 r_type:4,
 r_address:24;
 long r_value;
#endif /* __BIG_ENDIAN__ */
#ifdef __LITTLE_ENDIAN__
 unsigned int r_address:24,
 r_type:4,
 r_length:2,
 r_pcrel:1,
 r_scattered:1;
 long r_value;
#endif /* __LITTLE_ENDIAN__ */
};

Mach-O Types and Data Structures 81
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

Field Descriptions

r_address

In MH_OBJECT files, this is an offset from the start of the section to the item containing the
address requiring relocation. If the high bit of this field is clear (which you can check using
the R_SCATTERED bit mask), this structure is actually a relocation_info (page 80) structure.

In images used by the dynamic linker, this is an offset from the virtual memory address
of the data of the first segment_command (page 58) that appears in the file (not necessarily
the one with the lowest address). For images with the MH_SPLIT_SEGS flag set, this is an
offset from the virtual memory address of data of the first read/write segment_command
(page 58).

Since the r_address field is only 24 bits long, the offset in this field can never be larger
than 0x00FFFFFF, thus limiting the size of the relocatable contents of this image to 16
megabytes.

82 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

r_value

The address of the relocatable expression for the item in the file that needs to be updated
if the address is changed. For relocatable expressions with the difference of two section
addresses, the address from which to subtract (in mathematical terms, the minuend) is
contained in the first relocation entry and the address to subtract (the subtrahend) is
contained in the second relocation entry.

For x86 processors, the r_type field may contain any of the values listed below.

■ GENERIC_RELOC_VANILLA. A generic relocation entry for both addresses contained in
data and addresses contained in CPU instructions.

■ GENERIC_RELOC_PAIR. The second relocation entry of a pair.

■ GENERIC_RELOC_SECTDIFF. A relocation entry for an item that contains the difference
of two section addresses. This is generally used for position-independent code
generation. GENRIC_RELOC_SECTDIFF contains the address from which to subtract; it
must be followed by a GENERIC_RELOC_PAIR containing the address to subtract.

■ GENERIC_RELOC_PB_LA_PTR. A relocation entry for a prebound lazy pointer. This is
always a scattered relocation entry. The r_value field contains the non-prebound
value of the lazy pointer.

For PowerPC processors, the r_type field is usually PPC_RELOC_VANILLA for addresses
contained in data. Relocation entries for addresses contained in CPU instructions are
described by other r_type values, as follows.

■ PPC_RELOC_PAIR. The second relocation entry of a pair. A PPC_RELOC_PAIR entry must
follow each of the other relocation entry types, except for PPC_RELOC_VANILLA,
PPC_RELOC_BR14, PPC_RELOC_BR24, and PPC_RELOC_PB_LA_PTR.

■ PPC_RELOC_BR14—The instruction contains a 14-bit branch displacement.

■ PPC_RELOC_BR24—The instruction contains a 24-bit branch displacement.

■ PPC_RELOC_HI16—The instruction contains the high 16 bits of a relocatable expression.
The next relocation entry must be a PPC_RELOC_PAIR specifying the low 16 bits of the
expression in the low 16 bits of the r_value field.

■ PPC_RELOC_LO16—The instruction contains the low 16 bits of an address. The next
relocation entry must be a PPC_RELOC_PAIR specifying the high 16 bits of the expression
in the low (not the high) 16 bits of the r_value field.

■ PPC_RELOC_HA16—Same as the PPC_RELOC_HI16 except the low 16 bits and the high
16 bits are added together with the low 16 bits sign-extended first. This means if bit
15 of the low 16 bits is set, the high 16 bits stored in the instruction will be adjusted.

■ PPC_RELOC_LO14—Same as PPC_RELOC_LO16 except that the low 2 bits are not stored
in the CPU instruction and are always zero. PPC_RELOC_LO14 is used in 64-bit load/store
instructions.

■ PPC_RELOC_SECTDIFF—A relocation entry for an item that contains the difference of
two section addresses. This is generally used for position-independent code generation.
PPC_RELOC_SECTDIFF contains the address from which to subtract; it must be followed
by a PPC_RELOC_PAIR containing the section address to subtract.

Mach-O Types and Data Structures 83
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

■ PPC_RELOC_PB_LA_PTR—A relocation entry for a prebound lazy pointer. This is always
a scattered relocation entry. The r_value field contains the non-prebound value of the
lazy pointer.

■ PPC_RELOC_HI16_SECTDIFF—Section difference form of PPC_RELOC_HI16.

■ PPC_RELOC_LO16_SECTDIFF—Section difference form of PPC_RELOC_LO16.

■ PPC_RELOC_HA16_SECTDIFF—Section difference form of PPC_RELOC_HA16.

■ PPC_RELOC_JBSR—A relocation entry for the assembler synthetic opcode jbsr, which
is a 24-bit branch-and-link instruction using a branch island. The branch displacement
is assembled to the branch island address and the relocation entry indicates the actual
target symbol. If the linker can make the branch reach the actual target symbol that is
done. Otherwise, the branch is relocated to the branch island.

Discussion

Mach-O relocation data structures support two different types of relocatable expressions in
machine code and data:

■ symbol address + constant. The most typical form of relocation, adding a simple constant
value to the existing address.

■ address of section y - address of section x + constant. The section difference form of relocation.
This form of relocation supports position-independent code.

Static Archive Libraries

This section describes the file format used for static archive libraries, which are described in the
section “Static Archive Libraries” (page 15). Mac OS X uses a format derived from the original
BSD static archive library format, with a few minor additions. See the discussion for the ranlib
data structure for more information.

ranlib

The data structure of a static archive library symbol table entry. Declared in the header file
/usr/include/mach-o/ranlib.h.

struct ranlib
{
 union
 {
 unsigned long ran_strx; /* string table index of */
 char * ran_name; /* symbol defined by */
 } ran_un;
 unsigned long ran_off; /* library member at this offset */
};

Field Descriptions

ran_strx

The index number (zero-based) of the string in the string table that follows the array of
ranlib data structures.

84 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

ran_name

The byte offset, from the start of the file, at which the symbol name can be found.

ran_off

The byte offset, from the start of the file, at which the header line for the member containing
this symbol can be found.

Discussion

A static archive library begins with the file identifier string !<arch>, followed by a newline
character (ASCII value 0x0A). The file identifier string is followed by a series of member files.
Each member consists of a fixed-length header line followed by the file data. The header line is
60 bytes long and is divided into five fixed-length fields, as shown in this sample header line:

grapple.c 999514211 501 20 100644 167 `

The last 2 bytes of the header line are a backquote (`) character (ASCII value 0x60) and a newline
character. All header fields are defined in ASCII and padded with spaces to the full length of the
field. All fields are defined in decimal notation, except for the file mode field, which is defined
in octal. The fields are described in depth as follows:

■ The name field (16 bytes) contains the name of the file. If the name is either longer than 16
bytes, or contains a space character, the actual name should be written directly after the header
line and the name field should contain the string #1/ followed by the length. To keep the
archive entries aligned to 4 byte boundaries, length of the name that follows the #1/ is rounded
to 4 bytes and the name that follows the header is padded with null bytes.

■ The modified date field (12 bytes) is taken from the st_time field returned by the stat system
call.

■ The user ID field (6 bytes) is taken from the st_uid field returned by the stat system call.

■ The group ID field (6 bytes) is taken from the st_gid field returned by the stat system call.

■ The file mode field (8 bytes) is taken from the st_mode field returned by the stat system call.
This field is written in octal notation.

■ The file size field (8 bytes) is taken from the st_size field returned by the stat system call.

The first member in a static archive library is always the symbol table describing the contents of
the rest of the member files. This member is always called either __.SYMDEF or __.SYMDEF
SORTED. (note the two leading underscores and period). The name used depends on the sort order
of the symbol table. The older variant—__.SYMDEF—contains entries in the same order that they
appear in the object files. The newer variant—__.SYMDEF SORTED— contains entries in alphabetical
order, which allows the static linker to load the symbols faster.

