
Coding of Outline Fonts V1.2 12/03/02 Page 1

Coding of Outline Fonts: PFR Specification
(Version 1.2)

Introduction
This document defines the Bitstream portable font resource (PFR), which is a
compact, platform independent format for representing scalable outline fonts.
Several independent organizations responsible for setting digital TV standards have
adopted the PFR font format as their de facto, standard font format. These
organizations include Digital Audio Visual Council (DAVIC), Digital Video
Broadcasting (DVB), and Digital TV Group (DTG). DAVIC sets multimedia standards
for international broadcasting. DVB is a Swiss-based industry organization
representing one standard for digital TV, which has been adopted extensively in
Europe. DTG coordinates standards for digital TV broadcasting in the United
Kingdom.

Bitstream is making the PFR font format public to help anyone who wants to adopt
these digital TV standards. Bitstream allows unrestricted use of the information in
this document to make and use software that renders images from outlines coded in
the PFR format, provided such rendering is used with one or more of these digital
TV standards.

Using Bitstream PFRMaker, anyone can create fonts in the PFR outline font format
from fonts installed on his or her system. PFRMaker is a simple, command-line
utility that anyone can evaluate and license from Bitstream.

Revision History
This document is based on and is compatible with the font format specification
published by DAVIC as Version 1.4.1, Part 9, Annex A.

Version 1.2, whose changes are highlighted in blue and underlined, includes
information on PFRMaker, as stated above. PFRMaker replaces WebFont Wizard.
Bitstream no longer sells WebFont Wizard. Unfortunately, we do not build the
browsers, nor can we control how they handle fonts, so we can no longer support
WebFont Wizard for every release of every browser. We would like to support
Netscape Navigator 6 and 7 (and future versions), as well as future versions of
Microsoft Internet Explorer, but we cannot. Bitstream suggests you contact
Microsoft and AOL and encourage them to support dynamic fonts in the new
releases of their browsers. We are sorry about any inconvenience this may cause,
but after careful evaluation, we believe that it is only fair to retire this retail product
line. We will, however, continue to support PFRs.

Coding of Outline Fonts V1.2 12/03/02 Page 2

Version 1.1 contains editorial updates that are intended to correct typographical
errors and to make this specification easier to understand. Two areas, in particular,
that were found to be confusing or contained inconsistent information were
corrected as follows.

1. offsets. The original specification contained a statement in section 1 to the effect
that all offsets except for offsets to glyph program strings were relative to the
start of the PFR header. With the addition of support for bitmap representation
of glyphs that use offsets relative to other bases, this global statement caused
considerable confusion and has therefore been removed. The base reference for
each offset is now defined explicitly.

2. Bitmap row order. Several implementors were confused by the vague, and in one
case, incorrect drafting of the bitmap image specifications. This has been
carefully redrafted. To avoid problems with possibly incorrect implementations
of renderers, it is now strongly recommended that the header field
pfrInvertBitmap be always set to zero in all new PFRs.

3. Confusion between physical font record and physical font section. A physical font
section consists of a physical font record which may, if bitmaps are included, be
followed by bitmap character records. The syntax definition of Physical Font
Section has been updated to be consistent with the accompanying text.

This document includes the specifications for adding kerning data. This is extracted
directly from the DAVIC specification and appears in section 10 of this specification.
Both pair and track kerning is supported.

Coding of Outline Fonts V1.2 12/03/02 Page 3

1 Font Format Specification
The scaleable outline format representation will be referred to as a portable font
resource (PFR) that can be stored statically in ROM or hard disks, or moved
dynamically within a network. This dynamic aspect is the reason the font resource
is often referred to as portable. The file representation of the PFR is designed with
two, sometimes conflicting, goals in mind. One is to minimize the size of the file
representation; the other is to provide the information in a way that optimizes
rendering performance even if the amount of memory is limited at playback time.

A Portable Font Resource consists of the following sections in order:

• PFR header

• Logical font directory

• Logical font section

• Physical font section

• Glyph program strings

• PFR trailer

The PFR header contains global information about the PFR and the fonts contained
within it.

The logical font directory consists of a table of pointers to the logical fonts
contained within the PFR.

The logical font section contains the logical font records themselves. Each logical
font record defines the transformation (size, oblique effect, condense, expand) to be
applied to a physical font. It therefore represents an instance of a physical font.

The physical font section consists of a set of physical font records. Each physical
font record contains information about one physical font contained within the PFR
including a table of character codes defined for that physical font. A physical font
record may optionally be immediately followed by bitmap size and bitmap character
table records associated with that physical font.

The glyph program strings section contains the definition of the shapes of each of
the characters defined within the font. Both outline and bitmap image shapes are
defined by glyph program strings. Glyph program strings are shared across all
physical fonts within a PFR.

All integers are written most-significant bit first.

Many of the concepts used in this specification are based on the Adobe Type 1 font
format, version 1.1 (Addison-Wesley Publishing Company, Inc., 1991).

Coding of Outline Fonts V1.2 12/03/02 Page 4

2 PFR Header
The PFR header is the first block of data in a Portable Font Resource. It contains
global information about the PFR and its constituent fonts.

The size of the PFR header is a fixed 58 bytes. Its structure is as follows:

Table A-1. PFR Header

Syntax Number of bits Mnemonic

pfrHeader() {
 pfrHeaderSig 32 bslbf
 pfrVersion 16 uimsbf
 pfrHeaderSig2 16 bslbf
 pfrHeaderSize 16 uimsbf
 logFontDirSize 16 uimsbf
 logFontDirOffset 16 uimsbf
 logFontMaxSize 16 uimsbf
 logFontSectionSize 24 uimsbf
 logFontSectionOffset 24 uimsbf
 physFontMaxSize 16 uimsbf
 physFontSectionSize 24 uimsbf
 physFontSectionOffset 24 uimsbf
 gpsMaxSize 16 uimsbf
 gpsSectionSize 24 uimsbf
 gpsSectionOffset 24 uimsbf
 maxBlueValues 8 uimsbf
 maxXorus 8 uimsbf
 maxYorus 8 uimsbf
 physFontMaxSizeHighByte 8 uimsbf
 zeros 6 bslbf
 pfrInvertBitmap 1 bslbf
 pfrBlackPixel 1 bslbf
 bctMaxSize 24 uimsbf
 bctSetMaxSize 24 uimsbf
 pftBctSetMaxSize 24 uimsbf
 nPhysFonts 16 uimsbf
 maxStemSnapVsize 8 uimsbf
 maxStemSnapHsize 8 uimsbf
 maxChars 16 uimsbf
 }

pfrHeaderSig: A byte string which indicates the file type and format. This field
shall be set to the constant value 0x50465230 representing the ASCII string “PFR0”.

pfrVersion: An unsigned integer indicating the PFR format version number. This
field shall be set to the constant value 4.

pfrHeaderSig2: A byte string which further confirms the integrity of the PFR. This
field shall be set to the constant value 0x0d0a representing the ASCII characters
carriage return and line feed.

Coding of Outline Fonts V1.2 12/03/02 Page 5

pfrHeaderSize: An unsigned integer indicating the number of bytes in the PFR
header. This field shall be set to the constant value 58.

logFontDirSize: An unsigned integer indicating the total size of the logical font
directory in bytes.

logFontDirOffset: An unsigned integer indicating the byte offset of the first byte of
the logical font directory relative to the first byte of the PFR header.

logFontMaxSize: An unsigned integer indicating the size in bytes of the largest
logical font record. This may be used to allocate a buffer capable of holding any
logical font record.

logFontSectionSize: An unsigned integer indicating the size in bytes of the entire
set of logical font records. This may be used to allocate a buffer capable of holding
the entire logical font section.

logFontSectionOffset: An unsigned integer indicating the byte offset of the first
byte of the first logical font record in the logical font section. The offset is relative to
the first byte of the PFR header.

physFontMaxSize: An unsigned integer indicating the size in bytes of the largest
physical font record. This may be used to allocate a buffer capable of holding any
physical font record.

physFontSectionSize: An unsigned integer indicating the size in bytes of the entire
set of physical font record including any bitmap character tables that may follow
each physical font record. This may be used to allocate a buffer capable of holding
the entire physical font section (including any bitmap character tables that might
follow each physical font record).

physFontSectionOffset: An unsigned integer indicating the byte offset of the first
byte of the first physical font in the physical font section. The offset is relative to the
first byte of the PFR header.

gpsMaxSize: An unsigned integer indicating the size in bytes of the largest glyph
program string. In the case of compound glyphs, the size must include the total size
of its component glyphs. This may be used to allocate a buffer capable of holding
any glyph program string.

gpsSectionSize: An unsigned integer indicating the size in bytes of the entire set of
glyph program strings. This may be used to allocate a buffer capable of holding the
entire set of glyph program strings.

gpsSectionOffset: An unsigned integer indicating the byte offset to the first byte of
the first glyph program string in the glyph program string section. The offset is
relative to the first byte of the PFR header.

maxBlueValues: An unsigned integer indicating the maximum number of vertical
alignment zones defined in any physical font record.