The __.SYMDEF and .__SORTED SYMDEF archive members contain an array of ranlib data
structures, preceded by the length (in bytes) (a long integer, 4 bytes) of the number of items in
the array. The array is followed by a string table of null-terminated strings, which are preceded
by the length in bytes of the entire string table (again, a 4-byte long integer).

The string table is an array of C strings, each terminated by a null byte.

The ranlib declarations can be found in the header /usr/include/mach-o/ranlib.h.

Mach-O Types and Data Structures 85
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

Special Considerations

Prior to the advent of libtool, a tool called ranlib was used to generate the symbol table. ranlib
has since been integrated into libtool. See the man page for libtool for more information.

Multi-CPU Architecture Files

The standard development tools normally accept multiple-CPU (or “fat”) files as parameters
wherever a normal Mach-O file or static archive library is accepted. The dynamic linker will load
the correct data for the currently-running CPU from fat shared libraries, frameworks, and bundles.

A fat file is not really a Mach-O file at all. It is a simple archive format that contains the data of
either multiple Mach-O files (one for each CPU architecture you wish to support) or multiple
static archive libraries (again, one for each CPU architecture you wish to support). You can have
a fat file containing data for only one CPU architecture, although it’s not very useful to do so.

A multiple-architecture, or “fat” file is one that contains compiled code and data for more than
one CPU architecture. A fat file contains a set of single-CPU files, one for each CPU architecture,
with a special header at the beginning of the file to allow the various runtime tools to quickly
find a particular CPU architecture. Each single-CPU file is stored as a continuous set of bytes at
an offset in the fat file. The single-CPU files may currently be either Mach-O files or static archive
libraries. For example, a fat static archive library might contain the data of one static archive
library containing PowerPC modules and also the data for one static archive library containing
x86 modules.

A fat file always begins with a fat_header (page 86) data structure, followed by a set of fat_arch
(page 87) data structures, and then the actual data for all of the CPU architectures. All data in
these data structures is stored in big-endian byte order.

fat_header

Describes the layout of a “fat” file, which is a file that can contain code and data for more than
one CPU architecture. This data structure is declared in the header /usr/include/mach-o/fat.h.

struct fat_header
{
 unsigned long magic; // FAT_MAGIC
 unsigned long nfat_arch; // count structs that follow
};

Field Descriptions

magic

An integer containing the value 0xCAFEBABE in big-endian byte order format. On a
big-endian host CPU, this can be validated using the constant FAT_MAGIC ; on a little-endian
host CPU, it can be validated using the constant FAT_CIGAM.

nfat_arch

An integer specifying the number of fat_arch (page 87) data structures that follow. This
is the number of CPU architectures contained in this file.

86 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

Discussion

The fat_header data structure is placed at the start of a file that contains Mach-O files for multiple
CPU architectures. Directly following the fat_header data structure is a set of fat_arch (page
87) data structures, one for each CPU architecture included in the file.

Regardless of the content it describes, all of the fields in this data structure are stored in big-endian
byte order.

fat_arch

Describes the location within the file of data for a single CPU architecture. This data structure is
declared in the header /usr/include/mach-o/fat.h.

struct fat_arch
{
 cpu_type_t cputype;
 cpu_subtype_t cpusubtype;
 unsigned long offset;
 unsigned long size;
 unsigned long align;
};

Field Descriptions

cputype

An enumeration value of type cpu_type_t. Specifies the CPU family.

cpusubtype

An enumeration value of type cpu_subtype_t. Specifies the specific member of the CPU
family on which this entry may be used, or a constant specifying all members.

offset

Offset to the beginning of the data for this CPU.

size

Size of the data for this CPU.

align

The power of 2 alignment for the offset of the contents of this CPU architecture. This is
required to ensure that, if this fat file is changed, the contents it retains are correctly aligned
for virtual memory paging and other uses.

Discussion

An array of fat_arch data structures appears directly after the fat_header (page 86) data
structure of a file that contains Mach-O files for multiple CPU architectures.

Regardless of the content it describes, all of the fields in this data structure are stored in big-endian
byte order.

Mach-O Types and Data Structures 87
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

88 Mach-O Types and Data Structures
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 3

Mach-O File Format Reference

This chapter documents data structures that compose the Mach-O file format, as well as the
low-level functions that you can use to manipulate Mach-O files at runtime.

Dynamic Linker Functions

The dynamic linker provides several different groups of functionality that allows your application
to manipulate Mach-O files at runtime.

Object File Image Functions

NSAddImage

Adds the specified Mach-O image to the currently running process.

const struct mach_header* NSAddImage(
 char* image_name,
 unsigned long options);

Parameter Descriptions

image_name

A pointer to a C string. Pass the pathname to a shared library on disk. For best performance,
specify the full pathname of the shared library—not a symlink.

Dynamic Linker Functions 89
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions
Reference

options

A bit mask. Pass one or more of the following options or NSADDIMAGE_OPTION_NONE to
specify no options.
NSADDIMAGE_OPTION_RETURN_ON_ERROR

If an error occurs and you have specified this option, NSAddImage returns NULL. You can
then use the function NSLinkEditError to retrieve information about the error.

If an error occurs, and you have not specified this option, NSAddImage calls the linkEdit
error handler you have installed using the NSInstallLinkEditErrorHandlers function.
If you have not installed a link edit error handler, NSAddImage prints an error to stderr
and causes a breakpoint trap to end the program.

NSADDIMAGE_OPTION_WITH_SEARCHING

With this option, the image_name passed for the library and all its dependents is affected
by the various dyld environment variables as if this library were linked into the program.

NSADDIMAGE_OPTION_RETURN_ONLY_IF_LOADED

With this option, NSAddImage returns NULL if the shared library was not loaded prior to
this call to NSAddImage.

A pointer to a mach_header (page 53) data structure. This is a pointer to the start
of the loaded image.

function result

Discussion

NSAddImage loads the shared library specified by image_name into the current process, returning
a pointer to the mach_header (page 53) data structure of the loaded image. Any libraries that the
specified library depends on are also loaded.

The linkEdit error handler is documented in the NSModule(3) man page.

Version Notes

This function was first introduced in Mac OS X 10.1.

NSCreateObjectFileImageFromFile

Creates an image reference for a given Mach-O file.

NSObjectFileImageReturnCode NSCreateObjectFileImageFromFile(
 const char* pathName,
 NSObjectFileImage* objectFileImage);

Parameter Descriptions

pathName

A C string. Pass the pathname to a Mach-O executable file. You must have previously
built this file with the -bundle linker option, or this function returns an error.

objectFileImage

On output, a pointer to an NSObjectFileImage opaque data structure.

A result code (see below).function result

90 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Discussion

Given a pathname to a Mach-O executable, this function creates and returns an
NSObjectFileImage reference. The current implementation works only with bundles, so you
must build the Mach-O executable file using the -bundle linker option.

Result Codes

NSObjectFileImageSuccess

The operation was completed successfully.

NSObjectFileImageFailure

The operation was not successfully completed. When this result code is returned, an error
message is printed to the standard error stream.

NSObjectFileImageInappropriateFile

The specified Mach-O file is not of a type this function can operate upon.

NSObjectFileImageArch

The specified Mach-O file is for a different CPU architecture.

NSObjectFileImageFormat

The specified file does not appear to be a Mach-O file.

NSObjectFileImageAccess

The access permissions for the specified file do not permit the creation of the image.

NSCreateObjectFileImageFromMemory

Creates an image reference for a Mach-O file currently in memory.

NSObjectFileImageReturnCode NSCreateObjectFileImageFromFile(
 void* address,
 unsigned long size,
 NSObjectFileImage* objectFileImage);

Parameter Descriptions

address

A pointer to the memory block containing the Mach-O file contents.

size

The size of the memory block, in bytes.

objectFileImage

On output, a pointer to an NSObjectFileImage opaque data structure.

A result code (see below).function result

Dynamic Linker Functions 91
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Discussion

Given a pointer to a Mach-O file in memory, this function creates and returns an
NSObjectFileImage reference. The current implementation works only with bundles, so you
must build the Mach-O executable file using the -bundle linker option.

Availability

Available in Mac OS X version 10.3 and later.

Result Codes

NSObjectFileImageSuccess

The operation was completed successfully.

NSObjectFileImageFailure

The operation was not successfully completed. When this result code is returned, an error
message is printed to the standard error stream.

NSObjectFileImageInappropriateFile

The Mach-O file in memory is not of a type this function can operate upon.

NSObjectFileImageArch

The specified Mach-O file is for a different CPU architecture.

NSObjectFileImageFormat

The memory block does not appear to point to a Mach-O file.

NSObjectFileImageAccess

The access permissions for the specified file do not permit the creation of the image.

NSDestroyObjectFileImage

Releases the given object file image.

enum DYLD_BOOL NSDestroyObjectFileImage(
 NSObjectFileImage objectFileImage);

Parameter Descriptions

objectFileImage

A reference to the object file image to destroy.

TRUE if the image was successfully destroyed, FALSE if not.function result

NSNameOfModule

Returns the name of the given module.

const char* NSNameOfModule(
 NSModule module);

92 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Parameter Descriptions

module

A module reference. Pass the module whose name you wish to retrieve.

A C string containing the name of the module. The string is owned by the dynamic
linker and you should not free it.

function result

Discussion

See “Modules—The Smallest Unit of Code” (page 14) for more information about modules.

NSLibraryNameForModule

Returns the name of the library that contains the given module.

const char* NSLibraryNameOfModule(
 NSModule module);

Parameter Descriptions

module

A module reference. Pass the module whose library name you wish to retrieve.

A C string containing the name of the library that contains the module. The string
is owned by the dynamic linker and you should not free it.

function result

Discussion

See “Modules—The Smallest Unit of Code” (page 14) for more information about modules.

NSLinkModule

Links the given object file image as a module into the current program.

NSModule NSLinkModule(
 NSObjectFileImage objectFileImage,
 const char* moduleName,
 unsigned long options);

Parameter Descriptions

objectFileImage

An object file image reference. Pass a reference created using the
NSCreateObjectFileImageFromFile (page 90) function.

moduleName

A C string. Pass the absolute path to the object file image. GDB uses this path to retrieve
debug symbol information from the library.

Dynamic Linker Functions 93
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

options

An unsigned long value. Pass one or more of the following bit masks or
NSLINKMODULE_OPTION_NONE to specify no options.
NSLINKMODULE_OPTION_BINDNOW

The dynamic linker binds all of the undefined references immediately, rather than waiting
until the references are actually used. All dependent libraries are also be bound.

NSLINKMODULE_OPTION_PRIVATE

Do not add the global symbols from the module to the global symbol list. Instead, you
must use the NSLookupSymbolInModule (page 99) function to obtain symbols from this
module.

NSLINKMODULE_OPTION_RETURN_ON_ERROR

If an error occurs while binding the module, return NULL. You can then use the function
NSLinkEditError to retrieve information about the error.

Without this option, NSLinkModule calls the linkEdit error handler you have installed
using the NSInstallLinkEditErrorHandlers function. If you have not installed a link
edit error handler, NSLinkModule prints a message to the standard error stream and causes
a breakpoint trap to end the program.

A reference to the linked module.function result

Discussion

When you call NSLinkModule, all libraries referenced by the given module are added to the
library search list. Unless you pass the NSLINKMODULE_OPTION_PRIVATE, NSLinkModule adds all
global symbols in the module to the global symbol list.

See “Modules—The Smallest Unit of Code” (page 14) for more information about modules.

NSUnLinkModule

Unlinks the given module from the current program.

enum DYLD_BOOL NSUnLinkModule(
 NSModule module,
 unsigned long options);

Parameter Descriptions

module

A module reference. Pass a reference to a module that you have previously linked using
the NSLinkModule (page 93) function.

94 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

options

An unsigned long value. You can specify one or more of the following bit masks.
NSUNLINKMODULE_OPTION_NONE

Unlink the module and deallocate the memory it occupies.

NSUNLINKMODULE_OPTION_KEEP_MEMORY_MAPPED

Unlink the module, but do not deallocate the memory it occupies. Addresses that reside
within the module will still be valid. You cannot unmap this memory later; it will be
released when the process exits or is terminated.

NSUNLINKMODULE_OPTION_RESET_LAZY_REFERENCES

Unlink the module and reset lazy references from other modules that are bound to the
module. You can then link a new module that implements the same symbols, and the
function call references will then bind to the new module when accessed.

Discussion

See “Modules—The Smallest Unit of Code” (page 14) for more information about modules.

Special Considerations

As of this writing (Mac OS X 10.2), NSUNLINKMODULE_OPTION_RESET_LAZY_REFERENCES can be
used only with PowerPC CPU executables.

NSIsSymbolNameDefined

Returns true if the given symbol is defined in the current program.

enum DYLD_BOOL NSIsSymbolNameDefined(
 const char* symbolName);

Parameter Descriptions

symbolName

A C string. Pass the name of the symbol whose definition status you wish to discover.

A boolean value indicating true if the symbol is defined by any image loaded in
the current process, false if the symbol cannot be found.

function result

Discussion

If you know the name of the library in which the symbol is likely to be located, you can use the
NSIsSymbolNameDefinedWithHint (page 95) function, which may be faster than
NSIsSymbolNameDefined. You should use the NSIsSymbolNameDefinedInImage (page 96)
function to perform a two-level namespace lookup.

NSIsSymbolNameDefinedWithHint

Returns true if the given symbol is defined in the current program, with a hint specifying the
name of the shared library likely to contain the symbol.

enum DYLD_BOOL NSIsSymbolNameDefinedWithHint(
 const char* symbolName,

Dynamic Linker Functions 95
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

 const char* libraryNameHint);

Parameter Descriptions

symbolName

A C string. Pass the name of the symbol whose definition status you wish to discover.

libraryNameHint

A C string. Pass any part of the name of the shared library that is likely to contain the
symbol. It searches only the first shared library that matches.

A boolean value indicating true if the symbol is defined by any image loaded in
the current process, false if the symbol cannot be found.

function result

Discussion

The library name you pass to NSIsSymbolNameDefinedWithHint allows it to determine a position
in the list of loaded symbols from which to start the search. This can result in a considerably
faster lookup search time than is possible using NSIsSymbolNameDefined (page 95).

Note that NSIsSymbolNameDefinedWithHint performs a flat lookup even if the symbol namespace
of the current program has two levels. You should use the NSIsSymbolNameDefinedInImage
(page 96) function to perform a two-level namespace lookup.

NSIsSymbolNameDefinedInImage

Returns true if the given image contains the named symbol.

enum DYLD_BOOL NSIsSymbolNameDefinedInImage(
 const struct mach_header* image,
 const char* symbolName);

Parameter Descriptions

image

A pointer to a mach_header (page 53) data structure.

symbolName

A C string. Pass the name of the symbol.

An enumeration value of type DYLD_BOOL. true if the image contains a symbol
with the given name, false otherwise.

function result

Version Notes

This function was first introduced in Mac OS X 10.1.

NSLookupAndBindSymbol

Given a symbol name, returns the corresponding symbol from the global symbol table.

NSSymbol NSLookupAndBindSymbol(
 const char* symbolName);

96 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Parameter Descriptions

symbolName

A pointer to a C string. Pass the name of the symbol you wish to find.

The symbol reference for the requested symbol.function result

Discussion

On error, if you have installed a link edit error handler, it will be called; otherwise, this function
writes an error message to file descriptor 2 (usually the standard error stream, stderr) and causes
a breakpoint trap to end the program.

If you know the name of the library in which the symbol is likely to be located, you can use the
NSLookupAndBindSymbolWithHint (page 97) function, which may be faster than
NSLookupAndBindSymbol. You should use the NSLookupSymbolInImage (page 97) function to
perform a two-level namespace lookup.