Coding of Outline Fonts V1.2 12/03/02 Page 6

maxXorus: An unsigned integer indicating the maximum number of controlled X
coordinates in any glyph program string. The number of controlled X coordinates in
a glyph program string includes primary stroke edges, secondary stroke edges and
secondary edges.

maxYorus: An unsigned integer indicating the maximum number of controlled Y
coordinates in any glyph program string. The number of controlled Y coordinates in
a glyph program string includes primary stroke edges, secondary stroke edges and
secondary edges.

physFontMaxSizeHighByte: An unsigned number indicating the number of times
65536 should be added to the specified value of physFontMaxSize. This provides a
means of handling physical font records whose size exceeds 64K bytes.

zeros: A concatenation of bits that shall all be set to zero.

pfrInvertBitmap: A bit flag that indicates, if set, that the row order of image data
in bitmap glyph program strings is top-to-bottom rather than the standard bottom-
to-top row order. It is strongly recommended that this field be set to zero and that
image data in bitmap glyph program strings be always stored in the standard
botton-to-top row order.

pfrBlackPixel: A bit flag that indicates the bit value used to represent black in
image data contained in bitmap glyph program strings.

bctMaxSize: An unsigned integer that indicates the maximum size in bytes of any
bitmap character table in any physical font record. This may be used to allocate a
buffer capable of holding any bitmap character table.

bctSetMaxSize: An unsigned integer that indicates the maximum size in bytes of
any complete set of bitmap character tables in any physical font. This may be used
to allocate a buffer capable of holding the set of bitmap character tables for any
physical font.

pftBctSetMaxSize: An unsigned integer that indicates the maximum size in bytes
of any physical font record together with all of the bitmap character tables
associated with it. This may be used to allocate a buffer capable of holding any
physical font record and its associated bitmap character tables.

nPhysFonts: An unsigned integer that indicates the number of physical font
records in the physical font section.

maxStemSnapVsize: An unsigned integer that indicates the number of values
contained in the largest vertical stem snap table in any physical font record.

maxStemSnapHsize: An unsigned integer that indicates the number of values
contained in the largest horizontal stem snap table in any physical font record.

maxChars: An unsigned integer that indicates the maximum number of characters
in any of the physical font records.

Coding of Outline Fonts V1.2 12/03/02 Page 7

3 Logical font directory
The logical font directory consists of a table of pointers to all of the logical font
records contained with the PFR. The table is indexed by the logical font code. The
structure of the logical font directory is as follows.

Table A-2. Logical Font Directory

Syntax Number of bits Mnemonic

logFontDir() {
 nLogFonts 16 uimsbf
 for (i = 0; i < nLogFonts; i++){
 logFontSize 16 uimsbf
 logFontOffset 24 uimsbf
 }
 }

nLogFonts: An unsigned integer indicating the total number of logical fonts
contained in the logical font directory.

logFontSize: An unsigned integer indicating the size in bytes of one logical font
record.

logFontOffset: An unsigned integer indicating the byte offset to the first byte of
that logical font record. The offset is relative to the first byte of the PFR header.

4 Logical font section
The logical font section consists of zero or more logical font records. Each logical
record contains information about one logical font. It is accessed via the
logFontOffset value in the appropriate entry in the logical font directory. The
structure of the logical font section is as follows.

Table A-3. Logical Font Section

Syntax Number of bits Mnemonic

logFontSection() {
 for (i = 0; i < nLogFonts; i++){
 logFontRecord()
 }
 }

The structure of each logical font record is as follows.

Coding of Outline Fonts V1.2 12/03/02 Page 8

Table A-4. Logical Font Record

Syntax Number of bits Mnemonic

logFontRecord() {
 fontMatrix[0] 24 tcimsbf
 fontMatrix[1] 24 tcimsbf
 fontMatrix[2] 24 tcimsbf
 fontMatrix[3] 24 tcimsbf
 zero 1 bslbf
 extraItemsPresent 1 bslbf
 twoByteBoldThicknessValue 1 bslbf
 boldFlag 1 bslbf
 twoByteStrokeThicknessValue 1 bslbf
 strokeFlag 1 bslbf
 lineJoinType 2 bslbf
 if (strokeFlag){
 if (twoByteStrokeThicknessValue)
 strokeThickness 16 tcimsbf
 else
 strokeThickness 8 uimsbf
 if (lineJoinType == MITERLINEJOIN)
 miterLimit 24 tcimsbf
 }
 else if (boldFlag){
 if (twoByteBoldThicknessValue)
 boldThickness 16 tcimsbf
 else
 boldThickness 8 uimsbf
 }
 if (extraItemsPresent){
 nExtraItems 8 uimsbf
 for (i = 0; i < nExtraItems; i++){
 extraItemSize 8 uimsbf
 extraItemType 8 uimsbf
 for (j = 0; j < extraItemSize; j++){
 extraItemData 8 uimsbf
 }
 }
 }
 physFontSize 16 uimsbf
 physFontOffset 24 uimsbf
 if (pfrHeader.physFontMaxSizeHighByte){
 physFontSizeIncrement 8 uimsbf
 }
 }

Coding of Outline Fonts V1.2 12/03/02 Page 9

fontMatrix[]: An array of four signed integers representing the coefficients of the
transformation matrix (in units of 1/256) from the font’s coordinate system to the
document coordinate system. The defined transformation is:

x’ = (fontMatrix[0] * x + fontMatrix[2] * y) / (256 * outlineResolution)

y’ = (fontMatrix[1] * x + fontMatrix[3] * y) / (256 * outlineResolution)

where (x, y) is a point in the character outline resolution unit coordinate system,
outlineResolution is the resolution of the associated physical font and (x’, y’) is the
corresponding point in the (scaled) logical font.

zero: A bit flag that shall be set to zero.

extraItemsPresent: A bit flag that indicates that the logical font contains extra
data items. This should be set to zero for the current version as no extra item types
are defined for logical font records.

twoByteBoldThicknessValue: A bit flag that indicates that the bold thickness
value is expressed as a signed 16-bit integer rather than as an unsigned 8-bit
integer.

boldFlag: A bit flag that indicates that emboldening should be enabled when
rendering this logical font.

twoByteStrokeThicknessValue: A bit flag that indicates that the stroke thickness
value is expressed as a signed 16-bit integer rather than as an unsigned 8-bit
integer.

strokeFlag: A bit flag that indicates that this logical font should be rendered by
drawing a stroke with the specified thickness around the outline rather than by
conventionally filling the interior of the outline. Note that if this flag is set, it
overrides the bold flag.

lineJoinType: A two-bit field that indicates how convex corners should be handled
during stroked rendering. Its values are the standard PostScript definitions:

 0: MITER_LINE_JOIN

 1: ROUND_LINE_JOIN

 2: BEVEL_LINE_JOIN

 3: Undefined

strokeThickness: This is a signed integer that indicates the thickness of the stroke
to be used to render the character in stroke mode. The units are character
coordinates (outline resolution units). If twoByteStrokeThicknessValue is equal to
zero, this value is represented by an unsigned 8-bit field. If
twoByteStrokeThicknessValue is equal to one, this value is represented by an signed
16-bit field. The effect of using a negative value for stroke thickness is undefined.

Coding of Outline Fonts V1.2 12/03/02 Page 10

miterLimit: A signed integer representing the limit beyond which mitered corners
should be rendered as beveled corners. It is represented by the standard PostScript
value for miterLimit. The value represents the maximum value of the miter ratio for
any mitered corner in units of 1/65536. The miter ratio is the distance of the mitered
corner from the outline corner divided by half the bold or stroke thickness.

boldThickness: This is a signed integer that indicates the total amount by which
rendered characters should be emboldened. The units are character coordinates
(outline resolution units). Thus, for example, a 100 by 200 square emboldened by 10
units would be rendered as if the square were 110 by 210 character units. If
twoByteBoldThicknessValue is equal to zero, this value is represented by an
unsigned 8-bit field. If twoByteBoldThicknessValue is equal to one, this value is
represented by an signed 16-bit field. A negative value for boldThickness may be
used to specify a reduced boldness for a character. This should be used with caution
as an excessively negative value for boldThickness can cause thin parts of a
character shape to turn inside out.

nExtraItems: An unsigned integer that indicates the number of extra data items
present. Extra data items added to a logical font contain data that will be ignored by
earlier versions of the PFR interpreter and used by later versions of the PFR
interpreter. This field is not used in the current version.

extraItemSize: An unsigned integer indicating the size in bytes of one extra data
item. The size includes only the extra item data following the extraItemType field.
This field is not used in the current version

extraItemType: An unsigned integer indicating the type of extra item data present.
No extra data item types have been defined for logical font records at this time.

extraItemData: One byte of extra item data. This data is interpreted in accordance
with the extraItemType defined for logical font records. All undefined extra item
types will be ignored. This field is not used in the current version

physFontSize: An unsigned integer that defines the size in bytes of the associated
physical font record.

physFontOffset: An unsigned integer that defines the offset in bytes of the first
byte of the associated physical font record. The offset is relative to the first byte of
the PFR header.

physFontSizeIncrement: An unsigned integer that allows physical font sizes in
excess of 64K bytes to be supported. If the physFontMaxSizeHighByte field in the
PFR header is non-zero, the value of physFontSizeIncrement is multiplied by 65535
and added to physFontSize. In other words, it provides a high byte for the physical
font size.