NSLookupAndBindSymbolWithHint

Given a symbol name, returns the corresponding symbol from the global symbol table.

NSSymbol NSLookupAndBindSymbolWithHint(
 const char* symbolName,
 const char* libraryNameHint);

Parameter Descriptions

symbolName

A pointer to a C string. Pass the name of the symbol you wish to find.

libraryNameHint

A pointer to a C string. Pass any part of the name of the library that the symbol is likely
to be found in.

The symbol reference for the requested symbol.function result

Discussion

On error, if you have installed a link edit error handler, it will be called; otherwise, this function
writes an error message to file descriptor 2 (usually the standard error stream, stderr), and
causes a breakpoint trap to end the program.

Note that NSLookupAndBindSymbolWithHint performs a flat lookup even if the symbol namespace
of the current program has two levels. You should use the NSLookupSymbolInImage (page 97)
function to perform a two-level namespace lookup.

NSLookupSymbolInImage

Returns a reference to the specified symbol from the specified image.

NSSymbol NSLookupSymbolInImage(
 const struct mach_header* image,
 const char* symbolName

Dynamic Linker Functions 97
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

 unsigned long options);

Parameter Descriptions

image

A pointer to a mach_header data structure. Pass a pointer to the start of the image that
contains the symbol. You can get this pointer from a shared library name using the
NSAddImage (page 89) function.

If the process does not have a two-level namespace, NSLookupSymbolInImage ignores this
argument and searches for the symbol in the global symbol table.

symbolName

A pointer to a C string. Pass the name of the symbol you wish to find.

options

A bit mask. Pass any of the following options.
NSLOOKUPSYMBOLINIMAGE_OPTION_BIND

Bind the nonlazy symbols of the module in the image that defines symbolName and let all
lazy symbols in the module be bound on first call.You should pass this option when you
expect the module to bind without errors (for example, a library supplied with the system).
If, later, you call a lazy symbol, and the lazy symbol fails to bind, the runtime calls the
link edit error handler you have installed using the NSInstallLinkEditErrorHandlers
function.

If there is no link edit error handler installed, the runtime prints a message to the standard
error stream and causes a breakpoint trap to end the program.

NSLOOKUPSYMBOLINIMAGE_OPTION_BIND_NOW

Bind all the non-lazy and lazy symbols of the module in the image that defines the symbol
name, and bind symbols in the dependent libraries as needed.

Pass this option for a library that might not be expected to bind without errors but that
links against only system-supplied libraries that are themselves expected to bind without
any errors.

NSLOOKUPSYMBOLINIMAGE_OPTION_BIND_FULLY

Bind all the symbols of the module that defines symbolName and all the dependent symbols
of all needed libraries.

Because it may take a long time to fully bind the image, you should pass this option only
for libraries that cannot bind other symbols once executed, such as code that implements
signal handlers.

NSLOOKUPSYMBOLINIMAGE_OPTION_RETURN_ON_ERROR

Return NULL if the symbol cannot be bound.

The symbol reference for the requested symbol, or NULL if the symbol cannot be
found and you passed the option
NSLOOKUPSYMBOLINIMAGE_OPTION_RETURN_ON_ERROR.

function result

98 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Discussion

On error, if you have installed a link edit error handler, it will be called; otherwise, this function
writes an error message to file descriptor 2 (usually the standard error stream, stderr), and
causes a breakpoint trap to end the program.

Version Notes

This function was first introduced in Mac OS X 10.1.

NSLookupSymbolInModule

Given a module reference, returns a reference to the symbol with the given name.

NSSymbol NSLookupSymbolInModule(
 NSModule module,
 const char* symbolName);

Parameter Descriptions

module

A module reference. Pass the module that contains the symbol.

symbolname

A pointer to a C string. Pass the name of the symbol to look up.

The symbol reference or NULL if the symbol cannot be found.function result

NSNameOfSymbol

Returns the name of the given symbol.

const char* NSNameOfSymbol(
 NSSymbol symbol);

Parameter Descriptions

symbol

A symbol reference. Pass the symbol whose name you wish to obtain.

A pointer to a C string containing the name of the reference. The dynamic linker
owns this string and you should not free it.

function result

NSAddressOfSymbol

Returns the address in the program’s address space of the data represented by the given symbol.
The data may be a variable, a constant, or the first instruction of a function.

void* NSAddressOfSymbol(
 NSSymbol symbol);

Dynamic Linker Functions 99
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Parameter Descriptions

symbol

A symbol reference. Pass the symbol whose address you wish to obtain.

A pointer to the data represented by the given symbol.function result

NSModuleForSymbol

Returns a reference to the module containing the given symbol.

NSModule NSModuleForSymbol(
 NSSymbol symbol);

Parameter Descriptions

symbol

A symbol reference. Pass the symbol whose module you wish to obtain.

A reference to the module that contains the given symbol.function result

Section and Segment Accessors

getsectbyname

Returns a data structure representing a section of the Mach-O file that contains the main executable
program of the current process.

const struct section* getsectbyname(
 const char* segname,
 const char* sectname);

Parameter Descriptions

segname

A pointer to a C string. Pass the name of the segment in which the section resides.

sectname

A pointer to a C string. Pass the name of the section.

A pointer to a section (page 60) data structure.function result

getsegbyname

Returns a data structure representing a segment of the Mach-O file containing the main executable
program of the current process.

const struct segment_command* getsegbyname(

100 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

 const char* segname);

Parameter Descriptions

segname

A pointer to a C string. Pass the name of the segment.

A pointer to a segment_command (page 58) data structure.function result

getsectdata

Returns the data for a section from the Mach-O file of the main executable program of the current
process.

extern char* getsectdata(
 const char* segname,
 const char* sectname,
 unsigned long* size);

Parameter Descriptions

segname

A pointer to a C string. Pass the name of the segment in which the section resides.

sectname

A pointer to a C string. Pass the name of the section.

size

A pointer to a long integer. On output, contains the length (in bytes) of the section.

A pointer to the data of the section.function result

getsectbynamefromheader

Returns the data structure representing a section of a specified Mach-O file.

const struct section* getsectbynamefromheader(
 const struct mach_header* mhp,
 const char* segname,
 const char* sectname);

Parameter Descriptions

mhp

A pointer to a mach_header (page 53) data structure. Pass the mach_header of the file
containing the section data you wish to retrieve.

segname

A pointer to a C string. Pass the name of the segment in which the section resides.

Dynamic Linker Functions 101
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

sectname

A pointer to a C string. Pass the name of the section.

A pointer to the section (page 60) data structure.function result

getsectdatafromheader

Returns the data for a section of a specified Mach-O file.

extern char* getsectdatafromheader(
 const struct mach_header* mhp,
 const char* segname,
 const char* sectname,
 unsigned long* size);

Parameter Descriptions

mhp

A pointer to a mach_header (page 53) data structure. Pass the mach_header of the file
containing the section data you wish to retrieve.

segname

A pointer to a C string. Pass the name of the segment in which the section resides.

sectname

A pointer to a C string. Pass the name of the section.

size

A pointer to a long integer. On output, contains the length (in bytes) of the section.

A pointer to the data of the section. If the Mach-O file is a dynamic shared library
(MH_DYLIB), you will need to add the virtual memory slide amount to this address

function result

to get the true address of the data. See _dyld_get_image_vmaddr_slide (page 104)
for more information.

getsectdatafromFramework

Returns the data for a section of the Mach-O file containing a specified framework.

extern char* getsectdatafromFramework(
 const char* FrameworkName,
 const char* segname,
 const char* sectname,
 unsigned long* size);

Parameter Descriptions

FrameworkName

A pointer to a C string. Pass the name of the framework in which the section resides.

102 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

segname

A pointer to a C string. Pass the name of the segment in which the section resides.

sectname

A pointer to a C string. Pass the name of the section.

size

A pointer to a long integer. On output, contains the length (in bytes) of the section.

A pointer to the data of the section. If the Mach-O file is a dynamic shared library
(MH_DYLIB), you will need to add the virtual memory slide amount to this address

function result

to get the true address of the data. See _dyld_get_image_vmaddr_slide (page 104)
for more information.

Low-Level Dynamic Linking Functions

_dyld_present

Indicates whether or not the dynamic linker is loaded into the current program

unsigned long _dyld_present (void);

A long integer indicating the presence of dyld. This value is zero if dyld is not
loaded in the current process, and greater than zero if dyld is loaded in the current
process.

function result

_dyld_image_count

Returns the number of images that dyld has mapped into the address space of the current process.

unsigned long _dyld_image_count(void);

A long integer containing the number of images that dyld has mapped into the
address space of the current process.

function result

Discussion

This function provides you with a count of the number of the images in the image list. You can
use this number to iterate the images loaded into the address space of the current process, using
functions such as _dyld_get_image_header (page 103) and _dyld_get_image_name (page 104).

_dyld_get_image_header

Returns the data structure for the header of a specified image. The image is specified by index
into the list of images maintained by dyld for the current process.

struct mach_header* _dyld_get_image_header(

Dynamic Linker Functions 103
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

 unsigned long image_index);

Parameter Descriptions

image_index

A long integer. Pass a zero-based index indicating the position of the image in the list of
images loaded into the address space of the current process.

A pointer to the mach_header (page 53) data structure of the specified image. If
image_index is greater than the number of loaded images, this pointer is NULL.

function result

_dyld_get_image_vmaddr_slide

Returns the virtual memory address slide amount of an image.

unsigned long _dyld_get_image_vmaddr_slide(
 unsigned long image_index);

Parameter Descriptions

image_index

A long integer. Pass a zero-based index indicating the position of the image in the list of
images loaded into the address space of the current process.

If image_index is greater than or equal to the value returned by _dyld_image_count
(page 103), zero. Otherwise, the vmaddr_slide value for the specified image.

function result

Discussion

When the dynamic linker loads an image, the image must be mapped into the virtual address
space of the process at an unoccupied address. The dynamic linker accomplishes this by adding
a value—the virtual memory slide amount—to the base address of the image.

_dyld_get_image_name

Retrieves the name of an image.

char* _dyld_get_image_name(
 unsigned long image_index);

Parameter Descriptions

image_index

A long integer. Pass a zero-based index indicating the position of the image in the list of
images loaded into the address space of the current process.

A pointer to a C string. If image_index is greater than the number of loaded images,
the string pointer is NULL.

function result

Discussion

Returns the name of the image located at the given index into the global image list.

104 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

_dyld_lookup_and_bind

Finds the given symbol name and binds it into the program.

void _dyld_lookup_and_bind(
 char* symbol_name,
 unsigned long* address
 void ** module);

Parameter Descriptions

symbol_name

A pointer to a C string. Specify the name of the symbol to bind.

address

A pointer to a long integer. On output, the long integer contains the address of the symbol
specified by symbol_name. This parameter is optional; pass NULL for this pointer on input
if you do not want to retrieve this data.

module

A pointer to a module pointer. On output, the module pointer contains the module of the
symbol specified by symbol_name. This parameter is optional; specify NULL for this pointer
on input if you do not want to retrieve this data.

Discussion

You can use _dyld_lookup_and_bind to find a given symbol name in the global search list and
bind it (and all other defined symbols in the same module) into the program.

If the program is prebound and you know the name of the library that contains the symbol,
consider using _dyld_lookup_and_bind_with_hint (page 105) instead.

_dyld_lookup_and_bind_with_hint

Finds the given symbol name and binds it into the program, with a hint to allow dyld to speed
up the symbol search for a prebound program.

void _dyld_lookup_and_bind_with_hint(
 char* symbol_name,
 const char* library_name_hint,
 unsigned long* address,
 void** module);

Parameter Descriptions

symbol_name

A pointer to a C string. Specify the name of the symbol to bind.

library_name_hint

A pointer to a C string. Specify the name of the library in which the symbol is probably
located. The dynamic linker compares this name with the actual library install names
using the standard C library function strstr.

Dynamic Linker Functions 105
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

address

A pointer to a long integer. On output, the long integer contains the address of the symbol
specified by symbol_name. This parameter is optional; pass NULL for this pointer on input
if you do not want to retrieve this data.

module

A pointer to a module pointer. On output, the module pointer contains the module of the
symbol specified by symbol_name. This parameter is optional; specify NULL for this pointer
on input if you do not want to retrieve this data.

Discussion

You can use _dyld_lookup_and_bind_with_hint to quickly find a given symbol name in the
global search list of a prebound program and bind the symbol (and all other defined symbols in
the same module) into the program.

_dyld_lookup_and_bind_fully

Finds the module containing the specified symbol and fully bind all of the symbol references
within it.

void _dyld_lookup_and_bind_fully(
 char* symbol_name,
 unsigned long* address,
 void** module);

Parameter Descriptions

symbol_name

A pointer to a C string. Specify the name of the symbol to bind.

address

A pointer to a long integer. On output, this is the address of the specified symbol.

module

A pointer to a pointer. On output, the pointer is set to the address of the module in which
the specified symbol resides.

Discussion

You can use this function to bind modules containing signal handlers or other error handling
code which cannot be initialized lazily.

Errors in binding are reported through the normal mechanisms.

_dyld_bind_fully_image_containing_address

Finds the image containing the specified address and fully binds all of the modules within it.

DYLD_BOOL _dyld_bind_fully_image_containing_address(
 unsigned long* address);

106 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Parameter Descriptions

address

A pointer to an address located somewhere within a loaded image.

A boolean value. If true, the address resides somewhere within a loaded image,
and so _dyld_bind_fully_image_containing_address attempted to bind that

function result

image. If false, the address does not reside within a loaded image, and so
_dyld_bind_fully_image_containing_address did nothing.

Discussion

You can use this function to bind error handing code like signal handlers when you have the
address of a function, but not the symbol name. This may bind more symbols than are actually
needed.

If the image containing the address is a flat namespace image, multiply-defined errors can occur
even if the symbols are not really used. Errors in binding are reported through the normal error
reporting mechanisms.

_dyld_image_containing_address

Returns whether or not a specified address is within any loaded image.

DYLD_BOOL _dyld_image_containing_address(
 unsigned long address);

Parameter Descriptions

address

An unsigned long integer. Pass the address that you wish to obtain status about.

TRUE if the address is located within an image loaded by the dynamic linker and
FALSE otherwise.

function result

_dyld_launched_prebound

Returns whether or not the dynamic linker was able to launch the program with the prebinding
optimization enabled.

DYLD_BOOL _dyld_launched_prebound(void);

A boolean value. true if the program was launched successfully using the prebound
state and false if the either the program was not prebound or the prebinding
couldn’t be used for some reason.

function result

Discussion

If the program was not successfully launched with the prebinding optimization, either the linker
did not prebind the program, or the addresses of some images overlapped and so the linker could
not use the prebound addresses, or some other problem occurred. In any case, the program
continues to launch, but it will be slower than with prebinding enabled.

Dynamic Linker Functions 107
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

_dyld_func_lookup

Obtains the address of the implementation of a dyld library function.

int _dyld_func_lookup(
 char* dyld_func_name,
 unsigned long* address);

Parameter Descriptions

dyld_func_name

A pointer to a C string. Pass the name of a dyld library function.

address

A pointer to a long integer. On output, the long integer value is set to the address of the
function if the function is found, otherwise the value is undefined.

An integer value. Nonzero if the function was found. Zero if the function was not
found.

function result

Discussion

This function is used by the library code that implements the dyld functions.

_dyld_bind_objc_module

Binds the module that contains a given Objective-C address.

void _dyld_bind_objc_module(
 void* address);

Parameter Descriptions

address

A pointer. Pass any address residing within the __OBJC,__module section of a loaded
Mach-O file.

Discussion

This function is used by the Objective-C runtime library.