Coding of Outline Fonts V1.2 12/03/02 Page 11

5 Physical font section
The physical font section contains information about each of the physical fonts
contained in the PFR. Each physical font is represented by a physical font record
containing information about one physical font. It is accessed via the physFontOffset
value in the parent logical font record. In the case that bitmaps are associated with
a physical font, the bitmap size records and bitmap character tables form part of the
physical font section and should appear immediately following the parent physical
font record. The structure of the physical font section is as follows.

Table A-5. Physical Font Section

Syntax Number of bits Mnemonic

physFontSection() {
 for (i = 0; i < nPhysFonts; i++)
 {
 physFontRecord()
 for (j = 0; j < nBitmapSizes; j++) {
 for (k = 0; k < nBmapChars; k++) {
 bmapCharRecord();
 }
 }
 }
 }

The structure of each physical font record in the physical font section is as follows.

Table A-6. Physical Font Record

Syntax Number of bits Mnemonic

physFontRecord() {
 fontRefNumber 16 uimsbf
 outlineResolution 16 uimsbf
 metricsResolution 16 uimsbf
 xMin 16 tcimsbf
 yMin 16 tcimsbf
 xMax 16 tcimsbf
 yMax 16 tcimsbf
 extraItemsPresent 1 bslbf
 zero 1 bslbf
 threeByteGpsOffset 1 bslbf
 twoByteGpsSize 1 bslbf
 asciiCodeSpecified 1 bslbf
 proportionalEscapement 1 bslbf
 twoByteCharCode 1 bslbf
 verticalEscapement 1 bslbf
 if (!proportionalEscapement)
 standardSetWidth 16 tcimsbf
 if (extraItemsPresent){

Coding of Outline Fonts V1.2 12/03/02 Page 12

 nExtraItems 8 uimsbf
 for (i = 0; i < nExtraItems; i++){
 extraItemSize 8 uimsbf
 extraItemType 8 uimsbf
 switch(extraItemType){
 case 1:
 bitmapInfo()
 break;
 case 2:
 fontID()
 break;
 case 3:
 stemSnapTables()
 break;
 default:
 for (j = 0; j < extraItemSize; j++){
 extraItemData 8 uimsbf
 }
 break;
 }
 }
 }
 nAuxBytes 24 uimsbf
 for(I=0; I<nAuxBytes; I++)
 {
 auxData 8 uimsbf
 }
 nBlueValues 8 uimsbf
 for(i = 0; i < nBlueValues; i++)
 {
 blueValue[i] 16 tcimsbf
 }
 blueFuzz 8 uimsbf
 blueScale 8 uimsbf
 stdVW 16 uimsbf
 stdHW 16 uimsbf
 nCharacters 16 uimsbf
 for (i = 0; i < nCharacters; i++)
 {
 charRecord()
 }

fontRefNumber: An unsigned integer that uniquely defines the physical font
record within the PFR. Conventionally, physical fonts are numbered in sequence
starting at 0.

outlineResolution: A signed integer that defines the resolution of the coordinate
system of the character outlines. The value represents the number of units in one
em.

Coding of Outline Fonts V1.2 12/03/02 Page 13

metricsResolution; A signed integer that defines the resolution of the coordinate
system of the character set width values. The value represents the number of units
in one em.

xMin: A signed integer whose value is the smallest value of any X-coordinate of any
point in the outline representation of any character in the physical font.

yMin: A signed integer whose value is the smallest value of any Y-coordinate of any
point in the outline representation of any character in the physical font.

xMax: A signed integer whose value is the largest value of any X-coordinate of any
point in the outline representation of any character in the physical font.

yMax: A signed integer whose value is the largest value of any Y-coordinate of any
point in the outline representation of any character in the physical font.

extraItemsPresent: A bit flag that indicates that the physical font contains extra
data items. This field is normally set to one because the fontID extra item is
required to be present.

zero: A bit flag that shall be set to zero.

threeByteGpsOffset: A bit flag that indicates that the value of gpsOffset is
represented by a three-byte rather than by a two-byte integer.

twoByteGpsSize: A bit flag that indicates that the value of gpsSize is represented
by a two-byte rather than by a single-byte integer.

asciiCodeSpecified: Obsolete; set to zero.

proportionalEscapement: A bit flag that indicates that the set width is specified
for each character rather than for all characters.

twoByteCharCode: A bit flag that indicates that the value of charCode is
represented by a two-byte rather than by a single byte integer.

verticalEscapement: A bit flag that indicates that set width value should be
interpreted as a vertical rather than horizontal escapement value.

standardSetWidth: A signed integer whose value is the set width of all characters
in the font.

nExtraItems: An unsigned integer that indicates the number of extra data items
present. Extra data items added to a logical font contain data that will be ignored by
earlier versions of the PFR interpreter and used by later versions of the PFR
interpreter. This field normally has a value of at least one because the fontID extra
item is required in the current version.

extraItemSize: An unsigned integer indicating the size in bytes of one extra data
item. The size includes only the extra item data following the extraItemType field.

Coding of Outline Fonts V1.2 12/03/02 Page 14

extraItemType: An unsigned integer indicating the type of extra item data present.
Three extra data item types (values 1 - 3) have been defined for physical font
records at this time.

extraItemData: One byte of extra item data. This data is interpreted in accordance
with the values of extraItemType defined for physical font records. All undefined
extra item types will be ignored.

nAuxBytes: An unsigned integer defining the number of bytes of auxiliary data that
follow.

auxData: nAuxBytes bytes of arbitrary data.

nBlueValues: An unsigned integer defining the number of vertical alignment
edges. The number of alignment edges shall always be an even number.

blueValue: A signed integer defining the Y-coordinate of one edge of a blue zone.
The contained blue values must be in ascending order. Each succeeding pair of blue
values defines one blue zone. See the Adobe Type 1 Font Format specification for
details on the effect of defining blue zones.

blueFuzz: An unsigned integer defining the value of blueFuzz. See the Adobe Type
1 Font Format specification for details on the effect of this value.

blueScale: An unsigned integer defining the value of blueScale See the Adobe Type
1 Font Format specification for details on the effect of this value.

stdVW: An unsigned integer defining the value of stdVW See the Adobe Type 1 Font
Format specification for details on the effect of this value.

stdHW: An unsigned integer defining the value of stdHW See the Adobe Type 1
Font Format specification for details on the effect of this value.

nCharacters: An unsigned integer defining the number of character records
present. Character records following this field must be in ascending order of
charCode.

The format of each character record is as follows.

Coding of Outline Fonts V1.2 12/03/02 Page 15

Table A-7. Character Record

Syntax Number of bits Mnemonic

charRecord() {
 if (twoByteCharCode)
 charCode 16 uimsbf
 else
 charCode 8 uimsbf
 if (proportionalEscapement)
 charSetWidth 16 tcimsbf
 if (asciiCodeSpecified)
 asciiCodeValue 8 uimsbf
 if (twoByteGpsSize)
 gpsSize 16 uimsbf
 else
 gpsSize 8 uimsbf
 if (threeByteGpsOffset)
 gpsOffset 24 uimsbf
 else
 gpsOffset 16 uimsbf
 }

charCode: An unsigned integer defining the character code value.

charSetWidth: A signed integer defining the set width of the character. This
determines the horizontal or vertical distance from the origin of the current
character to the origin of the immediately following character.

asciiCodeValue: This field if present should be ignored.

gpsSize: An unsigned integer indicating the size in bytes of the glyph program
string containing the outline representation of the character.

gpsOffset: An unsigned integer indicating the byte offset of the first byte of the
glyph program string containing the outline representation of the character. The
offset is relative to the first byte of the first glyph program string in the glyph
program string section of the PFR.

5.1 Bitmap Information

Optional bitmap information, contained in one or more extra data items in a physical
font record, associates a set of bitmap character tables with that physical font
record. These bitmap character tables must be written immediately following the
parent physical font record. As these bitmap character tables are individually
accessed via bitmap size records their order is arbitrary. Each bitmap character
table contains bitmap character records for a single bitmap size. Bitmap size is
measured in pixels per em. The horizontal size of a bitmap image may be different
from its vertical size. The bitmap information record consists of a header followed
by one or more bitmap size records. The structure of the bitmap information record
is as follows.

Coding of Outline Fonts V1.2 12/03/02 Page 16

Table A-8. Bitmap Information Extra Data Item

Syntax Number of bits Mnemonic

bitmapInfo() {
 fontBctSize 24 tcimsbf
 zeros 3 bslbf
 twoByteNBmapChars 1 bslbf
 threeByteBctOffset 1 bslbf
 threeByteBctSize 1 bslbf
 twoByteYppm 1 bslbf
 twoByteXppm 1 bslbf
 nBitmapSizes 8 uimsbf
 for (i = 0; i < nBitmapSizes; i++){
 bmapSizeRecord()
 }
 }

fontBctSize: A signed integer that represents the total size in bytes of all bitmap
character tables associated with this physical font record. Note that if there are
multiple bitmap information records associated with a physical font record, all must
have the same value of fontBctSize.

zeros: A concatenation of bits that shall all be set to zero.

twoByteNBmapChars: A bit flag that is set to indicate that the nBmapChars field
in each bitmap size record within this bitmap information record is represented by
two bytes rather than by a single byte field.

threeByteBctOffset: A bit flag that is set to indicate that the bctOffset field in each
bitmap size record within this bitmap information record is represented by three
bytes rather than by a two byte field.

threeByteBctSize: A bit flag that is set to indicate that the bctSize field in each
bitmap size record within this bitmap information record is represented by three
bytes rather than by a two byte field.

twoByteYppm: A bit flag that is set to indicate that the yppm field in each bitmap
size record within this bitmap information record is represented by two bytes rather
than by a single byte field.

twoByteXppm: A bit flag that is set to indicate that the xppm field in each bitmap
size record within this bitmap information record is represented by a two bytes
rather than by a single byte field.

nBitmapSizes: An unsigned integer indicating the number of bitmap size records
that appear in the remainder of the bitmap information record.

The number of bitmap size records that can fit in one extra data item is limited by
the 256 byte limit on the total size of any extra data item. Multiple extra data items
may be used to get around this limitation. Each bitmap size record contains

Coding of Outline Fonts V1.2 12/03/02 Page 17

information about one bitmap character table. Within each extra data item, bitmap
size records must be in ascending order of Y pixels per em (X pixels per em is a
secondary sort key in the event of duplicate values of Y pixels per em). The format of
each bitmap size record is as follows.

Table A-9. Bitmap Size Record

Syntax Number of bits Mnemonic

bmapSizeRecord() {
 if (twoByteXppm)
 xppm 16 uimsbf
 else
 xppm 8 uimsbf
 if (twoByteYppm)
 yppm 16 uimsbf
 else
 yppm 8 uimsbf
 zeros 5 bslbf
 threeByteGpsOffset 1 bslbf
 twoByteGpsSize 1 bslbf
 twoByteCharCode 1 bslbf
 if (threeByteBctSize)
 bctSize 24 uimsbf
 else
 bctsize 16 uimsbf
 if (threeByteBctOffset)
 bctOffset 24 uimsbf
 else
 bctOffset 16 uimsbf
 if (twoByteNBmapChars)
 nBmapChars 16 uimsbf
 else
 nBmapChars 8 uimsbf
 }

xppm: An unsigned integer that represents the number of pixels per em in the X
dimension

yppm: An unsigned integer that represents the number of pixels per em in the Y
dimension

zeros: A concatenation of bits that shall all be set to zero.

threeByteGpsOffset: A bit flag that is set to indicate that the value of gpsOffset is
represented by a three-byte rather than by a two-byte integer.

twoByteGpsSize: A bit flag that is set to indicate that the value of gpsSize is
represented by a two-byte integer rather than by a single-byte integer.

twoByteCharCode: A bit flag that is set to indicate that the value of charCode is
represented by a two-byte flag rather than by a single-byte flag.

Coding of Outline Fonts V1.2 12/03/02 Page 18

bctSize: An unsigned integer that represents the total size in bytes of the bitmap
character table for the specified values of xppm and yppm.

bctOffset: An unsigned integer that represents the offset in bytes of the first byte of
the bitmap character table for the specified values of xppm and yppm. The offset is
relative to the byte immediately after the parent physical font record.

nBmapChars: An unsigned integer indicating the number of bitmap character
records provided in the bitmap character table.

5.2 Font ID

The font ID provides a means of uniquely identifying the physical font. It is
structured as a type 2 extra data item for physical font records. Its data consists of 1
to 254 non-null bytes followed by a null byte. This extra data item must be present.

The structure of the fontID record is as follows:

Table A-10. Font ID Extra Data Item

Syntax Number of bits Mnemonic

fontID() {
 for (i = 0; ; i++){
 character[i] 8 uimsbf
 if (character[i] == 0)
 break
 }
 }

character[]: An unsigned integer representing each character in the name of the
physical font. Although the preferred coding system is ASCII, any 8-bit coding
system can be used as long as it is consistent with the manner in which the font is
referred to.

5.3 Stem snap tables

Stem snap tables may be specified to enhance stem weight consistency during
rendering by providing values of secondary stem weights (other than the primary
values of stdVW and stdHW) which can be used for dynamic stem weight
regularization. See the Adobe Type 1 font format specification for details on the
behavior of stem snap tables. The vertical stem snap table contains zero or more
values of vertical stem sizes measured in character outline resolution units. The
horizontal stem snap table contains zero or more values of horizontal stem sizes
measured in character outline resolution units. Stem snap tables are structured as
a type 3 extra data item for a physical font. The format of the stem snap table data is
as follows.

Coding of Outline Fonts V1.2 12/03/02 Page 19

Table A-11. Stem Snap Tables

Syntax Number of bits Mnemonic

stemSnapTables() {
 sshSize 4 uimsbf
 ssvSize 4 uimsbf
 for (i = 0; i < ssvSize; i++){
 stemSnapV[i] 16 tcimsbf
 }
 for (i = 0; i < sshSize; i++){
 stemSnapH[i] 16 tcimsbf
 }
 }

The values in each of the stem snap tables (vertical and horizontal) must be in
ascending order.

sshSize: An unsigned integer indicating the number of horizontal stem snap values
provided.

ssvSize: An unsigned integer indicating the number of vertical stem snap values
provided.

stemSnapV: A signed integer representing one secondary vertical stem weight in
character outline units.

stemSnapH: A signed integer representing one secondary horizontal stem weight
in character outline units.

5.4 Bitmap character tables

Bitmap character tables provide a means of finding an optional bitmap image
associated with a character code. A bitmap character table consists of a list of
character codes and for each character code a pointer to the bitmap glyph program
string containing the character image.

Bitmap character tables are written immediately following the physical font record
with which they are associated. Each bitmap character table consists of one or more
bitmap character records arranged in increasing order of character code.

The format of each bitmap character record in a bitmap character table is as
follows.

Coding of Outline Fonts V1.2 12/03/02 Page 20

Table A-12. Bitmap Character Record

Syntax Number of bits Mnemonic

bmapCharRecord() {
 if (twoByteCharCode)
 charCode 16 uimsbf
 else
 charCode 8 uimsbf
 if (twoByteGpsSize)
 gpsSize 16 uimsbf
 else
 gpsSize 8 uimsbf
 if (ThreeByteGpsOffset)
 gpsOffset 24 uimsbf
 else
 gpsOffset 16 uimsbf
 }

Note that because twoByteCharCode, twoByteGpsSize and ThreeByteGpsOffset are
defined in the parent bitmap size record, they apply to all bitmap character records
in a given bitmap character table. This ensures that the size in bytes of every record
in a bitmap character table is the same.

charCode: An unsigned integer defining the bitmap character code value.

gpsSize: An unsigned integer indicating the size of the glyph program string
containing the bitmap image of the character.

gpsOffset: An unsigned integer indicating the byte offset of the first byte of the
glyph program string containing the bitmap image of the character. The offset is
relative to the first byte of the first glyph program string in the glyph program
string section of the PFR.

6 Glyph program strings
Glyph program strings define character shapes and images. There are three kinds of
glyph program strings supported:

• Simple glyph program strings that encode a scaleable glyph shape

• Compound glyph program strings that define a scaleable glyph in terms of one
or more simple glyph program strings.

• Bitmap glyph program strings that encode a bitmap image.

Coding of Outline Fonts V1.2 12/03/02 Page 21

7 Simple glyph program strings
A simple glyph program string defines the shape of a character as zero or more
outline contours. The points defining the outline are in character outline resolution
units based on the value of outlineResolution in the parent physical font record. The
structure of a glyph program string is as follows.