_dyld_get_objc_module_sect_for_module

Obtains the size and starting location of an Objective-C module.

extern void _dyld_get_objc_module_sect_for_module(
 NSModule module,
 void** moduleStart,
 unsigned long* moduleSize);

Parameter Descriptions

module

A module reference from an image.

108 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

moduleStart

A pointer to a pointer. On output, contains a pointer to the start of the __OBJC,__module
section for the specified module.

moduleSize

A pointer to a long integer. On output, the long integer contains the a value indicating the
size of the output module.

Discussion

This function is used by the Objective-C runtime library.

_dyld_lookup_and_bind_objc

Obtains and binds the an Objective-C module that contains the specified symbol.

void _dyld_lookup_and_bind_objc(
 const char* symbol_name,
 unsigned long* address,
 void** module);

Parameter Descriptions

symbol_name

A pointer to a C string. Specify the name of the symbol to bind, such as
.objc_class_name_Foo.

address

A pointer to a long integer. On output, the long integer contains the address of the symbol
specified by symbol_name. This parameter is optional; pass NULL for this pointer on input
if you do not want to retrieve this data.

module

A pointer to a module pointer. On output, the module pointer contains the module of the
symbol specified by symbol_name. This parameter is optional; specify NULL for this pointer
on input if you do not want to retrieve this data.

Discussion

This routine is used by the Objective-C runtime library. It performs the same function as
_dyld_lookup_and_bind (page 105) but, for performance reasons, does not update the symbol
pointers if the symbol is in a bound module. An Objective-C symbol such as
.objc_class_name_Object is never used by a symbol pointer, and updating the symbol pointers
is a relatively expensive operation, so this provides a way for the Objective-C runtime to avoid
that overhead.

_dyld_moninit

This function is used by the profiling routine moninit to allow images other than the main
executable to be profiled.

void _dyld_moninit(void (*monaddition)(
 char* lowpc,

Dynamic Linker Functions 109
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

 char* highpc);

Parameter Descriptions

monaddition

A pointer to a callback function. The callback is called when an image is first mapped in.

Discussion

This function is usually called by the profiling runtime (specifically, from the moninit function).
It is documented here for completeness. See the man page for moninit and monaddtion for
further information.

_dyld_register_func_for_add_image

Registers a function to be called by the dynamic linker runtime when an image is added to the
program.

void _dyld_register_func_for_add_image(
 void (*func)(struct mach_header* mh, unsigned long vmaddr_slide));

Parameter Descriptions

func

A pointer to a callback function that accepts a pointer to a mach_header (page 53) data
structure and a virtual memory slide amount. The virtual memory slide amount specifies
the difference between the address at which the image was linked and the address at
which the image is loaded.

Discussion

When you call _dyld_register_func_for_add_image, the dynamic linker runtime calls the
specified callback (func) once for each of the images that is currently loaded into the program.
When a new image is added to the program, your callback is called again with the mach_header
(page 53) for the new image, and the virtual memory slide amount of the new image.

You might use this, for example, in implementing a runtime system, such as the Objective-C
runtime, to discover when new images are added to the program.

_dyld_register_func_for_remove_image

Registers a function to be called by the dynamic linker runtime when an image is removed from
the program.

void _dyld_register_func_for_remove_image(
 void (*func) (struct mach_header* mh),
 unsigned long vmaddr_slide));

110 Dynamic Linker Functions
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

Parameter Descriptions

func

A pointer to a callback function that accepts a pointer to a mach_header (page 53) data
structure and a virtual memory slide amount. The virtual memory slide amount specifies
the difference between the address at which the image was linked and the address at
which the image is loaded.

_dyld_register_func_for_link_module

Registers a function to be called by the dynamic linker runtime when a module is linked into the
program.

void _dyld_register_func_for_link_module(
 void (*func)(NSModule module));

Parameter Descriptions

func

A pointer to a callback that accepts a module reference.

Discussion

When you call _dyld_register_func_for_link_module, the dynamic linker runtime calls the
specified callback (func) once for each module that is currently linked into the program. When
a new module is linked into the program, the func callback is called again for that module.

Glue Functions for Indirect Addressing

dyld_stub_binding_helper

Assembly-language glue code that performs binding for a lazy function symbol.

.private_extern dyld_stub_binding_helper

Parameter Descriptions

PowerPC: r11 x86: stack-based parameter

A pointer to the lazy symbol pointer for the function to be bound.

Discussion

The dyld stub binding helper is a glue function that assists the dynamic linker in lazily binding
an external function. When the compiler sees a call to an external function, it generates a symbol
stub and a lazy pointer for the function. At the call site, the compiler generates a call to the symbol
stub. The symbol stub is a sequence of code that loads the lazy pointer and jumps to it. Initially,
the sequence of code and the contents of the lazy pointer call dyld_stub_binding_helper, which
calls the dynamic linker to bind the symbol. After the symbol is bound, the lazy pointer is set to
the address of the symbol, and the symbol is reached directly by jumping to the lazy pointer.

Thereafter, because the address has been changed to the actual address of the function, all calls
to the external function call the external function.

Dynamic Linker Functions 111
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

On entry, dyld_stub_binding_helper accepts the address of the lazy symbol pointer. On exit,
the value of the lazy symbol pointer is set to the address of the external function. The dyld stub
binding helper is assembly-language based and does not use standard calling conventions, and
as such, the location of the parameters are specific to each CPU architecture. On PowerPC, the
address of the lazy symbol pointer is expected to be in GPR11. On x86, the address of the lazy
symbol pointer should be the pushed on the stack.

dyld_stub_binding_helper is located in the runtime startup files that are statically linked into
the image. For executables, the file is /lib/crt1.o. For bundles, it is /lib/bundle1.o, and for
shared libraries, it is /lib/dylib1.o.

Dynamic Linker Data Types

Boolean Return Value

The low-level dynamic functions return status information using the DYLD_BOOL data type.

DYLD_BOOL

An enumeration specifying a Boolean variable, which contains a value that can be either true or
false.

enum DYLD_BOOL {FALSE, TRUE};

Constant Descriptions

TRUE

Boolean true. Equivalent to the integer value 1.

FALSE

Boolean false. Equivalent to the integer value 0.

112 Dynamic Linker Data Types
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

C H A P T E R 4

Mach-O Dynamic Linking Functions Reference

The table below describes the revisions to Mach-O Runtime Architecture.

NotesDate

Added description of new API for Mac OS X version 10.3.August 7, 2003

Incorporated developer feedback. Updated code-generation examples.Jan 1, 2003

Fixed bugs 2462895, 2749339, 2909989, 2910422, 2921574.

More developer feedback. Document weak definitions and weak references
(new for 10.2). Substantially update the glossary. Other tweaks and additional
material. Clarify common vs. coalesced symbol definitions.

July 1, 2002

ABI: Rewrote position-independent and indirect code section, incorporating
correct examples and separating PIC and indirect code generation. Add C99
_Bool data type.

Fixed bugs 2909989, 2910422, and 2921574.

This was a preliminary draft distributed with the WWDC 2002 developer
tools.

May 1, 2002

Incorporated many corrections from developer review. More to come.

By popular demand, added some common usage scenarios to map runtime
features to the options in the standard Mac OS X tools that implement those
features. To satisfy a related popular demand, this information is collected
in a separate chapter, which allows users of third-party tool sets to ignore it.
This chapter is currently unfinished, and the overview chapter is yet to be
modified to cross-reference it.

Updated umbrella framework description to better match reality.

Added long double and long long return value information. Removed last
vestiges of CFM. Rewrote data alignment section, incorporating the correct
rules (inherited from IBM’s xlc compiler) for power alignment mode, and
adding new natural alignment mode.

113
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

This was a preliminary draft distributed with the April 2002 Developer Tools
CD.