Table A-13. Simple Glyph Program String

Syntax Number of bits Mnemonic

simpleGps() {
 isCompoundGlyph 1 bslbf
 zeros 3 bslbf
 extraItemsPresent 1 bslbf
 oneByteXYCoordCount 1 bslbf
 controlledYCoords 1 bslbf
 controlledXCoords 1 bslbf
 if (oneByteXYCoordCount)
 {
 nYorus 4 uimsbf
 nXorus 4 uimsbf
 }
 else
 {
 if (controlledXCoords)
 {
 nXorus 8 uimsbf
 }
 if (controlledYCoords)
 {
 nYorus 8 uimsbf
 }
 }
 for (i = 0; i < (nXorus + nYorus); i++)
 {
 if (i & 7 == 0)
 {
 twoByteCoord[7] 1 bslbf
 twoByteCoord[6] 1 bslbf
 twoByteCoord[5] 1 bslbf
 twoByteCoord[4] 1 bslbf
 twoByteCoord[3] 1 bslbf
 twoByteCoord[2] 1 bslbf
 twoByteCoord[1] 1 bslbf
 twoByteCoord[0] 1 bslbf
 }
 if (twoByteCoord[i & 7])
 oruValue 16 tcimsbf
 else
 oruValue 8 uimsbf
 }

Coding of Outline Fonts V1.2 12/03/02 Page 22

 if (extraItemsPresent)
 {
 nExtraItems 8 uimsbf
 for (i = 0; i < nExtraItems; i++){
 extraItemSize 8 uimsbf
 extraItemType 8 uimsbf
 switch(extraItemType){
 case 1:
 secondaryStrokeInfo()
 break;
 case 2:
 secondaryEdgeInfo()
 break;
 default:
 for (j = 0; j < extraItemSize, j++){
 extraItemData 8 uimsbf
 }
 break;
 }
 }
 }
 do
 {
 glyphOutlineRecord()
 } while (!endGlyph)
 }

isCompoundGlyph: A bit flag that indicates that the glyph is compound. This flag is
always clear for a simple glyph program string.

zeros: A concatenation of bits that shall all be set to zero.

extraItemsPresent: A bit flag that indicates extra data items are present.

oneByteXYCoordCount: A bit flag indicating that the values of nXorus and nYorus
are packed into a single byte.

controlledYCoords: A bit flag indicating that there are one or more controlled Y
coordinates.

controlledXCoords: A bit flag indicating that there are one or more controlled X
coordinates.

nXorus: An unsigned integer indicating the number of controlled X coordinates

nYorus: An unsigned integer indicating the number of controlled Y coordinates.

twoByteCoord[]: A bit flag indicating the format and method of interpreting a
controlled coordinate value. If this bit flag is clear, the controlled coordinate value
is represented by one byte which is interpreted as an unsigned coordinate value in
outline resolution units relative to the preceding coordinate value. In the case of the
first controlled coordinate value, the preceding value is deemed to be at the origin.
If this bit flag is set, the controlled coordinate value is represented by two bytes

Coding of Outline Fonts V1.2 12/03/02 Page 23

whose integer value is interpreted as an absolute signed coordinate value in outline
resolution units.

oruValue: A signed integer representing a controlled coordinate value in X or Y.
Controlled coordinate values must be in ascending order within each dimension.
Controlled X coordinates are listed first, controlled Y coordinates are listed second.

nExtraItems: An unsigned integer that indicates the number of extra data items
present. Extra data items added to a simple glyph program string contain data that
will be ignored by earlier versions of the PFR interpreter and used by later versions
of the PFR interpreter.

extraItemSize: An unsigned integer indicating the size in bytes of one extra data
item. The size includes only the extra item data following the extraItemType field.

extraItemType: An unsigned integer indicating the type of extra item data present.
Two extra data item types (values 1 - 2) have been defined for simple glyph program
strings at this time.

extraItemData: One byte of extra item data. This data is interpreted in accordance
with the values of extraItemType defined for simple glyph program strings. All
undefined extra item types will be ignored.

secondaryStrokeInfo(): A block of data representing one or more secondary
stroke definitions.

secondaryEdgeInfo(): A block of data representing one or more secondary edge
definitions.

glyphOutlineRecord(): A block of data representing one segment of an outline
definition.

Four standard types of glyph outline records are defined:

 moveTo()

 lineTo()

 curveTo()

 endGlyph()

The first glyph record must be a moveTo record. This defines the start point of the
first contour. The shape of a contour is defined by a sequence of lineTo and curveTo
records in any order. The outline shape defining a contour should not be self-
intersecting. Each successive moveTo record terminates the preceding contour and
starts a new one. If the end point of the previous contour is not coincident with its
start point, the contour is closed as if a lineTo record back to the start point of the
contour had been included. The last contour must be terminated by an endGlyph
record.

Coding of Outline Fonts V1.2 12/03/02 Page 24

Glyph outline records make use of the concept of an argument format that defines
one of four possible formats for specifying an X or Y coordinate. Argument formats
have the following meaning:

Table A-14. X - Coordinate Argument Format

Syntax Number of bits Mnemonic

xArg(xArgFormat) {
 switch (xArgFormat){
 case 0: xIndex 8 uimsbf
 break
 case 1: xValue 16 tcimsbf
 break
 case 2: xIncrement 8 tcimsbf
 break
 case 3:
 }
 }

xIndex: An unsigned integer representing the index in the controlled X coordinate
table at which the value is found. Note that only controlled coordinates representing
the edges of primary strokes may be used in this manner.

xValue: A signed integer representing the X coordinate of the point.

xIncrement: A signed integer representing the change in the X coordinate value
relative to the X coordinate of the preceding point.

Table A-15. Y - Coordinate Argument Format

Syntax Number of bits Mnemonic

yArg(yArgFormat) {
 switch (yArgFormat){
 case 0: yIndex 8 uimsbf
 break
 case 1: yValue 16 tcimsbf
 break
 case 2: yIncrement 8 tcimsbf
 break
 case 3:
 }
 }

yIndex: An unsigned integer representing the index in the controlled Y coordinate
table at which the value of the Y coordinate may be found. Note that only controlled
coordinates representing the edges of primary horizontal strokes may be used in
this manner.

Coding of Outline Fonts V1.2 12/03/02 Page 25

yValue: A signed integer representing the Y coordinate of the point.

yIncrement: A signed integer representing the change in the Y coordinate value
relative to the Y coordinate of the preceding point.

7.1 MoveTo glyph record

The moveTo glyph record starts a new contour at a specified point.

Its structure is:

Table A-16. Move To Glyph Record

Syntax Number of bits Mnemonic

moveTo() {
 moveOp 3 uimsbf
 isOutsideContour 1 bslbf
 yArgFormat 2 uimsbf
 xArgFormat 2 uimsbf
 xArg(xArgFormat)
 yArg(yArgFormat)
 }

moveOp: An unsigned integer constant with value 2; this field provides, together
with the subsequent isOutsideContour field, a unique identification of a moveTo
glyph record.

isOutsideContour: A bit flag that is set to indicate that the contour is an outside
contour whose direction is counterclockwise

yArgFormat: An unsigned integer that defines the encoding format of a Y
coordinate value. In the case of the first move in a glyph program string, the
preceding Y coordinate value is deemed to have a value of 0.

xArgFormat: An unsigned integer that defines the encoding format of a X
coordinate value. In the case of the first move in a glyph program string, the
preceding X coordinate value is deemed to have a value of 0.

xArg: The X coordinate of the start point of the contour as defined above.

yArg: The Y coordinate of the start point of the contour as defined above.

7.2 LineTo glyph record

The lineTo glyph record continues a contour from the current point in a straight line
to a specified point. Its structure is as follows.

Coding of Outline Fonts V1.2 12/03/02 Page 26

Table A-17. Line To Glyph Record

Syntax Number of bits Mnemonic

lineTo() {
 lineOp 4 uimsbf
 yArgFormat 2 uimsbf
 xArgFormat 2 uimsbf
 xArg(xArgFormat)
 yArg(yArgFormat)
 }

lineOp: An unsigned integer constant with value 1

yArgFormat: An unsigned integer that defines the encoding format of a Y
coordinate value.

xArgFormat: An unsigned integer that defines the encoding format of a X
coordinate value.

xArg: The X coordinate of the end point of the line as defined above.

yArg: The Y coordinate of the end point of the line as defined above.

7.3 CurveTo glyph record

The curveTo glyph record continues a contour from the current point in a curved
outline to a specified point. The shape of the intervening curve is a cubic bezier and
is defined by a pair of curve control points. Its structure is as follows.