April 1, 2002

114
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

bundle (1) A Mach-O file that must be explicitly
loaded by the client application before use. Bundles
typically contain code and data that extend the
capabilities of an application. Also called a plug-in,
application extension or drop-in addition. Compare
dynamic shared library.

bundle (2) A file package containing loadable
code and resources, in the format understood by
the NSBundle and CFBundle classes.

client application In the context of a shared library
or a bundle, the application that imports the shared
library or that loads the bundle. Usually refers
specifically to the main program file of the
application.

coalesced symbol A symbol that may be defined
in multiple intermediate object files. The symbols
have the same name and occupy the same amount
of space. The static linker ignores all but one copy
of the symbol. Compare common symbol.

Code Fragment Manager (CFM) The part of Mac
OS 9 that loads code from Preferred Executable
Format (PEF) files into memory and prepares it for
execution. Supported in Carbon for compatibility
with Mac OS 9.

common symbol A symbol that may be defined
in multiple intermediate object files. The symbols
have the same name but may occupy different
amounts of space. The static linker uses only one
definiton—the largest— in the output file. Compare
coalesced symbol. See also tentative definition.

debugging symbol A symbol generated by the
compiler to enable the debugger to map machine
code to source code.

defined external symbol A data item or executable
routine within a fragment that is made available for
use by other Mach-O files. Also called imported
symbol. Compare undefined external symbol.

dependent library Another name for import
library.

dynamic shared library An image that exports
functions and global variables to other images. A
shared library is not included with the application
code at link time but is linked in dynamically at
runtime. Also known as a shared library, dynamic
library, dylib, dynamic link library, and DLL. Compare
framework.

ELF An executable file format commonly used in
UNIX operating systems.

embedding alignment The alignment of a data
item within a composite data item (such as a data
structure). Compare natural alignment.

entry point A location (offset) within a module.

epilog A sequence of code that cleans up the stack
after a procedure call (restoring registers, restoring
the stack pointer, and so on).

executable file As a generic term, refers to any
file containing binary machine code, including
bundles, shared libraries and programs. Often used
to specifically refer to the main program file of an
application. See also program.

exported symbol See defined external symbol.

external reference A reference to a routine or
variable defined in a separate compilation unit or
assembly.

fat application An application that contains code
for two or more CPU architectures. For example, a
fat application may contain both x86 and PowerPC
code. Compare fat file.

fat file A file that contains an archive of one or
more Mach-O files, each containing code and data
tailored to a specific CPU architecture.

115
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

Glossary

final product Any file output from the static linker
that the static linker cannot perform further binding
on; dynamic shared libraries, main program files,
and bundles are all final products, while
intermediate object files and static archive libraries
are not.

fragment In the Code Fragment Manager runtime
architecture, an executable unit of code and its
associated data. No defined meaning for Mach-O.

frame pointer (FP)A pointer to the beginning of
a stack frame.

framework A shared library packaged with
associated resources, such as header files, localized
strings, and documentation files.

image Any Mach-O file built for use with the
dynamic linker. In Mac OS X, this currently includes
shared libraries, bundles, and executables (that is,
Mach-O files of types MH_DYLIB, MH_BUNDLE, and
MH_EXECUTABLE).

imported symbol See undefined external symbol

import library A dynamic shared library
referenced by a Mach-O file. Also called dependent
library.

initialization function A function contained in a
shared library or bundle that is executed
immediately after the file is loaded. Compare
termination function.

install name the pathname to a dynamic shared
library, as recorded at build time. Mach-O files refer
to shared libraries using the install name.

leaf procedure A routine that calls no other
routines.

linkage area The area in the PowerPC stack that
holds the calling routine’s RTOC value and the
saved values of the Condition Register and the Link
Register. Compare parameter area.

main symbol For applications, the main routine
or main entry point. Shared libraries and bundles
do not require a main symbol.

main program file The Mach-O file (of type
MH_EXECUTABLE) that contains the main entry point
of a program. Often called an executable, but
executable can also be used to describe any file
containing machine code that can be executed.

module The smallest indivisible unit of machine
code and data that can be linked independently in
a Mach-O file.

natural alignment The alignment of a data type
when allocated in memory or assigned a memory
address. Compare embedding alignment.

parameter area The area in the PowerPC stack that
holds the parameters for any routines called by a
given routine. Compare linkage area.

PEF See Preferred Executable Format (PEF).

plug-in See bundle (1).

PowerPC microprocessor Any member of the
family of PowerPC microprocessors.

CFM runtime architecture The runtime
architecture for PowerPC computers running classic
Mac OS or using the Preferred Executable Format
(PEF) with Carbon on Mac OS X.

Preferred Executable Format (PEF) The format of
executable files used for Carbon applications and
shared libraries that use the Code Fragment
Manager.

private framework A framework that is a part of
one or more applications, but not part of the system.
Private frameworks are often installed in a
Frameworks directory inside an application package.
Private frameworks are often used to provide
functionality that is shared between the main
program and any bundles loaded by the main
program.

process A running program. See also program.

program An executable unit that contains
executable code.

prolog A sequence of code that prepares the stack
for a procedure call (by saving registers, adjusting
the stack, and so on).

red zone In the PowerPC CPU architecture, the
area of memory immediately above the address
pointed to by the stack pointer. The red zone is
reserved for temporary use by a routine’s prolog
and as an area to store a leaf procedure’s nonvolatile
registers.

reference The location within one module that
contains the address of another module or entry
point.

116
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

G L O S S A R Y

relocation The process of replacing references to
symbols with actual addresses during fragment
preparation.

runtime architecture A set of basic rules that define
how software operates. It dictates how code and
data are addressed, the form of generated code, how
applications are handled, and how to enable system
calls. The runtime architecture defines the core of
the runtime environment. Compare runtime
environment.

runtime environment The execution environment
provided by the Mac OS X kernel and dynamic
linker. The runtime environment dictates how
executable code is loaded into memory, where data
is stored, and how routines call other functions.
Compare runtime architecture.

section A named storage unit in a segment of a
Mach-O file that contains either code or data.

segment A named collection of sections in a
Mach-O file.

shared library See dynamic shared library.

stack An area of memory in the application
partition that is used for temporary storage of data
during the operation of that application or other
software.

stack frame The area of the stack used by a routine
for its parameters, return address, local variables,
and temporary storage.

stack pointer (SP) A pointer to the top of the stack.

static archive library An archive of modules
whose code is included in the application at link
time. Also called a static library.

symbol A reference to a function or data item.

termination function A function contained in a
shared library or bundle that is executed just before
the file is unloaded. Compare initialization function.

tentative definition A symbol that has no
initializer and is not marked with the ANSI C
extern keyword. The standard compiler transforms
tentative definitions into common symbols.
Compare coalesced symbol.

transition vector In the CFM runtime architecture,
an 8-byte data structure that describes the entry
point and base register address of a routine.

undefined external symbol A data item or
executable routine referenced by a fragment but not
contained in it. An import is identified by name to
the linker, but its actual address is bound at load
time by the dynamic linker. Also called imported
symbol. Compare defined external symbol.

weak library A shared library that does not need
to be present at runtime for the client application
to run. Sometimes called a soft library.

weak definition A defined external symbol that
the static linker may ignore in the presence of a
non-weak defined external symbol. Used to support
some features of C++. Compare weak reference.

weak reference An undefined external symbol
that does not need to be present at runtime for the
client application to run. If the dynamic linker
cannot find a definition of a weak reference, it sets
the address of the symbol to zero. The client
application can then test the weak symbol against
NULL to see whether or not the symbol was found.
Also known as a weak import or soft import. Compare
weak definition.

x86 microprocessor Any microprocessor capable
of directly executing machine code for the IA-32
instruction set.