Table A-18. Curve To Glyph Record

Syntax Number of bits Mnemonic

curveTo() {
 curveOp 1 uimsbf
 curveDepth 3 uimsbf
 y1ArgFormat 2 uimsbf
 x1ArgFormat 2 uimsbf
 xArg(x1ArgFormat)
 yArg(y1ArgFormat)
 y3ArgFormat 2 uimsbf
 x3ArgFormat 2 uimsbf
 y2ArgFormat 2 uimsbf
 x1ArgFormat 2 uimsbf
 xArg(x2ArgFormat)
 yArg(y2ArgFormat)
 xArg(x3ArgFormat)
 yArg(y3ArgFormat)
 }

Coding of Outline Fonts V1.2 12/03/02 Page 27

curveOp: An unsigned integer constant with value 1; this field provides, together
with the subsequent curveDepth field, a unique identification of a curveTo glyph
record.

curveDepth: An unsigned integer indicating the number of recursive subdivisions
required to result in a polygonal representation with an error less than one half of
an outline resolution unit.

y1ArgFormat: An unsigned integer that defines the encoding format of the Y
coordinate of the first curve control point.

x1ArgFormat: An unsigned integer that defines the encoding format of the X
coordinate of the first curve control point.

xArg(x1ArgFormat): The X coordinate of the first curve control point.

yArg(y1ArgFormat): The Y coordinate of the first curve control point.

y3ArgFormat: An unsigned integer that defines the encoding format of the Y
coordinate of the curve end point.

x3ArgFormat: An unsigned integer that defines the encoding format of the X
coordinate of the curve end point.

y2ArgFormat: An unsigned integer that defines the encoding format of the Y
coordinate of the second curve control point.

x2ArgFormat: An unsigned integer that defines the encoding format of the X
coordinate of the second curve control point.

xArg(x2ArgFormat): The X coordinate of the second curve control point.

yArg(y2ArgFormat): The Y coordinate of the second curve control point.

xArg(x3ArgFormat): The X coordinate of the curve end point.

yArg(y3ArgFormat): The Y coordinate of the curve end point.

Coding of Outline Fonts V1.2 12/03/02 Page 28

7.4 EndGlyph record

The endGlyph record terminates a contour with a line back to the start point of the
contour. Its structure is as follows.

Table A-19. End Glyph Record

Syntax Number of bits Mnemonic

endGlyph() {
 endGlyphOp 8 uimsbf
 }

endGlyphOp: An unsigned integer constant with value 0

7.5 Short-form glyph records

In addition to these standard glyph outline records, there are several special-case
versions to provide more compact representations of common shapes:

7.6 hLineTo glyph record

For horizontal straight lines that end on a X controlled coordinate, the hLineTo
glyph outline record is provided. Its structure is as follows.

Table A-20. Horizontal Line To Glyph Outline Record

Syntax Number of bits Mnemonic

hLineTo() {
 hLineOp 4 uimsbf
 xIndex 4 uimsbf
 }

hLineop: an unsigned integer constant with value 2.

xIndex: an unsigned integer indicating the index into the table of controlled X
coordinates at which the X coordinate of the end point of the line is found. The first
entry of this table has index value zero.

Coding of Outline Fonts V1.2 12/03/02 Page 29

7.7 vLineTo glyph record

For vertical straight lines that end on a controlled X coordinate, the vLineTo glyph
outline record is provided. Its structure is as follows.

Table A-21. Vertical Line To Glyph Outline Record

Syntax Number of bits Mnemonic

vLineTo() {
 vLineOp 4 uimsbf
 yIndex 4 uimsbf
 }

vLineOp: an unsigned integer constant with value 3.

yIndex: an unsigned integer indicating the index into the table of controlled Y
coordinates at which the Y coordinate of the end point of the line is found. The first
entry of this table has index value zero.

7.8 hvCurveTo glyph record

For curves that start in a horizontal direction and end in a vertical direction along a
controlled X coordinate, the hvCurveTo glyph outline record is provided. Its
structure is as follows.

Table A-22. Horizontal to Vertical Curve Glyph Outline Record

Syntax Number of bits Mnemonic

hvCurveTo() {
 hvCurveOp 4 uimsbf
 zero 1 bslbf
 curveDepth 3 uimsbf
 x1Increment 8 tcimsbf
 xIndex 4 uimsbf
 y2Increment 8 tcimsbf
 y3Increment 8 tcimsbf
 }

hvCurveOp: an unsigned integer constant with value 6

zero: A bit flag that shall be set to zero.

curveDepth: An unsigned integer indicating the number of recursive subdivisions
required to result in a polygonal representation with an error less than one half of
an outline resolution unit.

x1Increment: A signed integer representing the X coordinate of the first curve
control point relative to the start point of the curve.

Coding of Outline Fonts V1.2 12/03/02 Page 30

xIndex: an unsigned integer indicating the index into the table of controlled X
coordinates at which the X coordinate of the second control point and the end point
of the curve is found. The first entry of this table has index value zero.

y2Increment: A signed integer representing the Y coordinate of the second curve
control point relative to the first curve control point.

y3Increment: A signed integer representing the Y coordinate of the end point of
the curve relative to the second curve control point.

7.9 vhCurveTo glyph record

For curves that start in a vertical direction and end in a horizontal direction along a
controlled Y coordinate, the vhCurveTo glyph outline record is provided. Its
structure is as follows.

Table A-23. Vertical to Horizontal Curve Glyph Outline Record

Syntax Number of bits Mnemonic

vhCurveTo() {
 vhCurveOp 4 uimsbf
 zero 1 bslbf
 curveDepth 3 uimsbf
 y1Increment 8 tcimsbf
 x2Increment 8 tcimsbf
 yIndex 4 uimsbf
 x3Increment 8 tcimsbf
 }

vhCurveOp: an unsigned integer constant with value 7.

zero: A bit flag that shall be set to zero.

curveDepth: An unsigned integer indicating the number of recursive subdivisions
required to result in a polygonal representation with an error less than one half of
an outline resolution unit.

y1Increment: A signed integer representing the Y coordinate of the first curve
control point relative to the start point of the curve.

x2Increment: A signed integer representing the X coordinate of the second curve
control point relative to the first curve control point.

yIndex: an unsigned integer indicating the index into the table of controlled Y
coordinates at which the Y coordinate of the second control point and the end point
of the curve is found.

x3Increment: A signed integer representing the X coordinate of the end point of
the curve relative to the second curve control point.

Coding of Outline Fonts V1.2 12/03/02 Page 31

7.10 Secondary stroke definitions

Primary strokes cannot be mutually overlapping. Secondary strokes that overlap
primary strokes may be other secondary strokes that are encoded into secondary
stroke information. Secondary strokes that overlap a primary stroke are positioned
relative to the primary stroke after the primary stroke has been positioned.
Secondary stroke information is structured as a type 1 extra data item. The format
for a secondary stroke information is as follows.

Table A-24. Secondary Stroke Information Extra Data Item

Syntax Number of bits Mnemonic

secondaryStrokeInfo() {
 nVertSecStrokes 8 uimsbf
 for (i = 0; i < nVertSecStrokes; i++){
 leftEdge[i] 16 tcimsbf
 rightEdge[i] 16 tcimsbf
 }
 nHorizSecStrokes 8 uimsbf
 for (i = 0; i < nHorizSecStrokes; i++)
 {
 bottomEdge[i] 16 tcimsbf
 topEdge[i] 16 tcimsbf
 }
 }

nVertSecStrokes: An unsigned integer representing the number of secondary
vertical strokes defined for the current simple glyph.

leftEdge[]: A signed integer representing the X coordinate of the left edge of a
secondary vertical stroke in outline resolution units.

rightEdge[]: A signed integer representing the X coordinate of the right edge of a
secondary vertical stroke in outline resolution units.

nHorizSecStrokes: An unsigned integer representing the number of secondary
horizontal strokes defined for the current simple glyph.

bottomEdge[]: A signed integer representing the Y coordinate of the lower edge of
a secondary horizontal stroke in outline resolution units.

topEdge[]: A signed integer representing the Y coordinate of the upper edge of a
secondary horizontal stroke in outline resolution units.

Because the maximum size of a secondary stroke definition item is 255 bytes, the
maximum number of secondary strokes that may be defined in one extra data item is
63. Secondary vertical strokes must be in increasing order of their left edge.
Secondary horizontal strokes must be in increasing order of their lower edge.

Coding of Outline Fonts V1.2 12/03/02 Page 32

7.11 Secondary edge definitions

When the edge of a stroke is represented by a shallow curve or other irregularity, it
is often desirable to straighten the outline at small sizes and low resolutions. A
secondary edge may be defined relative to any stroke edge (its parent). At small
sizes and low resolutions, the secondary edge is snapped to the position of its
parent. This has the effect of squeezing outline points between the parent edge and
the secondary edge onto the primary edge thus resulting in a locally straightened
outline. Either edge of any primary or secondary stroke may have one or two
secondary edges associated with it. Two edges allow the squeezing operation to take
place from both sides of the parent edge. A secondary edge is a generalization of the
flex mechanism used in Type 1 fonts which is restricted to certain specific curve
structures. Secondary edges may be used with any shape that should be flattened at
small sizes. Secondary edge information is structured as a type 2 extra data item.
The format for secondary edge information is as follows.

Table A-25. Secondary Edge Information Extra Data Item

Syntax Number of bits Mnemonic

secondaryEdgeInfo() {
 nVertSecEdges 8 uimsbf
 for (i = 0; i < nVertSecEdges; i++){
 secEdgeDef()
 }
 nHorizSecEdges 8 uimsbf
 for (i = 0; i < nHorizSecEdges; i++){
 secEdgeDef()
 }
 }

nVertSecEdges: An unsigned integer indicating the number of vertical secondary
edge definitions provided.

nHorizSecEdges: An unsigned integer indicating the number of horizontal
secondary edge definitions provided.

The briefest format for a secondary edge definition (either horizontal or vertical) is
as follows.

Table A-26. Simplified Secondary Edge Definition

Syntax Number of bits Mnemonic

secEdgeDef() {
 secEdgeFormat 1 bslbf
 deltaIndex 3 uimsbf
 deltaOrus 4 tcimsbf
 }

Coding of Outline Fonts V1.2 12/03/02 Page 33

secEdgeFormat: A bit flag with a constant value of 0

deltaIndex: An unsigned integer in the range 0 to 7 representing the index of the
parent edge relative to the index of the parent edge of the immediately preceding
secondary edge. In the case of the first edge in each dimension, deltaIndex is
interpreted absolutely as the index of the parent edge.

deltaOrus: A signed integer in the range -8 to +7 representing the position of the
secondary edge relative to its parent edge in units of character outline resolution
units.

In this format, a standard secondary edge snap threshold of 1 pixel is assumed.

A more general (and longer) format for a secondary edge definition is as follows.

Table A-27. General Secondary Edge Definition

Syntax Number of bits Mnemonic

secEdgeDef() {
 secEdgeFormat 1 bslbf
 threshFlag 1 bslbf
 index 6 uimsbf
 if (threshFlag == 0)
 thresh 8 uimsbf
 deltaOrus 8 tcimsbf
 if (deltaOrus == 0)
 deltaOrus 16 tcimsbf
 }

secEdgeFormat: A bit flag with a constant value of 1

threshFlag: A bit flag that indicates how the threshold value is represented. If set,
a standard threshold value of 1 pixel is assumed. If clear, an explicit value is
provided.

index: An unsigned integer in the range 0 to 63. A value of zero indicates that the
index of the parent coordinate is explicitly specified. Any other value indicates that
the index of the parent coordinate is index - 1.

thresh: An unsigned integer representing the threshold at which the secondary
edge should be snapped to its parent. The units are 1/16 pixel.

deltaOrus: A signed integer representing the position of the secondary edge
relative to its parent in units of character outline resolution units.

Coding of Outline Fonts V1.2 12/03/02 Page 34

8 Compound glyph program strings
A compound glyph program string is constructed out of one or more simple glyph
program strings. Each of the elements may be independently scaled and positioned
in the process of constructing the compound glyph.

The structure of a compound glyph program string is as follows.

Table A-28. Compound Glyph Program String

Syntax Number of bits Mnemonic

compoundGps() {
 isCompoundGlyph 1 bslbf
 extraItemsPresent
 1 bslbf
 nElements 6 uimsbf
 if (extraItemsPresent)
 {
 nExtraItems 8 uimsbf
 for (i = 0; i < nExtraItems; i++)
 {
 extraItemSize 8 uimsbf
 extraItemType 8 uimsbf
 switch(extraItemType){
 default:
 for (j = 0; j < extraItemSize; j++){
 extraItemData 8 uimsbf
 }
 break;
 }
 }
 for (i = 0; i < nElements; i++){
 threeByteGpsOffset 1 bslbf
 twoByteGpsSize 1 bslbf
 yScalePresent 1 bslbf
 xScalePresent 1 bslbf
 yPosFormat 2 uimsbf
 xPosFormat 2 uimsbf
 if (xScalePresent)
 xScale 16 tcimsbf
 if (yScalePresent)
 yScale 16 tcimsbf
 switch(xPosFormat)
 {
 case 1: xPos 16 tcimsbf
 break
 case 2: xPos 8 tcimsbf
 break
 }
 switch(yPosFormat)
 {
 case 1: yPos 16 tcimsbf

Coding of Outline Fonts V1.2 12/03/02 Page 35

 break
 case 2: yPos 8 tcimsbf
 break
 }
 if (twoByteGpsSize)
 gpsSize 16 uimsbf
 else
 gpsSize 8 uimsbf
 if (threeByteGpsOffset)
 gpsOffset 24 uimsbf
 else
 gpsOffset 16 uimsbf
 }
 }
 }

isCompoundGlyph: A bit flag with a constant value to 1 to indicate that the glyph
program string should be interpreted as a compound glyph program string.

extraItemsPresent: A bit flag that indicates extra data items are present. This
should be set to zero for the current version.

nElements: An unsigned integer indicating the number of elements in the
compound character.

nExtraItems: An unsigned integer that indicates the number of extra data items
present. Extra data items added to a compound glyph program string contain data
that will be ignored by earlier versions of the PFR interpreter and may be used by
later versions of the PFR interpreter. This field is not used in the current version.

extraItemSize: An unsigned integer indicating the size in bytes of one extra data
item. The size includes only the extra item data following the extraItemType field.
This field is not used in the current version.

extraItemType: An unsigned integer indicating the type of extra item data present.
No extra data item types have been defined for compound glyph program strings at
this time

extraItemData: One byte of extra item data. This data is interpreted in accordance
with the values of extraItemType defined for compound glyph program strings. All
undefined extra item types will be ignored.

threeByteGpsOffset: A bit flag that indicates, if set, that the gpsOffset value is
defined as a 3-byte integer rather than by 2-byte integer

twoByteGpsSize: A bit flag that indicates, if set, that the value of gpsSize is defined
as a 2-byte integer rather than as a single-byte integer.

yScalePresent: A bit flag that indicates, if set, that an explicit value of xScale is
defined.

Coding of Outline Fonts V1.2 12/03/02 Page 36

xScalePresent: A bit flag that indicates, if set, that an explicit value of yScale is
defined.

yPosFormat: An unsigned integer that indicates how the value of yPos is defined. A
value of 1 indicates that it is defined as a 2-byte absolute value; a value of 2
indicates that it is defined as a single-byte value relative to the previous value of
yPos; a value of 3 indicates that it is identical to the previous value of yPos.

xPosFormat: An unsigned integer that indicates how the value of xPos is defined. A
value of 1 indicates that it is defined as a 2-byte absolute value; a value of 2
indicates that it is defined as a single-byte value relative to the previous value of
xPos; a value of 3 indicates that it is identical to the previous value of xPos.

xScale: A signed integer representing the scale factor to be applied to the glyph
element in the X dimension. This field is in units of 1/4096.

yScale: A signed integer representing the scale factor to be applied to the glyph
element in the Y dimension. This field is in units of 1/4096.

xPos: A signed integer representing the amount by which the glyph element should
be shifted in the X dimension. This field is in units of character outline resolution
units.

yPos: A signed integer representing the amount by which the glyph element should
be shifted in the Y dimension. This field is in units of character outline resolution
units.

gpsSize: An unsigned integer representing the size in bytes of the glyph program
string defining the glyph element.

gpsOffset: An unsigned integer representing the byte offset of the first byte of the
glyph program string that defines the glyph element. The offset is relative to the
first byte of the first glyph program string in the glyph program string section.

8.1 Bitmap glyph program string

A bitmap glyph program string defines the image of a glyph in the form of a bitmap.
Its structure is as follows.

Table A-29. Bitmap Glyph Program String

Syntax Number of bits Mnemonic

bitmapGps() {
 imageFormat 2 uimsbf
 escapementFormat 2 uimsbf
 sizeFormat 2 uimsbf
 positionFormat 2 uimsbf
 switch(positionFormat)
 {
 case 0:

Coding of Outline Fonts V1.2 12/03/02 Page 37

 xPos 4 tcimsbf
 yPos 4 tcimsbf
 break
 case 1:
 xPos 8 tcimsbf
 yPos 8 tcimsbf
 break
 case 2:
 xPos 16 tcimsbf
 yPos 16 tcimsbf
 break
 case 3:
 xPos 24 tcimsbf
 yPos 24 tcimsbf
 break
 }
 switch(sizeFormat)
 {
 case 0:
 break
 case 1:
 xSize 4 uimsbf
 ySize 4 uimsbf
 break;
 case 2:
 xSize 8 uimsbf
 ySize 8 uimsbf
 break;
 case 3:
 xSize 16 uimsbf
 ySize 16 uimsbf
 break;
 }
 switch(escapementFormat)
 {
 case 0:
 break:
 case 1:
 setWidth 8 tcimsbf
 break;
 case 2:
 setWidth 16 tcimsbf
 break;
 case 3:
 setWidth 24 tcimsbf
 break;
 }
 imageData variable
 }

Coding of Outline Fonts V1.2 12/03/02 Page 38

imageFormat: An unsigned integer that indicates how the bitmap image is
represented.