117
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

G L O S S A R Y

118
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

G L O S S A R Y

Symbols

_dyld_bind_fully_image_containing_address
function 106

_dyld_bind_objc_module function 108
_dyld_func_lookup function 108
_dyld_get_image_header function 103
_dyld_get_image_name function 104
_dyld_get_image_vmaddr_slide function 104
_dyld_get_objc_module_sect_for_module

function 108
_dyld_image_containing_address function 107
_dyld_image_count function 103
_dyld_launched_prebound function 107
_dyld_lookup_and_bind function 105
_dyld_lookup_and_bind_fully function 106
_dyld_lookup_and_bind_objc function 109
_dyld_lookup_and_bind_with_hint function 105
_dyld_moninit function 109
_dyld_present function 103
_dyld_register_func_for_add_image function

110
_dyld_register_func_for_link_module function

111
_dyld_register_func_for_remove_image

function 110

A

application binary interface (ABI) 8
application package 14

B

binding 17
bundles 14, 25

C

CFPlugin object 25
Classic runtime environment 7
coalesced symbol 20
Cocoa framework 16
Code Fragment Manager 8
Code Fragment Manager, using in Mac OS X 7
Code Fragment Manager, using with Carbon 25
COM objects 26
copy-on-write (COW) 51

D

dependent libraries 16
DLL. See dynamic shared libraries
dyld tool 15
DYLD_BOOL data type 112
dyld_stub_binding_helper function 111
dylib structure 65
dylib_command structure 66
dylib_module structure 78
dylib_reference structure 79
dylib_table_of_contents structure 78
dylinker_command structure 67
dynamic linker 15, 16
dynamic shared libraries 21
dysymtab_command structure 76

E

errno variable 16
execve function 16
external symbol 20

119
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

Index

F

FALSE constant 112
fat_arch structure 87
fat_header structure 86
file package 14
fork function 16
frameworks 13
function value return

PowerPC 39

G

getsectbyname function 100
getsectbynamefromheader function 101
getsectdata function 101
getsectdatafromFramework function 102
getsectdatafromheader function 102
getsegbyname function 100

H

HotSpot Java virtual machine 7

I

install name 22
intermediate object files 13

J

Java virtual machine 7
just-in-time binding 17

L

LaunchCFMApp tool 7
lazy binding 17
lc_str union 65
load commands 16
load-time binding 17
load_command structure 56

M

Mach-O 7
mach_header data structure 16
mach_header structure 53
main function 16
memory

freeing 51
module 14

N

nlist structure 73
NSAddImage function 89
NSAddressOfSymbol function 99
NSBundle class 25
NSCreateObjectFileImageFromFile function 90
NSCreateObjectFileImageFromMemory function

91
NSDestroyObjectFileImage function 92
NSIsSymbolNameDefined function 95
NSIsSymbolNameDefinedInImage function 96
NSIsSymbolNameDefinedWithHint function 95
NSLibraryNameForModule function 93
NSLinkModule function 93
NSLookupAndBindSymbol function 96
NSLookupAndBindSymbolWithHint function 97
NSLookupSymbolInImage function 97
NSLookupSymbolInModule function 99
NSModuleForSymbol function 100
NSNameOfModule function 92
NSNameOfSymbol function 99
NSUnLinkModule function 94

O

object file image functions 25

P

parameter area
in PowerPC stack

plug-in. See bundle
PowerPC implementation of CFM-based

architecture
routine calling conventions 39

prebinding 17
prebound_dylib_command structure 67

120
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

I N D E X

Preferred Executable Format (PEF) 7, 25
private defined symbol 20

R

ranlib structure 84
registers, PowerPC environment

and function value return 39
preservation 39
saving and restoring values in

relocation entries 80
relocation_info structure 80
routine calling conventions

function value return
PowerPC 39

PowerPC 39
register preservation

PowerPC 39
routines_command structure 69
runtime architecture, defined 7

S

scattered_relocation_info structure 81
section structure 60
segment_command structure 58
shared libraries 13
shared libraries, and versioning 22
static archive libraries 14
static archive library 15
sub_client_command structure 71
sub_framework_command structure 70
sub_library_command structure 71
sub_umbrella_command structure 70
symbol 18
symtab_command structure 72

T

tentative symbol 20
thread_command structure 68
TRUE constant 112
two-level namespace hint table 18, 19
two-level symbol namespace 18
twolevel_hint structure 64
twolevel_hints_command structure 63
-twolevel_hint_table linker option 26

U

umbrella framework 24
umbrella frameworks 13
/usr/lib/crt1.o 16

W

weak binding 18

121
August 7, 2003 | © 2003 Apple Computer, Inc. All Rights Reserved.

I N D E X

	Contents
	Tables, Figures, and Listings
	Introduction to Runtime Architecture
	Who Should Read This Book
	Where to Find Things in This Book
	Where to Find More Information

	Mach-O Runtime Architecture
	Building Mach-O Files
	The Tools—Building and Running Mach-O Files
	The Products—Types of Mach-O Files You Can Build
	Modules—The Smallest Unit of Code
	Static Archive Libraries

	Executing Mach-O Files
	Launching an Application
	Forking and Executing the Process
	Finding Imported Symbols
	Binding Symbols
	Searching for Symbols
	Scope and Treatment of Symbol Definitions

	Loading Code At Runtime
	Using Shared Libraries and Frameworks
	Client Program Compatibility
	Packaging a Shared Library as a Framework
	Packaging Frameworks and Libraries Under an Umbrella

	Loading Plug-In Code With Bundles

	Mach-O Runtime Conventions for PowerPC
	PowerPC Data Types
	PowerPC Data Alignment
	PowerPC Stack Structure
	Prologs and Epilogs
	The Red Zone

	PowerPC Calling Conventions
	Parameter Passing
	Function Return
	Register Preservation

	PowerPC Dynamic Code Generation
	Position-Independent Code
	Relocating Position-Independent Code

	Indirect Addressing

	Mach-O File Format Reference
	Mach-O Types and Data Structures
	Mach-O Header Data Structure
	mach_header

	Load Command Data Structures
	load_command
	segment_command
	section
	twolevel_hints_command
	twolevel_hint
	lc_str
	dylib
	dylib_command
	dylinker_command
	prebound_dylib_command
	thread_command
	routines_command
	sub_framework_command
	sub_umbrella_command
	sub_library_command
	sub_client_command

	Symbol Table and Related Data Structures
	symtab_command
	nlist
	dysymtab_command
	dylib_table_of_contents
	dylib_module
	dylib_reference

	Relocation Data Structures
	relocation_info
	scattered_relocation_info

	Static Archive Libraries
	ranlib

	Multi-CPU Architecture Files
	fat_header
	fat_arch

	Mach-O Dynamic Linking Functions Reference
	Dynamic Linker Functions
	Object File Image Functions
	NSAddImage
	NSCreateObjectFileImageFromFile
	NSCreateObjectFileImageFromMemory
	NSDestroyObjectFileImage
	NSNameOfModule
	NSLibraryNameForModule
	NSLinkModule
	NSUnLinkModule
	NSIsSymbolNameDefined
	NSIsSymbolNameDefinedWithHint
	NSIsSymbolNameDefinedInImage
	NSLookupAndBindSymbol
	NSLookupAndBindSymbolWithHint
	NSLookupSymbolInImage
	NSLookupSymbolInModule
	NSNameOfSymbol
	NSAddressOfSymbol
	NSModuleForSymbol

	Section and Segment Accessors
	getsectbyname
	getsegbyname
	getsectdata
	getsectbynamefromheader
	getsectdatafromheader
	getsectdatafromFramework

	Low-Level Dynamic Linking Functions
	_dyld_present
	_dyld_image_count
	_dyld_get_image_header
	_dyld_get_image_vmaddr_slide
	_dyld_get_image_name
	_dyld_lookup_and_bind
	_dyld_lookup_and_bind_with_hint
	_dyld_lookup_and_bind_fully
	_dyld_bind_fully_image_containing_address
	_dyld_image_containing_address
	_dyld_launched_prebound
	_dyld_func_lookup
	_dyld_bind_objc_module
	_dyld_get_objc_module_sect_for_module
	_dyld_lookup_and_bind_objc
	_dyld_moninit
	_dyld_register_func_for_add_image
	_dyld_register_func_for_remove_image
	_dyld_register_func_for_link_module

	Glue Functions for Indirect Addressing
	dyld_stub_binding_helper

	Dynamic Linker Data Types
	Boolean Return Value
	DYLD_BOOL

	Document Revision History
	Glossary
	Index