A value of 0 indicates that the image is stored directly as a bitmap fully packed with
no padding between rows.

A value of 1 indicates that the image is run-length encoded in which each byte
specifies the unsigned number of white bits in the most significant 4 bits and the
unsigned number of following black bits in the least significant 4 bits. A run of more
than 15 bits of the same color is handled by multiple bytes Adjacent rows are
encoded together without regard to the end of each row. Trailing white bits must be
encoded.

A value of 2 indicates that the image is run-length encoded in which each pair of
bytes specifies the unsigned number of white bits in the first byte and the unsigned
number of following black bits in the second byte. A run of more than 255 bits of the
same color is handled by multiple pairs of bytes. Adjacent rows are encoded
together without regard to the end of each row. Trailing white bits must be
encoded.

A value of 3 is undefined.

escapementFormat: An unsigned integer that indicates how the escapement value
is represented.

A value of 0 indicates that no bitmap escapement data is included and that the
linearly scaled outline width should be used without rounding.

A value of 1 indicates that the bitmap escapement is represented by a signed single-
byte value in units of whole pixels.

A value of 2 indicates that the bitmap escapement is represented by a signed 2-byte
value in units of 1/256 pixels.

A value of 3 indicates that the bitmap escapement is represented by a signed 3-byte
value in units of 1/256 pixels.

sizeFormat: An unsigned integer that indicates how the dimensions of the bitmap
image are represented.

A value of 0 indicates that that bitmap image is blank and no image data is present.

A value of 1 indicates that the width and the height of the bitmap image are each
represented by an unsigned 4-bit value in units of whole pixels.

A value of 2 indicates that the width and the height of the bitmap image are each
represented by an unsigned 8-bit value in units of whole pixels.

A value of 3 indicates that the width and the height of the bitmap image are each
represented by an unsigned 2-byte value in units of whole pixels.

Coding of Outline Fonts V1.2 12/03/02 Page 39

positionFormat: An unsigned integer that indicates how the (x, y) position of the
first pixel in the bitmap image is represented.

A value of 0 indicates that the X and the Y coordinates are each represented by a
signed 4-bit value in units of whole pixels.

A value of 1 indicates that the X and the Y coordinates are each represented by a
signed single-byte value in units of whole pixels.

A value of 2 indicates that the X and the Y coordinates are each represented by a
signed 2-byte value in units of 1/256 pixels.

A value of 3 indicates that the X and the Y coordinates are each represented by a
signed 3-byte value in units of 1/256 pixels.

xPos: A signed integer representing the horizontal position of the left edge of the
bitmap image relative to the character origin. The units are pixels. A negative value
indicates that the left edge of the bitmap image is to the left of the character origin.

yPos: A signed integer representing the vertical position of the bottom edge of the
bitmap image relative to the character origin (baseline). The units are pixels. A
negative value indicates that the bottom edge of the bitmap image is below the
baseline.

xSize: An unsigned integer representing the width of the bitmap image in pixels.

ySize: An unsigned integer representing the height of the bitmap image in pixels.

setWidth: A signed integer representing the distance in pixels (or 1/256 pixels
depending upon the value of escapementFormat) the current rendering position
should be moved by prior to imaging the next character. If the value of
verticalEscapement in the parent physical font record is 1, the direction of the
escapement vector is vertical. Otherwise, it is horizontal.

imageData: This data is interpreted depending upon the value of imageFormat.

9 Portable font resource trailer
The PFR trailer block shall be the last block of data in the Portable Font Resource.
Its primary use it to facilitate the location of the start of a PFR that ends at the end
of a file. Its structure is:

Table A-30. Portable Font Resource Trailer

Syntax Number of bits Mnemonic

pfrTrailer() {
 pfrSize 24 uimsbf
 pfrTrailerSig 40 bslbf
 }

Coding of Outline Fonts V1.2 12/03/02 Page 40

pfrSize: An unsigned integer representing the total size of the PFR in bytes.

pfrTrailerSig: A bit pattern used as a PFR trailer signature. It shall have the
constant value 0x2450465224 representing the string “PFR”.

10 Updates for kerning data
Kerning data for a physical font is stored as one or more extra data items attached
to the physical font for which the kerning data applies. Track and pair kerning data
are stored in separate types of extra data items.

10.1 Pair kerning Data

The format of a pair kerning data block is as follows:

Syntax Number of bits Mnemonic

pairKernData() {
extraItemSize 8 uimsbf
extraItemType 8 uimsbf
nKernPairs 8 uimsbf
baseAdjustment 16 imsbf
reserved 6
twoByteAdjValues 1
twoByteCharCodes 1
for (i = 0; i < nKernPairs; i++){
 if (twoByteCharCodes) {
 charCode1 16 uimsbf
 charCode2 16 uimsbf
 }
 else {
 charCode1 8 uimsbf
 charCode2 8 uimsbf
 }
 if (twoByteAdjustment)
 adjustment 16 imsbf
 else
 adjustment 8 uimsbf
 }
}

extraItemSize: This is the number of bytes of data in the extra data item. This does
not include the two bytes for the extraItemType and extraItemSize.

extraItemType: This is a constant with a value of 4. It identifies the extra data item
as kerning pair data.

nKernPairs: The number of kerning pairs included in the table.

Coding of Outline Fonts V1.2 12/03/02 Page 41

baseAdjustment: The base value of the adjustment, in metrics resolution units,
relative to which all adjustment values are encoded. It is primarily intended to
facilitate compaction from the use of the single byte adjustment values

Reserved: These unused 6 bits must be set to zero.

twoByteAdjValues: A bit flag defining how all kerning adjustment values are
encoded. A zero indicates that every kerning adjustment value is encoded as an
unsigned byte relative to the base adjustment. A one indicates that every kerning
adjustment value is encoded as a signed 2-byte word relative to the base
adjustment.

twoByteCharCodes: A bit flag defining how all character codes are encoded. A
zero indicates that each character code is encoded as an unsigned byte. A one
indicates that each character code is encoded as unsigned 2-byte words.

charCode1: The character code for the left character of each kerning pair.

charCode2: The character code for the right character of each kerning pair.

adjustment: The amount by which the escapement is to be adjusted between the
left and right characters of the kerning pair in metrics resolution units. The
adjustment is positive to increase the spacing, negative to reduce the spacing. The
adjustment is relative to the value of baseAdjustment for the block of kerning data.

The order of the kerning pair records is required to be in increasing order of
charCode1. Groups of records with a common value of charCode1 are required to be
in increasing order of charCode2.

Because the maximum number of bytes in an extra data item is limited to 255, there
is a limit on the number of kerning pairs that may be included in one extra data
item. Multiple extra data items may be used to overcome this limit. The order of
such multiple items must be in ascending order of character pair codes. This allows
the search for a specific character code pair to scan the first entry in each type 4
extra data item to determine which block contains the pair.

10.2 Track kerning data

The format of a track kerning data block is as follows:

Coding of Outline Fonts V1.2 12/03/02 Page 42

Syntax Number of bits Mnemonic

trackKernData() {
extraItemType 8 uimsbf
extraItemSize 8 uimsbf
nKernTracks 8 uimsbf
for (i = 0; i < nKernTracks; i++){
 degree 16 uimsbf
 minPointSize 16 uimsbf
 minAdjust 16 imsbf
 maxPointSize 16 uimsbf
 maxAdjust 16 imsbf
 }
}

extraItemType: This is a constant with a value of 5. It identifies the extra data item
as kerning track data.

extraItemSize: This is the number of bytes of data in the extra data item. This does
not include the two bytes for the extraItemType and extraItemSize.

nKernTracks: The number of track kerning entries,

degree: This identifies the amount of track kerning. Standard values are –1 for light
kerning, -2 for medium kerning, and –3 for tight kerning.

minPointSize: This is the minimum point size at which the track kerning takes
place for the current track. Its value is in units of points.

minAdjust: This is the spacing adjustment to be applied between each pair of
characters at the minimum point size. Its value is in units of 1/256 points. A positive
value indicates an increase in spacing; a negative value indicates a decrease in
spacing.

maxPointSize: This is the minimum point size at which the track kerning takes
place for the current track. Its value is in units of points.

maxAdjust: This is the spacing adjustment to be applied between each pair of
characters at the maximum point size. Its value is in units of 1/256 points. A positive
value indicates an increase in spacing; a negative value indicates a decrease in
spacing.

It is not expected that the 255-byte limit on the size of an extra data item will be
significant as this allows about 25 kerning tracks to be included.

Authors: John Collins (jcollins@bitstream.com) and
Bob Thomas (bthomas@bitstream.com)

